passagemath-modules 10.6.31rc3__cp314-cp314-musllinux_1_2_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-modules might be problematic. Click here for more details.
- passagemath_modules-10.6.31rc3.dist-info/METADATA +281 -0
- passagemath_modules-10.6.31rc3.dist-info/RECORD +807 -0
- passagemath_modules-10.6.31rc3.dist-info/WHEEL +5 -0
- passagemath_modules-10.6.31rc3.dist-info/top_level.txt +2 -0
- passagemath_modules.libs/libgcc_s-2d945d6c.so.1 +0 -0
- passagemath_modules.libs/libgfortran-67378ab2.so.5.0.0 +0 -0
- passagemath_modules.libs/libgmp-28992bcb.so.10.5.0 +0 -0
- passagemath_modules.libs/libgsl-23768756.so.28.0.0 +0 -0
- passagemath_modules.libs/libmpc-7897025b.so.3.3.1 +0 -0
- passagemath_modules.libs/libmpfr-e34bb864.so.6.2.1 +0 -0
- passagemath_modules.libs/libopenblasp-r0-503f0c35.3.29.so +0 -0
- sage/algebras/all__sagemath_modules.py +20 -0
- sage/algebras/catalog.py +148 -0
- sage/algebras/clifford_algebra.py +3107 -0
- sage/algebras/clifford_algebra_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/algebras/clifford_algebra_element.pxd +16 -0
- sage/algebras/clifford_algebra_element.pyx +997 -0
- sage/algebras/commutative_dga.py +4252 -0
- sage/algebras/exterior_algebra_groebner.cpython-314-aarch64-linux-musl.so +0 -0
- sage/algebras/exterior_algebra_groebner.pxd +55 -0
- sage/algebras/exterior_algebra_groebner.pyx +727 -0
- sage/algebras/finite_dimensional_algebras/all.py +2 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra.py +1029 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pxd +12 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_element.pyx +706 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_ideal.py +196 -0
- sage/algebras/finite_dimensional_algebras/finite_dimensional_algebra_morphism.py +255 -0
- sage/algebras/finite_gca.py +528 -0
- sage/algebras/group_algebra.py +232 -0
- sage/algebras/lie_algebras/abelian.py +197 -0
- sage/algebras/lie_algebras/affine_lie_algebra.py +1213 -0
- sage/algebras/lie_algebras/all.py +25 -0
- sage/algebras/lie_algebras/all__sagemath_modules.py +1 -0
- sage/algebras/lie_algebras/bch.py +177 -0
- sage/algebras/lie_algebras/bgg_dual_module.py +1184 -0
- sage/algebras/lie_algebras/bgg_resolution.py +232 -0
- sage/algebras/lie_algebras/center_uea.py +767 -0
- sage/algebras/lie_algebras/classical_lie_algebra.py +2516 -0
- sage/algebras/lie_algebras/examples.py +683 -0
- sage/algebras/lie_algebras/free_lie_algebra.py +973 -0
- sage/algebras/lie_algebras/heisenberg.py +820 -0
- sage/algebras/lie_algebras/lie_algebra.py +1562 -0
- sage/algebras/lie_algebras/lie_algebra_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/algebras/lie_algebras/lie_algebra_element.pxd +68 -0
- sage/algebras/lie_algebras/lie_algebra_element.pyx +2122 -0
- sage/algebras/lie_algebras/morphism.py +661 -0
- sage/algebras/lie_algebras/nilpotent_lie_algebra.py +457 -0
- sage/algebras/lie_algebras/onsager.py +1324 -0
- sage/algebras/lie_algebras/poincare_birkhoff_witt.py +816 -0
- sage/algebras/lie_algebras/quotient.py +462 -0
- sage/algebras/lie_algebras/rank_two_heisenberg_virasoro.py +355 -0
- sage/algebras/lie_algebras/representation.py +1040 -0
- sage/algebras/lie_algebras/structure_coefficients.py +459 -0
- sage/algebras/lie_algebras/subalgebra.py +967 -0
- sage/algebras/lie_algebras/symplectic_derivation.py +289 -0
- sage/algebras/lie_algebras/verma_module.py +1630 -0
- sage/algebras/lie_algebras/virasoro.py +1186 -0
- sage/algebras/octonion_algebra.cpython-314-aarch64-linux-musl.so +0 -0
- sage/algebras/octonion_algebra.pxd +20 -0
- sage/algebras/octonion_algebra.pyx +987 -0
- sage/algebras/orlik_solomon.py +907 -0
- sage/algebras/orlik_terao.py +779 -0
- sage/algebras/steenrod/all.py +7 -0
- sage/algebras/steenrod/steenrod_algebra.py +4258 -0
- sage/algebras/steenrod/steenrod_algebra_bases.py +1179 -0
- sage/algebras/steenrod/steenrod_algebra_misc.py +1167 -0
- sage/algebras/steenrod/steenrod_algebra_mult.py +954 -0
- sage/algebras/weyl_algebra.py +1126 -0
- sage/all__sagemath_modules.py +62 -0
- sage/calculus/all__sagemath_modules.py +19 -0
- sage/calculus/expr.py +205 -0
- sage/calculus/integration.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/integration.pyx +698 -0
- sage/calculus/interpolation.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/interpolation.pxd +13 -0
- sage/calculus/interpolation.pyx +387 -0
- sage/calculus/interpolators.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/interpolators.pyx +326 -0
- sage/calculus/ode.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/ode.pxd +5 -0
- sage/calculus/ode.pyx +610 -0
- sage/calculus/riemann.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/riemann.pyx +1521 -0
- sage/calculus/test_sympy.py +201 -0
- sage/calculus/transforms/all.py +7 -0
- sage/calculus/transforms/dft.py +844 -0
- sage/calculus/transforms/dwt.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/transforms/dwt.pxd +7 -0
- sage/calculus/transforms/dwt.pyx +160 -0
- sage/calculus/transforms/fft.cpython-314-aarch64-linux-musl.so +0 -0
- sage/calculus/transforms/fft.pxd +12 -0
- sage/calculus/transforms/fft.pyx +487 -0
- sage/calculus/wester.py +662 -0
- sage/coding/abstract_code.py +1108 -0
- sage/coding/ag_code.py +868 -0
- sage/coding/ag_code_decoders.cpython-314-aarch64-linux-musl.so +0 -0
- sage/coding/ag_code_decoders.pyx +2639 -0
- sage/coding/all.py +15 -0
- sage/coding/bch_code.py +494 -0
- sage/coding/binary_code.cpython-314-aarch64-linux-musl.so +0 -0
- sage/coding/binary_code.pxd +124 -0
- sage/coding/binary_code.pyx +4139 -0
- sage/coding/bounds_catalog.py +43 -0
- sage/coding/channel.py +819 -0
- sage/coding/channels_catalog.py +29 -0
- sage/coding/code_bounds.py +755 -0
- sage/coding/code_constructions.py +804 -0
- sage/coding/codes_catalog.py +111 -0
- sage/coding/cyclic_code.py +1329 -0
- sage/coding/databases.py +316 -0
- sage/coding/decoder.py +373 -0
- sage/coding/decoders_catalog.py +88 -0
- sage/coding/delsarte_bounds.py +709 -0
- sage/coding/encoder.py +390 -0
- sage/coding/encoders_catalog.py +64 -0
- sage/coding/extended_code.py +468 -0
- sage/coding/gabidulin_code.py +1058 -0
- sage/coding/golay_code.py +404 -0
- sage/coding/goppa_code.py +441 -0
- sage/coding/grs_code.py +2371 -0
- sage/coding/guava.py +107 -0
- sage/coding/guruswami_sudan/all.py +1 -0
- sage/coding/guruswami_sudan/gs_decoder.py +897 -0
- sage/coding/guruswami_sudan/interpolation.py +409 -0
- sage/coding/guruswami_sudan/utils.py +176 -0
- sage/coding/hamming_code.py +176 -0
- sage/coding/information_set_decoder.py +1032 -0
- sage/coding/kasami_codes.cpython-314-aarch64-linux-musl.so +0 -0
- sage/coding/kasami_codes.pyx +351 -0
- sage/coding/linear_code.py +3067 -0
- sage/coding/linear_code_no_metric.py +1354 -0
- sage/coding/linear_rank_metric.py +961 -0
- sage/coding/parity_check_code.py +353 -0
- sage/coding/punctured_code.py +719 -0
- sage/coding/reed_muller_code.py +999 -0
- sage/coding/self_dual_codes.py +942 -0
- sage/coding/source_coding/all.py +2 -0
- sage/coding/source_coding/huffman.py +553 -0
- sage/coding/subfield_subcode.py +423 -0
- sage/coding/two_weight_db.py +399 -0
- sage/combinat/all__sagemath_modules.py +7 -0
- sage/combinat/cartesian_product.py +347 -0
- sage/combinat/family.py +11 -0
- sage/combinat/free_module.py +1977 -0
- sage/combinat/root_system/all.py +147 -0
- sage/combinat/root_system/ambient_space.py +527 -0
- sage/combinat/root_system/associahedron.py +471 -0
- sage/combinat/root_system/braid_move_calculator.py +143 -0
- sage/combinat/root_system/braid_orbit.cpython-314-aarch64-linux-musl.so +0 -0
- sage/combinat/root_system/braid_orbit.pyx +144 -0
- sage/combinat/root_system/branching_rules.py +2301 -0
- sage/combinat/root_system/cartan_matrix.py +1245 -0
- sage/combinat/root_system/cartan_type.py +3069 -0
- sage/combinat/root_system/coxeter_group.py +162 -0
- sage/combinat/root_system/coxeter_matrix.py +1261 -0
- sage/combinat/root_system/coxeter_type.py +681 -0
- sage/combinat/root_system/dynkin_diagram.py +900 -0
- sage/combinat/root_system/extended_affine_weyl_group.py +2993 -0
- sage/combinat/root_system/fundamental_group.py +795 -0
- sage/combinat/root_system/hecke_algebra_representation.py +1203 -0
- sage/combinat/root_system/integrable_representations.py +1227 -0
- sage/combinat/root_system/non_symmetric_macdonald_polynomials.py +1965 -0
- sage/combinat/root_system/pieri_factors.py +1147 -0
- sage/combinat/root_system/plot.py +1615 -0
- sage/combinat/root_system/root_lattice_realization_algebras.py +1214 -0
- sage/combinat/root_system/root_lattice_realizations.py +4628 -0
- sage/combinat/root_system/root_space.py +487 -0
- sage/combinat/root_system/root_system.py +882 -0
- sage/combinat/root_system/type_A.py +348 -0
- sage/combinat/root_system/type_A_affine.py +227 -0
- sage/combinat/root_system/type_A_infinity.py +241 -0
- sage/combinat/root_system/type_B.py +347 -0
- sage/combinat/root_system/type_BC_affine.py +287 -0
- sage/combinat/root_system/type_B_affine.py +216 -0
- sage/combinat/root_system/type_C.py +317 -0
- sage/combinat/root_system/type_C_affine.py +188 -0
- sage/combinat/root_system/type_D.py +357 -0
- sage/combinat/root_system/type_D_affine.py +208 -0
- sage/combinat/root_system/type_E.py +641 -0
- sage/combinat/root_system/type_E_affine.py +231 -0
- sage/combinat/root_system/type_F.py +387 -0
- sage/combinat/root_system/type_F_affine.py +137 -0
- sage/combinat/root_system/type_G.py +293 -0
- sage/combinat/root_system/type_G_affine.py +132 -0
- sage/combinat/root_system/type_H.py +105 -0
- sage/combinat/root_system/type_I.py +110 -0
- sage/combinat/root_system/type_Q.py +150 -0
- sage/combinat/root_system/type_affine.py +509 -0
- sage/combinat/root_system/type_dual.py +704 -0
- sage/combinat/root_system/type_folded.py +301 -0
- sage/combinat/root_system/type_marked.py +748 -0
- sage/combinat/root_system/type_reducible.py +601 -0
- sage/combinat/root_system/type_relabel.py +730 -0
- sage/combinat/root_system/type_super_A.py +837 -0
- sage/combinat/root_system/weight_lattice_realizations.py +1188 -0
- sage/combinat/root_system/weight_space.py +639 -0
- sage/combinat/root_system/weyl_characters.py +2238 -0
- sage/crypto/__init__.py +4 -0
- sage/crypto/all.py +28 -0
- sage/crypto/block_cipher/all.py +7 -0
- sage/crypto/block_cipher/des.py +1065 -0
- sage/crypto/block_cipher/miniaes.py +2171 -0
- sage/crypto/block_cipher/present.py +909 -0
- sage/crypto/block_cipher/sdes.py +1527 -0
- sage/crypto/boolean_function.cpython-314-aarch64-linux-musl.so +0 -0
- sage/crypto/boolean_function.pxd +10 -0
- sage/crypto/boolean_function.pyx +1487 -0
- sage/crypto/cipher.py +78 -0
- sage/crypto/classical.py +3668 -0
- sage/crypto/classical_cipher.py +569 -0
- sage/crypto/cryptosystem.py +387 -0
- sage/crypto/key_exchange/all.py +7 -0
- sage/crypto/key_exchange/catalog.py +24 -0
