numpy 2.4.1__pp311-pypy311_pp73-macosx_14_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1039) hide show
  1. numpy/__config__.py +170 -0
  2. numpy/__config__.pyi +108 -0
  3. numpy/__init__.cython-30.pxd +1242 -0
  4. numpy/__init__.pxd +1155 -0
  5. numpy/__init__.py +942 -0
  6. numpy/__init__.pyi +6202 -0
  7. numpy/_array_api_info.py +346 -0
  8. numpy/_array_api_info.pyi +206 -0
  9. numpy/_configtool.py +39 -0
  10. numpy/_configtool.pyi +1 -0
  11. numpy/_core/__init__.py +201 -0
  12. numpy/_core/__init__.pyi +666 -0
  13. numpy/_core/_add_newdocs.py +7151 -0
  14. numpy/_core/_add_newdocs.pyi +2 -0
  15. numpy/_core/_add_newdocs_scalars.py +381 -0
  16. numpy/_core/_add_newdocs_scalars.pyi +16 -0
  17. numpy/_core/_asarray.py +130 -0
  18. numpy/_core/_asarray.pyi +43 -0
  19. numpy/_core/_dtype.py +366 -0
  20. numpy/_core/_dtype.pyi +56 -0
  21. numpy/_core/_dtype_ctypes.py +120 -0
  22. numpy/_core/_dtype_ctypes.pyi +83 -0
  23. numpy/_core/_exceptions.py +162 -0
  24. numpy/_core/_exceptions.pyi +54 -0
  25. numpy/_core/_internal.py +968 -0
  26. numpy/_core/_internal.pyi +61 -0
  27. numpy/_core/_methods.py +252 -0
  28. numpy/_core/_methods.pyi +22 -0
  29. numpy/_core/_multiarray_tests.pypy311-pp73-darwin.so +0 -0
  30. numpy/_core/_multiarray_umath.pypy311-pp73-darwin.so +0 -0
  31. numpy/_core/_operand_flag_tests.pypy311-pp73-darwin.so +0 -0
  32. numpy/_core/_rational_tests.pypy311-pp73-darwin.so +0 -0
  33. numpy/_core/_simd.pyi +35 -0
  34. numpy/_core/_simd.pypy311-pp73-darwin.so +0 -0
  35. numpy/_core/_string_helpers.py +100 -0
  36. numpy/_core/_string_helpers.pyi +12 -0
  37. numpy/_core/_struct_ufunc_tests.pypy311-pp73-darwin.so +0 -0
  38. numpy/_core/_type_aliases.py +131 -0
  39. numpy/_core/_type_aliases.pyi +86 -0
  40. numpy/_core/_ufunc_config.py +515 -0
  41. numpy/_core/_ufunc_config.pyi +69 -0
  42. numpy/_core/_umath_tests.pyi +47 -0
  43. numpy/_core/_umath_tests.pypy311-pp73-darwin.so +0 -0
  44. numpy/_core/arrayprint.py +1779 -0
  45. numpy/_core/arrayprint.pyi +158 -0
  46. numpy/_core/cversions.py +13 -0
  47. numpy/_core/defchararray.py +1414 -0
  48. numpy/_core/defchararray.pyi +1150 -0
  49. numpy/_core/einsumfunc.py +1650 -0
  50. numpy/_core/einsumfunc.pyi +184 -0
  51. numpy/_core/fromnumeric.py +4233 -0
  52. numpy/_core/fromnumeric.pyi +1735 -0
  53. numpy/_core/function_base.py +547 -0
  54. numpy/_core/function_base.pyi +276 -0
  55. numpy/_core/getlimits.py +462 -0
  56. numpy/_core/getlimits.pyi +124 -0
  57. numpy/_core/include/numpy/__multiarray_api.c +376 -0
  58. numpy/_core/include/numpy/__multiarray_api.h +1628 -0
  59. numpy/_core/include/numpy/__ufunc_api.c +55 -0
  60. numpy/_core/include/numpy/__ufunc_api.h +349 -0
  61. numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
  62. numpy/_core/include/numpy/_numpyconfig.h +33 -0
  63. numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
  64. numpy/_core/include/numpy/arrayobject.h +7 -0
  65. numpy/_core/include/numpy/arrayscalars.h +198 -0
  66. numpy/_core/include/numpy/dtype_api.h +547 -0
  67. numpy/_core/include/numpy/halffloat.h +70 -0
  68. numpy/_core/include/numpy/ndarrayobject.h +304 -0
  69. numpy/_core/include/numpy/ndarraytypes.h +1982 -0
  70. numpy/_core/include/numpy/npy_2_compat.h +249 -0
  71. numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
  72. numpy/_core/include/numpy/npy_3kcompat.h +374 -0
  73. numpy/_core/include/numpy/npy_common.h +989 -0
  74. numpy/_core/include/numpy/npy_cpu.h +126 -0
  75. numpy/_core/include/numpy/npy_endian.h +79 -0
  76. numpy/_core/include/numpy/npy_math.h +602 -0
  77. numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
  78. numpy/_core/include/numpy/npy_os.h +42 -0
  79. numpy/_core/include/numpy/numpyconfig.h +185 -0
  80. numpy/_core/include/numpy/random/LICENSE.txt +21 -0
  81. numpy/_core/include/numpy/random/bitgen.h +20 -0
  82. numpy/_core/include/numpy/random/distributions.h +209 -0
  83. numpy/_core/include/numpy/random/libdivide.h +2079 -0
  84. numpy/_core/include/numpy/ufuncobject.h +343 -0
  85. numpy/_core/include/numpy/utils.h +37 -0
  86. numpy/_core/lib/libnpymath.a +0 -0
  87. numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
  88. numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
  89. numpy/_core/lib/pkgconfig/numpy.pc +7 -0
  90. numpy/_core/memmap.py +363 -0
  91. numpy/_core/memmap.pyi +3 -0
  92. numpy/_core/multiarray.py +1740 -0
  93. numpy/_core/multiarray.pyi +1316 -0
  94. numpy/_core/numeric.py +2758 -0
  95. numpy/_core/numeric.pyi +1276 -0
  96. numpy/_core/numerictypes.py +633 -0
  97. numpy/_core/numerictypes.pyi +196 -0
  98. numpy/_core/overrides.py +188 -0
  99. numpy/_core/overrides.pyi +47 -0
  100. numpy/_core/printoptions.py +32 -0
  101. numpy/_core/printoptions.pyi +28 -0
  102. numpy/_core/records.py +1088 -0
  103. numpy/_core/records.pyi +340 -0
  104. numpy/_core/shape_base.py +996 -0
  105. numpy/_core/shape_base.pyi +182 -0
  106. numpy/_core/strings.py +1813 -0
  107. numpy/_core/strings.pyi +536 -0
  108. numpy/_core/tests/_locales.py +72 -0
  109. numpy/_core/tests/_natype.py +144 -0
  110. numpy/_core/tests/data/astype_copy.pkl +0 -0
  111. numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
  112. numpy/_core/tests/data/recarray_from_file.fits +0 -0
  113. numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
  114. numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
  115. numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
  116. numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
  117. numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
  118. numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
  119. numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
  120. numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
  121. numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
  122. numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
  123. numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
  124. numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
  125. numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
  126. numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
  127. numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
  128. numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
  129. numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
  130. numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
  131. numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
  132. numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
  133. numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
  134. numpy/_core/tests/examples/cython/checks.pyx +373 -0
  135. numpy/_core/tests/examples/cython/meson.build +43 -0
  136. numpy/_core/tests/examples/cython/setup.py +39 -0
  137. numpy/_core/tests/examples/limited_api/limited_api1.c +17 -0
  138. numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
  139. numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
  140. numpy/_core/tests/examples/limited_api/meson.build +59 -0
  141. numpy/_core/tests/examples/limited_api/setup.py +24 -0
  142. numpy/_core/tests/test__exceptions.py +90 -0
  143. numpy/_core/tests/test_abc.py +54 -0
  144. numpy/_core/tests/test_api.py +655 -0
  145. numpy/_core/tests/test_argparse.py +90 -0
  146. numpy/_core/tests/test_array_api_info.py +113 -0
  147. numpy/_core/tests/test_array_coercion.py +928 -0
  148. numpy/_core/tests/test_array_interface.py +222 -0
  149. numpy/_core/tests/test_arraymethod.py +84 -0
  150. numpy/_core/tests/test_arrayobject.py +75 -0
  151. numpy/_core/tests/test_arrayprint.py +1324 -0
  152. numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
  153. numpy/_core/tests/test_casting_unittests.py +955 -0
  154. numpy/_core/tests/test_conversion_utils.py +209 -0
  155. numpy/_core/tests/test_cpu_dispatcher.py +48 -0
  156. numpy/_core/tests/test_cpu_features.py +450 -0
  157. numpy/_core/tests/test_custom_dtypes.py +393 -0
  158. numpy/_core/tests/test_cython.py +352 -0
  159. numpy/_core/tests/test_datetime.py +2792 -0
  160. numpy/_core/tests/test_defchararray.py +858 -0
  161. numpy/_core/tests/test_deprecations.py +460 -0
  162. numpy/_core/tests/test_dlpack.py +190 -0
  163. numpy/_core/tests/test_dtype.py +2110 -0
  164. numpy/_core/tests/test_einsum.py +1351 -0
  165. numpy/_core/tests/test_errstate.py +131 -0
  166. numpy/_core/tests/test_extint128.py +217 -0
  167. numpy/_core/tests/test_finfo.py +86 -0
  168. numpy/_core/tests/test_function_base.py +504 -0
  169. numpy/_core/tests/test_getlimits.py +171 -0
  170. numpy/_core/tests/test_half.py +593 -0
  171. numpy/_core/tests/test_hashtable.py +36 -0
  172. numpy/_core/tests/test_indexerrors.py +122 -0
  173. numpy/_core/tests/test_indexing.py +1692 -0
  174. numpy/_core/tests/test_item_selection.py +167 -0
  175. numpy/_core/tests/test_limited_api.py +102 -0
  176. numpy/_core/tests/test_longdouble.py +370 -0
  177. numpy/_core/tests/test_mem_overlap.py +933 -0
  178. numpy/_core/tests/test_mem_policy.py +453 -0
  179. numpy/_core/tests/test_memmap.py +248 -0
  180. numpy/_core/tests/test_multiarray.py +11008 -0
  181. numpy/_core/tests/test_multiprocessing.py +55 -0
  182. numpy/_core/tests/test_multithreading.py +377 -0
  183. numpy/_core/tests/test_nditer.py +3533 -0
  184. numpy/_core/tests/test_nep50_promotions.py +287 -0
  185. numpy/_core/tests/test_numeric.py +4295 -0
  186. numpy/_core/tests/test_numerictypes.py +650 -0
  187. numpy/_core/tests/test_overrides.py +800 -0
  188. numpy/_core/tests/test_print.py +202 -0
  189. numpy/_core/tests/test_protocols.py +46 -0
  190. numpy/_core/tests/test_records.py +544 -0
  191. numpy/_core/tests/test_regression.py +2677 -0
  192. numpy/_core/tests/test_scalar_ctors.py +203 -0
  193. numpy/_core/tests/test_scalar_methods.py +328 -0
  194. numpy/_core/tests/test_scalarbuffer.py +153 -0
  195. numpy/_core/tests/test_scalarinherit.py +105 -0
  196. numpy/_core/tests/test_scalarmath.py +1168 -0
  197. numpy/_core/tests/test_scalarprint.py +403 -0
  198. numpy/_core/tests/test_shape_base.py +904 -0
  199. numpy/_core/tests/test_simd.py +1345 -0
  200. numpy/_core/tests/test_simd_module.py +105 -0
  201. numpy/_core/tests/test_stringdtype.py +1855 -0
  202. numpy/_core/tests/test_strings.py +1523 -0
  203. numpy/_core/tests/test_ufunc.py +3405 -0
  204. numpy/_core/tests/test_umath.py +4962 -0
  205. numpy/_core/tests/test_umath_accuracy.py +132 -0
  206. numpy/_core/tests/test_umath_complex.py +631 -0
  207. numpy/_core/tests/test_unicode.py +369 -0
  208. numpy/_core/umath.py +60 -0
  209. numpy/_core/umath.pyi +232 -0
  210. numpy/_distributor_init.py +15 -0
  211. numpy/_distributor_init.pyi +1 -0
  212. numpy/_expired_attrs_2_0.py +78 -0
  213. numpy/_expired_attrs_2_0.pyi +61 -0
  214. numpy/_globals.py +121 -0
