numpy 2.4.1__pp311-pypy311_pp73-macosx_14_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1039) hide show
  1. numpy/__config__.py +170 -0
  2. numpy/__config__.pyi +108 -0
  3. numpy/__init__.cython-30.pxd +1242 -0
  4. numpy/__init__.pxd +1155 -0
  5. numpy/__init__.py +942 -0
  6. numpy/__init__.pyi +6202 -0
  7. numpy/_array_api_info.py +346 -0
  8. numpy/_array_api_info.pyi +206 -0
  9. numpy/_configtool.py +39 -0
  10. numpy/_configtool.pyi +1 -0
  11. numpy/_core/__init__.py +201 -0
  12. numpy/_core/__init__.pyi +666 -0
  13. numpy/_core/_add_newdocs.py +7151 -0
  14. numpy/_core/_add_newdocs.pyi +2 -0
  15. numpy/_core/_add_newdocs_scalars.py +381 -0
  16. numpy/_core/_add_newdocs_scalars.pyi +16 -0
  17. numpy/_core/_asarray.py +130 -0
  18. numpy/_core/_asarray.pyi +43 -0
  19. numpy/_core/_dtype.py +366 -0
  20. numpy/_core/_dtype.pyi +56 -0
  21. numpy/_core/_dtype_ctypes.py +120 -0
  22. numpy/_core/_dtype_ctypes.pyi +83 -0
  23. numpy/_core/_exceptions.py +162 -0
  24. numpy/_core/_exceptions.pyi +54 -0
  25. numpy/_core/_internal.py +968 -0
  26. numpy/_core/_internal.pyi +61 -0
  27. numpy/_core/_methods.py +252 -0
  28. numpy/_core/_methods.pyi +22 -0
  29. numpy/_core/_multiarray_tests.pypy311-pp73-darwin.so +0 -0
  30. numpy/_core/_multiarray_umath.pypy311-pp73-darwin.so +0 -0
  31. numpy/_core/_operand_flag_tests.pypy311-pp73-darwin.so +0 -0
  32. numpy/_core/_rational_tests.pypy311-pp73-darwin.so +0 -0
  33. numpy/_core/_simd.pyi +35 -0
  34. numpy/_core/_simd.pypy311-pp73-darwin.so +0 -0
  35. numpy/_core/_string_helpers.py +100 -0
  36. numpy/_core/_string_helpers.pyi +12 -0
  37. numpy/_core/_struct_ufunc_tests.pypy311-pp73-darwin.so +0 -0
  38. numpy/_core/_type_aliases.py +131 -0
  39. numpy/_core/_type_aliases.pyi +86 -0
  40. numpy/_core/_ufunc_config.py +515 -0
  41. numpy/_core/_ufunc_config.pyi +69 -0
  42. numpy/_core/_umath_tests.pyi +47 -0
  43. numpy/_core/_umath_tests.pypy311-pp73-darwin.so +0 -0
  44. numpy/_core/arrayprint.py +1779 -0
  45. numpy/_core/arrayprint.pyi +158 -0
  46. numpy/_core/cversions.py +13 -0
  47. numpy/_core/defchararray.py +1414 -0
  48. numpy/_core/defchararray.pyi +1150 -0
  49. numpy/_core/einsumfunc.py +1650 -0
  50. numpy/_core/einsumfunc.pyi +184 -0
  51. numpy/_core/fromnumeric.py +4233 -0
  52. numpy/_core/fromnumeric.pyi +1735 -0
  53. numpy/_core/function_base.py +547 -0
  54. numpy/_core/function_base.pyi +276 -0
  55. numpy/_core/getlimits.py +462 -0
  56. numpy/_core/getlimits.pyi +124 -0
  57. numpy/_core/include/numpy/__multiarray_api.c +376 -0
  58. numpy/_core/include/numpy/__multiarray_api.h +1628 -0
  59. numpy/_core/include/numpy/__ufunc_api.c +55 -0
  60. numpy/_core/include/numpy/__ufunc_api.h +349 -0
  61. numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
  62. numpy/_core/include/numpy/_numpyconfig.h +33 -0
  63. numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
  64. numpy/_core/include/numpy/arrayobject.h +7 -0
  65. numpy/_core/include/numpy/arrayscalars.h +198 -0
  66. numpy/_core/include/numpy/dtype_api.h +547 -0
  67. numpy/_core/include/numpy/halffloat.h +70 -0
  68. numpy/_core/include/numpy/ndarrayobject.h +304 -0
  69. numpy/_core/include/numpy/ndarraytypes.h +1982 -0
  70. numpy/_core/include/numpy/npy_2_compat.h +249 -0
  71. numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
  72. numpy/_core/include/numpy/npy_3kcompat.h +374 -0
  73. numpy/_core/include/numpy/npy_common.h +989 -0
  74. numpy/_core/include/numpy/npy_cpu.h +126 -0
  75. numpy/_core/include/numpy/npy_endian.h +79 -0
  76. numpy/_core/include/numpy/npy_math.h +602 -0
  77. numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
  78. numpy/_core/include/numpy/npy_os.h +42 -0
  79. numpy/_core/include/numpy/numpyconfig.h +185 -0
  80. numpy/_core/include/numpy/random/LICENSE.txt +21 -0
  81. numpy/_core/include/numpy/random/bitgen.h +20 -0
  82. numpy/_core/include/numpy/random/distributions.h +209 -0
  83. numpy/_core/include/numpy/random/libdivide.h +2079 -0
  84. numpy/_core/include/numpy/ufuncobject.h +343 -0
  85. numpy/_core/include/numpy/utils.h +37 -0
  86. numpy/_core/lib/libnpymath.a +0 -0
  87. numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
  88. numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
  89. numpy/_core/lib/pkgconfig/numpy.pc +7 -0
  90. numpy/_core/memmap.py +363 -0
  91. numpy/_core/memmap.pyi +3 -0
  92. numpy/_core/multiarray.py +1740 -0
  93. numpy/_core/multiarray.pyi +1316 -0
  94. numpy/_core/numeric.py +2758 -0
  95. numpy/_core/numeric.pyi +1276 -0
  96. numpy/_core/numerictypes.py +633 -0
  97. numpy/_core/numerictypes.pyi +196 -0
  98. numpy/_core/overrides.py +188 -0
  99. numpy/_core/overrides.pyi +47 -0
  100. numpy/_core/printoptions.py +32 -0
  101. numpy/_core/printoptions.pyi +28 -0
  102. numpy/_core/records.py +1088 -0
  103. numpy/_core/records.pyi +340 -0
  104. numpy/_core/shape_base.py +996 -0
  105. numpy/_core/shape_base.pyi +182 -0
  106. numpy/_core/strings.py +1813 -0
  107. numpy/_core/strings.pyi +536 -0
  108. numpy/_core/tests/_locales.py +72 -0
  109. numpy/_core/tests/_natype.py +144 -0
  110. numpy/_core/tests/data/astype_copy.pkl +0 -0
  111. numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
  112. numpy/_core/tests/data/recarray_from_file.fits +0 -0
  113. numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
  114. numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
  115. numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
  116. numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
  117. numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
  118. numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
  119. numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