- sage/crypto/key_exchange/diffie_hellman.py +323 -0
- sage/crypto/key_exchange/key_exchange_scheme.py +107 -0
- sage/crypto/lattice.py +312 -0
- sage/crypto/lfsr.py +295 -0
- sage/crypto/lwe.py +840 -0
- sage/crypto/mq/__init__.py +4 -0
- sage/crypto/mq/mpolynomialsystemgenerator.py +204 -0
- sage/crypto/mq/rijndael_gf.py +2345 -0
- sage/crypto/mq/sbox.py +7 -0
- sage/crypto/mq/sr.py +3344 -0
- sage/crypto/public_key/all.py +5 -0
- sage/crypto/public_key/blum_goldwasser.py +776 -0
- sage/crypto/sbox.cpython-314-aarch64-linux-musl.so +0 -0
- sage/crypto/sbox.pyx +2090 -0
- sage/crypto/sboxes.py +2090 -0
- sage/crypto/stream.py +390 -0
- sage/crypto/stream_cipher.py +297 -0
- sage/crypto/util.py +519 -0
- sage/ext/all__sagemath_modules.py +1 -0
- sage/ext/interpreters/__init__.py +1 -0
- sage/ext/interpreters/all__sagemath_modules.py +2 -0
- sage/ext/interpreters/wrapper_cc.cpython-314-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_cc.pxd +30 -0
- sage/ext/interpreters/wrapper_cc.pyx +252 -0
- sage/ext/interpreters/wrapper_cdf.cpython-314-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_cdf.pxd +26 -0
- sage/ext/interpreters/wrapper_cdf.pyx +245 -0
- sage/ext/interpreters/wrapper_rdf.cpython-314-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_rdf.pxd +23 -0
- sage/ext/interpreters/wrapper_rdf.pyx +221 -0
- sage/ext/interpreters/wrapper_rr.cpython-314-aarch64-linux-musl.so +0 -0
- sage/ext/interpreters/wrapper_rr.pxd +28 -0
- sage/ext/interpreters/wrapper_rr.pyx +335 -0
- sage/geometry/all__sagemath_modules.py +5 -0
- sage/geometry/toric_lattice.py +1745 -0
- sage/geometry/toric_lattice_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/geometry/toric_lattice_element.pyx +432 -0
- sage/groups/abelian_gps/abelian_group.py +1925 -0
- sage/groups/abelian_gps/abelian_group_element.py +164 -0
- sage/groups/abelian_gps/all__sagemath_modules.py +5 -0
- sage/groups/abelian_gps/dual_abelian_group.py +421 -0
- sage/groups/abelian_gps/dual_abelian_group_element.py +179 -0
- sage/groups/abelian_gps/element_base.py +341 -0
- sage/groups/abelian_gps/values.py +488 -0
- sage/groups/additive_abelian/additive_abelian_group.py +476 -0
- sage/groups/additive_abelian/additive_abelian_wrapper.py +857 -0
- sage/groups/additive_abelian/all.py +4 -0
- sage/groups/additive_abelian/qmodnz.py +231 -0
- sage/groups/additive_abelian/qmodnz_element.py +349 -0
- sage/groups/affine_gps/affine_group.py +535 -0
- sage/groups/affine_gps/all.py +1 -0
- sage/groups/affine_gps/catalog.py +17 -0
- sage/groups/affine_gps/euclidean_group.py +246 -0
- sage/groups/affine_gps/group_element.py +562 -0
- sage/groups/all__sagemath_modules.py +12 -0
- sage/groups/galois_group.py +479 -0
- sage/groups/matrix_gps/all.py +4 -0
- sage/groups/matrix_gps/all__sagemath_modules.py +13 -0
- sage/groups/matrix_gps/catalog.py +26 -0
- sage/groups/matrix_gps/coxeter_group.py +927 -0
- sage/groups/matrix_gps/finitely_generated.py +487 -0
- sage/groups/matrix_gps/group_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/groups/matrix_gps/group_element.pxd +11 -0
- sage/groups/matrix_gps/group_element.pyx +431 -0
- sage/groups/matrix_gps/linear.py +440 -0
- sage/groups/matrix_gps/matrix_group.py +617 -0
- sage/groups/matrix_gps/named_group.py +296 -0
- sage/groups/matrix_gps/orthogonal.py +544 -0
- sage/groups/matrix_gps/symplectic.py +251 -0
- sage/groups/matrix_gps/unitary.py +436 -0
- sage/groups/misc_gps/all__sagemath_modules.py +1 -0
- sage/groups/misc_gps/argument_groups.py +1905 -0
- sage/groups/misc_gps/imaginary_groups.py +479 -0
- sage/groups/perm_gps/all__sagemath_modules.py +1 -0
- sage/groups/perm_gps/partn_ref/all__sagemath_modules.py +1 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.cpython-314-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.pxd +41 -0
- sage/groups/perm_gps/partn_ref/refinement_binary.pyx +1167 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.cpython-314-aarch64-linux-musl.so +0 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.pxd +31 -0
- sage/groups/perm_gps/partn_ref/refinement_matrices.pyx +385 -0
- sage/homology/algebraic_topological_model.py +595 -0
- sage/homology/all.py +2 -0
- sage/homology/all__sagemath_modules.py +8 -0
- sage/homology/chain_complex.py +2148 -0
- sage/homology/chain_complex_homspace.py +165 -0
- sage/homology/chain_complex_morphism.py +629 -0
- sage/homology/chain_homotopy.py +604 -0
- sage/homology/chains.py +653 -0
- sage/homology/free_resolution.py +923 -0
- sage/homology/graded_resolution.py +567 -0
- sage/homology/hochschild_complex.py +756 -0
- sage/homology/homology_group.py +188 -0
- sage/homology/homology_morphism.py +422 -0
- sage/homology/homology_vector_space_with_basis.py +1454 -0
- sage/homology/koszul_complex.py +169 -0
- sage/homology/matrix_utils.py +205 -0
- sage/libs/all__sagemath_modules.py +1 -0
- sage/libs/gsl/__init__.py +1 -0
- sage/libs/gsl/airy.pxd +56 -0
- sage/libs/gsl/all.pxd +66 -0
- sage/libs/gsl/array.cpython-314-aarch64-linux-musl.so +0 -0
- sage/libs/gsl/array.pxd +5 -0
- sage/libs/gsl/array.pyx +102 -0
- sage/libs/gsl/bessel.pxd +208 -0
- sage/libs/gsl/blas.pxd +116 -0
- sage/libs/gsl/blas_types.pxd +34 -0
- sage/libs/gsl/block.pxd +52 -0
- sage/libs/gsl/chebyshev.pxd +37 -0
- sage/libs/gsl/clausen.pxd +12 -0
- sage/libs/gsl/combination.pxd +47 -0
- sage/libs/gsl/complex.pxd +151 -0
- sage/libs/gsl/coulomb.pxd +30 -0
- sage/libs/gsl/coupling.pxd +21 -0
- sage/libs/gsl/dawson.pxd +12 -0
- sage/libs/gsl/debye.pxd +24 -0
- sage/libs/gsl/dilog.pxd +14 -0
- sage/libs/gsl/eigen.pxd +46 -0
- sage/libs/gsl/elementary.pxd +12 -0
- sage/libs/gsl/ellint.pxd +48 -0
- sage/libs/gsl/elljac.pxd +8 -0
- sage/libs/gsl/erf.pxd +32 -0
- sage/libs/gsl/errno.pxd +26 -0
- sage/libs/gsl/exp.pxd +44 -0
- sage/libs/gsl/expint.pxd +44 -0
- sage/libs/gsl/fermi_dirac.pxd +44 -0
- sage/libs/gsl/fft.pxd +121 -0
- sage/libs/gsl/fit.pxd +50 -0
- sage/libs/gsl/gamma.pxd +94 -0
- sage/libs/gsl/gegenbauer.pxd +26 -0
- sage/libs/gsl/histogram.pxd +176 -0
- sage/libs/gsl/hyperg.pxd +52 -0
- sage/libs/gsl/integration.pxd +69 -0
- sage/libs/gsl/interp.pxd +109 -0
- sage/libs/gsl/laguerre.pxd +24 -0
- sage/libs/gsl/lambert.pxd +16 -0
- sage/libs/gsl/legendre.pxd +90 -0
- sage/libs/gsl/linalg.pxd +185 -0
- sage/libs/gsl/log.pxd +26 -0
- sage/libs/gsl/math.pxd +43 -0
- sage/libs/gsl/matrix.pxd +143 -0
- sage/libs/gsl/matrix_complex.pxd +130 -0
- sage/libs/gsl/min.pxd +67 -0
- sage/libs/gsl/monte.pxd +56 -0
- sage/libs/gsl/ntuple.pxd +32 -0
- sage/libs/gsl/odeiv.pxd +70 -0
- sage/libs/gsl/permutation.pxd +78 -0
- sage/libs/gsl/poly.pxd +40 -0
- sage/libs/gsl/pow_int.pxd +12 -0
- sage/libs/gsl/psi.pxd +28 -0
- sage/libs/gsl/qrng.pxd +29 -0
- sage/libs/gsl/random.pxd +257 -0
- sage/libs/gsl/rng.pxd +100 -0
- sage/libs/gsl/roots.pxd +72 -0
- sage/libs/gsl/sort.pxd +36 -0
- sage/libs/gsl/statistics.pxd +59 -0
- sage/libs/gsl/sum.pxd +55 -0
- sage/libs/gsl/synchrotron.pxd +16 -0
- sage/libs/gsl/transport.pxd +24 -0
- sage/libs/gsl/trig.pxd +58 -0
- sage/libs/gsl/types.pxd +137 -0
- sage/libs/gsl/vector.pxd +101 -0
- sage/libs/gsl/vector_complex.pxd +83 -0
- sage/libs/gsl/wavelet.pxd +49 -0
- sage/libs/gsl/zeta.pxd +28 -0
- sage/libs/mpc/__init__.pxd +114 -0
- sage/libs/mpc/types.pxd +28 -0
- sage/libs/mpfr/__init__.pxd +299 -0
- sage/libs/mpfr/types.pxd +26 -0
- sage/libs/mpmath/__init__.py +1 -0
- sage/libs/mpmath/all.py +27 -0
- sage/libs/mpmath/all__sagemath_modules.py +1 -0
- sage/libs/mpmath/utils.cpython-314-aarch64-linux-musl.so +0 -0
- sage/libs/mpmath/utils.pxd +4 -0
- sage/libs/mpmath/utils.pyx +319 -0
- sage/matrix/action.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/action.pxd +26 -0
- sage/matrix/action.pyx +596 -0
- sage/matrix/all.py +9 -0
- sage/matrix/args.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/args.pxd +144 -0
- sage/matrix/args.pyx +1668 -0
- sage/matrix/benchmark.py +1258 -0
- sage/matrix/berlekamp_massey.py +95 -0
- sage/matrix/compute_J_ideal.py +926 -0
- sage/matrix/constructor.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/constructor.pyx +750 -0
- sage/matrix/docs.py +430 -0
- sage/matrix/echelon_matrix.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/echelon_matrix.pyx +155 -0
- sage/matrix/matrix.pxd +2 -0
- sage/matrix/matrix0.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix0.pxd +68 -0
- sage/matrix/matrix0.pyx +6324 -0
- sage/matrix/matrix1.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix1.pxd +8 -0
- sage/matrix/matrix1.pyx +2851 -0
- sage/matrix/matrix2.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix2.pxd +25 -0
- sage/matrix/matrix2.pyx +20181 -0
- sage/matrix/matrix_cdv.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_cdv.pxd +4 -0
- sage/matrix/matrix_cdv.pyx +93 -0
- sage/matrix/matrix_complex_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_complex_double_dense.pxd +5 -0
- sage/matrix/matrix_complex_double_dense.pyx +98 -0
- sage/matrix/matrix_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_dense.pxd +5 -0
- sage/matrix/matrix_dense.pyx +343 -0
- sage/matrix/matrix_domain_dense.pxd +5 -0
- sage/matrix/matrix_domain_sparse.pxd +5 -0
- sage/matrix/matrix_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_double_dense.pxd +7 -0
- sage/matrix/matrix_double_dense.pyx +3906 -0
- sage/matrix/matrix_double_sparse.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_double_sparse.pxd +6 -0
- sage/matrix/matrix_double_sparse.pyx +248 -0
- sage/matrix/matrix_generic_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_generic_dense.pxd +7 -0
- sage/matrix/matrix_generic_dense.pyx +354 -0
- sage/matrix/matrix_generic_sparse.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_generic_sparse.pxd +7 -0
- sage/matrix/matrix_generic_sparse.pyx +461 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.pxd +5 -0
- sage/matrix/matrix_laurent_mpolynomial_dense.pyx +115 -0
- sage/matrix/matrix_misc.py +313 -0
- sage/matrix/matrix_numpy_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_numpy_dense.pxd +14 -0
- sage/matrix/matrix_numpy_dense.pyx +450 -0
- sage/matrix/matrix_numpy_integer_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_numpy_integer_dense.pxd +7 -0
- sage/matrix/matrix_numpy_integer_dense.pyx +59 -0
- sage/matrix/matrix_polynomial_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_polynomial_dense.pxd +5 -0
- sage/matrix/matrix_polynomial_dense.pyx +5341 -0
- sage/matrix/matrix_real_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_real_double_dense.pxd +7 -0
- sage/matrix/matrix_real_double_dense.pyx +122 -0
- sage/matrix/matrix_space.py +2848 -0
- sage/matrix/matrix_sparse.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_sparse.pxd +5 -0
- sage/matrix/matrix_sparse.pyx +1222 -0
- sage/matrix/matrix_window.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/matrix_window.pxd +37 -0