  215. numpy/_globals.pyi +17 -0
  216. numpy/_pyinstaller/__init__.py +0 -0
  217. numpy/_pyinstaller/__init__.pyi +0 -0
  218. numpy/_pyinstaller/hook-numpy.py +36 -0
  219. numpy/_pyinstaller/hook-numpy.pyi +6 -0
  220. numpy/_pyinstaller/tests/__init__.py +16 -0
  221. numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
  222. numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
  223. numpy/_pytesttester.py +201 -0
  224. numpy/_pytesttester.pyi +18 -0
  225. numpy/_typing/__init__.py +173 -0
  226. numpy/_typing/_add_docstring.py +153 -0
  227. numpy/_typing/_array_like.py +106 -0
  228. numpy/_typing/_char_codes.py +213 -0
  229. numpy/_typing/_dtype_like.py +114 -0
  230. numpy/_typing/_extended_precision.py +15 -0
  231. numpy/_typing/_nbit.py +19 -0
  232. numpy/_typing/_nbit_base.py +94 -0
  233. numpy/_typing/_nbit_base.pyi +39 -0
  234. numpy/_typing/_nested_sequence.py +79 -0
  235. numpy/_typing/_scalars.py +20 -0
  236. numpy/_typing/_shape.py +8 -0
  237. numpy/_typing/_ufunc.py +7 -0
  238. numpy/_typing/_ufunc.pyi +975 -0
  239. numpy/_utils/__init__.py +95 -0
  240. numpy/_utils/__init__.pyi +28 -0
  241. numpy/_utils/_convertions.py +18 -0
  242. numpy/_utils/_convertions.pyi +4 -0
  243. numpy/_utils/_inspect.py +192 -0
  244. numpy/_utils/_inspect.pyi +70 -0
  245. numpy/_utils/_pep440.py +486 -0
  246. numpy/_utils/_pep440.pyi +118 -0
  247. numpy/char/__init__.py +2 -0
  248. numpy/char/__init__.pyi +111 -0
  249. numpy/conftest.py +248 -0
  250. numpy/core/__init__.py +33 -0
  251. numpy/core/__init__.pyi +0 -0
  252. numpy/core/_dtype.py +10 -0
  253. numpy/core/_dtype.pyi +0 -0
  254. numpy/core/_dtype_ctypes.py +10 -0
  255. numpy/core/_dtype_ctypes.pyi +0 -0
  256. numpy/core/_internal.py +27 -0
  257. numpy/core/_multiarray_umath.py +57 -0
  258. numpy/core/_utils.py +21 -0
  259. numpy/core/arrayprint.py +10 -0
  260. numpy/core/defchararray.py +10 -0
  261. numpy/core/einsumfunc.py +10 -0
  262. numpy/core/fromnumeric.py +10 -0
  263. numpy/core/function_base.py +10 -0
  264. numpy/core/getlimits.py +10 -0
  265. numpy/core/multiarray.py +25 -0
  266. numpy/core/numeric.py +12 -0
  267. numpy/core/numerictypes.py +10 -0
  268. numpy/core/overrides.py +10 -0
  269. numpy/core/overrides.pyi +7 -0
  270. numpy/core/records.py +10 -0
  271. numpy/core/shape_base.py +10 -0
  272. numpy/core/umath.py +10 -0
  273. numpy/ctypeslib/__init__.py +13 -0
  274. numpy/ctypeslib/__init__.pyi +15 -0
  275. numpy/ctypeslib/_ctypeslib.py +603 -0
  276. numpy/ctypeslib/_ctypeslib.pyi +236 -0
  277. numpy/distutils/__init__.py +64 -0
  278. numpy/distutils/__init__.pyi +4 -0
  279. numpy/distutils/__pycache__/conv_template.pypy311.pyc +0 -0
  280. numpy/distutils/_shell_utils.py +87 -0
  281. numpy/distutils/armccompiler.py +26 -0
  282. numpy/distutils/ccompiler.py +826 -0
  283. numpy/distutils/ccompiler_opt.py +2668 -0
  284. numpy/distutils/checks/cpu_asimd.c +27 -0
  285. numpy/distutils/checks/cpu_asimddp.c +16 -0
  286. numpy/distutils/checks/cpu_asimdfhm.c +19 -0
  287. numpy/distutils/checks/cpu_asimdhp.c +15 -0
  288. numpy/distutils/checks/cpu_avx.c +20 -0
  289. numpy/distutils/checks/cpu_avx2.c +20 -0
  290. numpy/distutils/checks/cpu_avx512_clx.c +22 -0
  291. numpy/distutils/checks/cpu_avx512_cnl.c +24 -0
  292. numpy/distutils/checks/cpu_avx512_icl.c +26 -0
  293. numpy/distutils/checks/cpu_avx512_knl.c +25 -0
  294. numpy/distutils/checks/cpu_avx512_knm.c +30 -0
  295. numpy/distutils/checks/cpu_avx512_skx.c +26 -0
  296. numpy/distutils/checks/cpu_avx512_spr.c +26 -0
  297. numpy/distutils/checks/cpu_avx512cd.c +20 -0
  298. numpy/distutils/checks/cpu_avx512f.c +20 -0
  299. numpy/distutils/checks/cpu_f16c.c +22 -0
  300. numpy/distutils/checks/cpu_fma3.c +22 -0
  301. numpy/distutils/checks/cpu_fma4.c +13 -0
  302. numpy/distutils/checks/cpu_lsx.c +11 -0
  303. numpy/distutils/checks/cpu_neon.c +19 -0
  304. numpy/distutils/checks/cpu_neon_fp16.c +11 -0
  305. numpy/distutils/checks/cpu_neon_vfpv4.c +21 -0
  306. numpy/distutils/checks/cpu_popcnt.c +32 -0
  307. numpy/distutils/checks/cpu_rvv.c +13 -0
  308. numpy/distutils/checks/cpu_sse.c +20 -0
  309. numpy/distutils/checks/cpu_sse2.c +20 -0
  310. numpy/distutils/checks/cpu_sse3.c +20 -0
  311. numpy/distutils/checks/cpu_sse41.c +20 -0
  312. numpy/distutils/checks/cpu_sse42.c +20 -0
  313. numpy/distutils/checks/cpu_ssse3.c +20 -0
  314. numpy/distutils/checks/cpu_sve.c +14 -0
  315. numpy/distutils/checks/cpu_vsx.c +21 -0
  316. numpy/distutils/checks/cpu_vsx2.c +13 -0
  317. numpy/distutils/checks/cpu_vsx3.c +13 -0
  318. numpy/distutils/checks/cpu_vsx4.c +14 -0
  319. numpy/distutils/checks/cpu_vx.c +16 -0
  320. numpy/distutils/checks/cpu_vxe.c +25 -0
  321. numpy/distutils/checks/cpu_vxe2.c +21 -0
  322. numpy/distutils/checks/cpu_xop.c +12 -0
  323. numpy/distutils/checks/extra_avx512bw_mask.c +18 -0
  324. numpy/distutils/checks/extra_avx512dq_mask.c +16 -0
  325. numpy/distutils/checks/extra_avx512f_reduce.c +41 -0
  326. numpy/distutils/checks/extra_vsx3_half_double.c +12 -0
  327. numpy/distutils/checks/extra_vsx4_mma.c +21 -0
  328. numpy/distutils/checks/extra_vsx_asm.c +36 -0
  329. numpy/distutils/checks/test_flags.c +1 -0
  330. numpy/distutils/command/__init__.py +41 -0
  331. numpy/distutils/command/autodist.py +148 -0
  332. numpy/distutils/command/bdist_rpm.py +22 -0
  333. numpy/distutils/command/build.py +62 -0
  334. numpy/distutils/command/build_clib.py +469 -0
  335. numpy/distutils/command/build_ext.py +752 -0
  336. numpy/distutils/command/build_py.py +31 -0
  337. numpy/distutils/command/build_scripts.py +49 -0
  338. numpy/distutils/command/build_src.py +773 -0
  339. numpy/distutils/command/config.py +516 -0
  340. numpy/distutils/command/config_compiler.py +126 -0
  341. numpy/distutils/command/develop.py +15 -0
  342. numpy/distutils/command/egg_info.py +25 -0
  343. numpy/distutils/command/install.py +79 -0
  344. numpy/distutils/command/install_clib.py +40 -0
  345. numpy/distutils/command/install_data.py +24 -0
  346. numpy/distutils/command/install_headers.py +25 -0
  347. numpy/distutils/command/sdist.py +27 -0
  348. numpy/distutils/conv_template.py +329 -0
  349. numpy/distutils/core.py +215 -0
  350. numpy/distutils/cpuinfo.py +683 -0
  351. numpy/distutils/exec_command.py +315 -0
  352. numpy/distutils/extension.py +101 -0
  353. numpy/distutils/fcompiler/__init__.py +1035 -0
  354. numpy/distutils/fcompiler/absoft.py +158 -0
  355. numpy/distutils/fcompiler/arm.py +71 -0
  356. numpy/distutils/fcompiler/compaq.py +120 -0
  357. numpy/distutils/fcompiler/environment.py +88 -0
  358. numpy/distutils/fcompiler/fujitsu.py +46 -0
  359. numpy/distutils/fcompiler/g95.py +42 -0
  360. numpy/distutils/fcompiler/gnu.py +555 -0
  361. numpy/distutils/fcompiler/hpux.py +41 -0
  362. numpy/distutils/fcompiler/ibm.py +97 -0
  363. numpy/distutils/fcompiler/intel.py +211 -0
  364. numpy/distutils/fcompiler/lahey.py +45 -0
  365. numpy/distutils/fcompiler/mips.py +54 -0
  366. numpy/distutils/fcompiler/nag.py +87 -0
  367. numpy/distutils/fcompiler/none.py +28 -0
  368. numpy/distutils/fcompiler/nv.py +53 -0
  369. numpy/distutils/fcompiler/pathf95.py +33 -0
  370. numpy/distutils/fcompiler/pg.py +128 -0
  371. numpy/distutils/fcompiler/sun.py +51 -0
  372. numpy/distutils/fcompiler/vast.py +52 -0
  373. numpy/distutils/from_template.py +261 -0
  374. numpy/distutils/fujitsuccompiler.py +28 -0
  375. numpy/distutils/intelccompiler.py +106 -0
  376. numpy/distutils/lib2def.py +116 -0
  377. numpy/distutils/line_endings.py +77 -0
  378. numpy/distutils/log.py +111 -0
  379. numpy/distutils/mingw/gfortran_vs2003_hack.c +6 -0
  380. numpy/distutils/mingw32ccompiler.py +620 -0
  381. numpy/distutils/misc_util.py +2484 -0
  382. numpy/distutils/msvc9compiler.py +63 -0
  383. numpy/distutils/msvccompiler.py +76 -0
  384. numpy/distutils/npy_pkg_config.py +441 -0
  385. numpy/distutils/numpy_distribution.py +17 -0
  386. numpy/distutils/pathccompiler.py +21 -0
  387. numpy/distutils/system_info.py +3267 -0
  388. numpy/distutils/tests/__init__.py +0 -0
  389. numpy/distutils/tests/test_build_ext.py +74 -0
  390. numpy/distutils/tests/test_ccompiler_opt.py +808 -0
  391. numpy/distutils/tests/test_ccompiler_opt_conf.py +176 -0
  392. numpy/distutils/tests/test_exec_command.py +217 -0
  393. numpy/distutils/tests/test_fcompiler.py +43 -0
  394. numpy/distutils/tests/test_fcompiler_gnu.py +55 -0
  395. numpy/distutils/tests/test_fcompiler_intel.py +30 -0
  396. numpy/distutils/tests/test_fcompiler_nagfor.py +22 -0
  397. numpy/distutils/tests/test_from_template.py +44 -0
  398. numpy/distutils/tests/test_log.py +34 -0
  399. numpy/distutils/tests/test_mingw32ccompiler.py +47 -0
  400. numpy/distutils/tests/test_misc_util.py +88 -0
  401. numpy/distutils/tests/test_npy_pkg_config.py +84 -0
  402. numpy/distutils/tests/test_shell_utils.py +79 -0
  403. numpy/distutils/tests/test_system_info.py +334 -0
  404. numpy/distutils/tests/utilities.py +90 -0
  405. numpy/distutils/unixccompiler.py +141 -0
  406. numpy/doc/ufuncs.py +138 -0
  407. numpy/dtypes.py +41 -0
  408. numpy/dtypes.pyi +630 -0
  409. numpy/exceptions.py +246 -0
  410. numpy/exceptions.pyi +27 -0
  411. numpy/f2py/__init__.py +86 -0
  412. numpy/f2py/__init__.pyi +5 -0
  413. numpy/f2py/__main__.py +5 -0
  414. numpy/f2py/__version__.py +1 -0
  415. numpy/f2py/__version__.pyi +1 -0
  416. numpy/f2py/_backends/__init__.py +9 -0
  417. numpy/f2py/_backends/__init__.pyi +5 -0
  418. numpy/f2py/_backends/_backend.py +44 -0
  419. numpy/f2py/_backends/_backend.pyi +46 -0
  420. numpy/f2py/_backends/_distutils.py +76 -0
  421. numpy/f2py/_backends/_distutils.pyi +13 -0
  422. numpy/f2py/_backends/_meson.py +244 -0
  423. numpy/f2py/_backends/_meson.pyi +62 -0
  424. numpy/f2py/_backends/meson.build.template +58 -0
  425. numpy/f2py/_isocbind.py +62 -0
  426. numpy/f2py/_isocbind.pyi +13 -0
  427. numpy/f2py/_src_pyf.py +247 -0
  428. numpy/f2py/_src_pyf.pyi +28 -0
  429. numpy/f2py/auxfuncs.py +1004 -0
  430. numpy/f2py/auxfuncs.pyi +262 -0
  431. numpy/f2py/capi_maps.py +811 -0
  432. numpy/f2py/capi_maps.pyi +33 -0
  433. numpy/f2py/cb_rules.py +665 -0
  434. numpy/f2py/cb_rules.pyi +17 -0
  435. numpy/f2py/cfuncs.py +1563 -0
  436. numpy/f2py/cfuncs.pyi +31 -0
  437. numpy/f2py/common_rules.py +143 -0
  438. numpy/f2py/common_rules.pyi +9 -0
  439. numpy/f2py/crackfortran.py +3725 -0
  440. numpy/f2py/crackfortran.pyi +266 -0
  441. numpy/f2py/diagnose.py +149 -0
  442. numpy/f2py/diagnose.pyi +1 -0
  443. numpy/f2py/f2py2e.py +788 -0
  444. numpy/f2py/f2py2e.pyi +74 -0
  445. numpy/f2py/f90mod_rules.py +269 -0
  446. numpy/f2py/f90mod_rules.pyi +16 -0
  447. numpy/f2py/func2subr.py +329 -0
  448. numpy/f2py/func2subr.pyi +7 -0
  449. numpy/f2py/rules.py +1629 -0
  450. numpy/f2py/rules.pyi +41 -0