  120. numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
  121. numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
  122. numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
  123. numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
  124. numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
  125. numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
  126. numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
  127. numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
  128. numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
  129. numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
  130. numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
  131. numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
  132. numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
  133. numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
  134. numpy/_core/tests/examples/cython/checks.pyx +373 -0
  135. numpy/_core/tests/examples/cython/meson.build +43 -0
  136. numpy/_core/tests/examples/cython/setup.py +39 -0
  137. numpy/_core/tests/examples/limited_api/limited_api1.c +17 -0
  138. numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
  139. numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
  140. numpy/_core/tests/examples/limited_api/meson.build +59 -0
  141. numpy/_core/tests/examples/limited_api/setup.py +24 -0
  142. numpy/_core/tests/test__exceptions.py +90 -0
  143. numpy/_core/tests/test_abc.py +54 -0
  144. numpy/_core/tests/test_api.py +655 -0
  145. numpy/_core/tests/test_argparse.py +90 -0
  146. numpy/_core/tests/test_array_api_info.py +113 -0
  147. numpy/_core/tests/test_array_coercion.py +928 -0
  148. numpy/_core/tests/test_array_interface.py +222 -0
  149. numpy/_core/tests/test_arraymethod.py +84 -0
  150. numpy/_core/tests/test_arrayobject.py +75 -0
  151. numpy/_core/tests/test_arrayprint.py +1324 -0
  152. numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
  153. numpy/_core/tests/test_casting_unittests.py +955 -0
  154. numpy/_core/tests/test_conversion_utils.py +209 -0
  155. numpy/_core/tests/test_cpu_dispatcher.py +48 -0
  156. numpy/_core/tests/test_cpu_features.py +450 -0
  157. numpy/_core/tests/test_custom_dtypes.py +393 -0
  158. numpy/_core/tests/test_cython.py +352 -0
  159. numpy/_core/tests/test_datetime.py +2792 -0
  160. numpy/_core/tests/test_defchararray.py +858 -0
  161. numpy/_core/tests/test_deprecations.py +460 -0
  162. numpy/_core/tests/test_dlpack.py +190 -0
  163. numpy/_core/tests/test_dtype.py +2110 -0
  164. numpy/_core/tests/test_einsum.py +1351 -0
  165. numpy/_core/tests/test_errstate.py +131 -0
  166. numpy/_core/tests/test_extint128.py +217 -0
  167. numpy/_core/tests/test_finfo.py +86 -0
  168. numpy/_core/tests/test_function_base.py +504 -0
  169. numpy/_core/tests/test_getlimits.py +171 -0
  170. numpy/_core/tests/test_half.py +593 -0
  171. numpy/_core/tests/test_hashtable.py +36 -0
  172. numpy/_core/tests/test_indexerrors.py +122 -0
  173. numpy/_core/tests/test_indexing.py +1692 -0
  174. numpy/_core/tests/test_item_selection.py +167 -0
  175. numpy/_core/tests/test_limited_api.py +102 -0
  176. numpy/_core/tests/test_longdouble.py +370 -0
  177. numpy/_core/tests/test_mem_overlap.py +933 -0
  178. numpy/_core/tests/test_mem_policy.py +453 -0
  179. numpy/_core/tests/test_memmap.py +248 -0
  180. numpy/_core/tests/test_multiarray.py +11008 -0
  181. numpy/_core/tests/test_multiprocessing.py +55 -0
  182. numpy/_core/tests/test_multithreading.py +377 -0
  183. numpy/_core/tests/test_nditer.py +3533 -0
  184. numpy/_core/tests/test_nep50_promotions.py +287 -0
  185. numpy/_core/tests/test_numeric.py +4295 -0
  186. numpy/_core/tests/test_numerictypes.py +650 -0
  187. numpy/_core/tests/test_overrides.py +800 -0
  188. numpy/_core/tests/test_print.py +202 -0
  189. numpy/_core/tests/test_protocols.py +46 -0
  190. numpy/_core/tests/test_records.py +544 -0
  191. numpy/_core/tests/test_regression.py +2677 -0
  192. numpy/_core/tests/test_scalar_ctors.py +203 -0
  193. numpy/_core/tests/test_scalar_methods.py +328 -0
  194. numpy/_core/tests/test_scalarbuffer.py +153 -0
  195. numpy/_core/tests/test_scalarinherit.py +105 -0
  196. numpy/_core/tests/test_scalarmath.py +1168 -0
  197. numpy/_core/tests/test_scalarprint.py +403 -0
  198. numpy/_core/tests/test_shape_base.py +904 -0
  199. numpy/_core/tests/test_simd.py +1345 -0
  200. numpy/_core/tests/test_simd_module.py +105 -0
  201. numpy/_core/tests/test_stringdtype.py +1855 -0
  202. numpy/_core/tests/test_strings.py +1523 -0
  203. numpy/_core/tests/test_ufunc.py +3405 -0
  204. numpy/_core/tests/test_umath.py +4962 -0
  205. numpy/_core/tests/test_umath_accuracy.py +132 -0
  206. numpy/_core/tests/test_umath_complex.py +631 -0
  207. numpy/_core/tests/test_unicode.py +369 -0
  208. numpy/_core/umath.py +60 -0
  209. numpy/_core/umath.pyi +232 -0
  210. numpy/_distributor_init.py +15 -0
  211. numpy/_distributor_init.pyi +1 -0
  212. numpy/_expired_attrs_2_0.py +78 -0
  213. numpy/_expired_attrs_2_0.pyi +61 -0
  214. numpy/_globals.py +121 -0
  215. numpy/_globals.pyi +17 -0
  216. numpy/_pyinstaller/__init__.py +0 -0
  217. numpy/_pyinstaller/__init__.pyi +0 -0
  218. numpy/_pyinstaller/hook-numpy.py +36 -0
  219. numpy/_pyinstaller/hook-numpy.pyi +6 -0
  220. numpy/_pyinstaller/tests/__init__.py +16 -0
  221. numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
  222. numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
  223. numpy/_pytesttester.py +201 -0
  224. numpy/_pytesttester.pyi +18 -0
  225. numpy/_typing/__init__.py +173 -0
  226. numpy/_typing/_add_docstring.py +153 -0
  227. numpy/_typing/_array_like.py +106 -0