- sage/matrix/matrix_window.pyx +242 -0
- sage/matrix/misc_mpfr.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/misc_mpfr.pyx +80 -0
- sage/matrix/operation_table.py +1182 -0
- sage/matrix/special.py +3666 -0
- sage/matrix/strassen.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matrix/strassen.pyx +851 -0
- sage/matrix/symplectic_basis.py +541 -0
- sage/matrix/template.pxd +6 -0
- sage/matrix/tests.py +71 -0
- sage/matroids/advanced.py +77 -0
- sage/matroids/all.py +13 -0
- sage/matroids/basis_exchange_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/basis_exchange_matroid.pxd +96 -0
- sage/matroids/basis_exchange_matroid.pyx +2344 -0
- sage/matroids/basis_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/basis_matroid.pxd +45 -0
- sage/matroids/basis_matroid.pyx +1217 -0
- sage/matroids/catalog.py +44 -0
- sage/matroids/chow_ring.py +473 -0
- sage/matroids/chow_ring_ideal.py +849 -0
- sage/matroids/circuit_closures_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/circuit_closures_matroid.pxd +16 -0
- sage/matroids/circuit_closures_matroid.pyx +559 -0
- sage/matroids/circuits_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/circuits_matroid.pxd +38 -0
- sage/matroids/circuits_matroid.pyx +947 -0
- sage/matroids/constructor.py +1086 -0
- sage/matroids/database_collections.py +365 -0
- sage/matroids/database_matroids.py +5338 -0
- sage/matroids/dual_matroid.py +583 -0
- sage/matroids/extension.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/extension.pxd +34 -0
- sage/matroids/extension.pyx +519 -0
- sage/matroids/flats_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/flats_matroid.pxd +28 -0
- sage/matroids/flats_matroid.pyx +715 -0
- sage/matroids/gammoid.py +600 -0
- sage/matroids/graphic_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/graphic_matroid.pxd +39 -0
- sage/matroids/graphic_matroid.pyx +2024 -0
- sage/matroids/lean_matrix.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/lean_matrix.pxd +126 -0
- sage/matroids/lean_matrix.pyx +3667 -0
- sage/matroids/linear_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/linear_matroid.pxd +180 -0
- sage/matroids/linear_matroid.pyx +6649 -0
- sage/matroids/matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/matroid.pxd +243 -0
- sage/matroids/matroid.pyx +8759 -0
- sage/matroids/matroids_catalog.py +190 -0
- sage/matroids/matroids_plot_helpers.py +890 -0
- sage/matroids/minor_matroid.py +480 -0
- sage/matroids/minorfix.h +9 -0
- sage/matroids/named_matroids.py +5 -0
- sage/matroids/rank_matroid.py +268 -0
- sage/matroids/set_system.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/set_system.pxd +38 -0
- sage/matroids/set_system.pyx +800 -0
- sage/matroids/transversal_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/transversal_matroid.pxd +14 -0
- sage/matroids/transversal_matroid.pyx +893 -0
- sage/matroids/union_matroid.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/union_matroid.pxd +20 -0
- sage/matroids/union_matroid.pyx +331 -0
- sage/matroids/unpickling.cpython-314-aarch64-linux-musl.so +0 -0
- sage/matroids/unpickling.pyx +843 -0
- sage/matroids/utilities.py +809 -0
- sage/misc/all__sagemath_modules.py +20 -0
- sage/misc/c3.cpython-314-aarch64-linux-musl.so +0 -0
- sage/misc/c3.pyx +238 -0
- sage/misc/compat.py +87 -0
- sage/misc/element_with_label.py +173 -0
- sage/misc/func_persist.py +79 -0
- sage/misc/pickle_old.cpython-314-aarch64-linux-musl.so +0 -0
- sage/misc/pickle_old.pyx +19 -0
- sage/misc/proof.py +7 -0
- sage/misc/replace_dot_all.py +472 -0
- sage/misc/sagedoc_conf.py +168 -0
- sage/misc/sphinxify.py +167 -0
- sage/misc/test_class_pickling.py +85 -0
- sage/modules/all.py +42 -0
- sage/modules/complex_double_vector.py +25 -0
- sage/modules/diamond_cutting.py +380 -0
- sage/modules/fg_pid/all.py +1 -0
- sage/modules/fg_pid/fgp_element.py +456 -0
- sage/modules/fg_pid/fgp_module.py +2091 -0
- sage/modules/fg_pid/fgp_morphism.py +550 -0
- sage/modules/filtered_vector_space.py +1271 -0
- sage/modules/finite_submodule_iter.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/finite_submodule_iter.pxd +27 -0
- sage/modules/finite_submodule_iter.pyx +452 -0
- sage/modules/fp_graded/all.py +1 -0
- sage/modules/fp_graded/element.py +346 -0
- sage/modules/fp_graded/free_element.py +298 -0
- sage/modules/fp_graded/free_homspace.py +53 -0
- sage/modules/fp_graded/free_module.py +1060 -0
- sage/modules/fp_graded/free_morphism.py +217 -0
- sage/modules/fp_graded/homspace.py +563 -0
- sage/modules/fp_graded/module.py +1340 -0
- sage/modules/fp_graded/morphism.py +1990 -0
- sage/modules/fp_graded/steenrod/all.py +1 -0
- sage/modules/fp_graded/steenrod/homspace.py +65 -0
- sage/modules/fp_graded/steenrod/module.py +477 -0
- sage/modules/fp_graded/steenrod/morphism.py +404 -0
- sage/modules/fp_graded/steenrod/profile.py +241 -0
- sage/modules/free_module.py +8447 -0
- sage/modules/free_module_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/free_module_element.pxd +22 -0
- sage/modules/free_module_element.pyx +5445 -0
- sage/modules/free_module_homspace.py +369 -0
- sage/modules/free_module_integer.py +896 -0
- sage/modules/free_module_morphism.py +823 -0
- sage/modules/free_module_pseudohomspace.py +352 -0
- sage/modules/free_module_pseudomorphism.py +578 -0
- sage/modules/free_quadratic_module.py +1706 -0
- sage/modules/free_quadratic_module_integer_symmetric.py +1790 -0
- sage/modules/matrix_morphism.py +1745 -0
- sage/modules/misc.py +103 -0
- sage/modules/module_functors.py +192 -0
- sage/modules/multi_filtered_vector_space.py +719 -0
- sage/modules/ore_module.py +2208 -0
- sage/modules/ore_module_element.py +178 -0
- sage/modules/ore_module_homspace.py +147 -0
- sage/modules/ore_module_morphism.py +968 -0
- sage/modules/quotient_module.py +699 -0
- sage/modules/real_double_vector.py +22 -0
- sage/modules/submodule.py +255 -0
- sage/modules/tensor_operations.py +567 -0
- sage/modules/torsion_quadratic_module.py +1352 -0
- sage/modules/tutorial_free_modules.py +248 -0
- sage/modules/vector_complex_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_complex_double_dense.pxd +6 -0
- sage/modules/vector_complex_double_dense.pyx +117 -0
- sage/modules/vector_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_double_dense.pxd +6 -0
- sage/modules/vector_double_dense.pyx +604 -0
- sage/modules/vector_integer_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_integer_dense.pxd +15 -0
- sage/modules/vector_integer_dense.pyx +361 -0
- sage/modules/vector_integer_sparse.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_integer_sparse.pxd +29 -0
- sage/modules/vector_integer_sparse.pyx +406 -0
- sage/modules/vector_modn_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_modn_dense.pxd +12 -0
- sage/modules/vector_modn_dense.pyx +394 -0
- sage/modules/vector_modn_sparse.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_modn_sparse.pxd +21 -0
- sage/modules/vector_modn_sparse.pyx +298 -0
- sage/modules/vector_numpy_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_numpy_dense.pxd +15 -0
- sage/modules/vector_numpy_dense.pyx +304 -0
- sage/modules/vector_numpy_integer_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_numpy_integer_dense.pxd +7 -0
- sage/modules/vector_numpy_integer_dense.pyx +54 -0
- sage/modules/vector_rational_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_rational_dense.pxd +15 -0
- sage/modules/vector_rational_dense.pyx +387 -0
- sage/modules/vector_rational_sparse.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_rational_sparse.pxd +30 -0
- sage/modules/vector_rational_sparse.pyx +413 -0
- sage/modules/vector_real_double_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/vector_real_double_dense.pxd +6 -0
- sage/modules/vector_real_double_dense.pyx +126 -0
- sage/modules/vector_space_homspace.py +430 -0
- sage/modules/vector_space_morphism.py +989 -0
- sage/modules/with_basis/all.py +15 -0
- sage/modules/with_basis/cell_module.py +494 -0
- sage/modules/with_basis/indexed_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/modules/with_basis/indexed_element.pxd +13 -0
- sage/modules/with_basis/indexed_element.pyx +1058 -0
- sage/modules/with_basis/invariant.py +1075 -0
- sage/modules/with_basis/morphism.py +1636 -0
- sage/modules/with_basis/representation.py +2939 -0
- sage/modules/with_basis/subquotient.py +685 -0
- sage/numerical/all__sagemath_modules.py +6 -0
- sage/numerical/gauss_legendre.cpython-314-aarch64-linux-musl.so +0 -0
- sage/numerical/gauss_legendre.pyx +381 -0
- sage/numerical/optimize.py +910 -0
- sage/probability/all.py +10 -0
- sage/probability/probability_distribution.cpython-314-aarch64-linux-musl.so +0 -0
- sage/probability/probability_distribution.pyx +1242 -0
- sage/probability/random_variable.py +411 -0
- sage/quadratic_forms/all.py +4 -0
- sage/quadratic_forms/all__sagemath_modules.py +15 -0
- sage/quadratic_forms/binary_qf.py +2042 -0
- sage/quadratic_forms/bqf_class_group.py +748 -0
- sage/quadratic_forms/constructions.py +93 -0
- sage/quadratic_forms/count_local_2.cpython-314-aarch64-linux-musl.so +0 -0
- sage/quadratic_forms/count_local_2.pyx +365 -0
- sage/quadratic_forms/extras.py +195 -0
- sage/quadratic_forms/quadratic_form.py +1753 -0
- sage/quadratic_forms/quadratic_form__count_local_2.py +221 -0
- sage/quadratic_forms/quadratic_form__equivalence_testing.py +708 -0
- sage/quadratic_forms/quadratic_form__evaluate.cpython-314-aarch64-linux-musl.so +0 -0
- sage/quadratic_forms/quadratic_form__evaluate.pyx +139 -0
- sage/quadratic_forms/quadratic_form__local_density_congruence.py +977 -0
- sage/quadratic_forms/quadratic_form__local_field_invariants.py +1072 -0
- sage/quadratic_forms/quadratic_form__neighbors.py +424 -0
- sage/quadratic_forms/quadratic_form__reduction_theory.py +488 -0
- sage/quadratic_forms/quadratic_form__split_local_covering.py +416 -0
- sage/quadratic_forms/quadratic_form__ternary_Tornaria.py +657 -0
- sage/quadratic_forms/quadratic_form__theta.py +352 -0
- sage/quadratic_forms/quadratic_form__variable_substitutions.py +370 -0
- sage/quadratic_forms/random_quadraticform.py +209 -0
- sage/quadratic_forms/ternary.cpython-314-aarch64-linux-musl.so +0 -0
- sage/quadratic_forms/ternary.pyx +1154 -0
- sage/quadratic_forms/ternary_qf.py +2027 -0
- sage/rings/all__sagemath_modules.py +28 -0
- sage/rings/asymptotic/all__sagemath_modules.py +1 -0
- sage/rings/asymptotic/misc.py +1252 -0
- sage/rings/cc.py +4 -0
- sage/rings/cfinite_sequence.py +1306 -0
- sage/rings/complex_conversion.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/complex_conversion.pxd +8 -0
- sage/rings/complex_conversion.pyx +23 -0
- sage/rings/complex_double.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/complex_double.pxd +21 -0
- sage/rings/complex_double.pyx +2654 -0