  451. numpy/f2py/setup.cfg +3 -0
  452. numpy/f2py/src/fortranobject.c +1436 -0
  453. numpy/f2py/src/fortranobject.h +173 -0
  454. numpy/f2py/symbolic.py +1518 -0
  455. numpy/f2py/symbolic.pyi +219 -0
  456. numpy/f2py/tests/__init__.py +16 -0
  457. numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
  458. numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
  459. numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
  460. numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
  461. numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
  462. numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
  463. numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
  464. numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
  465. numpy/f2py/tests/src/block_docstring/foo.f +6 -0
  466. numpy/f2py/tests/src/callback/foo.f +62 -0
  467. numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
  468. numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
  469. numpy/f2py/tests/src/callback/gh25211.f +10 -0
  470. numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
  471. numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
  472. numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
  473. numpy/f2py/tests/src/cli/hi77.f +3 -0
  474. numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
  475. numpy/f2py/tests/src/common/block.f +11 -0
  476. numpy/f2py/tests/src/common/gh19161.f90 +10 -0
  477. numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
  478. numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
  479. numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
  480. numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
  481. numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
  482. numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
  483. numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
  484. numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
  485. numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
  486. numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
  487. numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
  488. numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
  489. numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
  490. numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
  491. numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
  492. numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
  493. numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
  494. numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
  495. numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
  496. numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
  497. numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
  498. numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
  499. numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
  500. numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
  501. numpy/f2py/tests/src/kind/foo.f90 +20 -0
  502. numpy/f2py/tests/src/mixed/foo.f +5 -0
  503. numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
  504. numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
  505. numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
  506. numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
  507. numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
  508. numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
  509. numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
  510. numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
  511. numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
  512. numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
  513. numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
  514. numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
  515. numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
  516. numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
  517. numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
  518. numpy/f2py/tests/src/quoted_character/foo.f +14 -0
  519. numpy/f2py/tests/src/regression/AB.inc +1 -0
  520. numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
  521. numpy/f2py/tests/src/regression/datonly.f90 +17 -0
  522. numpy/f2py/tests/src/regression/f77comments.f +26 -0
  523. numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
  524. numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
  525. numpy/f2py/tests/src/regression/incfile.f90 +5 -0
  526. numpy/f2py/tests/src/regression/inout.f90 +9 -0
  527. numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
  528. numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
  529. numpy/f2py/tests/src/return_character/foo77.f +45 -0
  530. numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
  531. numpy/f2py/tests/src/return_complex/foo77.f +45 -0
  532. numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
  533. numpy/f2py/tests/src/return_integer/foo77.f +56 -0
  534. numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
  535. numpy/f2py/tests/src/return_logical/foo77.f +56 -0
  536. numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
  537. numpy/f2py/tests/src/return_real/foo77.f +45 -0
  538. numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
  539. numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
  540. numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
  541. numpy/f2py/tests/src/routines/subrout.f +4 -0
  542. numpy/f2py/tests/src/routines/subrout.pyf +10 -0
  543. numpy/f2py/tests/src/size/foo.f90 +44 -0
  544. numpy/f2py/tests/src/string/char.f90 +29 -0
  545. numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
  546. numpy/f2py/tests/src/string/gh24008.f +8 -0
  547. numpy/f2py/tests/src/string/gh24662.f90 +7 -0
  548. numpy/f2py/tests/src/string/gh25286.f90 +14 -0
  549. numpy/f2py/tests/src/string/gh25286.pyf +12 -0
  550. numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
  551. numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
  552. numpy/f2py/tests/src/string/string.f +12 -0
  553. numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
  554. numpy/f2py/tests/test_abstract_interface.py +26 -0
  555. numpy/f2py/tests/test_array_from_pyobj.py +678 -0
  556. numpy/f2py/tests/test_assumed_shape.py +50 -0
  557. numpy/f2py/tests/test_block_docstring.py +20 -0
  558. numpy/f2py/tests/test_callback.py +263 -0
  559. numpy/f2py/tests/test_character.py +641 -0
  560. numpy/f2py/tests/test_common.py +23 -0
  561. numpy/f2py/tests/test_crackfortran.py +421 -0
  562. numpy/f2py/tests/test_data.py +71 -0
  563. numpy/f2py/tests/test_docs.py +66 -0
  564. numpy/f2py/tests/test_f2cmap.py +17 -0
  565. numpy/f2py/tests/test_f2py2e.py +983 -0
  566. numpy/f2py/tests/test_isoc.py +56 -0
  567. numpy/f2py/tests/test_kind.py +52 -0
  568. numpy/f2py/tests/test_mixed.py +35 -0
  569. numpy/f2py/tests/test_modules.py +83 -0
  570. numpy/f2py/tests/test_parameter.py +129 -0
  571. numpy/f2py/tests/test_pyf_src.py +43 -0
  572. numpy/f2py/tests/test_quoted_character.py +18 -0
  573. numpy/f2py/tests/test_regression.py +187 -0
  574. numpy/f2py/tests/test_return_character.py +48 -0
  575. numpy/f2py/tests/test_return_complex.py +67 -0
  576. numpy/f2py/tests/test_return_integer.py +55 -0
  577. numpy/f2py/tests/test_return_logical.py +65 -0
  578. numpy/f2py/tests/test_return_real.py +109 -0
  579. numpy/f2py/tests/test_routines.py +29 -0
  580. numpy/f2py/tests/test_semicolon_split.py +75 -0
  581. numpy/f2py/tests/test_size.py +45 -0
  582. numpy/f2py/tests/test_string.py +100 -0
  583. numpy/f2py/tests/test_symbolic.py +500 -0
  584. numpy/f2py/tests/test_value_attrspec.py +15 -0
  585. numpy/f2py/tests/util.py +442 -0
  586. numpy/f2py/use_rules.py +99 -0
  587. numpy/f2py/use_rules.pyi +9 -0
  588. numpy/fft/__init__.py +213 -0
  589. numpy/fft/__init__.pyi +38 -0
  590. numpy/fft/_helper.py +235 -0
  591. numpy/fft/_helper.pyi +44 -0
  592. numpy/fft/_pocketfft.py +1693 -0
  593. numpy/fft/_pocketfft.pyi +137 -0
  594. numpy/fft/_pocketfft_umath.pypy311-pp73-darwin.so +0 -0
  595. numpy/fft/tests/__init__.py +0 -0
  596. numpy/fft/tests/test_helper.py +167 -0
  597. numpy/fft/tests/test_pocketfft.py +589 -0
  598. numpy/lib/__init__.py +97 -0
  599. numpy/lib/__init__.pyi +52 -0
  600. numpy/lib/_array_utils_impl.py +62 -0
  601. numpy/lib/_array_utils_impl.pyi +10 -0
  602. numpy/lib/_arraypad_impl.py +926 -0
  603. numpy/lib/_arraypad_impl.pyi +88 -0
  604. numpy/lib/_arraysetops_impl.py +1158 -0
  605. numpy/lib/_arraysetops_impl.pyi +462 -0
  606. numpy/lib/_arrayterator_impl.py +224 -0
  607. numpy/lib/_arrayterator_impl.pyi +45 -0
  608. numpy/lib/_datasource.py +700 -0
  609. numpy/lib/_datasource.pyi +30 -0
  610. numpy/lib/_format_impl.py +1036 -0
  611. numpy/lib/_format_impl.pyi +56 -0
  612. numpy/lib/_function_base_impl.py +5760 -0
  613. numpy/lib/_function_base_impl.pyi +2324 -0
  614. numpy/lib/_histograms_impl.py +1085 -0
  615. numpy/lib/_histograms_impl.pyi +40 -0
  616. numpy/lib/_index_tricks_impl.py +1048 -0
  617. numpy/lib/_index_tricks_impl.pyi +267 -0
  618. numpy/lib/_iotools.py +900 -0
  619. numpy/lib/_iotools.pyi +116 -0
  620. numpy/lib/_nanfunctions_impl.py +2006 -0
  621. numpy/lib/_nanfunctions_impl.pyi +48 -0
  622. numpy/lib/_npyio_impl.py +2583 -0
  623. numpy/lib/_npyio_impl.pyi +299 -0
  624. numpy/lib/_polynomial_impl.py +1465 -0
  625. numpy/lib/_polynomial_impl.pyi +338 -0
  626. numpy/lib/_scimath_impl.py +642 -0
  627. numpy/lib/_scimath_impl.pyi +93 -0
  628. numpy/lib/_shape_base_impl.py +1289 -0
  629. numpy/lib/_shape_base_impl.pyi +236 -0
  630. numpy/lib/_stride_tricks_impl.py +582 -0
  631. numpy/lib/_stride_tricks_impl.pyi +73 -0
  632. numpy/lib/_twodim_base_impl.py +1201 -0
  633. numpy/lib/_twodim_base_impl.pyi +408 -0
  634. numpy/lib/_type_check_impl.py +710 -0
  635. numpy/lib/_type_check_impl.pyi +348 -0
  636. numpy/lib/_ufunclike_impl.py +199 -0
  637. numpy/lib/_ufunclike_impl.pyi +60 -0
  638. numpy/lib/_user_array_impl.py +310 -0
  639. numpy/lib/_user_array_impl.pyi +226 -0
  640. numpy/lib/_utils_impl.py +784 -0
  641. numpy/lib/_utils_impl.pyi +22 -0
  642. numpy/lib/_version.py +153 -0
  643. numpy/lib/_version.pyi +17 -0
  644. numpy/lib/array_utils.py +7 -0
  645. numpy/lib/array_utils.pyi +6 -0
  646. numpy/lib/format.py +24 -0
  647. numpy/lib/format.pyi +24 -0
  648. numpy/lib/introspect.py +94 -0
  649. numpy/lib/introspect.pyi +3 -0
  650. numpy/lib/mixins.py +180 -0
  651. numpy/lib/mixins.pyi +78 -0
  652. numpy/lib/npyio.py +1 -0
  653. numpy/lib/npyio.pyi +5 -0
  654. numpy/lib/recfunctions.py +1681 -0
  655. numpy/lib/recfunctions.pyi +444 -0
  656. numpy/lib/scimath.py +13 -0
  657. numpy/lib/scimath.pyi +12 -0
  658. numpy/lib/stride_tricks.py +1 -0