  228. numpy/_typing/_char_codes.py +213 -0
  229. numpy/_typing/_dtype_like.py +114 -0
  230. numpy/_typing/_extended_precision.py +15 -0
  231. numpy/_typing/_nbit.py +19 -0
  232. numpy/_typing/_nbit_base.py +94 -0
  233. numpy/_typing/_nbit_base.pyi +39 -0
  234. numpy/_typing/_nested_sequence.py +79 -0
  235. numpy/_typing/_scalars.py +20 -0
  236. numpy/_typing/_shape.py +8 -0
  237. numpy/_typing/_ufunc.py +7 -0
  238. numpy/_typing/_ufunc.pyi +975 -0
  239. numpy/_utils/__init__.py +95 -0
  240. numpy/_utils/__init__.pyi +28 -0
  241. numpy/_utils/_convertions.py +18 -0
  242. numpy/_utils/_convertions.pyi +4 -0
  243. numpy/_utils/_inspect.py +192 -0
  244. numpy/_utils/_inspect.pyi +70 -0
  245. numpy/_utils/_pep440.py +486 -0
  246. numpy/_utils/_pep440.pyi +118 -0
  247. numpy/char/__init__.py +2 -0
  248. numpy/char/__init__.pyi +111 -0
  249. numpy/conftest.py +248 -0
  250. numpy/core/__init__.py +33 -0
  251. numpy/core/__init__.pyi +0 -0
  252. numpy/core/_dtype.py +10 -0
  253. numpy/core/_dtype.pyi +0 -0
  254. numpy/core/_dtype_ctypes.py +10 -0
  255. numpy/core/_dtype_ctypes.pyi +0 -0
  256. numpy/core/_internal.py +27 -0
  257. numpy/core/_multiarray_umath.py +57 -0
  258. numpy/core/_utils.py +21 -0
  259. numpy/core/arrayprint.py +10 -0
  260. numpy/core/defchararray.py +10 -0
  261. numpy/core/einsumfunc.py +10 -0
  262. numpy/core/fromnumeric.py +10 -0
  263. numpy/core/function_base.py +10 -0
  264. numpy/core/getlimits.py +10 -0
  265. numpy/core/multiarray.py +25 -0
  266. numpy/core/numeric.py +12 -0
  267. numpy/core/numerictypes.py +10 -0
  268. numpy/core/overrides.py +10 -0
  269. numpy/core/overrides.pyi +7 -0
  270. numpy/core/records.py +10 -0
  271. numpy/core/shape_base.py +10 -0
  272. numpy/core/umath.py +10 -0
  273. numpy/ctypeslib/__init__.py +13 -0
  274. numpy/ctypeslib/__init__.pyi +15 -0
  275. numpy/ctypeslib/_ctypeslib.py +603 -0
  276. numpy/ctypeslib/_ctypeslib.pyi +236 -0
  277. numpy/distutils/__init__.py +64 -0
  278. numpy/distutils/__init__.pyi +4 -0
  279. numpy/distutils/__pycache__/conv_template.pypy311.pyc +0 -0
  280. numpy/distutils/_shell_utils.py +87 -0
  281. numpy/distutils/armccompiler.py +26 -0
  282. numpy/distutils/ccompiler.py +826 -0
  283. numpy/distutils/ccompiler_opt.py +2668 -0
  284. numpy/distutils/checks/cpu_asimd.c +27 -0
  285. numpy/distutils/checks/cpu_asimddp.c +16 -0
  286. numpy/distutils/checks/cpu_asimdfhm.c +19 -0
  287. numpy/distutils/checks/cpu_asimdhp.c +15 -0
  288. numpy/distutils/checks/cpu_avx.c +20 -0
  289. numpy/distutils/checks/cpu_avx2.c +20 -0
  290. numpy/distutils/checks/cpu_avx512_clx.c +22 -0
  291. numpy/distutils/checks/cpu_avx512_cnl.c +24 -0
  292. numpy/distutils/checks/cpu_avx512_icl.c +26 -0
  293. numpy/distutils/checks/cpu_avx512_knl.c +25 -0
  294. numpy/distutils/checks/cpu_avx512_knm.c +30 -0
  295. numpy/distutils/checks/cpu_avx512_skx.c +26 -0
  296. numpy/distutils/checks/cpu_avx512_spr.c +26 -0
  297. numpy/distutils/checks/cpu_avx512cd.c +20 -0
  298. numpy/distutils/checks/cpu_avx512f.c +20 -0
  299. numpy/distutils/checks/cpu_f16c.c +22 -0
  300. numpy/distutils/checks/cpu_fma3.c +22 -0
  301. numpy/distutils/checks/cpu_fma4.c +13 -0
  302. numpy/distutils/checks/cpu_lsx.c +11 -0
  303. numpy/distutils/checks/cpu_neon.c +19 -0
  304. numpy/distutils/checks/cpu_neon_fp16.c +11 -0
  305. numpy/distutils/checks/cpu_neon_vfpv4.c +21 -0
  306. numpy/distutils/checks/cpu_popcnt.c +32 -0
  307. numpy/distutils/checks/cpu_rvv.c +13 -0
  308. numpy/distutils/checks/cpu_sse.c +20 -0
  309. numpy/distutils/checks/cpu_sse2.c +20 -0
  310. numpy/distutils/checks/cpu_sse3.c +20 -0
  311. numpy/distutils/checks/cpu_sse41.c +20 -0
  312. numpy/distutils/checks/cpu_sse42.c +20 -0
  313. numpy/distutils/checks/cpu_ssse3.c +20 -0
  314. numpy/distutils/checks/cpu_sve.c +14 -0
  315. numpy/distutils/checks/cpu_vsx.c +21 -0
  316. numpy/distutils/checks/cpu_vsx2.c +13 -0
  317. numpy/distutils/checks/cpu_vsx3.c +13 -0
  318. numpy/distutils/checks/cpu_vsx4.c +14 -0
  319. numpy/distutils/checks/cpu_vx.c +16 -0
  320. numpy/distutils/checks/cpu_vxe.c +25 -0
  321. numpy/distutils/checks/cpu_vxe2.c +21 -0
  322. numpy/distutils/checks/cpu_xop.c +12 -0
  323. numpy/distutils/checks/extra_avx512bw_mask.c +18 -0
  324. numpy/distutils/checks/extra_avx512dq_mask.c +16 -0
  325. numpy/distutils/checks/extra_avx512f_reduce.c +41 -0
  326. numpy/distutils/checks/extra_vsx3_half_double.c +12 -0
  327. numpy/distutils/checks/extra_vsx4_mma.c +21 -0
  328. numpy/distutils/checks/extra_vsx_asm.c +36 -0
  329. numpy/distutils/checks/test_flags.c +1 -0
  330. numpy/distutils/command/__init__.py +41 -0
  331. numpy/distutils/command/autodist.py +148 -0
  332. numpy/distutils/command/bdist_rpm.py +22 -0
  333. numpy/distutils/command/build.py +62 -0
  334. numpy/distutils/command/build_clib.py +469 -0
  335. numpy/distutils/command/build_ext.py +752 -0
  336. numpy/distutils/command/build_py.py +31 -0
  337. numpy/distutils/command/build_scripts.py +49 -0
  338. numpy/distutils/command/build_src.py +773 -0
  339. numpy/distutils/command/config.py +516 -0
  340. numpy/distutils/command/config_compiler.py +126 -0
  341. numpy/distutils/command/develop.py +15 -0
  342. numpy/distutils/command/egg_info.py +25 -0
  343. numpy/distutils/command/install.py +79 -0
  344. numpy/distutils/command/install_clib.py +40 -0
  345. numpy/distutils/command/install_data.py +24 -0
  346. numpy/distutils/command/install_headers.py +25 -0
  347. numpy/distutils/command/sdist.py +27 -0
  348. numpy/distutils/conv_template.py +329 -0
  349. numpy/distutils/core.py +215 -0
  350. numpy/distutils/cpuinfo.py +683 -0
  351. numpy/distutils/exec_command.py +315 -0