- sage/rings/complex_mpc.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/complex_mpc.pxd +21 -0
- sage/rings/complex_mpc.pyx +2576 -0
- sage/rings/complex_mpfr.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/complex_mpfr.pxd +18 -0
- sage/rings/complex_mpfr.pyx +3602 -0
- sage/rings/derivation.py +2334 -0
- sage/rings/finite_rings/all__sagemath_modules.py +1 -0
- sage/rings/finite_rings/maps_finite_field.py +191 -0
- sage/rings/function_field/all__sagemath_modules.py +8 -0
- sage/rings/function_field/derivations.py +102 -0
- sage/rings/function_field/derivations_rational.py +132 -0
- sage/rings/function_field/differential.py +853 -0
- sage/rings/function_field/divisor.py +1107 -0
- sage/rings/function_field/drinfeld_modules/action.py +199 -0
- sage/rings/function_field/drinfeld_modules/all.py +1 -0
- sage/rings/function_field/drinfeld_modules/charzero_drinfeld_module.py +673 -0
- sage/rings/function_field/drinfeld_modules/drinfeld_module.py +2087 -0
- sage/rings/function_field/drinfeld_modules/finite_drinfeld_module.py +1131 -0
- sage/rings/function_field/drinfeld_modules/homset.py +420 -0
- sage/rings/function_field/drinfeld_modules/morphism.py +820 -0
- sage/rings/function_field/hermite_form_polynomial.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/function_field/hermite_form_polynomial.pyx +188 -0
- sage/rings/function_field/khuri_makdisi.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/function_field/khuri_makdisi.pyx +935 -0
- sage/rings/invariants/all.py +4 -0
- sage/rings/invariants/invariant_theory.py +4597 -0
- sage/rings/invariants/reconstruction.py +395 -0
- sage/rings/polynomial/all__sagemath_modules.py +17 -0
- sage/rings/polynomial/integer_valued_polynomials.py +1230 -0
- sage/rings/polynomial/laurent_polynomial_mpair.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/laurent_polynomial_mpair.pxd +15 -0
- sage/rings/polynomial/laurent_polynomial_mpair.pyx +2023 -0
- sage/rings/polynomial/ore_function_element.py +952 -0
- sage/rings/polynomial/ore_function_field.py +1028 -0
- sage/rings/polynomial/ore_polynomial_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/ore_polynomial_element.pxd +48 -0
- sage/rings/polynomial/ore_polynomial_element.pyx +3145 -0
- sage/rings/polynomial/ore_polynomial_ring.py +1334 -0
- sage/rings/polynomial/polynomial_real_mpfr_dense.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/polynomial_real_mpfr_dense.pyx +788 -0
- sage/rings/polynomial/q_integer_valued_polynomials.py +1264 -0
- sage/rings/polynomial/skew_polynomial_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/skew_polynomial_element.pxd +9 -0
- sage/rings/polynomial/skew_polynomial_element.pyx +684 -0
- sage/rings/polynomial/skew_polynomial_finite_field.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/skew_polynomial_finite_field.pxd +19 -0
- sage/rings/polynomial/skew_polynomial_finite_field.pyx +1093 -0
- sage/rings/polynomial/skew_polynomial_finite_order.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/polynomial/skew_polynomial_finite_order.pxd +10 -0
- sage/rings/polynomial/skew_polynomial_finite_order.pyx +567 -0
- sage/rings/polynomial/skew_polynomial_ring.py +908 -0
- sage/rings/real_double_element_gsl.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/real_double_element_gsl.pxd +8 -0
- sage/rings/real_double_element_gsl.pyx +794 -0
- sage/rings/real_field.py +58 -0
- sage/rings/real_mpfr.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/real_mpfr.pxd +29 -0
- sage/rings/real_mpfr.pyx +6122 -0
- sage/rings/ring_extension.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/ring_extension.pxd +42 -0
- sage/rings/ring_extension.pyx +2779 -0
- sage/rings/ring_extension_conversion.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/ring_extension_conversion.pxd +16 -0
- sage/rings/ring_extension_conversion.pyx +462 -0
- sage/rings/ring_extension_element.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/ring_extension_element.pxd +21 -0
- sage/rings/ring_extension_element.pyx +1635 -0
- sage/rings/ring_extension_homset.py +64 -0
- sage/rings/ring_extension_morphism.cpython-314-aarch64-linux-musl.so +0 -0
- sage/rings/ring_extension_morphism.pxd +35 -0
- sage/rings/ring_extension_morphism.pyx +920 -0
- sage/schemes/all__sagemath_modules.py +1 -0
- sage/schemes/projective/all__sagemath_modules.py +1 -0
- sage/schemes/projective/coherent_sheaf.py +300 -0
- sage/schemes/projective/cohomology.py +510 -0
- sage/stats/all.py +15 -0
- sage/stats/basic_stats.py +489 -0
- sage/stats/distributions/all.py +7 -0
- sage/stats/distributions/catalog.py +34 -0
- sage/stats/distributions/dgs.h +50 -0
- sage/stats/distributions/dgs.pxd +111 -0
- sage/stats/distributions/dgs_bern.h +400 -0
- sage/stats/distributions/dgs_gauss.h +614 -0
- sage/stats/distributions/dgs_misc.h +104 -0
- sage/stats/distributions/discrete_gaussian_integer.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/distributions/discrete_gaussian_integer.pxd +14 -0
- sage/stats/distributions/discrete_gaussian_integer.pyx +498 -0
- sage/stats/distributions/discrete_gaussian_lattice.py +908 -0
- sage/stats/distributions/discrete_gaussian_polynomial.py +141 -0
- sage/stats/hmm/all.py +15 -0
- sage/stats/hmm/chmm.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/hmm/chmm.pyx +1595 -0
- sage/stats/hmm/distributions.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/hmm/distributions.pxd +29 -0
- sage/stats/hmm/distributions.pyx +531 -0
- sage/stats/hmm/hmm.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/hmm/hmm.pxd +17 -0
- sage/stats/hmm/hmm.pyx +1388 -0
- sage/stats/hmm/util.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/hmm/util.pxd +7 -0
- sage/stats/hmm/util.pyx +165 -0
- sage/stats/intlist.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/intlist.pxd +14 -0
- sage/stats/intlist.pyx +588 -0
- sage/stats/r.py +49 -0
- sage/stats/time_series.cpython-314-aarch64-linux-musl.so +0 -0
- sage/stats/time_series.pxd +6 -0
- sage/stats/time_series.pyx +2546 -0
- sage/tensor/all.py +2 -0
- sage/tensor/modules/all.py +8 -0
- sage/tensor/modules/alternating_contr_tensor.py +761 -0
- sage/tensor/modules/comp.py +5598 -0
- sage/tensor/modules/ext_pow_free_module.py +824 -0
- sage/tensor/modules/finite_rank_free_module.py +3589 -0
- sage/tensor/modules/format_utilities.py +333 -0
- sage/tensor/modules/free_module_alt_form.py +858 -0
- sage/tensor/modules/free_module_automorphism.py +1207 -0
- sage/tensor/modules/free_module_basis.py +1074 -0
- sage/tensor/modules/free_module_element.py +284 -0
- sage/tensor/modules/free_module_homset.py +652 -0
- sage/tensor/modules/free_module_linear_group.py +564 -0
- sage/tensor/modules/free_module_morphism.py +1581 -0
- sage/tensor/modules/free_module_tensor.py +3289 -0
- sage/tensor/modules/reflexive_module.py +386 -0
- sage/tensor/modules/tensor_free_module.py +780 -0
- sage/tensor/modules/tensor_free_submodule.py +538 -0
- sage/tensor/modules/tensor_free_submodule_basis.py +140 -0
- sage/tensor/modules/tensor_with_indices.py +1043 -0
|
@@ -0,0 +1,999 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-modules
|
|
2
|
+
# sage.doctest: needs sage.modules sage.rings.finite_rings
|
|
3
|
+
r"""
|
|
4
|
+
Reed-Muller code
|
|
5
|
+
|
|
6
|
+
Given integers `m, r` and a finite field `F`,
|
|
7
|
+
the corresponding Reed-Muller Code is the set:
|
|
8
|
+
|
|
9
|
+
.. MATH::
|
|
10
|
+
|
|
11
|
+
\{ (f(\alpha_i)\mid \alpha_i \in F^m) \mid f \in F[x_1,x_2,\ldots,x_m], \deg f \leq r \}
|
|
12
|
+
|
|
13
|
+
This file contains the following elements:
|
|
14
|
+
|
|
15
|
+
- :class:`QAryReedMullerCode`, the class for Reed-Muller codes over non-binary field of size q and `r<q`
|
|
16
|
+
- :class:`BinaryReedMullerCode`, the class for Reed-Muller codes over binary field and `r<=m`
|
|
17
|
+
- :class:`ReedMullerVectorEncoder`, an encoder with a vectorial message space (for both the two code classes)
|
|
18
|
+
- :class:`ReedMullerPolynomialEncoder`, an encoder with a polynomial message space (for both the code classes)
|
|
19
|
+
"""
|
|
20
|
+
# ****************************************************************************
|
|
21
|
+
# Copyright (C) 2016 Parthasarathi Panda <parthasarathipanda314@gmail.com>
|
|
22
|
+
#
|
|
23
|
+
# This program is free software: you can redistribute it and/or modify
|
|
24
|
+
# it under the terms of the GNU General Public License as published by
|
|
25
|
+
# the Free Software Foundation, either version 2 of the License, or
|
|
26
|
+
# (at your option) any later version.
|
|
27
|
+
# https://www.gnu.org/licenses/
|
|
28
|
+
# ****************************************************************************
|
|
29
|
+
|
|
30
|
+
from operator import mul
|
|
31
|
+
from functools import reduce
|
|
32
|
+
|
|
33
|
+
from sage.matrix.constructor import matrix
|
|
34
|
+
from sage.arith.misc import binomial
|
|
35
|
+
from sage.coding.linear_code import AbstractLinearCode, LinearCodeSyndromeDecoder
|
|
36
|
+
from sage.coding.encoder import Encoder
|
|
37
|
+
from sage.combinat.subset import Subsets
|
|
38
|
+
from sage.combinat.tuple import Tuples
|
|
39
|
+
from sage.categories.finite_fields import FiniteFields
|
|
40
|
+
from sage.rings.finite_rings.finite_field_constructor import GF
|
|
41
|
+
from sage.rings.integer import Integer
|
|
42
|
+
from sage.modules.free_module_element import vector
|
|
43
|
+
from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
|
|
44
|
+
from sage.misc.cachefunc import cached_method
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
def _binomial_sum(n, k):
|
|
48
|
+
r"""
|
|
49
|
+
Return the sum of all binomials `\binom{n}{i}`,
|
|
50
|
+
with `i` ranging from `0` to `k` and including `k`.
|
|
51
|
+
|
|
52
|
+
INPUT:
|
|
53
|
+
|
|
54
|
+
- ``n``, ``k`` -- integers
|
|
55
|
+
|
|
56
|
+
EXAMPLES::
|
|
57
|
+
|
|
58
|
+
sage: from sage.coding.reed_muller_code import _binomial_sum
|
|
59
|
+
sage: _binomial_sum(4, 2)
|
|
60
|
+
11
|
|
61
|
+
"""
|
|
62
|
+
s = 1
|
|
63
|
+
nCi = 1
|
|
64
|
+
for i in range(k):
|
|
65
|
+
nCi = ((n - i) * nCi) // (i + 1)
|
|
66
|
+
s = nCi + s
|
|
67
|
+
return s
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
def _multivariate_polynomial_interpolation(evaluation, order, polynomial_ring):
|
|
71
|
+
r"""
|
|
72
|
+
Return `f \in \GF{q}[X_1,...,X_m]` such that `f(\mathbf a) = v[i(\mathbf a)]`
|
|
73
|
+
for all `\mathbf a \in \GF{q^m}`, where `v \in \GF{q}^{q^m}` is a given
|
|
74
|
+
vector of evaluations, and `i(a)` is a specific ordering of `\GF{q^m}` (see below for details)
|
|
75
|
+
|
|
76
|
+
The ordering `i(a)` is the one used by Sage when listing the elements
|
|
77
|
+
of a Finite Field with a call to the method ``list``.
|
|
78
|
+
|
|
79
|
+
In case the polynomial `f` does not exist, this method returns an arbitrary polynomial.