  659. numpy/lib/stride_tricks.pyi +4 -0
  660. numpy/lib/tests/__init__.py +0 -0
  661. numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
  662. numpy/lib/tests/data/py2-objarr.npy +0 -0
  663. numpy/lib/tests/data/py2-objarr.npz +0 -0
  664. numpy/lib/tests/data/py3-objarr.npy +0 -0
  665. numpy/lib/tests/data/py3-objarr.npz +0 -0
  666. numpy/lib/tests/data/python3.npy +0 -0
  667. numpy/lib/tests/data/win64python2.npy +0 -0
  668. numpy/lib/tests/test__datasource.py +328 -0
  669. numpy/lib/tests/test__iotools.py +358 -0
  670. numpy/lib/tests/test__version.py +64 -0
  671. numpy/lib/tests/test_array_utils.py +32 -0
  672. numpy/lib/tests/test_arraypad.py +1427 -0
  673. numpy/lib/tests/test_arraysetops.py +1302 -0
  674. numpy/lib/tests/test_arrayterator.py +45 -0
  675. numpy/lib/tests/test_format.py +1054 -0
  676. numpy/lib/tests/test_function_base.py +4750 -0
  677. numpy/lib/tests/test_histograms.py +855 -0
  678. numpy/lib/tests/test_index_tricks.py +693 -0
  679. numpy/lib/tests/test_io.py +2857 -0
  680. numpy/lib/tests/test_loadtxt.py +1099 -0
  681. numpy/lib/tests/test_mixins.py +215 -0
  682. numpy/lib/tests/test_nanfunctions.py +1438 -0
  683. numpy/lib/tests/test_packbits.py +376 -0
  684. numpy/lib/tests/test_polynomial.py +325 -0
  685. numpy/lib/tests/test_recfunctions.py +1042 -0
  686. numpy/lib/tests/test_regression.py +231 -0
  687. numpy/lib/tests/test_shape_base.py +813 -0
  688. numpy/lib/tests/test_stride_tricks.py +655 -0
  689. numpy/lib/tests/test_twodim_base.py +559 -0
  690. numpy/lib/tests/test_type_check.py +473 -0
  691. numpy/lib/tests/test_ufunclike.py +97 -0
  692. numpy/lib/tests/test_utils.py +80 -0
  693. numpy/lib/user_array.py +1 -0
  694. numpy/lib/user_array.pyi +1 -0
  695. numpy/linalg/__init__.py +95 -0
  696. numpy/linalg/__init__.pyi +71 -0
  697. numpy/linalg/_linalg.py +3657 -0
  698. numpy/linalg/_linalg.pyi +548 -0
  699. numpy/linalg/_umath_linalg.pyi +60 -0
  700. numpy/linalg/_umath_linalg.pypy311-pp73-darwin.so +0 -0
  701. numpy/linalg/lapack_lite.pyi +143 -0
  702. numpy/linalg/lapack_lite.pypy311-pp73-darwin.so +0 -0
  703. numpy/linalg/tests/__init__.py +0 -0
  704. numpy/linalg/tests/test_deprecations.py +21 -0
  705. numpy/linalg/tests/test_linalg.py +2442 -0
  706. numpy/linalg/tests/test_regression.py +182 -0
  707. numpy/ma/API_CHANGES.txt +135 -0
  708. numpy/ma/LICENSE +24 -0
  709. numpy/ma/README.rst +236 -0
  710. numpy/ma/__init__.py +53 -0
  711. numpy/ma/__init__.pyi +458 -0
  712. numpy/ma/core.py +8929 -0
  713. numpy/ma/core.pyi +3720 -0
  714. numpy/ma/extras.py +2266 -0
  715. numpy/ma/extras.pyi +297 -0
  716. numpy/ma/mrecords.py +762 -0
  717. numpy/ma/mrecords.pyi +96 -0
  718. numpy/ma/tests/__init__.py +0 -0
  719. numpy/ma/tests/test_arrayobject.py +40 -0
  720. numpy/ma/tests/test_core.py +6008 -0
  721. numpy/ma/tests/test_deprecations.py +65 -0
  722. numpy/ma/tests/test_extras.py +1945 -0
  723. numpy/ma/tests/test_mrecords.py +495 -0
  724. numpy/ma/tests/test_old_ma.py +939 -0
  725. numpy/ma/tests/test_regression.py +83 -0
  726. numpy/ma/tests/test_subclassing.py +469 -0
  727. numpy/ma/testutils.py +294 -0
  728. numpy/ma/testutils.pyi +69 -0
  729. numpy/matlib.py +380 -0
  730. numpy/matlib.pyi +580 -0
  731. numpy/matrixlib/__init__.py +12 -0
  732. numpy/matrixlib/__init__.pyi +3 -0
  733. numpy/matrixlib/defmatrix.py +1119 -0
  734. numpy/matrixlib/defmatrix.pyi +218 -0
  735. numpy/matrixlib/tests/__init__.py +0 -0
  736. numpy/matrixlib/tests/test_defmatrix.py +455 -0
  737. numpy/matrixlib/tests/test_interaction.py +360 -0
  738. numpy/matrixlib/tests/test_masked_matrix.py +240 -0
  739. numpy/matrixlib/tests/test_matrix_linalg.py +110 -0
  740. numpy/matrixlib/tests/test_multiarray.py +17 -0
  741. numpy/matrixlib/tests/test_numeric.py +18 -0
  742. numpy/matrixlib/tests/test_regression.py +31 -0
  743. numpy/polynomial/__init__.py +187 -0
  744. numpy/polynomial/__init__.pyi +31 -0
  745. numpy/polynomial/_polybase.py +1191 -0
  746. numpy/polynomial/_polybase.pyi +262 -0
  747. numpy/polynomial/_polytypes.pyi +501 -0
  748. numpy/polynomial/chebyshev.py +2001 -0
  749. numpy/polynomial/chebyshev.pyi +180 -0
  750. numpy/polynomial/hermite.py +1738 -0
  751. numpy/polynomial/hermite.pyi +106 -0
  752. numpy/polynomial/hermite_e.py +1640 -0
  753. numpy/polynomial/hermite_e.pyi +106 -0
  754. numpy/polynomial/laguerre.py +1673 -0
  755. numpy/polynomial/laguerre.pyi +100 -0
  756. numpy/polynomial/legendre.py +1603 -0
  757. numpy/polynomial/legendre.pyi +100 -0
  758. numpy/polynomial/polynomial.py +1625 -0
  759. numpy/polynomial/polynomial.pyi +109 -0
  760. numpy/polynomial/polyutils.py +759 -0
  761. numpy/polynomial/polyutils.pyi +307 -0
  762. numpy/polynomial/tests/__init__.py +0 -0
  763. numpy/polynomial/tests/test_chebyshev.py +618 -0
  764. numpy/polynomial/tests/test_classes.py +613 -0
  765. numpy/polynomial/tests/test_hermite.py +553 -0
  766. numpy/polynomial/tests/test_hermite_e.py +554 -0
  767. numpy/polynomial/tests/test_laguerre.py +535 -0
  768. numpy/polynomial/tests/test_legendre.py +566 -0
  769. numpy/polynomial/tests/test_polynomial.py +691 -0
  770. numpy/polynomial/tests/test_polyutils.py +123 -0
  771. numpy/polynomial/tests/test_printing.py +557 -0
  772. numpy/polynomial/tests/test_symbol.py +217 -0
  773. numpy/py.typed +0 -0
  774. numpy/random/LICENSE.md +71 -0
  775. numpy/random/__init__.pxd +14 -0
  776. numpy/random/__init__.py +213 -0
  777. numpy/random/__init__.pyi +124 -0
  778. numpy/random/_bounded_integers.pxd +29 -0
  779. numpy/random/_bounded_integers.pyi +1 -0
  780. numpy/random/_bounded_integers.pypy311-pp73-darwin.so +0 -0
  781. numpy/random/_common.pxd +110 -0
  782. numpy/random/_common.pyi +16 -0
  783. numpy/random/_common.pypy311-pp73-darwin.so +0 -0
  784. numpy/random/_examples/cffi/extending.py +44 -0
  785. numpy/random/_examples/cffi/parse.py +53 -0
  786. numpy/random/_examples/cython/extending.pyx +77 -0
  787. numpy/random/_examples/cython/extending_distributions.pyx +117 -0
  788. numpy/random/_examples/cython/meson.build +53 -0
  789. numpy/random/_examples/numba/extending.py +86 -0
  790. numpy/random/_examples/numba/extending_distributions.py +67 -0
  791. numpy/random/_generator.pyi +862 -0
  792. numpy/random/_generator.pypy311-pp73-darwin.so +0 -0
  793. numpy/random/_mt19937.pyi +27 -0
  794. numpy/random/_mt19937.pypy311-pp73-darwin.so +0 -0
  795. numpy/random/_pcg64.pyi +41 -0
  796. numpy/random/_pcg64.pypy311-pp73-darwin.so +0 -0
  797. numpy/random/_philox.pyi +36 -0
  798. numpy/random/_philox.pypy311-pp73-darwin.so +0 -0
  799. numpy/random/_pickle.py +88 -0
  800. numpy/random/_pickle.pyi +43 -0
  801. numpy/random/_sfc64.pyi +25 -0
  802. numpy/random/_sfc64.pypy311-pp73-darwin.so +0 -0
  803. numpy/random/bit_generator.pxd +40 -0
  804. numpy/random/bit_generator.pyi +123 -0
  805. numpy/random/bit_generator.pypy311-pp73-darwin.so +0 -0
  806. numpy/random/c_distributions.pxd +119 -0
  807. numpy/random/lib/libnpyrandom.a +0 -0
  808. numpy/random/mtrand.pyi +759 -0
  809. numpy/random/mtrand.pypy311-pp73-darwin.so +0 -0
  810. numpy/random/tests/__init__.py +0 -0
  811. numpy/random/tests/data/__init__.py +0 -0
  812. numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
  813. numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
  814. numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
  815. numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
  816. numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
  817. numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
  818. numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
  819. numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
  820. numpy/random/tests/data/philox-testset-1.csv +1001 -0
  821. numpy/random/tests/data/philox-testset-2.csv +1001 -0
  822. numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
  823. numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
  824. numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
  825. numpy/random/tests/test_direct.py +595 -0
  826. numpy/random/tests/test_extending.py +131 -0
  827. numpy/random/tests/test_generator_mt19937.py +2825 -0
  828. numpy/random/tests/test_generator_mt19937_regressions.py +221 -0
  829. numpy/random/tests/test_random.py +1724 -0
  830. numpy/random/tests/test_randomstate.py +2099 -0
  831. numpy/random/tests/test_randomstate_regression.py +213 -0
  832. numpy/random/tests/test_regression.py +175 -0
  833. numpy/random/tests/test_seed_sequence.py +79 -0
  834. numpy/random/tests/test_smoke.py +882 -0
  835. numpy/rec/__init__.py +2 -0
  836. numpy/rec/__init__.pyi +23 -0
  837. numpy/strings/__init__.py +2 -0
  838. numpy/strings/__init__.pyi +97 -0
  839. numpy/testing/__init__.py +22 -0
  840. numpy/testing/__init__.pyi +107 -0
  841. numpy/testing/_private/__init__.py +0 -0
  842. numpy/testing/_private/__init__.pyi +0 -0
  843. numpy/testing/_private/extbuild.py +250 -0
  844. numpy/testing/_private/extbuild.pyi +25 -0
  845. numpy/testing/_private/utils.py +2830 -0
  846. numpy/testing/_private/utils.pyi +505 -0
  847. numpy/testing/overrides.py +84 -0
  848. numpy/testing/overrides.pyi +10 -0
  849. numpy/testing/print_coercion_tables.py +207 -0
  850. numpy/testing/print_coercion_tables.pyi +26 -0
  851. numpy/testing/tests/__init__.py +0 -0
  852. numpy/testing/tests/test_utils.py +2123 -0
  853. numpy/tests/__init__.py +0 -0
  854. numpy/tests/test__all__.py +10 -0
  855. numpy/tests/test_configtool.py +51 -0
  856. numpy/tests/test_ctypeslib.py +383 -0
  857. numpy/tests/test_lazyloading.py +42 -0
  858. numpy/tests/test_matlib.py +59 -0
  859. numpy/tests/test_numpy_config.py +47 -0
  860. numpy/tests/test_numpy_version.py +54 -0
  861. numpy/tests/test_public_api.py +807 -0
  862. numpy/tests/test_reloading.py +76 -0
  863. numpy/tests/test_scripts.py +48 -0
  864. numpy/tests/test_warnings.py +79 -0
  865. numpy/typing/__init__.py +233 -0
  866. numpy/typing/__init__.pyi +3 -0
  867. numpy/typing/mypy_plugin.py +200 -0
  868. numpy/typing/tests/__init__.py +0 -0
  869. numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
  870. numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
  871. numpy/typing/tests/data/fail/array_like.pyi +15 -0
  872. numpy/typing/tests/data/fail/array_pad.pyi +6 -0
  873. numpy/typing/tests/data/fail/arrayprint.pyi +15 -0
  874. numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
  875. numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
  876. numpy/typing/tests/data/fail/char.pyi +63 -0
  877. numpy/typing/tests/data/fail/chararray.pyi +61 -0
  878. numpy/typing/tests/data/fail/comparisons.pyi +27 -0
  879. numpy/typing/tests/data/fail/constants.pyi +3 -0
  880. numpy/typing/tests/data/fail/datasource.pyi +16 -0
  881. numpy/typing/tests/data/fail/dtype.pyi +17 -0