  352. numpy/distutils/extension.py +101 -0
  353. numpy/distutils/fcompiler/__init__.py +1035 -0
  354. numpy/distutils/fcompiler/absoft.py +158 -0
  355. numpy/distutils/fcompiler/arm.py +71 -0
  356. numpy/distutils/fcompiler/compaq.py +120 -0
  357. numpy/distutils/fcompiler/environment.py +88 -0
  358. numpy/distutils/fcompiler/fujitsu.py +46 -0
  359. numpy/distutils/fcompiler/g95.py +42 -0
  360. numpy/distutils/fcompiler/gnu.py +555 -0
  361. numpy/distutils/fcompiler/hpux.py +41 -0
  362. numpy/distutils/fcompiler/ibm.py +97 -0
  363. numpy/distutils/fcompiler/intel.py +211 -0
  364. numpy/distutils/fcompiler/lahey.py +45 -0
  365. numpy/distutils/fcompiler/mips.py +54 -0
  366. numpy/distutils/fcompiler/nag.py +87 -0
  367. numpy/distutils/fcompiler/none.py +28 -0
  368. numpy/distutils/fcompiler/nv.py +53 -0
  369. numpy/distutils/fcompiler/pathf95.py +33 -0
  370. numpy/distutils/fcompiler/pg.py +128 -0
  371. numpy/distutils/fcompiler/sun.py +51 -0
  372. numpy/distutils/fcompiler/vast.py +52 -0
  373. numpy/distutils/from_template.py +261 -0
  374. numpy/distutils/fujitsuccompiler.py +28 -0
  375. numpy/distutils/intelccompiler.py +106 -0
  376. numpy/distutils/lib2def.py +116 -0
  377. numpy/distutils/line_endings.py +77 -0
  378. numpy/distutils/log.py +111 -0
  379. numpy/distutils/mingw/gfortran_vs2003_hack.c +6 -0
  380. numpy/distutils/mingw32ccompiler.py +620 -0
  381. numpy/distutils/misc_util.py +2484 -0
  382. numpy/distutils/msvc9compiler.py +63 -0
  383. numpy/distutils/msvccompiler.py +76 -0
  384. numpy/distutils/npy_pkg_config.py +441 -0
  385. numpy/distutils/numpy_distribution.py +17 -0
  386. numpy/distutils/pathccompiler.py +21 -0
  387. numpy/distutils/system_info.py +3267 -0
  388. numpy/distutils/tests/__init__.py +0 -0
  389. numpy/distutils/tests/test_build_ext.py +74 -0
  390. numpy/distutils/tests/test_ccompiler_opt.py +808 -0
  391. numpy/distutils/tests/test_ccompiler_opt_conf.py +176 -0
  392. numpy/distutils/tests/test_exec_command.py +217 -0
  393. numpy/distutils/tests/test_fcompiler.py +43 -0
  394. numpy/distutils/tests/test_fcompiler_gnu.py +55 -0
  395. numpy/distutils/tests/test_fcompiler_intel.py +30 -0
  396. numpy/distutils/tests/test_fcompiler_nagfor.py +22 -0
  397. numpy/distutils/tests/test_from_template.py +44 -0
  398. numpy/distutils/tests/test_log.py +34 -0
  399. numpy/distutils/tests/test_mingw32ccompiler.py +47 -0
  400. numpy/distutils/tests/test_misc_util.py +88 -0
  401. numpy/distutils/tests/test_npy_pkg_config.py +84 -0
  402. numpy/distutils/tests/test_shell_utils.py +79 -0
  403. numpy/distutils/tests/test_system_info.py +334 -0
  404. numpy/distutils/tests/utilities.py +90 -0
  405. numpy/distutils/unixccompiler.py +141 -0
  406. numpy/doc/ufuncs.py +138 -0
  407. numpy/dtypes.py +41 -0
  408. numpy/dtypes.pyi +630 -0
  409. numpy/exceptions.py +246 -0
  410. numpy/exceptions.pyi +27 -0
  411. numpy/f2py/__init__.py +86 -0
  412. numpy/f2py/__init__.pyi +5 -0
  413. numpy/f2py/__main__.py +5 -0
  414. numpy/f2py/__version__.py +1 -0
  415. numpy/f2py/__version__.pyi +1 -0
  416. numpy/f2py/_backends/__init__.py +9 -0
  417. numpy/f2py/_backends/__init__.pyi +5 -0
  418. numpy/f2py/_backends/_backend.py +44 -0
  419. numpy/f2py/_backends/_backend.pyi +46 -0
  420. numpy/f2py/_backends/_distutils.py +76 -0
  421. numpy/f2py/_backends/_distutils.pyi +13 -0
  422. numpy/f2py/_backends/_meson.py +244 -0
  423. numpy/f2py/_backends/_meson.pyi +62 -0
  424. numpy/f2py/_backends/meson.build.template +58 -0
  425. numpy/f2py/_isocbind.py +62 -0
  426. numpy/f2py/_isocbind.pyi +13 -0
  427. numpy/f2py/_src_pyf.py +247 -0
  428. numpy/f2py/_src_pyf.pyi +28 -0
  429. numpy/f2py/auxfuncs.py +1004 -0
  430. numpy/f2py/auxfuncs.pyi +262 -0
  431. numpy/f2py/capi_maps.py +811 -0
  432. numpy/f2py/capi_maps.pyi +33 -0
  433. numpy/f2py/cb_rules.py +665 -0
  434. numpy/f2py/cb_rules.pyi +17 -0
  435. numpy/f2py/cfuncs.py +1563 -0
  436. numpy/f2py/cfuncs.pyi +31 -0
  437. numpy/f2py/common_rules.py +143 -0
  438. numpy/f2py/common_rules.pyi +9 -0
  439. numpy/f2py/crackfortran.py +3725 -0
  440. numpy/f2py/crackfortran.pyi +266 -0
  441. numpy/f2py/diagnose.py +149 -0
  442. numpy/f2py/diagnose.pyi +1 -0
  443. numpy/f2py/f2py2e.py +788 -0
  444. numpy/f2py/f2py2e.pyi +74 -0
  445. numpy/f2py/f90mod_rules.py +269 -0
  446. numpy/f2py/f90mod_rules.pyi +16 -0
  447. numpy/f2py/func2subr.py +329 -0
  448. numpy/f2py/func2subr.pyi +7 -0
  449. numpy/f2py/rules.py +1629 -0
  450. numpy/f2py/rules.pyi +41 -0
  451. numpy/f2py/setup.cfg +3 -0
  452. numpy/f2py/src/fortranobject.c +1436 -0
  453. numpy/f2py/src/fortranobject.h +173 -0
  454. numpy/f2py/symbolic.py +1518 -0
  455. numpy/f2py/symbolic.pyi +219 -0
  456. numpy/f2py/tests/__init__.py +16 -0
  457. numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
  458. numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
  459. numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
  460. numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
  461. numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
  462. numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
  463. numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
  464. numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
  465. numpy/f2py/tests/src/block_docstring/foo.f +6 -0
  466. numpy/f2py/tests/src/callback/foo.f +62 -0
  467. numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
  468. numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
  469. numpy/f2py/tests/src/callback/gh25211.f +10 -0
  470. numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
  471. numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