|
|
80
|
+
|
|
81
|
+
INPUT:
|
|
82
|
+
|
|
83
|
+
- ``evaluation`` -- a vector or a list of evaluation of the polynomial at all the points
|
|
84
|
+
|
|
85
|
+
- ``num_of_var`` -- the number of variables used in the polynomial to interpolate
|
|
86
|
+
|
|
87
|
+
- ``order`` -- the degree of the polynomial to interpolate
|
|
88
|
+
|
|
89
|
+
- ``polynomial_ring`` -- the Polynomial Ring the polynomial in question is from
|
|
90
|
+
|
|
91
|
+
EXAMPLES::
|
|
92
|
+
|
|
93
|
+
sage: from sage.coding.reed_muller_code import _multivariate_polynomial_interpolation
|
|
94
|
+
sage: F = GF(3)
|
|
95
|
+
sage: R.<x,y> = F[]
|
|
96
|
+
sage: v = vector(F, [1, 2, 0, 0, 2, 1, 1, 1, 1])
|
|
97
|
+
sage: _multivariate_polynomial_interpolation(v, 2, R)
|
|
98
|
+
x*y + y^2 + x + y + 1
|
|
99
|
+
|
|
100
|
+
If there does not exist
|
|
101
|
+
"""
|
|
102
|
+
def _interpolate(evaluation, num_of_var, order):
|
|
103
|
+
if num_of_var == 0 or order == 0:
|
|
104
|
+
return evaluation[0]
|
|
105
|
+
base_field = polynomial_ring.base_ring()
|
|
106
|
+
q = base_field.cardinality()
|
|
107
|
+
n_by_q = q**(num_of_var - 1)
|
|
108
|
+
d = min(order + 1, q)
|
|
109
|
+
multipoint_evaluation_list = []
|
|
110
|
+
uni_poly_ring = PolynomialRing(base_field, 'x')
|
|
111
|
+
base_field_zero = base_field.zero()
|
|
112
|
+
for k in range(n_by_q):
|
|
113
|
+
iterator = iter(base_field)
|
|
114
|
+
points = []
|
|
115
|
+
for i in range(d):
|
|
116
|
+
xcoordinate = next(iterator)
|
|
117
|
+
points.append((xcoordinate, evaluation[k + i * n_by_q]))
|
|
118
|
+
polyVector = uni_poly_ring.lagrange_polynomial(
|
|
119
|
+
points).coefficients(sparse=False)
|
|
120
|
+
if len(polyVector) < d:
|
|
121
|
+
# adding zeros to represent a (d-1) degree polynomial
|
|
122
|
+
polyVector += [base_field_zero] * (d - len(polyVector))
|
|
123
|
+
multipoint_evaluation_list.append(polyVector)
|
|
124
|
+
poly = polynomial_ring.zero()
|
|
125
|
+
z = 1
|
|
126
|
+
x = polynomial_ring.gen(num_of_var - 1)
|
|
127
|
+
for k in range(d): # computing the polynomial
|
|
128
|
+
poly = poly + z * _interpolate([multipoint_evaluation_list[i][k]
|
|
129
|
+
for i in range(n_by_q)], num_of_var - 1, order - k)
|
|
130
|
+
z *= x
|
|
131
|
+
return poly
|
|
132
|
+
return _interpolate(evaluation, polynomial_ring.ngens(), order)
|
|
133
|
+
|
|
134
|
+
|
|
135
|
+
def ReedMullerCode(base_field, order, num_of_var):
|
|
136
|
+
r"""
|
|
137
|
+
Return a Reed-Muller code.
|
|
138
|
+
|
|
139
|
+
A Reed-Muller Code of order `r` and number of variables `m` over a finite field `F` is the set:
|
|
140
|
+
|
|
141
|
+
.. MATH::
|
|
142
|
+
|
|
143
|
+
\{ (f(\alpha_i)\mid \alpha_i \in F^m) \mid f \in F[x_1,x_2,\ldots,x_m], \deg f \leq r \}
|
|
144
|
+
|
|
145
|
+
INPUT:
|
|
146
|
+
|
|
147
|
+
- ``base_field`` -- the finite field `F` over which the code is built
|
|
148
|
+
|
|
149
|
+
- ``order`` -- the order of the Reed-Muller Code, which is the maximum
|
|
150
|
+
degree of the polynomial to be used in the code
|
|
151
|
+
|
|
152
|
+
- ``num_of_var`` -- the number of variables used in polynomial
|
|
153
|
+
|
|
154
|
+
.. WARNING::
|
|
155
|
+
|
|
156
|
+
For now, this implementation only supports Reed-Muller codes whose order is less than q.
|
|
157
|
+
Binary Reed-Muller codes must have their order less than or
|
|
158
|
+
equal to their number of variables.
|
|
159
|
+
|
|
160
|
+
EXAMPLES:
|
|
161
|
+
|
|
162
|
+
We build a Reed-Muller code::
|
|
163
|
+
|
|
164
|
+
sage: F = GF(3)
|
|
165
|
+
sage: C = codes.ReedMullerCode(F, 2, 2)
|
|
166
|
+
sage: C
|
|
167
|
+
Reed-Muller Code of order 2 and 2 variables over Finite Field of size 3
|
|
168
|
+
|
|
169
|
+
We ask for its parameters::
|
|
170
|
+
|
|
171
|
+
sage: C.length()
|
|
172
|
+
9
|
|
173
|
+
sage: C.dimension()
|
|
174
|
+
6
|
|
175
|
+
sage: C.minimum_distance()
|
|
176
|
+
3
|
|
177
|
+
|
|
178
|
+
If one provides a finite field of size 2, a Binary Reed-Muller code is built::
|
|
179
|
+
|
|
180
|
+
sage: F = GF(2)
|
|
181
|
+
sage: C = codes.ReedMullerCode(F, 2, 2)
|
|
182
|
+
sage: C
|
|
183
|
+
Binary Reed-Muller Code of order 2 and number of variables 2
|
|
184
|
+
"""
|
|
185
|
+
if base_field not in FiniteFields():
|
|
186
|
+
raise ValueError("The parameter `base_field` must be a finite field")
|
|
187
|
+
q = base_field.cardinality()
|
|
188
|
+
if q == 2:
|
|
189
|
+
return BinaryReedMullerCode(order, num_of_var)
|
|
190
|
+
else:
|
|
191
|
+
return QAryReedMullerCode(base_field, order, num_of_var)
|
|
192
|
+
|
|
193
|
+
|
|
194
|
+
class QAryReedMullerCode(AbstractLinearCode):
|
|
195
|
+
r"""
|
|
196
|
+
Representation of a `q`-ary Reed-Muller code.
|
|
197
|
+
|
|
198
|
+
For details on the definition of Reed-Muller codes, refer to
|
|
199
|
+
:meth:`ReedMullerCode`.
|
|
200
|
+
|
|
201
|
+
.. NOTE::
|
|
202
|
+
|
|
203
|
+
It is better to use the aforementioned method rather than calling this
|
|
204
|
+
class directly, as :meth:`ReedMullerCode` creates either a binary or a
|
|
205
|
+
`q`-ary Reed-Muller code according to the arguments it receives.
|
|
206
|
+
|
|
207
|
+
INPUT:
|
|
208
|
+
|
|
209
|
+
- ``base_field`` -- a finite field, which is the base field of the code
|
|
210
|
+
|
|
211
|
+
- ``order`` -- the order of the Reed-Muller Code, i.e., the maximum degree
|
|
212
|
+
of the polynomial to be used in the code
|
|
213
|
+
|
|
214
|
+
- ``num_of_var`` -- the number of variables used in polynomial
|
|
215
|
+
|
|
216
|
+
.. WARNING::
|
|
217
|
+
|
|
218
|
+
For now, this implementation only supports Reed-Muller codes whose order
|
|
219
|
+
is less than q.
|
|
220
|
+
|
|
221
|
+
EXAMPLES::
|
|
222
|
+
|
|
223
|
+
sage: from sage.coding.reed_muller_code import QAryReedMullerCode
|
|
224
|
+
sage: F = GF(3)
|
|
225
|
+
sage: C = QAryReedMullerCode(F, 2, 2)
|
|
226
|
+
sage: C
|
|
227
|
+
Reed-Muller Code of order 2 and 2 variables over Finite Field of size 3
|
|
228
|
+
"""
|
|
229
|
+
|
|
230
|
+
_registered_encoders = {}
|
|
231
|
+
_registered_decoders = {}
|
|
232
|
+
|
|
233
|
+
def __init__(self, base_field, order, num_of_var):
|
|
234
|
+
r"""
|
|
235
|
+
TESTS:
|
|
236
|
+
|
|
237
|
+
Note that the order given cannot be greater than (q-1). An error is raised if that happens::
|
|
238
|
+
|
|
239
|
+
sage: from sage.coding.reed_muller_code import QAryReedMullerCode
|
|
240
|
+
sage: C = QAryReedMullerCode(GF(3), 4, 4)
|
|
241
|
+
Traceback (most recent call last):
|
|
242
|
+
...
|
|
243
|
+
ValueError: The order must be less than 3
|
|
244
|
+
|
|
245
|
+
The order and the number of variable must be integers::
|
|
246
|
+
|
|
247
|
+
sage: C = QAryReedMullerCode(GF(3),1.1,4)
|
|
248
|
+
Traceback (most recent call last):
|
|
249
|
+
...
|
|
250
|
+
ValueError: The order of the code must be an integer
|
|
251
|
+
|
|
252
|
+
The base_field parameter must be a finite field::
|
|
253
|
+
|
|
254
|
+
sage: C = QAryReedMullerCode(QQ,1,4)
|
|
255
|
+
Traceback (most recent call last):
|
|
256
|
+
...
|
|
257
|
+
ValueError: the input `base_field` must be a FiniteField
|
|
258
|
+
"""
|
|
259
|
+
# input sanitization
|
|
260
|
+
if base_field not in FiniteFields():
|
|
261
|
+
raise ValueError("the input `base_field` must be a FiniteField")
|
|
262
|
+
if not isinstance(order, (Integer, int)):
|
|
263
|
+
raise ValueError("The order of the code must be an integer")
|
|
264
|
+
if not isinstance(num_of_var, (Integer, int)):
|
|
265
|
+
raise ValueError("The number of variables must be an integer")
|
|
266
|
+
q = base_field.cardinality()
|
|
267
|
+
if order >= q:
|
|
268
|
+
raise ValueError("The order must be less than %s" % q)
|
|
269
|
+
|
|
270
|
+
super().__init__(base_field, q**num_of_var,
|
|
271
|
+
"EvaluationVector", "Syndrome")
|
|
272
|
+
self._order = order
|
|
273
|
+
self._num_of_var = num_of_var
|
|
274
|
+
self._dimension = binomial(num_of_var + order, order)
|
|
275
|
+
|
|
276
|
+
def order(self):
|
|
277
|
+
r"""
|
|
278
|
+
Return the order of ``self``.
|
|
279
|
+
|
|
280
|
+
Order is the maximum degree of the polynomial used in the Reed-Muller code.
|
|
281
|
+
|
|
282
|
+
EXAMPLES::
|
|
283
|
+
|
|
284
|
+
sage: from sage.coding.reed_muller_code import QAryReedMullerCode
|
|
285
|
+
sage: F = GF(59)
|
|
286
|
+
sage: C = QAryReedMullerCode(F, 2, 4)
|
|
287
|
+
sage: C.order()
|
|
288
|
+
2
|
|
289
|
+
"""
|
|
290
|
+
return self._order
|
|
291
|
+
|
|
292
|
+
def number_of_variables(self):
|
|
293
|
+
r"""
|
|
294
|
+
Return the number of variables of the polynomial ring used in ``self``.
|
|
295
|
+
|
|
296
|
+
EXAMPLES::
|
|
297
|
+
|
|
298
|
+
sage: from sage.coding.reed_muller_code import QAryReedMullerCode
|
|
299
|
+
sage: F = GF(59)
|
|
300
|
+
sage: C = QAryReedMullerCode(F, 2, 4)
|
|
301
|
+
sage: C.number_of_variables()
|
|
302
|
+
4
|
|
303
|
+
"""
|
|
304
|
+
return self._num_of_var
|
|
305
|
+
|
|
306
|
+
def minimum_distance(self):
|
|
307
|
+
r"""
|
|
308
|
+
Return the minimum distance between two words in ``self``.
|
|
309
|
+
|
|
310
|
+
The minimum distance of a `q`-ary Reed-Muller code with order `d` and
|
|
311
|
+
number of variables `m` is `(q-d)q^{m-1}`
|
|
312
|
+
|
|
313
|
+
EXAMPLES::
|
|
314
|
+
|
|
315
|
+
sage: from sage.coding.reed_muller_code import QAryReedMullerCode
|
|
316
|
+
sage: F = GF(5)
|
|
317
|
+
sage: C = QAryReedMullerCode(F, 2, 4)
|
|
318
|
+
sage: C.minimum_distance()
|
|
319
|
+
375
|
|
320
|
+
"""
|
|
321
|
+
d = self.order()
|
|
322
|
+
q = self.base_field().cardinality()
|
|
323
|
+
n = self.length()
|
|
324
|
+
return ((q - d) * n) // q
|
|
325
|
+
|
|
326
|
+
def _repr_(self):
|
|
327
|
+
r"""
|
|
328
|
+
Return a string representation of ``self``.