  882. numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
  883. numpy/typing/tests/data/fail/flatiter.pyi +38 -0
  884. numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
  885. numpy/typing/tests/data/fail/histograms.pyi +12 -0
  886. numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
  887. numpy/typing/tests/data/fail/lib_function_base.pyi +60 -0
  888. numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
  889. numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
  890. numpy/typing/tests/data/fail/lib_version.pyi +6 -0
  891. numpy/typing/tests/data/fail/linalg.pyi +52 -0
  892. numpy/typing/tests/data/fail/ma.pyi +155 -0
  893. numpy/typing/tests/data/fail/memmap.pyi +5 -0
  894. numpy/typing/tests/data/fail/modules.pyi +17 -0
  895. numpy/typing/tests/data/fail/multiarray.pyi +52 -0
  896. numpy/typing/tests/data/fail/ndarray.pyi +11 -0
  897. numpy/typing/tests/data/fail/ndarray_misc.pyi +49 -0
  898. numpy/typing/tests/data/fail/nditer.pyi +8 -0
  899. numpy/typing/tests/data/fail/nested_sequence.pyi +17 -0
  900. numpy/typing/tests/data/fail/npyio.pyi +24 -0
  901. numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
  902. numpy/typing/tests/data/fail/random.pyi +62 -0
  903. numpy/typing/tests/data/fail/rec.pyi +17 -0
  904. numpy/typing/tests/data/fail/scalars.pyi +86 -0
  905. numpy/typing/tests/data/fail/shape.pyi +7 -0
  906. numpy/typing/tests/data/fail/shape_base.pyi +8 -0
  907. numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
  908. numpy/typing/tests/data/fail/strings.pyi +52 -0
  909. numpy/typing/tests/data/fail/testing.pyi +28 -0
  910. numpy/typing/tests/data/fail/twodim_base.pyi +39 -0
  911. numpy/typing/tests/data/fail/type_check.pyi +12 -0
  912. numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
  913. numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
  914. numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
  915. numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
  916. numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
  917. numpy/typing/tests/data/mypy.ini +8 -0
  918. numpy/typing/tests/data/pass/arithmetic.py +614 -0
  919. numpy/typing/tests/data/pass/array_constructors.py +138 -0
  920. numpy/typing/tests/data/pass/array_like.py +43 -0
  921. numpy/typing/tests/data/pass/arrayprint.py +37 -0
  922. numpy/typing/tests/data/pass/arrayterator.py +28 -0
  923. numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
  924. numpy/typing/tests/data/pass/comparisons.py +316 -0
  925. numpy/typing/tests/data/pass/dtype.py +57 -0
  926. numpy/typing/tests/data/pass/einsumfunc.py +36 -0
  927. numpy/typing/tests/data/pass/flatiter.py +26 -0
  928. numpy/typing/tests/data/pass/fromnumeric.py +272 -0
  929. numpy/typing/tests/data/pass/index_tricks.py +62 -0
  930. numpy/typing/tests/data/pass/lib_user_array.py +22 -0
  931. numpy/typing/tests/data/pass/lib_utils.py +19 -0
  932. numpy/typing/tests/data/pass/lib_version.py +18 -0
  933. numpy/typing/tests/data/pass/literal.py +52 -0
  934. numpy/typing/tests/data/pass/ma.py +199 -0
  935. numpy/typing/tests/data/pass/mod.py +149 -0
  936. numpy/typing/tests/data/pass/modules.py +45 -0
  937. numpy/typing/tests/data/pass/multiarray.py +77 -0
  938. numpy/typing/tests/data/pass/ndarray_conversion.py +81 -0
  939. numpy/typing/tests/data/pass/ndarray_misc.py +199 -0
  940. numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
  941. numpy/typing/tests/data/pass/nditer.py +4 -0
  942. numpy/typing/tests/data/pass/numeric.py +90 -0
  943. numpy/typing/tests/data/pass/numerictypes.py +17 -0
  944. numpy/typing/tests/data/pass/random.py +1498 -0
  945. numpy/typing/tests/data/pass/recfunctions.py +164 -0
  946. numpy/typing/tests/data/pass/scalars.py +249 -0
  947. numpy/typing/tests/data/pass/shape.py +19 -0
  948. numpy/typing/tests/data/pass/simple.py +170 -0
  949. numpy/typing/tests/data/pass/ufunc_config.py +64 -0
  950. numpy/typing/tests/data/pass/ufunclike.py +52 -0
  951. numpy/typing/tests/data/pass/ufuncs.py +16 -0
  952. numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
  953. numpy/typing/tests/data/reveal/arithmetic.pyi +719 -0
  954. numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
  955. numpy/typing/tests/data/reveal/array_constructors.pyi +277 -0
  956. numpy/typing/tests/data/reveal/arraypad.pyi +27 -0
  957. numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
  958. numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
  959. numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
  960. numpy/typing/tests/data/reveal/bitwise_ops.pyi +166 -0
  961. numpy/typing/tests/data/reveal/char.pyi +225 -0
  962. numpy/typing/tests/data/reveal/chararray.pyi +138 -0
  963. numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
  964. numpy/typing/tests/data/reveal/constants.pyi +14 -0
  965. numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
  966. numpy/typing/tests/data/reveal/datasource.pyi +23 -0
  967. numpy/typing/tests/data/reveal/dtype.pyi +132 -0
  968. numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
  969. numpy/typing/tests/data/reveal/emath.pyi +54 -0
  970. numpy/typing/tests/data/reveal/fft.pyi +37 -0
  971. numpy/typing/tests/data/reveal/flatiter.pyi +86 -0
  972. numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
  973. numpy/typing/tests/data/reveal/getlimits.pyi +53 -0
  974. numpy/typing/tests/data/reveal/histograms.pyi +25 -0
  975. numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
  976. numpy/typing/tests/data/reveal/lib_function_base.pyi +409 -0
  977. numpy/typing/tests/data/reveal/lib_polynomial.pyi +147 -0
  978. numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
  979. numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
  980. numpy/typing/tests/data/reveal/linalg.pyi +154 -0
  981. numpy/typing/tests/data/reveal/ma.pyi +1098 -0
  982. numpy/typing/tests/data/reveal/matrix.pyi +73 -0
  983. numpy/typing/tests/data/reveal/memmap.pyi +19 -0
  984. numpy/typing/tests/data/reveal/mod.pyi +178 -0
  985. numpy/typing/tests/data/reveal/modules.pyi +51 -0
  986. numpy/typing/tests/data/reveal/multiarray.pyi +197 -0
  987. numpy/typing/tests/data/reveal/nbit_base_example.pyi +20 -0
  988. numpy/typing/tests/data/reveal/ndarray_assignability.pyi +82 -0
  989. numpy/typing/tests/data/reveal/ndarray_conversion.pyi +83 -0
  990. numpy/typing/tests/data/reveal/ndarray_misc.pyi +246 -0
  991. numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +47 -0
  992. numpy/typing/tests/data/reveal/nditer.pyi +49 -0
  993. numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
  994. numpy/typing/tests/data/reveal/npyio.pyi +83 -0
  995. numpy/typing/tests/data/reveal/numeric.pyi +170 -0
  996. numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
  997. numpy/typing/tests/data/reveal/polynomial_polybase.pyi +217 -0
  998. numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +218 -0
  999. numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
  1000. numpy/typing/tests/data/reveal/random.pyi +1546 -0
  1001. numpy/typing/tests/data/reveal/rec.pyi +171 -0
  1002. numpy/typing/tests/data/reveal/scalars.pyi +191 -0
  1003. numpy/typing/tests/data/reveal/shape.pyi +13 -0
  1004. numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
  1005. numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
  1006. numpy/typing/tests/data/reveal/strings.pyi +196 -0
  1007. numpy/typing/tests/data/reveal/testing.pyi +198 -0
  1008. numpy/typing/tests/data/reveal/twodim_base.pyi +225 -0
  1009. numpy/typing/tests/data/reveal/type_check.pyi +67 -0
  1010. numpy/typing/tests/data/reveal/ufunc_config.pyi +29 -0
  1011. numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
  1012. numpy/typing/tests/data/reveal/ufuncs.pyi +142 -0
  1013. numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
  1014. numpy/typing/tests/test_isfile.py +38 -0
  1015. numpy/typing/tests/test_runtime.py +110 -0
  1016. numpy/typing/tests/test_typing.py +205 -0
  1017. numpy/version.py +11 -0
  1018. numpy/version.pyi +9 -0
  1019. numpy-2.4.1.dist-info/METADATA +139 -0
  1020. numpy-2.4.1.dist-info/RECORD +1039 -0
  1021. numpy-2.4.1.dist-info/WHEEL +6 -0
  1022. numpy-2.4.1.dist-info/entry_points.txt +13 -0
  1023. numpy-2.4.1.dist-info/licenses/LICENSE.txt +935 -0
  1024. numpy-2.4.1.dist-info/licenses/numpy/_core/include/numpy/libdivide/LICENSE.txt +21 -0
  1025. numpy-2.4.1.dist-info/licenses/numpy/_core/src/common/pythoncapi-compat/COPYING +14 -0
  1026. numpy-2.4.1.dist-info/licenses/numpy/_core/src/highway/LICENSE +371 -0
  1027. numpy-2.4.1.dist-info/licenses/numpy/_core/src/multiarray/dragon4_LICENSE.txt +27 -0
  1028. numpy-2.4.1.dist-info/licenses/numpy/_core/src/npysort/x86-simd-sort/LICENSE.md +28 -0
  1029. numpy-2.4.1.dist-info/licenses/numpy/_core/src/umath/svml/LICENSE +30 -0
  1030. numpy-2.4.1.dist-info/licenses/numpy/fft/pocketfft/LICENSE.md +25 -0
  1031. numpy-2.4.1.dist-info/licenses/numpy/linalg/lapack_lite/LICENSE.txt +48 -0
  1032. numpy-2.4.1.dist-info/licenses/numpy/ma/LICENSE +24 -0
  1033. numpy-2.4.1.dist-info/licenses/numpy/random/LICENSE.md +71 -0
  1034. numpy-2.4.1.dist-info/licenses/numpy/random/src/distributions/LICENSE.md +61 -0
  1035. numpy-2.4.1.dist-info/licenses/numpy/random/src/mt19937/LICENSE.md +61 -0
  1036. numpy-2.4.1.dist-info/licenses/numpy/random/src/pcg64/LICENSE.md +22 -0
  1037. numpy-2.4.1.dist-info/licenses/numpy/random/src/philox/LICENSE.md +31 -0
  1038. numpy-2.4.1.dist-info/licenses/numpy/random/src/sfc64/LICENSE.md +27 -0
  1039. numpy-2.4.1.dist-info/licenses/numpy/random/src/splitmix64/LICENSE.md +9 -0
@@ -0,0 +1,996 @@
1
+ __all__ = ['atleast_1d', 'atleast_2d', 'atleast_3d', 'block', 'hstack',
2
+ 'stack', 'unstack', 'vstack']
3
+
4
+ import functools
5
+ import itertools
6
+ import operator
7
+
8
+ from . import fromnumeric as _from_nx, numeric as _nx, overrides
9
+ from .multiarray import array, asanyarray, normalize_axis_index
10
+
11
+ array_function_dispatch = functools.partial(
12
+ overrides.array_function_dispatch, module='numpy')
13
+
14
+
15
+ def _atleast_1d_dispatcher(*arys):
16
+ return arys
17
+
18
+
19
+ @array_function_dispatch(_atleast_1d_dispatcher)
20
+ def atleast_1d(*arys):
21
+ """
22
+ Convert inputs to arrays with at least one dimension.
23
+
24
+ Scalar inputs are converted to 1-dimensional arrays, whilst
25
+ higher-dimensional inputs are preserved.
26
+
27
+ Parameters
28
+ ----------
29
+ arys1, arys2, ... : array_like
30
+ One or more input arrays.
31
+
32
+ Returns
33
+ -------
34
+ ret : ndarray
35
+ An array, or tuple of arrays, each with ``a.ndim >= 1``.
36
+ Copies are made only if necessary.
37
+
38
+ See Also
39
+ --------
40
+ atleast_2d, atleast_3d
41
+
42
+ Examples
43
+ --------
44
+ >>> import numpy as np
45
+ >>> np.atleast_1d(1.0)
46
+ array([1.])