  472. numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
  473. numpy/f2py/tests/src/cli/hi77.f +3 -0
  474. numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
  475. numpy/f2py/tests/src/common/block.f +11 -0
  476. numpy/f2py/tests/src/common/gh19161.f90 +10 -0
  477. numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
  478. numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
  479. numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
  480. numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
  481. numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
  482. numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
  483. numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
  484. numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
  485. numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
  486. numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
  487. numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
  488. numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
  489. numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
  490. numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
  491. numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
  492. numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
  493. numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
  494. numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
  495. numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
  496. numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
  497. numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
  498. numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
  499. numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
  500. numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
  501. numpy/f2py/tests/src/kind/foo.f90 +20 -0
  502. numpy/f2py/tests/src/mixed/foo.f +5 -0
  503. numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
  504. numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
  505. numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
  506. numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
  507. numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
  508. numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
  509. numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
  510. numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
  511. numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
  512. numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
  513. numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
  514. numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
  515. numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
  516. numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
  517. numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
  518. numpy/f2py/tests/src/quoted_character/foo.f +14 -0
  519. numpy/f2py/tests/src/regression/AB.inc +1 -0
  520. numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
  521. numpy/f2py/tests/src/regression/datonly.f90 +17 -0
  522. numpy/f2py/tests/src/regression/f77comments.f +26 -0
  523. numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
  524. numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
  525. numpy/f2py/tests/src/regression/incfile.f90 +5 -0
  526. numpy/f2py/tests/src/regression/inout.f90 +9 -0
  527. numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
  528. numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
  529. numpy/f2py/tests/src/return_character/foo77.f +45 -0
  530. numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
  531. numpy/f2py/tests/src/return_complex/foo77.f +45 -0
  532. numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
  533. numpy/f2py/tests/src/return_integer/foo77.f +56 -0
  534. numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
  535. numpy/f2py/tests/src/return_logical/foo77.f +56 -0
  536. numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
  537. numpy/f2py/tests/src/return_real/foo77.f +45 -0
  538. numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
  539. numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
  540. numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
  541. numpy/f2py/tests/src/routines/subrout.f +4 -0
  542. numpy/f2py/tests/src/routines/subrout.pyf +10 -0
  543. numpy/f2py/tests/src/size/foo.f90 +44 -0
  544. numpy/f2py/tests/src/string/char.f90 +29 -0
  545. numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
  546. numpy/f2py/tests/src/string/gh24008.f +8 -0
  547. numpy/f2py/tests/src/string/gh24662.f90 +7 -0
  548. numpy/f2py/tests/src/string/gh25286.f90 +14 -0
  549. numpy/f2py/tests/src/string/gh25286.pyf +12 -0
  550. numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
  551. numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
  552. numpy/f2py/tests/src/string/string.f +12 -0
  553. numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
  554. numpy/f2py/tests/test_abstract_interface.py +26 -0
  555. numpy/f2py/tests/test_array_from_pyobj.py +678 -0
  556. numpy/f2py/tests/test_assumed_shape.py +50 -0
  557. numpy/f2py/tests/test_block_docstring.py +20 -0
  558. numpy/f2py/tests/test_callback.py +263 -0
  559. numpy/f2py/tests/test_character.py +641 -0
  560. numpy/f2py/tests/test_common.py +23 -0
  561. numpy/f2py/tests/test_crackfortran.py +421 -0
  562. numpy/f2py/tests/test_data.py +71 -0
  563. numpy/f2py/tests/test_docs.py +66 -0
  564. numpy/f2py/tests/test_f2cmap.py +17 -0
  565. numpy/f2py/tests/test_f2py2e.py +983 -0
  566. numpy/f2py/tests/test_isoc.py +56 -0
  567. numpy/f2py/tests/test_kind.py +52 -0
  568. numpy/f2py/tests/test_mixed.py +35 -0