|
|
329
|
+
|
|
330
|
+
EXAMPLES::
|
|
331
|
+
|
|
332
|
+
sage: from sage.coding.reed_muller_code import QAryReedMullerCode
|
|
333
|
+
sage: F = GF(59)
|
|
334
|
+
sage: C = QAryReedMullerCode(F, 2, 4)
|
|
335
|
+
sage: C
|
|
336
|
+
Reed-Muller Code of order 2 and 4 variables over Finite Field of size 59
|
|
337
|
+
"""
|
|
338
|
+
return "Reed-Muller Code of order %s and %s variables over %s" % (
|
|
339
|
+
self.order(), self.number_of_variables(), self.base_field())
|
|
340
|
+
|
|
341
|
+
def _latex_(self):
|
|
342
|
+
r"""
|
|
343
|
+
Return a latex representation of ``self``.
|
|
344
|
+
|
|
345
|
+
EXAMPLES::
|
|
346
|
+
|
|
347
|
+
sage: from sage.coding.reed_muller_code import QAryReedMullerCode
|
|
348
|
+
sage: F = GF(59)
|
|
349
|
+
sage: C = QAryReedMullerCode(F, 2, 4)
|
|
350
|
+
sage: latex(C)
|
|
351
|
+
\textnormal{Reed-Muller Code of order} 2 \textnormal{and }4 \textnormal{variables over} \Bold{F}_{59}
|
|
352
|
+
"""
|
|
353
|
+
return "\\textnormal{Reed-Muller Code of order} %s \\textnormal{and }%s \\textnormal{variables over} %s"\
|
|
354
|
+
% (self.order(), self.number_of_variables(), self.base_field()._latex_())
|
|
355
|
+
|
|
356
|
+
def __eq__(self, other):
|
|
357
|
+
r"""
|
|
358
|
+
Test equality between Reed-Muller Code objects.
|
|
359
|
+
|
|
360
|
+
EXAMPLES::
|
|
361
|
+
|
|
362
|
+
sage: from sage.coding.reed_muller_code import QAryReedMullerCode
|
|
363
|
+
sage: F = GF(59)
|
|
364
|
+
sage: C1 = QAryReedMullerCode(F, 2, 4)
|
|
365
|
+
sage: C2 = QAryReedMullerCode(GF(59), 2, 4)
|
|
366
|
+
sage: C1.__eq__(C2)
|
|
367
|
+
True
|
|
368
|
+
"""
|
|
369
|
+
# I am not comparing the base field directly because of possible change
|
|
370
|
+
# in variables
|
|
371
|
+
return isinstance(other, QAryReedMullerCode) \
|
|
372
|
+
and self.base_field() == other.base_field() \
|
|
373
|
+
and self.order() == other.order() \
|
|
374
|
+
and self.number_of_variables() == other.number_of_variables()
|
|
375
|
+
|
|
376
|
+
|
|
377
|
+
class BinaryReedMullerCode(AbstractLinearCode):
|
|
378
|
+
r"""
|
|
379
|
+
Representation of a binary Reed-Muller code.
|
|
380
|
+
|
|
381
|
+
For details on the definition of Reed-Muller codes, refer to
|
|
382
|
+
:meth:`ReedMullerCode`.
|
|
383
|
+
|
|
384
|
+
.. NOTE::
|
|
385
|
+
|
|
386
|
+
It is better to use the aforementioned method rather than calling this
|
|
387
|
+
class directly, as :meth:`ReedMullerCode` creates either a binary or a
|
|
388
|
+
`q`-ary Reed-Muller code according to the arguments it receives.
|
|
389
|
+
|
|
390
|
+
|
|
391
|
+
INPUT:
|
|
392
|
+
|
|
393
|
+
- ``order`` -- the order of the Reed-Muller Code, i.e., the maximum degree
|
|
394
|
+
of the polynomial to be used in the code
|
|
395
|
+
|
|
396
|
+
- ``num_of_var`` -- the number of variables used in the polynomial
|
|
397
|
+
|
|
398
|
+
EXAMPLES:
|
|
399
|
+
|
|
400
|
+
A binary Reed-Muller code can be constructed by simply giving the order of
|
|
401
|
+
the code and the number of variables::
|
|
402
|
+
|
|
403
|
+
sage: C = codes.BinaryReedMullerCode(2, 4)
|
|
404
|
+
sage: C
|
|
405
|
+
Binary Reed-Muller Code of order 2 and number of variables 4
|
|
406
|
+
|
|
407
|
+
Very large Reed-Muller codes can be constructed without building
|
|
408
|
+
the generator matrix or elements of the code (fixes :issue:`33229`,
|
|
409
|
+
see also :issue:`39110`)::
|
|
410
|
+
|
|
411
|
+
sage: C = codes.BinaryReedMullerCode(16, 32)
|
|
412
|
+
sage: C
|
|
413
|
+
Binary Reed-Muller Code of order 16 and number of variables 32
|
|
414
|
+
sage: C.dimension(), C.length()
|
|
415
|
+
(2448023843, 4294967296)
|
|
416
|
+
"""
|
|
417
|
+
|
|
418
|
+
_registered_encoders = {}
|
|
419
|
+
_registered_decoders = {}
|
|
420
|
+
|
|
421
|
+
def __init__(self, order, num_of_var):
|
|
422
|
+
r"""
|
|
423
|
+
TESTS:
|
|
424
|
+
|
|
425
|
+
If the order given is greater than the number of variables an error is raised::
|
|
426
|
+
|
|
427
|
+
sage: C = codes.BinaryReedMullerCode(5, 4)
|
|
428
|
+
Traceback (most recent call last):
|
|
429
|
+
...
|
|
430
|
+
ValueError: The order must be less than or equal to 4
|
|
431
|
+
|
|
432
|
+
The order and the number of variable must be integers::
|
|
433
|
+
|
|
434
|
+
sage: C = codes.BinaryReedMullerCode(1.1,4)
|
|
435
|
+
Traceback (most recent call last):
|
|
436
|
+
...
|
|
437
|
+
ValueError: The order of the code must be an integer
|
|
438
|
+
"""
|
|
439
|
+
# input sanitization
|
|
440
|
+
if not isinstance(order, (Integer, int)):
|
|
441
|
+
raise ValueError("The order of the code must be an integer")
|
|
442
|
+
if not isinstance(num_of_var, (Integer, int)):
|
|
443
|
+
raise ValueError("The number of variables must be an integer")
|
|
444
|
+
if (num_of_var < order):
|
|
445
|
+
raise ValueError(
|
|
446
|
+
"The order must be less than or equal to %s" %
|
|
447
|
+
num_of_var)
|
|
448
|
+
|
|
449
|
+
super().__init__(GF(2), 2**num_of_var, "EvaluationVector", "Syndrome")
|
|
450
|
+
self._order = order
|
|
451
|
+
self._num_of_var = num_of_var
|
|
452
|
+
self._dimension = _binomial_sum(num_of_var, order)
|
|
453
|
+
|
|
454
|
+
def order(self):
|
|
455
|
+
r"""
|
|
456
|
+
Return the order of ``self``.
|
|
457
|
+
|
|
458
|
+
Order is the maximum degree of the polynomial used in the Reed-Muller code.
|
|
459
|
+
|
|
460
|
+
EXAMPLES::
|
|
461
|
+
|
|
462
|
+
sage: C = codes.BinaryReedMullerCode(2, 4)
|
|
463
|
+
sage: C.order()
|
|
464
|
+
2
|
|
465
|
+
"""
|
|
466
|
+
return self._order
|
|
467
|
+
|
|
468
|
+
def number_of_variables(self):
|
|
469
|
+
r"""
|
|
470
|
+
Return the number of variables of the polynomial ring used in ``self``.
|
|
471
|
+
|
|
472
|
+
EXAMPLES::
|
|
473
|
+
|
|
474
|
+
sage: C = codes.BinaryReedMullerCode(2, 4)
|
|
475
|
+
sage: C.number_of_variables()
|
|
476
|
+
4
|
|
477
|
+
"""
|
|
478
|
+
return self._num_of_var
|
|
479
|
+
|
|
480
|
+
def minimum_distance(self):
|
|
481
|
+
r"""
|
|
482
|
+
Return the minimum distance of ``self``.
|
|
483
|
+
|
|
484
|
+
The minimum distance of a binary Reed-Muller code of order `d` and
|
|
485
|
+
number of variables `m` is `q^{m-d}`
|
|
486
|
+
|
|
487
|
+
EXAMPLES::
|
|
488
|
+
|
|
489
|
+
sage: C = codes.BinaryReedMullerCode(2, 4)
|
|
490
|
+
sage: C.minimum_distance()
|
|
491
|
+
4
|
|
492
|
+
"""
|
|
493
|
+
return 2**(self.number_of_variables() - self.order())
|
|
494
|
+
|
|
495
|
+
def _repr_(self):
|
|
496
|
+
r"""
|
|
497
|
+
Return a string representation of ``self``.
|
|
498
|
+
|
|
499
|
+
EXAMPLES::
|
|
500
|
+
|
|
501
|
+
sage: C = codes.BinaryReedMullerCode(2, 4)
|
|
502
|
+
sage: C
|
|
503
|
+
Binary Reed-Muller Code of order 2 and number of variables 4
|
|
504
|
+
"""
|
|
505
|
+
return "Binary Reed-Muller Code of order %s and number of variables %s" % (
|
|
506
|
+
self.order(), self.number_of_variables())
|
|
507
|
+
|
|
508
|
+
def _latex_(self):
|
|
509
|
+
r"""
|
|
510
|
+
Return a latex representation of ``self``.
|
|
511
|
+
|
|
512
|
+
EXAMPLES::
|
|
513
|
+
|
|
514
|
+
sage: C = codes.BinaryReedMullerCode(2, 4)
|
|
515
|
+
sage: latex(C)
|
|
516
|
+
\textnormal{Binary Reed-Muller Code of order} 2 \textnormal{and number of variables} 4
|
|
517
|
+
"""
|
|
518
|
+
return "\\textnormal{Binary Reed-Muller Code of order} %s \\textnormal{and number of variables} %s" % (
|
|
519
|
+
self.order(), self.number_of_variables())
|
|
520
|
+
|
|
521
|
+
def __eq__(self, other):
|
|
522
|
+
r"""
|
|
523
|
+
Test equality between Reed-Muller Code objects.
|
|
524
|
+
|
|
525
|
+
EXAMPLES::
|
|
526
|
+
|
|
527
|
+
sage: C1 = codes.BinaryReedMullerCode(2, 4)
|
|
528
|
+
sage: C2 = codes.BinaryReedMullerCode(2, 4)
|
|
529
|
+
sage: C1.__eq__(C2)
|
|
530
|
+
True
|
|
531
|
+
"""
|
|
532
|
+
return isinstance(other, BinaryReedMullerCode) \
|
|
533
|
+
and self.order() == other.order() \
|
|
534
|
+
and self.number_of_variables() == other.number_of_variables()
|
|
535
|
+
|
|
536
|
+
|
|
537
|
+
class ReedMullerVectorEncoder(Encoder):
|
|
538
|
+
r"""
|
|
539
|
+
Encoder for Reed-Muller codes which encodes vectors into codewords.
|
|
540
|
+
|
|
541
|
+
Consider a Reed-Muller code of order `r`, number of variables `m`, length `n`,
|
|
542
|
+
dimension `k` over some finite field `F`.
|
|
543
|
+
Let those variables be `(x_1, x_2, \dots, x_m)`.
|
|
544
|
+
We order the monomials by lowest power on lowest index variables. If we have
|
|
545
|
+
three monomials `x_1 x_2`, `x_1 x_2^2` and `x_1^2 x_2`, the ordering is:
|
|
546
|
+
`x_1 x_2 < x_1 x_2^2 < x_1^2 x_2`
|
|
547
|
+
|
|
548
|
+
Let now `(v_1,v_2,\ldots,v_k)` be a vector of `F`, which corresponds to the polynomial
|
|
549
|
+
`f = \Sigma^{k}_{i=1} v_i x_i`.
|
|
550
|
+
|
|
551
|
+
Let `(\beta_1, \beta_2, \ldots, \beta_q)` be the elements of `F` ordered as they are
|
|
552
|
+
returned by Sage when calling ``F.list()``.
|
|
553
|
+
|
|
554
|
+
The aforementioned polynomial `f` is encoded as:
|
|
555
|
+
|
|
556
|
+
`(f(\alpha_{11},\alpha_{12},\ldots,\alpha_{1m}),f(\alpha_{21},\alpha_{22},\ldots,
|
|
557
|
+
\alpha_{2m}),\ldots,f(\alpha_{q^m1},\alpha_{q^m2},\ldots,\alpha_{q^mm}))`
|
|
558
|
+
|
|
559
|
+
with `\alpha_{ij}=\beta_{i \bmod{q^j}}` for all `i`, `j)`.