47
+
48
+ >>> x = np.arange(9.0).reshape(3,3)
49
+ >>> np.atleast_1d(x)
50
+ array([[0., 1., 2.],
51
+ [3., 4., 5.],
52
+ [6., 7., 8.]])
53
+ >>> np.atleast_1d(x) is x
54
+ True
55
+
56
+ >>> np.atleast_1d(1, [3, 4])
57
+ (array([1]), array([3, 4]))
58
+
59
+ """
60
+ if len(arys) == 1:
61
+ result = asanyarray(arys[0])
62
+ if result.ndim == 0:
63
+ result = result.reshape(1)
64
+ return result
65
+ res = []
66
+ for ary in arys:
67
+ result = asanyarray(ary)
68
+ if result.ndim == 0:
69
+ result = result.reshape(1)
70
+ res.append(result)
71
+ return tuple(res)
72
+
73
+
74
+ def _atleast_2d_dispatcher(*arys):
75
+ return arys
76
+
77
+
78
+ @array_function_dispatch(_atleast_2d_dispatcher)
79
+ def atleast_2d(*arys):
80
+ """
81
+ View inputs as arrays with at least two dimensions.
82
+
83
+ Parameters
84
+ ----------
85
+ arys1, arys2, ... : array_like
86
+ One or more array-like sequences. Non-array inputs are converted
87
+ to arrays. Arrays that already have two or more dimensions are
88
+ preserved.
89
+
90
+ Returns
91
+ -------
92
+ res, res2, ... : ndarray
93
+ An array, or tuple of arrays, each with ``a.ndim >= 2``.
94
+ Copies are avoided where possible, and views with two or more
95
+ dimensions are returned.
96
+
97
+ See Also
98
+ --------
99
+ atleast_1d, atleast_3d
100
+
101
+ Examples
102
+ --------
103
+ >>> import numpy as np
104
+ >>> np.atleast_2d(3.0)
105
+ array([[3.]])
106
+
107
+ >>> x = np.arange(3.0)
108
+ >>> np.atleast_2d(x)
109
+ array([[0., 1., 2.]])
110
+ >>> np.atleast_2d(x).base is x
111
+ True
112
+
113
+ >>> np.atleast_2d(1, [1, 2], [[1, 2]])
114
+ (array([[1]]), array([[1, 2]]), array([[1, 2]]))
115
+
116
+ """
117
+ res = []
118
+ for ary in arys:
119
+ ary = asanyarray(ary)
120
+ if ary.ndim == 0:
121
+ result = ary.reshape(1, 1)
122
+ elif ary.ndim == 1:
123
+ result = ary[_nx.newaxis, :]
124
+ else:
125
+ result = ary
126
+ res.append(result)
127
+ if len(res) == 1:
128
+ return res[0]
129
+ else:
130
+ return tuple(res)
131
+
132
+
133
+ def _atleast_3d_dispatcher(*arys):
134
+ return arys
135
+
136
+
137
+ @array_function_dispatch(_atleast_3d_dispatcher)
138
+ def atleast_3d(*arys):
139
+ """
140
+ View inputs as arrays with at least three dimensions.
141
+
142
+ Parameters
143
+ ----------
144
+ arys1, arys2, ... : array_like
145
+ One or more array-like sequences. Non-array inputs are converted to
146
+ arrays. Arrays that already have three or more dimensions are
147
+ preserved.
148
+
149
+ Returns
150
+ -------
151
+ res1, res2, ... : ndarray
152
+ An array, or tuple of arrays, each with ``a.ndim >= 3``. Copies are
153
+ avoided where possible, and views with three or more dimensions are
154
+ returned. For example, a 1-D array of shape ``(N,)`` becomes a view
155
+ of shape ``(1, N, 1)``, and a 2-D array of shape ``(M, N)`` becomes a
156
+ view of shape ``(M, N, 1)``.
157
+
158
+ See Also
159
+ --------
160
+ atleast_1d, atleast_2d
161
+
162
+ Examples
163
+ --------
164
+ >>> import numpy as np
165
+ >>> np.atleast_3d(3.0)
166
+ array([[[3.]]])
167
+
168
+ >>> x = np.arange(3.0)
169
+ >>> np.atleast_3d(x).shape
170
+ (1, 3, 1)
171
+
172
+ >>> x = np.arange(12.0).reshape(4,3)
173
+ >>> np.atleast_3d(x).shape
174
+ (4, 3, 1)
175
+ >>> np.atleast_3d(x).base is x.base # x is a reshape, so not base itself
176
+ True
177
+
178
+ >>> for arr in np.atleast_3d([1, 2], [[1, 2]], [[[1, 2]]]):
179
+ ... print(arr, arr.shape) # doctest: +SKIP
180
+ ...
181
+ [[[1]
182
+ [2]]] (1, 2, 1)
183
+ [[[1]
184
+ [2]]] (1, 2, 1)
185
+ [[[1 2]]] (1, 1, 2)
186
+
187
+ """
188
+ res = []
189
+ for ary in arys:
190
+ ary = asanyarray(ary)
191
+ if ary.ndim == 0:
192
+ result = ary.reshape(1, 1, 1)
193
+ elif ary.ndim == 1:
194
+ result = ary[_nx.newaxis, :, _nx.newaxis]
195
+ elif ary.ndim == 2:
196
+ result = ary[:, :, _nx.newaxis]
197
+ else:
198
+ result = ary
199
+ res.append(result)
200
+ if len(res) == 1:
201
+ return res[0]
202
+ else:
203
+ return tuple(res)
204
+
205
+
206
+ def _arrays_for_stack_dispatcher(arrays):
207
+ if not hasattr(arrays, "__getitem__"):
208
+ raise TypeError('arrays to stack must be passed as a "sequence" type '
209
+ 'such as list or tuple.')
210
+
211
+ return tuple(arrays)
212
+
213
+
214
+ def _vhstack_dispatcher(tup, *, dtype=None, casting=None):
215
+ return _arrays_for_stack_dispatcher(tup)
216
+
217
+
218
+ @array_function_dispatch(_vhstack_dispatcher)
219
+ def vstack(tup, *, dtype=None, casting="same_kind"):
220
+ """
221
+ Stack arrays in sequence vertically (row wise).
222
+
223
+ This is equivalent to concatenation along the first axis after 1-D arrays
224
+ of shape `(N,)` have been reshaped to `(1,N)`. Rebuilds arrays divided by
225
+ `vsplit`.
226
+
227
+ This function makes most sense for arrays with up to 3 dimensions. For
228
+ instance, for pixel-data with a height (first axis), width (second axis),
229
+ and r/g/b channels (third axis). The functions `concatenate`, `stack` and
230
+ `block` provide more general stacking and concatenation operations.
231
+
232
+ Parameters
233
+ ----------
234
+ tup : sequence of ndarrays
235
+ The arrays must have the same shape along all but the first axis.
236
+ 1-D arrays must have the same length. In the case of a single
237
+ array_like input, it will be treated as a sequence of arrays; i.e.,
238
+ each element along the zeroth axis is treated as a separate array.
239
+
240
+ dtype : str or dtype
241
+ If provided, the destination array will have this dtype. Cannot be
242
+ provided together with `out`.
243
+
244
+ .. versionadded:: 1.24
245
+
246
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
247
+ Controls what kind of data casting may occur. Defaults to 'same_kind'.
248
+
249
+ .. versionadded:: 1.24
250
+
251
+ Returns
252
+ -------
253
+ stacked : ndarray
254
+ The array formed by stacking the given arrays, will be at least 2-D.
255
+
256
+ See Also
257
+ --------
258
+ concatenate : Join a sequence of arrays along an existing axis.
259
+ stack : Join a sequence of arrays along a new axis.
260
+ block : Assemble an nd-array from nested lists of blocks.
261
+ hstack : Stack arrays in sequence horizontally (column wise).
262
+ dstack : Stack arrays in sequence depth wise (along third axis).
263
+ column_stack : Stack 1-D arrays as columns into a 2-D array.
264
+ vsplit : Split an array into multiple sub-arrays vertically (row-wise).
265
+ unstack : Split an array into a tuple of sub-arrays along an axis.
266
+
267
+ Examples
268
+ --------
269
+ >>> import numpy as np
270
+ >>> a = np.array([1, 2, 3])
271
+ >>> b = np.array([4, 5, 6])
272
+ >>> np.vstack((a,b))
273
+ array([[1, 2, 3],
274
+ [4, 5, 6]])
275
+
276
+ >>> a = np.array([[1], [2], [3]])
277
+ >>> b = np.array([[4], [5], [6]])
278
+ >>> np.vstack((a,b))
279
+ array([[1],
280
+ [2],
281
+ [3],
282
+ [4],
283
+ [5],
284
+ [6]])
285
+
286
+ """
287
+ arrs = atleast_2d(*tup)
288
+ if not isinstance(arrs, tuple):
289
+ arrs = (arrs,)
290
+ return _nx.concatenate(arrs, 0, dtype=dtype, casting=casting)
291
+
292
+
293
+ @array_function_dispatch(_vhstack_dispatcher)
294
+ def hstack(tup, *, dtype=None, casting="same_kind"):
295
+ """
296
+ Stack arrays in sequence horizontally (column wise).
297
+
298
+ This is equivalent to concatenation along the second axis, except for 1-D
299
+ arrays where it concatenates along the first axis. Rebuilds arrays divided
300
+ by `hsplit`.
301
+
302
+ This function makes most sense for arrays with up to 3 dimensions. For
303
+ instance, for pixel-data with a height (first axis), width (second axis),
304
+ and r/g/b channels (third axis). The functions `concatenate`, `stack` and
305
+ `block` provide more general stacking and concatenation operations.
306
+
307
+ Parameters
308
+ ----------
309
+ tup : sequence of ndarrays
310
+ The arrays must have the same shape along all but the second axis,
311
+ except 1-D arrays which can be any length. In the case of a single
312
+ array_like input, it will be treated as a sequence of arrays; i.e.,
313
+ each element along the zeroth axis is treated as a separate array.
314
+
315
+ dtype : str or dtype
316
+ If provided, the destination array will have this dtype. Cannot be
317
+ provided together with `out`.
318
+
319
+ .. versionadded:: 1.24
320
+
321
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
322
+ Controls what kind of data casting may occur. Defaults to 'same_kind'.
323
+
324
+ .. versionadded:: 1.24
325
+
326
+ Returns
327
+ -------
328
+ stacked : ndarray
329
+ The array formed by stacking the given arrays.
330
+
331
+ See Also
332
+ --------
333
+ concatenate : Join a sequence of arrays along an existing axis.
334
+ stack : Join a sequence of arrays along a new axis.
335
+ block : Assemble an nd-array from nested lists of blocks.
336
+ vstack : Stack arrays in sequence vertically (row wise).
337
+ dstack : Stack arrays in sequence depth wise (along third axis).
338
+ column_stack : Stack 1-D arrays as columns into a 2-D array.
339
+ hsplit : Split an array into multiple sub-arrays
340
+ horizontally (column-wise).
341
+ unstack : Split an array into a tuple of sub-arrays along an axis.
342
+
343
+ Examples
344
+ --------
345
+ >>> import numpy as np
346
+ >>> a = np.array((1,2,3))
347
+ >>> b = np.array((4,5,6))
348
+ >>> np.hstack((a,b))
349
+ array([1, 2, 3, 4, 5, 6])
350
+ >>> a = np.array([[1],[2],[3]])
351
+ >>> b = np.array([[4],[5],[6]])
352
+ >>> np.hstack((a,b))
353
+ array([[1, 4],
354
+ [2, 5],
355
+ [3, 6]])
356
+
357
+ """
358
+ arrs = atleast_1d(*tup)
359
+ if not isinstance(arrs, tuple):
360
+ arrs = (arrs,)
361
+ # As a special case, dimension 0 of 1-dimensional arrays is "horizontal"
362
+ if arrs and arrs[0].ndim == 1:
363
+ return _nx.concatenate(arrs, 0, dtype=dtype, casting=casting)
364
+ else:
365
+ return _nx.concatenate(arrs, 1, dtype=dtype, casting=casting)
366
+
367
+
368
+ def _stack_dispatcher(arrays, axis=None, out=None, *,
369
+ dtype=None, casting=None):
370
+ arrays = _arrays_for_stack_dispatcher(arrays)
371
+ if out is not None:
372
+ # optimize for the typical case where only arrays is provided
373
+ arrays = list(arrays)
374
+ arrays.append(out)
375
+ return arrays
376
+
377
+
378
+ @array_function_dispatch(_stack_dispatcher)
379
+ def stack(arrays, axis=0, out=None, *, dtype=None, casting="same_kind"):
380
+ """
381
+ Join a sequence of arrays along a new axis.