  569. numpy/f2py/tests/test_modules.py +83 -0
  570. numpy/f2py/tests/test_parameter.py +129 -0
  571. numpy/f2py/tests/test_pyf_src.py +43 -0
  572. numpy/f2py/tests/test_quoted_character.py +18 -0
  573. numpy/f2py/tests/test_regression.py +187 -0
  574. numpy/f2py/tests/test_return_character.py +48 -0
  575. numpy/f2py/tests/test_return_complex.py +67 -0
  576. numpy/f2py/tests/test_return_integer.py +55 -0
  577. numpy/f2py/tests/test_return_logical.py +65 -0
  578. numpy/f2py/tests/test_return_real.py +109 -0
  579. numpy/f2py/tests/test_routines.py +29 -0
  580. numpy/f2py/tests/test_semicolon_split.py +75 -0
  581. numpy/f2py/tests/test_size.py +45 -0
  582. numpy/f2py/tests/test_string.py +100 -0
  583. numpy/f2py/tests/test_symbolic.py +500 -0
  584. numpy/f2py/tests/test_value_attrspec.py +15 -0
  585. numpy/f2py/tests/util.py +442 -0
  586. numpy/f2py/use_rules.py +99 -0
  587. numpy/f2py/use_rules.pyi +9 -0
  588. numpy/fft/__init__.py +213 -0
  589. numpy/fft/__init__.pyi +38 -0
  590. numpy/fft/_helper.py +235 -0
  591. numpy/fft/_helper.pyi +44 -0
  592. numpy/fft/_pocketfft.py +1693 -0
  593. numpy/fft/_pocketfft.pyi +137 -0
  594. numpy/fft/_pocketfft_umath.pypy311-pp73-darwin.so +0 -0
  595. numpy/fft/tests/__init__.py +0 -0
  596. numpy/fft/tests/test_helper.py +167 -0
  597. numpy/fft/tests/test_pocketfft.py +589 -0
  598. numpy/lib/__init__.py +97 -0
  599. numpy/lib/__init__.pyi +52 -0
  600. numpy/lib/_array_utils_impl.py +62 -0
  601. numpy/lib/_array_utils_impl.pyi +10 -0
  602. numpy/lib/_arraypad_impl.py +926 -0
  603. numpy/lib/_arraypad_impl.pyi +88 -0
  604. numpy/lib/_arraysetops_impl.py +1158 -0
  605. numpy/lib/_arraysetops_impl.pyi +462 -0
  606. numpy/lib/_arrayterator_impl.py +224 -0
  607. numpy/lib/_arrayterator_impl.pyi +45 -0
  608. numpy/lib/_datasource.py +700 -0
  609. numpy/lib/_datasource.pyi +30 -0
  610. numpy/lib/_format_impl.py +1036 -0
  611. numpy/lib/_format_impl.pyi +56 -0
  612. numpy/lib/_function_base_impl.py +5760 -0
  613. numpy/lib/_function_base_impl.pyi +2324 -0
  614. numpy/lib/_histograms_impl.py +1085 -0
  615. numpy/lib/_histograms_impl.pyi +40 -0
  616. numpy/lib/_index_tricks_impl.py +1048 -0
  617. numpy/lib/_index_tricks_impl.pyi +267 -0
  618. numpy/lib/_iotools.py +900 -0
  619. numpy/lib/_iotools.pyi +116 -0
  620. numpy/lib/_nanfunctions_impl.py +2006 -0
  621. numpy/lib/_nanfunctions_impl.pyi +48 -0
  622. numpy/lib/_npyio_impl.py +2583 -0
  623. numpy/lib/_npyio_impl.pyi +299 -0
  624. numpy/lib/_polynomial_impl.py +1465 -0
  625. numpy/lib/_polynomial_impl.pyi +338 -0
  626. numpy/lib/_scimath_impl.py +642 -0
  627. numpy/lib/_scimath_impl.pyi +93 -0
  628. numpy/lib/_shape_base_impl.py +1289 -0
  629. numpy/lib/_shape_base_impl.pyi +236 -0
  630. numpy/lib/_stride_tricks_impl.py +582 -0
  631. numpy/lib/_stride_tricks_impl.pyi +73 -0
  632. numpy/lib/_twodim_base_impl.py +1201 -0
  633. numpy/lib/_twodim_base_impl.pyi +408 -0
  634. numpy/lib/_type_check_impl.py +710 -0
  635. numpy/lib/_type_check_impl.pyi +348 -0
  636. numpy/lib/_ufunclike_impl.py +199 -0
  637. numpy/lib/_ufunclike_impl.pyi +60 -0
  638. numpy/lib/_user_array_impl.py +310 -0
  639. numpy/lib/_user_array_impl.pyi +226 -0
  640. numpy/lib/_utils_impl.py +784 -0
  641. numpy/lib/_utils_impl.pyi +22 -0
  642. numpy/lib/_version.py +153 -0
  643. numpy/lib/_version.pyi +17 -0
  644. numpy/lib/array_utils.py +7 -0
  645. numpy/lib/array_utils.pyi +6 -0
  646. numpy/lib/format.py +24 -0
  647. numpy/lib/format.pyi +24 -0
  648. numpy/lib/introspect.py +94 -0
  649. numpy/lib/introspect.pyi +3 -0
  650. numpy/lib/mixins.py +180 -0
  651. numpy/lib/mixins.pyi +78 -0
  652. numpy/lib/npyio.py +1 -0
  653. numpy/lib/npyio.pyi +5 -0
  654. numpy/lib/recfunctions.py +1681 -0
  655. numpy/lib/recfunctions.pyi +444 -0
  656. numpy/lib/scimath.py +13 -0
  657. numpy/lib/scimath.pyi +12 -0
  658. numpy/lib/stride_tricks.py +1 -0
  659. numpy/lib/stride_tricks.pyi +4 -0
  660. numpy/lib/tests/__init__.py +0 -0
  661. numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
  662. numpy/lib/tests/data/py2-objarr.npy +0 -0
  663. numpy/lib/tests/data/py2-objarr.npz +0 -0
  664. numpy/lib/tests/data/py3-objarr.npy +0 -0
  665. numpy/lib/tests/data/py3-objarr.npz +0 -0
  666. numpy/lib/tests/data/python3.npy +0 -0
  667. numpy/lib/tests/data/win64python2.npy +0 -0
  668. numpy/lib/tests/test__datasource.py +328 -0
  669. numpy/lib/tests/test__iotools.py +358 -0
  670. numpy/lib/tests/test__version.py +64 -0
  671. numpy/lib/tests/test_array_utils.py +32 -0
  672. numpy/lib/tests/test_arraypad.py +1427 -0
  673. numpy/lib/tests/test_arraysetops.py +1302 -0
  674. numpy/lib/tests/test_arrayterator.py +45 -0
  675. numpy/lib/tests/test_format.py +1054 -0
  676. numpy/lib/tests/test_function_base.py +4750 -0
  677. numpy/lib/tests/test_histograms.py +855 -0
  678. numpy/lib/tests/test_index_tricks.py +693 -0
  679. numpy/lib/tests/test_io.py +2857 -0
  680. numpy/lib/tests/test_loadtxt.py +1099 -0
  681. numpy/lib/tests/test_mixins.py +215 -0
  682. numpy/lib/tests/test_nanfunctions.py +1438 -0
  683. numpy/lib/tests/test_packbits.py +376 -0
  684. numpy/lib/tests/test_polynomial.py +325 -0
  685. numpy/lib/tests/test_recfunctions.py +1042 -0
  686. numpy/lib/tests/test_regression.py +231 -0
  687. numpy/lib/tests/test_shape_base.py +813 -0
  688. numpy/lib/tests/test_stride_tricks.py +655 -0
  689. numpy/lib/tests/test_twodim_base.py +559 -0
  690. numpy/lib/tests/test_type_check.py +473 -0
  691. numpy/lib/tests/test_ufunclike.py +97 -0
  692. numpy/lib/tests/test_utils.py +80 -0
  693. numpy/lib/user_array.py +1 -0
  694. numpy/lib/user_array.pyi +1 -0
  695. numpy/linalg/__init__.py +95 -0
  696. numpy/linalg/__init__.pyi +71 -0