|
|
560
|
+
|
|
561
|
+
INPUT:
|
|
562
|
+
|
|
563
|
+
- ``code`` -- the associated code of this encoder
|
|
564
|
+
|
|
565
|
+
EXAMPLES::
|
|
566
|
+
|
|
567
|
+
sage: C1 = codes.ReedMullerCode(GF(2), 2, 4)
|
|
568
|
+
sage: E1 = codes.encoders.ReedMullerVectorEncoder(C1)
|
|
569
|
+
sage: E1
|
|
570
|
+
Evaluation vector-style encoder for
|
|
571
|
+
Binary Reed-Muller Code of order 2 and number of variables 4
|
|
572
|
+
sage: C2 = codes.ReedMullerCode(GF(3), 2, 2)
|
|
573
|
+
sage: E2 = codes.encoders.ReedMullerVectorEncoder(C2)
|
|
574
|
+
sage: E2
|
|
575
|
+
Evaluation vector-style encoder for
|
|
576
|
+
Reed-Muller Code of order 2 and 2 variables over Finite Field of size 3
|
|
577
|
+
|
|
578
|
+
Actually, we can construct the encoder from ``C`` directly::
|
|
579
|
+
|
|
580
|
+
sage: C=codes.ReedMullerCode(GF(2), 2, 4)
|
|
581
|
+
sage: E = C.encoder("EvaluationVector")
|
|
582
|
+
sage: E
|
|
583
|
+
Evaluation vector-style encoder for
|
|
584
|
+
Binary Reed-Muller Code of order 2 and number of variables 4
|
|
585
|
+
"""
|
|
586
|
+
|
|
587
|
+
def __init__(self, code):
|
|
588
|
+
r"""
|
|
589
|
+
TESTS:
|
|
590
|
+
|
|
591
|
+
If ``code`` is not a Reed-Muller code, an error is raised::
|
|
592
|
+
|
|
593
|
+
sage: C = codes.random_linear_code(GF(11), 10, 4)
|
|
594
|
+
sage: codes.encoders.ReedMullerVectorEncoder(C)
|
|
595
|
+
Traceback (most recent call last):
|
|
596
|
+
...
|
|
597
|
+
ValueError: the code has to be a Reed-Muller code
|
|
598
|
+
"""
|
|
599
|
+
if not isinstance(code, (QAryReedMullerCode, BinaryReedMullerCode)):
|
|
600
|
+
raise ValueError("the code has to be a Reed-Muller code")
|
|
601
|
+
super().__init__(code)
|
|
602
|
+
|
|
603
|
+
def _repr_(self) -> str:
|
|
604
|
+
r"""
|
|
605
|
+
Return a string representation of ``self``.
|
|
606
|
+
|
|
607
|
+
EXAMPLES::
|
|
608
|
+
|
|
609
|
+
sage: F = GF(11)
|
|
610
|
+
sage: C = codes.ReedMullerCode(F, 2, 4)
|
|
611
|
+
sage: E=codes.encoders.ReedMullerVectorEncoder(C)
|
|
612
|
+
sage: E
|
|
613
|
+
Evaluation vector-style encoder for Reed-Muller Code of order 2 and 4 variables over Finite Field of size 11
|
|
614
|
+
"""
|
|
615
|
+
return "Evaluation vector-style encoder for %s" % self.code()
|
|
616
|
+
|
|
617
|
+
def _latex_(self):
|
|
618
|
+
r"""
|
|
619
|
+
Return a string representation of ``self``.
|
|
620
|
+
|
|
621
|
+
EXAMPLES::
|
|
622
|
+
|
|
623
|
+
sage: F = GF(11)
|
|
624
|
+
sage: C = codes.ReedMullerCode(F, 2, 4)
|
|
625
|
+
sage: E=codes.encoders.ReedMullerVectorEncoder(C)
|
|
626
|
+
sage: latex(E)
|
|
627
|
+
\textnormal{Evaluation vector-style encoder for }\textnormal{Reed-Muller Code of order} 2 \textnormal{and }4 \textnormal{variables over} \Bold{F}_{11}
|
|
628
|
+
"""
|
|
629
|
+
return "\\textnormal{Evaluation vector-style encoder for }%s" % self.code()._latex_()
|
|
630
|
+
|
|
631
|
+
def __eq__(self, other):
|
|
632
|
+
r"""
|
|
633
|
+
Test equality between ReedMullerVectorEncoder objects.
|
|
634
|
+
|
|
635
|
+
EXAMPLES::
|
|
636
|
+
|
|
637
|
+
sage: F = GF(11)
|
|
638
|
+
sage: C = codes.ReedMullerCode(F, 2, 4)
|
|
639
|
+
sage: D1 = codes.encoders.ReedMullerVectorEncoder(C)
|
|
640
|
+
sage: D2 = codes.encoders.ReedMullerVectorEncoder(C)
|
|
641
|
+
sage: D1.__eq__(D2)
|
|
642
|
+
True
|
|
643
|
+
sage: D1 is D2
|
|
644
|
+
False
|
|
645
|
+
"""
|
|
646
|
+
return (isinstance(other, ReedMullerVectorEncoder)
|
|
647
|
+
) and self.code() == other.code()
|
|
648
|
+
|
|
649
|
+
@cached_method
|
|
650
|
+
def generator_matrix(self):
|
|
651
|
+
r"""
|
|
652
|
+
Return a generator matrix of ``self``.
|
|
653
|
+
|
|
654
|
+
EXAMPLES::
|
|
655
|
+
|
|
656
|
+
sage: F = GF(3)
|
|
657
|
+
sage: C = codes.ReedMullerCode(F, 2, 2)
|
|
658
|
+
sage: E = codes.encoders.ReedMullerVectorEncoder(C)
|
|
659
|
+
sage: E.generator_matrix()
|
|
660
|
+
[1 1 1 1 1 1 1 1 1]
|
|
661
|
+
[0 1 2 0 1 2 0 1 2]
|
|
662
|
+
[0 0 0 1 1 1 2 2 2]
|
|
663
|
+
[0 1 1 0 1 1 0 1 1]
|
|
664
|
+
[0 0 0 0 1 2 0 2 1]
|
|
665
|
+
[0 0 0 1 1 1 1 1 1]
|
|
666
|
+
"""
|
|
667
|
+
C = self.code()
|
|
668
|
+
base_field = C.base_field()
|
|
669
|
+
order = C.order()
|
|
670
|
+
num_of_var = C.number_of_variables()
|
|
671
|
+
q = base_field.cardinality()
|
|
672
|
+
points = base_field**num_of_var
|
|
673
|
+
matrix_list = []
|
|
674
|
+
max_individual_degree = min(order, (q - 1))
|
|
675
|
+
for degree in range(order + 1):
|
|
676
|
+
exponents = Subsets(list(range(num_of_var)) * max_individual_degree,
|
|
677
|
+
degree, submultiset=True)
|
|
678
|
+
matrix_list += [[reduce(mul, [x[i] for i in exponent], 1)
|
|
679
|
+
for x in points] for exponent in exponents]
|
|
680
|
+
M = matrix(base_field, matrix_list)
|
|
681
|
+
M.set_immutable()
|
|
682
|
+
return M
|
|
683
|
+
|
|
684
|
+
def points(self):
|
|
685
|
+
r"""
|
|
686
|
+
Return the points of `F^m`, where `F` is the base field and `m` is the
|
|
687
|
+
number of variables, in order of which polynomials are evaluated on.
|
|
688
|
+
|
|
689
|
+
EXAMPLES::
|
|
690
|
+
|
|
691
|
+
sage: F = GF(3)
|
|
692
|
+
sage: Fx.<x0,x1> = F[]
|
|
693
|
+
sage: C = codes.ReedMullerCode(F, 2, 2)
|
|
694
|
+
sage: E = C.encoder("EvaluationVector")
|
|
695
|
+
sage: E.points()
|
|
696
|
+
[(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2)]
|
|
697
|
+
"""
|
|
698
|
+
code = self.code()
|
|
699
|
+
return ((code.base_field())**code.number_of_variables()).list()
|
|
700
|
+
|
|
701
|
+
|
|
702
|
+
class ReedMullerPolynomialEncoder(Encoder):
|
|
703
|
+
r"""
|
|
704
|
+
Encoder for Reed-Muller codes which encodes appropriate multivariate polynomials into codewords.
|
|
705
|
+
|
|
706
|
+
Consider a Reed-Muller code of order `r`, number of variables `m`, length `n`,
|
|
707
|
+
dimension `k` over some finite field `F`.
|
|
708
|
+
Let those variables be `(x_1, x_2, \dots, x_m)`.
|
|
709
|
+
We order the monomials by lowest power on lowest index variables. If we have three monomials
|
|
710
|
+
`x_1 x_2`, `x_1 x_2^2` and `x_1^2 x_2`, the ordering is:
|
|
711
|
+
`x_1 x_2 < x_1 x_2^2 < x_1^2 x_2`
|
|
712
|
+
|
|
713
|
+
Let now `f` be a polynomial of the multivariate polynomial ring `F[x_1, \dots, x_m]`.
|
|
714
|
+
|
|
715
|
+
Let `(\beta_1, \beta_2, \ldots, \beta_q)` be the elements of `F` ordered as they are
|
|
716
|
+
returned by Sage when calling ``F.list()``.
|
|
717
|
+
|
|
718
|
+
The aforementioned polynomial `f` is encoded as:
|
|
719
|
+
|
|
720
|
+
`(f(\alpha_{11},\alpha_{12},\ldots,\alpha_{1m}),f(\alpha_{21},\alpha_{22},\ldots,
|
|
721
|
+
\alpha_{2m}),\ldots,f(\alpha_{q^m1},\alpha_{q^m2},\ldots,\alpha_{q^mm}))`
|
|
722
|
+
|
|
723
|
+
with `\alpha_{ij}=\beta_{i \bmod{q^j}}` for all `i`, `j`.
|
|
724
|
+
|
|
725
|
+
INPUT:
|
|
726
|
+
|
|
727
|
+
- ``code`` -- the associated code of this encoder
|
|
728
|
+
|
|
729
|
+
- ``polynomial_ring`` -- (default: ``None``) the polynomial ring from which
|
|
730
|
+
the message is chosen; if this is set to ``None``, a polynomial ring in
|
|
731
|
+
`x` will be built from the code parameters
|
|
732
|
+
|
|
733
|
+
EXAMPLES::
|
|
734
|
+
|
|
735
|
+
sage: C1 = codes.ReedMullerCode(GF(2), 2, 4)
|
|
736
|
+
sage: E1 = codes.encoders.ReedMullerPolynomialEncoder(C1)
|
|
737
|
+
sage: E1
|
|
738
|
+
Evaluation polynomial-style encoder for
|
|
739
|
+
Binary Reed-Muller Code of order 2 and number of variables 4
|
|
740
|
+
sage: C2 = codes.ReedMullerCode(GF(3), 2, 2)
|
|
741
|
+
sage: E2 = codes.encoders.ReedMullerPolynomialEncoder(C2)
|
|
742
|
+
sage: E2
|
|
743
|
+
Evaluation polynomial-style encoder for
|
|
744
|
+
Reed-Muller Code of order 2 and 2 variables over Finite Field of size 3
|
|
745
|
+
|
|
746
|
+
We can also pass a predefined polynomial ring::
|
|
747
|
+
|
|
748
|
+
sage: R = PolynomialRing(GF(3), 2, 'y')
|
|
749
|
+
sage: C = codes.ReedMullerCode(GF(3), 2, 2)
|
|
750
|
+
sage: E = codes.encoders.ReedMullerPolynomialEncoder(C, R)
|
|
751
|
+
sage: E
|
|
752
|
+
Evaluation polynomial-style encoder for
|
|
753
|
+
Reed-Muller Code of order 2 and 2 variables over Finite Field of size 3
|
|
754
|
+
|
|
755
|
+
Actually, we can construct the encoder from ``C`` directly::
|
|
756
|
+
|
|
757
|
+
sage: E = C1.encoder("EvaluationPolynomial")
|
|
758
|
+
sage: E
|
|
759
|
+
Evaluation polynomial-style encoder for
|
|
760
|
+
Binary Reed-Muller Code of order 2 and number of variables 4
|
|
761
|
+
"""
|
|
762
|
+
|
|
763
|
+
def __init__(self, code, polynomial_ring=None):
|
|
764
|
+
r"""
|
|
765
|
+
TESTS:
|
|
766
|
+
|
|
767
|
+
If ``code`` is not a Reed-Muller code, an error is raised::
|
|
768
|
+
|
|
769
|
+
sage: C = codes.random_linear_code(GF(11), 10, 4)
|
|
770
|
+
sage: codes.encoders.ReedMullerPolynomialEncoder(C)
|
|
771
|
+
Traceback (most recent call last):
|
|
772
|
+
...