382
+
383
+ The ``axis`` parameter specifies the index of the new axis in the
384
+ dimensions of the result. For example, if ``axis=0`` it will be the first
385
+ dimension and if ``axis=-1`` it will be the last dimension.
386
+
387
+ Parameters
388
+ ----------
389
+ arrays : sequence of ndarrays
390
+ Each array must have the same shape. In the case of a single ndarray
391
+ array_like input, it will be treated as a sequence of arrays; i.e.,
392
+ each element along the zeroth axis is treated as a separate array.
393
+
394
+ axis : int, optional
395
+ The axis in the result array along which the input arrays are stacked.
396
+
397
+ out : ndarray, optional
398
+ If provided, the destination to place the result. The shape must be
399
+ correct, matching that of what stack would have returned if no
400
+ out argument were specified.
401
+
402
+ dtype : str or dtype
403
+ If provided, the destination array will have this dtype. Cannot be
404
+ provided together with `out`.
405
+
406
+ .. versionadded:: 1.24
407
+
408
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
409
+ Controls what kind of data casting may occur. Defaults to 'same_kind'.
410
+
411
+ .. versionadded:: 1.24
412
+
413
+
414
+ Returns
415
+ -------
416
+ stacked : ndarray
417
+ The stacked array has one more dimension than the input arrays.
418
+
419
+ See Also
420
+ --------
421
+ concatenate : Join a sequence of arrays along an existing axis.
422
+ block : Assemble an nd-array from nested lists of blocks.
423
+ split : Split array into a list of multiple sub-arrays of equal size.
424
+ unstack : Split an array into a tuple of sub-arrays along an axis.
425
+
426
+ Examples
427
+ --------
428
+ >>> import numpy as np
429
+ >>> rng = np.random.default_rng()
430
+ >>> arrays = [rng.normal(size=(3,4)) for _ in range(10)]
431
+ >>> np.stack(arrays, axis=0).shape
432
+ (10, 3, 4)
433
+
434
+ >>> np.stack(arrays, axis=1).shape
435
+ (3, 10, 4)
436
+
437
+ >>> np.stack(arrays, axis=2).shape
438
+ (3, 4, 10)
439
+
440
+ >>> a = np.array([1, 2, 3])
441
+ >>> b = np.array([4, 5, 6])
442
+ >>> np.stack((a, b))
443
+ array([[1, 2, 3],
444
+ [4, 5, 6]])
445
+
446
+ >>> np.stack((a, b), axis=-1)
447
+ array([[1, 4],
448
+ [2, 5],
449
+ [3, 6]])
450
+
451
+ """
452
+ arrays = [asanyarray(arr) for arr in arrays]
453
+ if not arrays:
454
+ raise ValueError('need at least one array to stack')
455
+
456
+ shapes = {arr.shape for arr in arrays}
457
+ if len(shapes) != 1:
458
+ raise ValueError('all input arrays must have the same shape')
459
+
460
+ result_ndim = arrays[0].ndim + 1
461
+ axis = normalize_axis_index(axis, result_ndim)
462
+
463
+ sl = (slice(None),) * axis + (_nx.newaxis,)
464
+ expanded_arrays = [arr[sl] for arr in arrays]
465
+ return _nx.concatenate(expanded_arrays, axis=axis, out=out,
466
+ dtype=dtype, casting=casting)
467
+
468
+ def _unstack_dispatcher(x, /, *, axis=None):
469
+ return (x,)
470
+
471
+ @array_function_dispatch(_unstack_dispatcher)
472
+ def unstack(x, /, *, axis=0):
473
+ """
474
+ Split an array into a sequence of arrays along the given axis.
475
+
476
+ The ``axis`` parameter specifies the dimension along which the array will
477
+ be split. For example, if ``axis=0`` (the default) it will be the first
478
+ dimension and if ``axis=-1`` it will be the last dimension.
479
+
480
+ The result is a tuple of arrays split along ``axis``.
481
+
482
+ .. versionadded:: 2.1.0
483
+
484
+ Parameters
485
+ ----------
486
+ x : ndarray
487
+ The array to be unstacked.
488
+ axis : int, optional
489
+ Axis along which the array will be split. Default: ``0``.
490
+
491
+ Returns
492
+ -------
493
+ unstacked : tuple of ndarrays
494
+ The unstacked arrays.
495
+
496
+ See Also
497
+ --------
498
+ stack : Join a sequence of arrays along a new axis.
499
+ concatenate : Join a sequence of arrays along an existing axis.
500
+ block : Assemble an nd-array from nested lists of blocks.
501
+ split : Split array into a list of multiple sub-arrays of equal size.
502
+
503
+ Notes
504
+ -----
505
+ ``unstack`` serves as the reverse operation of :py:func:`stack`, i.e.,
506
+ ``stack(unstack(x, axis=axis), axis=axis) == x``.
507
+
508
+ This function is equivalent to ``tuple(np.moveaxis(x, axis, 0))``, since
509
+ iterating on an array iterates along the first axis.
510
+
511
+ Examples
512
+ --------
513
+ >>> arr = np.arange(24).reshape((2, 3, 4))
514
+ >>> np.unstack(arr)
515
+ (array([[ 0, 1, 2, 3],
516
+ [ 4, 5, 6, 7],
517
+ [ 8, 9, 10, 11]]),
518
+ array([[12, 13, 14, 15],
519
+ [16, 17, 18, 19],
520
+ [20, 21, 22, 23]]))
521
+ >>> np.unstack(arr, axis=1)
522
+ (array([[ 0, 1, 2, 3],
523
+ [12, 13, 14, 15]]),
524
+ array([[ 4, 5, 6, 7],
525
+ [16, 17, 18, 19]]),
526
+ array([[ 8, 9, 10, 11],
527
+ [20, 21, 22, 23]]))
528
+ >>> arr2 = np.stack(np.unstack(arr, axis=1), axis=1)
529
+ >>> arr2.shape
530
+ (2, 3, 4)
531
+ >>> np.all(arr == arr2)
532
+ np.True_
533
+
534
+ """
535
+ if x.ndim == 0:
536
+ raise ValueError("Input array must be at least 1-d.")
537
+ return tuple(_nx.moveaxis(x, axis, 0))
538
+
539
+
540
+ # Internal functions to eliminate the overhead of repeated dispatch in one of
541
+ # the two possible paths inside np.block.
542
+ # Use getattr to protect against __array_function__ being disabled.
543
+ _size = getattr(_from_nx.size, '__wrapped__', _from_nx.size)
544
+ _ndim = getattr(_from_nx.ndim, '__wrapped__', _from_nx.ndim)
545
+ _concatenate = getattr(_from_nx.concatenate,
546
+ '__wrapped__', _from_nx.concatenate)
547
+
548
+
549
+ def _block_format_index(index):
550
+ """
551
+ Convert a list of indices ``[0, 1, 2]`` into ``"arrays[0][1][2]"``.
552
+ """
553
+ idx_str = ''.join(f'[{i}]' for i in index if i is not None)
554
+ return 'arrays' + idx_str
555
+
556
+
557
+ def _block_check_depths_match(arrays, parent_index=[]):
558
+ """
559
+ Recursive function checking that the depths of nested lists in `arrays`
560
+ all match. Mismatch raises a ValueError as described in the block
561
+ docstring below.
562
+
563
+ The entire index (rather than just the depth) needs to be calculated
564
+ for each innermost list, in case an error needs to be raised, so that
565
+ the index of the offending list can be printed as part of the error.
566
+
567
+ Parameters
568
+ ----------
569
+ arrays : nested list of arrays
570
+ The arrays to check
571
+ parent_index : list of int
572
+ The full index of `arrays` within the nested lists passed to
573
+ `_block_check_depths_match` at the top of the recursion.
574
+
575
+ Returns
576
+ -------
577
+ first_index : list of int
578
+ The full index of an element from the bottom of the nesting in
579
+ `arrays`. If any element at the bottom is an empty list, this will
580
+ refer to it, and the last index along the empty axis will be None.
581
+ max_arr_ndim : int
582
+ The maximum of the ndims of the arrays nested in `arrays`.
583
+ final_size: int
584
+ The number of elements in the final array. This is used the motivate
585
+ the choice of algorithm used using benchmarking wisdom.
586
+
587
+ """
588
+ if isinstance(arrays, tuple):
589
+ # not strictly necessary, but saves us from:
590
+ # - more than one way to do things - no point treating tuples like
591
+ # lists
592
+ # - horribly confusing behaviour that results when tuples are
593
+ # treated like ndarray
594
+ raise TypeError(
595
+ f'{_block_format_index(parent_index)} is a tuple. '
596
+ 'Only lists can be used to arrange blocks, and np.block does '
597
+ 'not allow implicit conversion from tuple to ndarray.'
598
+ )
599
+ elif isinstance(arrays, list) and len(arrays) > 0:
600
+ idxs_ndims = (_block_check_depths_match(arr, parent_index + [i])
601
+ for i, arr in enumerate(arrays))
602
+
603
+ first_index, max_arr_ndim, final_size = next(idxs_ndims)
604
+ for index, ndim, size in idxs_ndims:
605
+ final_size += size
606
+ if ndim > max_arr_ndim:
607
+ max_arr_ndim = ndim
608
+ if len(index) != len(first_index):
609
+ raise ValueError(
610
+ "List depths are mismatched. First element was at "
611
+ f"depth {len(first_index)}, but there is an element at "
612
+ f"depth {len(index)} ({_block_format_index(index)})"
613
+ )
614
+ # propagate our flag that indicates an empty list at the bottom
615
+ if index[-1] is None:
616
+ first_index = index
617
+
618
+ return first_index, max_arr_ndim, final_size
619
+ elif isinstance(arrays, list) and len(arrays) == 0:
620
+ # We've 'bottomed out' on an empty list
621
+ return parent_index + [None], 0, 0
622
+ else:
623
+ # We've 'bottomed out' - arrays is either a scalar or an array
624
+ size = _size(arrays)
625
+ return parent_index, _ndim(arrays), size
626
+
627
+
628
+ def _atleast_nd(a, ndim):
629
+ # Ensures `a` has at least `ndim` dimensions by prepending
630
+ # ones to `a.shape` as necessary
631
+ return array(a, ndmin=ndim, copy=None, subok=True)
632
+
633
+
634
+ def _accumulate(values):
635
+ return list(itertools.accumulate(values))
636
+
637
+
638
+ def _concatenate_shapes(shapes, axis):
639
+ """Given array shapes, return the resulting shape and slices prefixes.
640
+
641
+ These help in nested concatenation.
642
+
643
+ Returns
644
+ -------
645
+ shape: tuple of int
646
+ This tuple satisfies::
647
+
648
+ shape, _ = _concatenate_shapes([arr.shape for shape in arrs], axis)
649
+ shape == concatenate(arrs, axis).shape
650
+
651
+ slice_prefixes: tuple of (slice(start, end), )
652
+ For a list of arrays being concatenated, this returns the slice
653
+ in the larger array at axis that needs to be sliced into.
654
+
655
+ For example, the following holds::
656
+
657
+ ret = concatenate([a, b, c], axis)
658
+ _, (sl_a, sl_b, sl_c) = concatenate_slices([a, b, c], axis)
659
+
660
+ ret[(slice(None),) * axis + sl_a] == a
661
+ ret[(slice(None),) * axis + sl_b] == b
662
+ ret[(slice(None),) * axis + sl_c] == c
663
+
664
+ These are called slice prefixes since they are used in the recursive
665
+ blocking algorithm to compute the left-most slices during the
666
+ recursion. Therefore, they must be prepended to rest of the slice
667
+ that was computed deeper in the recursion.
668
+
669
+ These are returned as tuples to ensure that they can quickly be added
670
+ to existing slice tuple without creating a new tuple every time.
671
+
672
+ """
673
+ # Cache a result that will be reused.
674
+ shape_at_axis = [shape[axis] for shape in shapes]
675
+
676
+ # Take a shape, any shape
677
+ first_shape = shapes[0]
678
+ first_shape_pre = first_shape[:axis]
679
+ first_shape_post = first_shape[axis + 1:]
680
+
681
+ if any(shape[:axis] != first_shape_pre or
682
+ shape[axis + 1:] != first_shape_post for shape in shapes):
683
+ raise ValueError(
684
+ f'Mismatched array shapes in block along axis {axis}.')