  697. numpy/linalg/_linalg.py +3657 -0
  698. numpy/linalg/_linalg.pyi +548 -0
  699. numpy/linalg/_umath_linalg.pyi +60 -0
  700. numpy/linalg/_umath_linalg.pypy311-pp73-darwin.so +0 -0
  701. numpy/linalg/lapack_lite.pyi +143 -0
  702. numpy/linalg/lapack_lite.pypy311-pp73-darwin.so +0 -0
  703. numpy/linalg/tests/__init__.py +0 -0
  704. numpy/linalg/tests/test_deprecations.py +21 -0
  705. numpy/linalg/tests/test_linalg.py +2442 -0
  706. numpy/linalg/tests/test_regression.py +182 -0
  707. numpy/ma/API_CHANGES.txt +135 -0
  708. numpy/ma/LICENSE +24 -0
  709. numpy/ma/README.rst +236 -0
  710. numpy/ma/__init__.py +53 -0
  711. numpy/ma/__init__.pyi +458 -0
  712. numpy/ma/core.py +8929 -0
  713. numpy/ma/core.pyi +3720 -0
  714. numpy/ma/extras.py +2266 -0
  715. numpy/ma/extras.pyi +297 -0
  716. numpy/ma/mrecords.py +762 -0
  717. numpy/ma/mrecords.pyi +96 -0
  718. numpy/ma/tests/__init__.py +0 -0
  719. numpy/ma/tests/test_arrayobject.py +40 -0
  720. numpy/ma/tests/test_core.py +6008 -0
  721. numpy/ma/tests/test_deprecations.py +65 -0
  722. numpy/ma/tests/test_extras.py +1945 -0
  723. numpy/ma/tests/test_mrecords.py +495 -0
  724. numpy/ma/tests/test_old_ma.py +939 -0
  725. numpy/ma/tests/test_regression.py +83 -0
  726. numpy/ma/tests/test_subclassing.py +469 -0
  727. numpy/ma/testutils.py +294 -0
  728. numpy/ma/testutils.pyi +69 -0
  729. numpy/matlib.py +380 -0
  730. numpy/matlib.pyi +580 -0
  731. numpy/matrixlib/__init__.py +12 -0
  732. numpy/matrixlib/__init__.pyi +3 -0
  733. numpy/matrixlib/defmatrix.py +1119 -0
  734. numpy/matrixlib/defmatrix.pyi +218 -0
  735. numpy/matrixlib/tests/__init__.py +0 -0
  736. numpy/matrixlib/tests/test_defmatrix.py +455 -0
  737. numpy/matrixlib/tests/test_interaction.py +360 -0
  738. numpy/matrixlib/tests/test_masked_matrix.py +240 -0
  739. numpy/matrixlib/tests/test_matrix_linalg.py +110 -0
  740. numpy/matrixlib/tests/test_multiarray.py +17 -0
  741. numpy/matrixlib/tests/test_numeric.py +18 -0
  742. numpy/matrixlib/tests/test_regression.py +31 -0
  743. numpy/polynomial/__init__.py +187 -0
  744. numpy/polynomial/__init__.pyi +31 -0
  745. numpy/polynomial/_polybase.py +1191 -0
  746. numpy/polynomial/_polybase.pyi +262 -0
  747. numpy/polynomial/_polytypes.pyi +501 -0
  748. numpy/polynomial/chebyshev.py +2001 -0
  749. numpy/polynomial/chebyshev.pyi +180 -0
  750. numpy/polynomial/hermite.py +1738 -0
  751. numpy/polynomial/hermite.pyi +106 -0
  752. numpy/polynomial/hermite_e.py +1640 -0
  753. numpy/polynomial/hermite_e.pyi +106 -0
  754. numpy/polynomial/laguerre.py +1673 -0
  755. numpy/polynomial/laguerre.pyi +100 -0
  756. numpy/polynomial/legendre.py +1603 -0
  757. numpy/polynomial/legendre.pyi +100 -0
  758. numpy/polynomial/polynomial.py +1625 -0
  759. numpy/polynomial/polynomial.pyi +109 -0
  760. numpy/polynomial/polyutils.py +759 -0
  761. numpy/polynomial/polyutils.pyi +307 -0
  762. numpy/polynomial/tests/__init__.py +0 -0
  763. numpy/polynomial/tests/test_chebyshev.py +618 -0
  764. numpy/polynomial/tests/test_classes.py +613 -0
  765. numpy/polynomial/tests/test_hermite.py +553 -0
  766. numpy/polynomial/tests/test_hermite_e.py +554 -0
  767. numpy/polynomial/tests/test_laguerre.py +535 -0
  768. numpy/polynomial/tests/test_legendre.py +566 -0
  769. numpy/polynomial/tests/test_polynomial.py +691 -0
  770. numpy/polynomial/tests/test_polyutils.py +123 -0
  771. numpy/polynomial/tests/test_printing.py +557 -0
  772. numpy/polynomial/tests/test_symbol.py +217 -0
  773. numpy/py.typed +0 -0
  774. numpy/random/LICENSE.md +71 -0
  775. numpy/random/__init__.pxd +14 -0
  776. numpy/random/__init__.py +213 -0
  777. numpy/random/__init__.pyi +124 -0
  778. numpy/random/_bounded_integers.pxd +29 -0
  779. numpy/random/_bounded_integers.pyi +1 -0
  780. numpy/random/_bounded_integers.pypy311-pp73-darwin.so +0 -0
  781. numpy/random/_common.pxd +110 -0
  782. numpy/random/_common.pyi +16 -0
  783. numpy/random/_common.pypy311-pp73-darwin.so +0 -0
  784. numpy/random/_examples/cffi/extending.py +44 -0
  785. numpy/random/_examples/cffi/parse.py +53 -0
  786. numpy/random/_examples/cython/extending.pyx +77 -0
  787. numpy/random/_examples/cython/extending_distributions.pyx +117 -0
  788. numpy/random/_examples/cython/meson.build +53 -0
  789. numpy/random/_examples/numba/extending.py +86 -0
  790. numpy/random/_examples/numba/extending_distributions.py +67 -0
  791. numpy/random/_generator.pyi +862 -0
  792. numpy/random/_generator.pypy311-pp73-darwin.so +0 -0
  793. numpy/random/_mt19937.pyi +27 -0
  794. numpy/random/_mt19937.pypy311-pp73-darwin.so +0 -0
  795. numpy/random/_pcg64.pyi +41 -0
  796. numpy/random/_pcg64.pypy311-pp73-darwin.so +0 -0
  797. numpy/random/_philox.pyi +36 -0
  798. numpy/random/_philox.pypy311-pp73-darwin.so +0 -0
  799. numpy/random/_pickle.py +88 -0
  800. numpy/random/_pickle.pyi +43 -0
  801. numpy/random/_sfc64.pyi +25 -0
  802. numpy/random/_sfc64.pypy311-pp73-darwin.so +0 -0
  803. numpy/random/bit_generator.pxd +40 -0
  804. numpy/random/bit_generator.pyi +123 -0
  805. numpy/random/bit_generator.pypy311-pp73-darwin.so +0 -0
  806. numpy/random/c_distributions.pxd +119 -0
  807. numpy/random/lib/libnpyrandom.a +0 -0
  808. numpy/random/mtrand.pyi +759 -0
  809. numpy/random/mtrand.pypy311-pp73-darwin.so +0 -0
  810. numpy/random/tests/__init__.py +0 -0
  811. numpy/random/tests/data/__init__.py +0 -0
  812. numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
  813. numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
  814. numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
  815. numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
  816. numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