|
|
773
|
+
ValueError: the code has to be a Reed-Muller code
|
|
774
|
+
|
|
775
|
+
If the polynomial ring passed is not according to the requirement (over a different field or different number of variables) then an error is raised::
|
|
776
|
+
|
|
777
|
+
sage: F=GF(59)
|
|
778
|
+
sage: R.<x,y,z,w>=F[]
|
|
779
|
+
sage: C=codes.ReedMullerCode(F, 2, 3)
|
|
780
|
+
sage: E=codes.encoders.ReedMullerPolynomialEncoder(C, R)
|
|
781
|
+
Traceback (most recent call last):
|
|
782
|
+
...
|
|
783
|
+
ValueError: The Polynomial ring should be on Finite Field of size 59 and should have 3 variables
|
|
784
|
+
"""
|
|
785
|
+
if not isinstance(code, (QAryReedMullerCode, BinaryReedMullerCode)):
|
|
786
|
+
raise ValueError("the code has to be a Reed-Muller code")
|
|
787
|
+
super().__init__(code)
|
|
788
|
+
if polynomial_ring is None:
|
|
789
|
+
self._polynomial_ring = PolynomialRing(code.base_field(),
|
|
790
|
+
code.number_of_variables(), 'x')
|
|
791
|
+
else:
|
|
792
|
+
if (polynomial_ring.base_ring() == code.base_field()) and (
|
|
793
|
+
len(polynomial_ring.variable_names()) == code.number_of_variables()):
|
|
794
|
+
self._polynomial_ring = polynomial_ring
|
|
795
|
+
else:
|
|
796
|
+
raise ValueError(
|
|
797
|
+
"The Polynomial ring should be on %s and should have %s variables" %
|
|
798
|
+
(code.base_field(), code.number_of_variables()))
|
|
799
|
+
|
|
800
|
+
def _repr_(self):
|
|
801
|
+
r"""
|
|
802
|
+
Return a string representation of ``self``.
|
|
803
|
+
|
|
804
|
+
EXAMPLES::
|
|
805
|
+
|
|
806
|
+
sage: F = GF(59)
|
|
807
|
+
sage: C = codes.ReedMullerCode(F, 2, 4)
|
|
808
|
+
sage: E=codes.encoders.ReedMullerPolynomialEncoder(C)
|
|
809
|
+
sage: E
|
|
810
|
+
Evaluation polynomial-style encoder for Reed-Muller Code of order 2 and 4 variables over Finite Field of size 59
|
|
811
|
+
"""
|
|
812
|
+
return "Evaluation polynomial-style encoder for %s" % self.code()
|
|
813
|
+
|
|
814
|
+
def _latex_(self):
|
|
815
|
+
r"""
|
|
816
|
+
Return a string representation of ``self``.
|
|
817
|
+
|
|
818
|
+
EXAMPLES::
|
|
819
|
+
|
|
820
|
+
sage: F = GF(59)
|
|
821
|
+
sage: C = codes.ReedMullerCode(F, 2, 4)
|
|
822
|
+
sage: E=codes.encoders.ReedMullerPolynomialEncoder(C)
|
|
823
|
+
sage: latex(E)
|
|
824
|
+
\textnormal{Evaluation polynomial-style encoder for }\textnormal{Reed-Muller Code of order} 2 \textnormal{and }4 \textnormal{variables over} \Bold{F}_{59}
|
|
825
|
+
"""
|
|
826
|
+
return "\\textnormal{Evaluation polynomial-style encoder for }%s" % self.code()._latex_()
|
|
827
|
+
|
|
828
|
+
def __eq__(self, other):
|
|
829
|
+
r"""
|
|
830
|
+
Test equality between ReedMullerVectorEncoder objects.
|
|
831
|
+
|
|
832
|
+
EXAMPLES::
|
|
833
|
+
|
|
834
|
+
sage: F = GF(11)
|
|
835
|
+
sage: C = codes.ReedMullerCode(F, 2, 4)
|
|
836
|
+
sage: D1 = codes.encoders.ReedMullerPolynomialEncoder(C)
|
|
837
|
+
sage: D2 = codes.encoders.ReedMullerPolynomialEncoder(C)
|
|
838
|
+
sage: D1.__eq__(D2)
|
|
839
|
+
True
|
|
840
|
+
sage: D1 is D2
|
|
841
|
+
False
|
|
842
|
+
"""
|
|
843
|
+
return isinstance(other, ReedMullerPolynomialEncoder) \
|
|
844
|
+
and self.code() == other.code()
|
|
845
|
+
|
|
846
|
+
def encode(self, p):
|
|
847
|
+
r"""
|
|
848
|
+
Transform the polynomial ``p`` into a codeword of :meth:`code`.
|
|
849
|
+
|
|
850
|
+
INPUT:
|
|
851
|
+
|
|
852
|
+
- ``p`` -- a polynomial from the message space of ``self`` of degree
|
|
853
|
+
less than ``self.code().order()``
|
|
854
|
+
|
|
855
|
+
OUTPUT: a codeword in associated code of ``self``
|
|
856
|
+
|
|
857
|
+
EXAMPLES::
|
|
858
|
+
|
|
859
|
+
sage: F = GF(3)
|
|
860
|
+
sage: Fx.<x0,x1> = F[]
|
|
861
|
+
sage: C = codes.ReedMullerCode(F, 2, 2)
|
|
862
|
+
sage: E = C.encoder("EvaluationPolynomial")
|
|
863
|
+
sage: p = x0*x1 + x1^2 + x0 + x1 + 1
|
|
864
|
+
sage: c = E.encode(p); c
|
|
865
|
+
(1, 2, 0, 0, 2, 1, 1, 1, 1)
|
|
866
|
+
sage: c in C
|
|
867
|
+
True
|
|
868
|
+
|
|
869
|
+
If a polynomial with good monomial degree but wrong monomial
|
|
870
|
+
degree is given, an error is raised::
|
|
871
|
+
|
|
872
|
+
sage: p = x0^2*x1
|
|
873
|
+
sage: E.encode(p)
|
|
874
|
+
Traceback (most recent call last):
|
|
875
|
+
...
|
|
876
|
+
ValueError: The polynomial to encode must have degree at most 2
|
|
877
|
+
|
|
878
|
+
If ``p`` is not an element of the proper polynomial ring, an error is raised::
|
|
879
|
+
|
|
880
|
+
sage: Qy.<y1,y2> = QQ[]
|
|
881
|
+
sage: p = y1^2 + 1
|
|
882
|
+
sage: E.encode(p)
|
|
883
|
+
Traceback (most recent call last):
|
|
884
|
+
...
|
|
885
|
+
ValueError: The value to encode must be in
|
|
886
|
+
Multivariate Polynomial Ring in x0, x1 over Finite Field of size 3
|
|
887
|
+
"""
|
|
888
|
+
M = self.message_space()
|
|
889
|
+
if p not in M:
|
|
890
|
+
raise ValueError("The value to encode must be in %s" % M)
|
|
891
|
+
C = self.code()
|
|
892
|
+
if p.degree() > C.order():
|
|
893
|
+
raise ValueError("The polynomial to encode must have degree at most %s"
|
|
894
|
+
% C.order())
|
|
895
|
+
base_fieldTuple = Tuples(C.base_field().list(), C.number_of_variables())
|
|
896
|
+
return vector(C.base_ring(), [p(x) for x in base_fieldTuple])
|
|
897
|
+
|
|
898
|
+
def unencode_nocheck(self, c):
|
|
899
|
+
r"""
|
|
900
|
+
Return the message corresponding to the codeword ``c``.
|
|
901
|
+
|
|
902
|
+
Use this method with caution: it does not check if ``c``
|
|
903
|
+
belongs to the code, and if this is not the case, the output is
|
|
904
|
+
unspecified. Instead, use :meth:`unencode`.
|
|
905
|
+
|
|
906
|
+
INPUT:
|
|
907
|
+
|
|
908
|
+
- ``c`` -- a codeword of :meth:`code`
|
|
909
|
+
|
|
910
|
+
OUTPUT:
|
|
911
|
+
|
|
912
|
+
- A polynomial of degree less than ``self.code().order()``.
|
|
913
|
+
|
|
914
|
+
EXAMPLES::
|
|
915
|
+
|
|
916
|
+
sage: F = GF(3)
|
|
917
|
+
sage: C = codes.ReedMullerCode(F, 2, 2)
|
|
918
|
+
sage: E = C.encoder("EvaluationPolynomial")
|
|
919
|
+
sage: c = vector(F, (1, 2, 0, 0, 2, 1, 1, 1, 1))
|
|
920
|
+
sage: c in C
|
|
921
|
+
True
|
|
922
|
+
sage: p = E.unencode_nocheck(c); p
|
|
923
|
+
x0*x1 + x1^2 + x0 + x1 + 1
|
|
924
|
+
sage: E.encode(p) == c
|
|
925
|
+
True
|
|
926
|
+
|
|
927
|
+
Note that no error is thrown if ``c`` is not a codeword, and that the
|
|
928
|
+
result is undefined::
|
|
929
|
+
|
|
930
|
+
sage: c = vector(F, (1, 2, 0, 0, 2, 1, 0, 1, 1))
|
|
931
|
+
sage: c in C
|
|
932
|
+
False
|
|
933
|
+
sage: p = E.unencode_nocheck(c); p
|
|
934
|
+
-x0*x1 - x1^2 + x0 + 1
|
|
935
|
+
sage: E.encode(p) == c
|
|
936
|
+
False
|
|
937
|
+
"""
|
|
938
|
+
return _multivariate_polynomial_interpolation(
|
|
939
|
+
c,
|
|
940
|
+
self.code().order(),
|
|
941
|
+
self.polynomial_ring())
|
|
942
|
+
|
|
943
|
+
def message_space(self):
|
|
944
|
+
r"""
|
|
945
|
+
Return the message space of ``self``.
|
|
946
|
+
|
|
947
|
+
EXAMPLES::
|
|
948
|
+
|
|
949
|
+
sage: F = GF(11)
|
|
950
|
+
sage: C = codes.ReedMullerCode(F, 2, 4)
|
|
951
|
+
sage: E = C.encoder("EvaluationPolynomial")
|
|
952
|
+
sage: E.message_space()
|
|
953
|
+
Multivariate Polynomial Ring in x0, x1, x2, x3 over Finite Field of size 11
|
|
954
|
+
"""
|
|
955
|
+
return self._polynomial_ring
|
|
956
|
+
|
|
957
|
+
def polynomial_ring(self):
|
|
958
|
+
r"""
|
|
959
|
+
Return the polynomial ring associated with ``self``.
|
|
960
|
+
|
|
961
|
+
EXAMPLES::
|
|
962
|
+
|
|
963
|
+
sage: F = GF(11)
|
|
964
|
+
sage: C = codes.ReedMullerCode(F, 2, 4)
|
|
965
|
+
sage: E = C.encoder("EvaluationPolynomial")
|
|
966
|
+
sage: E.polynomial_ring()
|
|
967
|
+
Multivariate Polynomial Ring in x0, x1, x2, x3 over Finite Field of size 11
|
|
968
|
+
"""
|
|
969
|
+
return self._polynomial_ring
|
|
970
|
+
|
|
971
|
+
def points(self):
|
|
972
|
+
r"""
|
|
973
|
+
Return the evaluation points in the appropriate order as used by ``self`` when
|
|
974
|
+
encoding a message.
|
|
975
|
+
|
|
976
|
+
EXAMPLES::
|
|
977
|
+
|
|
978
|
+
sage: F = GF(3)
|
|
979
|
+
sage: Fx.<x0,x1> = F[]
|
|
980
|
+
sage: C = codes.ReedMullerCode(F, 2, 2)
|
|
981
|
+
sage: E = C.encoder("EvaluationPolynomial")
|
|
982
|
+
sage: E.points()
|
|
983
|
+
[(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2)]
|
|
984
|
+
"""
|
|
985
|
+
code = self.code()
|
|
986
|
+
return ((code.base_field())**code.number_of_variables()).list()
|
|
987
|
+
|
|
988
|
+
|
|
989
|
+
# --------------- registration --------------
|
|
990
|
+
|
|
991
|
+
QAryReedMullerCode._registered_encoders["EvaluationVector"] = ReedMullerVectorEncoder
|
|
992
|
+
QAryReedMullerCode._registered_encoders["EvaluationPolynomial"] = ReedMullerPolynomialEncoder
|
|
993
|
+
|
|
994
|
+
QAryReedMullerCode._registered_decoders["Syndrome"] = LinearCodeSyndromeDecoder
|
|
995
|
+
|
|
996
|
+
BinaryReedMullerCode._registered_encoders["EvaluationVector"] = ReedMullerVectorEncoder
|
|
997
|
+
BinaryReedMullerCode._registered_encoders["EvaluationPolynomial"] = ReedMullerPolynomialEncoder
|
|
998
|
+
|
|
999
|
+
BinaryReedMullerCode._registered_decoders["Syndrome"] = LinearCodeSyndromeDecoder
|