685
+
686
+ shape = (first_shape_pre + (sum(shape_at_axis),) + first_shape[axis + 1:])
687
+
688
+ offsets_at_axis = _accumulate(shape_at_axis)
689
+ slice_prefixes = [(slice(start, end),)
690
+ for start, end in zip([0] + offsets_at_axis,
691
+ offsets_at_axis)]
692
+ return shape, slice_prefixes
693
+
694
+
695
+ def _block_info_recursion(arrays, max_depth, result_ndim, depth=0):
696
+ """
697
+ Returns the shape of the final array, along with a list
698
+ of slices and a list of arrays that can be used for assignment inside the
699
+ new array
700
+
701
+ Parameters
702
+ ----------
703
+ arrays : nested list of arrays
704
+ The arrays to check
705
+ max_depth : list of int
706
+ The number of nested lists
707
+ result_ndim : int
708
+ The number of dimensions in thefinal array.
709
+
710
+ Returns
711
+ -------
712
+ shape : tuple of int
713
+ The shape that the final array will take on.
714
+ slices: list of tuple of slices
715
+ The slices into the full array required for assignment. These are
716
+ required to be prepended with ``(Ellipsis, )`` to obtain to correct
717
+ final index.
718
+ arrays: list of ndarray
719
+ The data to assign to each slice of the full array
720
+
721
+ """
722
+ if depth < max_depth:
723
+ shapes, slices, arrays = zip(
724
+ *[_block_info_recursion(arr, max_depth, result_ndim, depth + 1)
725
+ for arr in arrays])
726
+
727
+ axis = result_ndim - max_depth + depth
728
+ shape, slice_prefixes = _concatenate_shapes(shapes, axis)
729
+
730
+ # Prepend the slice prefix and flatten the slices
731
+ slices = [slice_prefix + the_slice
732
+ for slice_prefix, inner_slices in zip(slice_prefixes, slices)
733
+ for the_slice in inner_slices]
734
+
735
+ # Flatten the array list
736
+ arrays = functools.reduce(operator.add, arrays)
737
+
738
+ return shape, slices, arrays
739
+ else:
740
+ # We've 'bottomed out' - arrays is either a scalar or an array
741
+ # type(arrays) is not list
742
+ # Return the slice and the array inside a list to be consistent with
743
+ # the recursive case.
744
+ arr = _atleast_nd(arrays, result_ndim)
745
+ return arr.shape, [()], [arr]
746
+
747
+
748
+ def _block(arrays, max_depth, result_ndim, depth=0):
749
+ """
750
+ Internal implementation of block based on repeated concatenation.
751
+ `arrays` is the argument passed to
752
+ block. `max_depth` is the depth of nested lists within `arrays` and
753
+ `result_ndim` is the greatest of the dimensions of the arrays in
754
+ `arrays` and the depth of the lists in `arrays` (see block docstring
755
+ for details).
756
+ """
757
+ if depth < max_depth:
758
+ arrs = [_block(arr, max_depth, result_ndim, depth + 1)
759
+ for arr in arrays]
760
+ return _concatenate(arrs, axis=-(max_depth - depth))
761
+ else:
762
+ # We've 'bottomed out' - arrays is either a scalar or an array
763
+ # type(arrays) is not list
764
+ return _atleast_nd(arrays, result_ndim)
765
+
766
+
767
+ def _block_dispatcher(arrays):
768
+ # Use type(...) is list to match the behavior of np.block(), which special
769
+ # cases list specifically rather than allowing for generic iterables or
770
+ # tuple. Also, we know that list.__array_function__ will never exist.
771
+ if isinstance(arrays, list):
772
+ for subarrays in arrays:
773
+ yield from _block_dispatcher(subarrays)
774
+ else:
775
+ yield arrays
776
+
777
+
778
+ @array_function_dispatch(_block_dispatcher)
779
+ def block(arrays):
780
+ """
781
+ Assemble an nd-array from nested lists of blocks.
782
+
783
+ Blocks in the innermost lists are concatenated (see `concatenate`) along
784
+ the last dimension (-1), then these are concatenated along the
785
+ second-last dimension (-2), and so on until the outermost list is reached.
786
+
787
+ Blocks can be of any dimension, but will not be broadcasted using
788
+ the normal rules. Instead, leading axes of size 1 are inserted,
789
+ to make ``block.ndim`` the same for all blocks. This is primarily useful
790
+ for working with scalars, and means that code like ``np.block([v, 1])``
791
+ is valid, where ``v.ndim == 1``.
792
+
793
+ When the nested list is two levels deep, this allows block matrices to be
794
+ constructed from their components.
795
+
796
+ Parameters
797
+ ----------
798
+ arrays : nested list of array_like or scalars (but not tuples)
799
+ If passed a single ndarray or scalar (a nested list of depth 0), this
800
+ is returned unmodified (and not copied).
801
+
802
+ Elements shapes must match along the appropriate axes (without
803
+ broadcasting), but leading 1s will be prepended to the shape as
804
+ necessary to make the dimensions match.
805
+
806
+ Returns
807
+ -------
808
+ block_array : ndarray
809
+ The array assembled from the given blocks.
810
+
811
+ The dimensionality of the output is equal to the greatest of:
812
+
813
+ * the dimensionality of all the inputs
814
+ * the depth to which the input list is nested
815
+
816
+ Raises
817
+ ------
818
+ ValueError
819
+ * If list depths are mismatched - for instance, ``[[a, b], c]`` is
820
+ illegal, and should be spelt ``[[a, b], [c]]``
821
+ * If lists are empty - for instance, ``[[a, b], []]``
822
+
823
+ See Also
824
+ --------
825
+ concatenate : Join a sequence of arrays along an existing axis.
826
+ stack : Join a sequence of arrays along a new axis.
827
+ vstack : Stack arrays in sequence vertically (row wise).
828
+ hstack : Stack arrays in sequence horizontally (column wise).
829
+ dstack : Stack arrays in sequence depth wise (along third axis).
830
+ column_stack : Stack 1-D arrays as columns into a 2-D array.
831
+ vsplit : Split an array into multiple sub-arrays vertically (row-wise).
832
+ unstack : Split an array into a tuple of sub-arrays along an axis.
833
+
834
+ Notes
835
+ -----
836
+ When called with only scalars, ``np.block`` is equivalent to an ndarray
837
+ call. So ``np.block([[1, 2], [3, 4]])`` is equivalent to
838
+ ``np.array([[1, 2], [3, 4]])``.
839
+
840
+ This function does not enforce that the blocks lie on a fixed grid.
841
+ ``np.block([[a, b], [c, d]])`` is not restricted to arrays of the form::
842
+
843
+ AAAbb
844
+ AAAbb
845
+ cccDD
846
+
847
+ But is also allowed to produce, for some ``a, b, c, d``::
848
+
849
+ AAAbb
850
+ AAAbb
851
+ cDDDD
852
+
853
+ Since concatenation happens along the last axis first, `block` is *not*
854
+ capable of producing the following directly::
855
+
856
+ AAAbb
857
+ cccbb
858
+ cccDD
859
+
860
+ Matlab's "square bracket stacking", ``[A, B, ...; p, q, ...]``, is
861
+ equivalent to ``np.block([[A, B, ...], [p, q, ...]])``.
862
+
863
+ Examples
864
+ --------
865
+ The most common use of this function is to build a block matrix:
866
+
867
+ >>> import numpy as np
868
+ >>> A = np.eye(2) * 2
869
+ >>> B = np.eye(3) * 3
870
+ >>> np.block([
871
+ ... [A, np.zeros((2, 3))],
872
+ ... [np.ones((3, 2)), B ]
873
+ ... ])
874
+ array([[2., 0., 0., 0., 0.],
875
+ [0., 2., 0., 0., 0.],
876
+ [1., 1., 3., 0., 0.],
877
+ [1., 1., 0., 3., 0.],
878
+ [1., 1., 0., 0., 3.]])
879
+
880
+ With a list of depth 1, `block` can be used as `hstack`:
881
+
882
+ >>> np.block([1, 2, 3]) # hstack([1, 2, 3])
883
+ array([1, 2, 3])
884
+
885
+ >>> a = np.array([1, 2, 3])
886
+ >>> b = np.array([4, 5, 6])
887
+ >>> np.block([a, b, 10]) # hstack([a, b, 10])
888
+ array([ 1, 2, 3, 4, 5, 6, 10])
889
+
890
+ >>> A = np.ones((2, 2), int)
891
+ >>> B = 2 * A
892
+ >>> np.block([A, B]) # hstack([A, B])
893
+ array([[1, 1, 2, 2],
894
+ [1, 1, 2, 2]])
895
+
896
+ With a list of depth 2, `block` can be used in place of `vstack`:
897
+
898
+ >>> a = np.array([1, 2, 3])
899
+ >>> b = np.array([4, 5, 6])
900
+ >>> np.block([[a], [b]]) # vstack([a, b])
901
+ array([[1, 2, 3],
902
+ [4, 5, 6]])
903
+
904
+ >>> A = np.ones((2, 2), int)
905
+ >>> B = 2 * A
906
+ >>> np.block([[A], [B]]) # vstack([A, B])
907
+ array([[1, 1],
908
+ [1, 1],
909
+ [2, 2],
910
+ [2, 2]])
911
+
912
+ It can also be used in place of `atleast_1d` and `atleast_2d`:
913
+
914
+ >>> a = np.array(0)
915
+ >>> b = np.array([1])
916
+ >>> np.block([a]) # atleast_1d(a)
917
+ array([0])
918
+ >>> np.block([b]) # atleast_1d(b)
919
+ array([1])
920
+
921
+ >>> np.block([[a]]) # atleast_2d(a)
922
+ array([[0]])
923
+ >>> np.block([[b]]) # atleast_2d(b)
924
+ array([[1]])
925
+
926
+
927
+ """
928
+ arrays, list_ndim, result_ndim, final_size = _block_setup(arrays)
929
+
930
+ # It was found through benchmarking that making an array of final size
931
+ # around 256x256 was faster by straight concatenation on a
932
+ # i7-7700HQ processor and dual channel ram 2400MHz.
933
+ # It didn't seem to matter heavily on the dtype used.
934
+ #
935
+ # A 2D array using repeated concatenation requires 2 copies of the array.
936
+ #
937
+ # The fastest algorithm will depend on the ratio of CPU power to memory
938
+ # speed.
939
+ # One can monitor the results of the benchmark
940
+ # https://pv.github.io/numpy-bench/#bench_shape_base.Block2D.time_block2d
941
+ # to tune this parameter until a C version of the `_block_info_recursion`
942
+ # algorithm is implemented which would likely be faster than the python
943
+ # version.
944
+ if list_ndim * final_size > (2 * 512 * 512):
945
+ return _block_slicing(arrays, list_ndim, result_ndim)
946
+ else:
947
+ return _block_concatenate(arrays, list_ndim, result_ndim)
948
+
949
+
950
+ # These helper functions are mostly used for testing.
951
+ # They allow us to write tests that directly call `_block_slicing`
952
+ # or `_block_concatenate` without blocking large arrays to force the wisdom
953
+ # to trigger the desired path.
954
+ def _block_setup(arrays):
955
+ """
956
+ Returns
957
+ (`arrays`, list_ndim, result_ndim, final_size)
958
+ """
959
+ bottom_index, arr_ndim, final_size = _block_check_depths_match(arrays)
960
+ list_ndim = len(bottom_index)
961
+ if bottom_index and bottom_index[-1] is None:
962
+ raise ValueError(
963
+ f'List at {_block_format_index(bottom_index)} cannot be empty'
964
+ )
965
+ result_ndim = max(arr_ndim, list_ndim)
966
+ return arrays, list_ndim, result_ndim, final_size
967
+
968
+
969
+ def _block_slicing(arrays, list_ndim, result_ndim):
970
+ shape, slices, arrays = _block_info_recursion(
971
+ arrays, list_ndim, result_ndim)
972
+ dtype = _nx.result_type(*[arr.dtype for arr in arrays])
973
+
974
+ # Test preferring F only in the case that all input arrays are F
975
+ F_order = all(arr.flags['F_CONTIGUOUS'] for arr in arrays)
976
+ C_order = all(arr.flags['C_CONTIGUOUS'] for arr in arrays)
977
+ order = 'F' if F_order and not C_order else 'C'
978
+ result = _nx.empty(shape=shape, dtype=dtype, order=order)
979
+ # Note: In a c implementation, the function
980
+ # PyArray_CreateMultiSortedStridePerm could be used for more advanced
981
+ # guessing of the desired order.
982
+
983
+ for the_slice, arr in zip(slices, arrays):
984
+ result[(Ellipsis,) + the_slice] = arr
985
+ return result
986
+
987
+
988
+ def _block_concatenate(arrays, list_ndim, result_ndim):
989
+ result = _block(arrays, list_ndim, result_ndim)
990
+ if list_ndim == 0:
991
+ # Catch an edge case where _block returns a view because
992
+ # `arrays` is a single numpy array and not a list of numpy arrays.
993
+ # This might copy scalars or lists twice, but this isn't a likely
994
+ # usecase for those interested in performance
995
+ result = result.copy()
996
+ return result