  817. numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
  818. numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
  819. numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
  820. numpy/random/tests/data/philox-testset-1.csv +1001 -0
  821. numpy/random/tests/data/philox-testset-2.csv +1001 -0
  822. numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
  823. numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
  824. numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
  825. numpy/random/tests/test_direct.py +595 -0
  826. numpy/random/tests/test_extending.py +131 -0
  827. numpy/random/tests/test_generator_mt19937.py +2825 -0
  828. numpy/random/tests/test_generator_mt19937_regressions.py +221 -0
  829. numpy/random/tests/test_random.py +1724 -0
  830. numpy/random/tests/test_randomstate.py +2099 -0
  831. numpy/random/tests/test_randomstate_regression.py +213 -0
  832. numpy/random/tests/test_regression.py +175 -0
  833. numpy/random/tests/test_seed_sequence.py +79 -0
  834. numpy/random/tests/test_smoke.py +882 -0
  835. numpy/rec/__init__.py +2 -0
  836. numpy/rec/__init__.pyi +23 -0
  837. numpy/strings/__init__.py +2 -0
  838. numpy/strings/__init__.pyi +97 -0
  839. numpy/testing/__init__.py +22 -0
  840. numpy/testing/__init__.pyi +107 -0
  841. numpy/testing/_private/__init__.py +0 -0
  842. numpy/testing/_private/__init__.pyi +0 -0
  843. numpy/testing/_private/extbuild.py +250 -0
  844. numpy/testing/_private/extbuild.pyi +25 -0
  845. numpy/testing/_private/utils.py +2830 -0
  846. numpy/testing/_private/utils.pyi +505 -0
  847. numpy/testing/overrides.py +84 -0
  848. numpy/testing/overrides.pyi +10 -0
  849. numpy/testing/print_coercion_tables.py +207 -0
  850. numpy/testing/print_coercion_tables.pyi +26 -0
  851. numpy/testing/tests/__init__.py +0 -0
  852. numpy/testing/tests/test_utils.py +2123 -0
  853. numpy/tests/__init__.py +0 -0
  854. numpy/tests/test__all__.py +10 -0
  855. numpy/tests/test_configtool.py +51 -0
  856. numpy/tests/test_ctypeslib.py +383 -0
  857. numpy/tests/test_lazyloading.py +42 -0
  858. numpy/tests/test_matlib.py +59 -0
  859. numpy/tests/test_numpy_config.py +47 -0
  860. numpy/tests/test_numpy_version.py +54 -0
  861. numpy/tests/test_public_api.py +807 -0
  862. numpy/tests/test_reloading.py +76 -0
  863. numpy/tests/test_scripts.py +48 -0
  864. numpy/tests/test_warnings.py +79 -0
  865. numpy/typing/__init__.py +233 -0
  866. numpy/typing/__init__.pyi +3 -0
  867. numpy/typing/mypy_plugin.py +200 -0
  868. numpy/typing/tests/__init__.py +0 -0
  869. numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
  870. numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
  871. numpy/typing/tests/data/fail/array_like.pyi +15 -0
  872. numpy/typing/tests/data/fail/array_pad.pyi +6 -0
  873. numpy/typing/tests/data/fail/arrayprint.pyi +15 -0
  874. numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
  875. numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
  876. numpy/typing/tests/data/fail/char.pyi +63 -0
  877. numpy/typing/tests/data/fail/chararray.pyi +61 -0
  878. numpy/typing/tests/data/fail/comparisons.pyi +27 -0
  879. numpy/typing/tests/data/fail/constants.pyi +3 -0
  880. numpy/typing/tests/data/fail/datasource.pyi +16 -0
  881. numpy/typing/tests/data/fail/dtype.pyi +17 -0
  882. numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
  883. numpy/typing/tests/data/fail/flatiter.pyi +38 -0
  884. numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
  885. numpy/typing/tests/data/fail/histograms.pyi +12 -0
  886. numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
  887. numpy/typing/tests/data/fail/lib_function_base.pyi +60 -0
  888. numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
  889. numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
  890. numpy/typing/tests/data/fail/lib_version.pyi +6 -0
  891. numpy/typing/tests/data/fail/linalg.pyi +52 -0
  892. numpy/typing/tests/data/fail/ma.pyi +155 -0
  893. numpy/typing/tests/data/fail/memmap.pyi +5 -0
  894. numpy/typing/tests/data/fail/modules.pyi +17 -0
  895. numpy/typing/tests/data/fail/multiarray.pyi +52 -0
  896. numpy/typing/tests/data/fail/ndarray.pyi +11 -0
  897. numpy/typing/tests/data/fail/ndarray_misc.pyi +49 -0
  898. numpy/typing/tests/data/fail/nditer.pyi +8 -0
  899. numpy/typing/tests/data/fail/nested_sequence.pyi +17 -0
  900. numpy/typing/tests/data/fail/npyio.pyi +24 -0
  901. numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
  902. numpy/typing/tests/data/fail/random.pyi +62 -0
  903. numpy/typing/tests/data/fail/rec.pyi +17 -0
  904. numpy/typing/tests/data/fail/scalars.pyi +86 -0
  905. numpy/typing/tests/data/fail/shape.pyi +7 -0
  906. numpy/typing/tests/data/fail/shape_base.pyi +8 -0
  907. numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
  908. numpy/typing/tests/data/fail/strings.pyi +52 -0
  909. numpy/typing/tests/data/fail/testing.pyi +28 -0
  910. numpy/typing/tests/data/fail/twodim_base.pyi +39 -0
  911. numpy/typing/tests/data/fail/type_check.pyi +12 -0
  912. numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
  913. numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
  914. numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
  915. numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
  916. numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
  917. numpy/typing/tests/data/mypy.ini +8 -0
  918. numpy/typing/tests/data/pass/arithmetic.py +614 -0
  919. numpy/typing/tests/data/pass/array_constructors.py +138 -0
  920. numpy/typing/tests/data/pass/array_like.py +43 -0
  921. numpy/typing/tests/data/pass/arrayprint.py +37 -0
  922. numpy/typing/tests/data/pass/arrayterator.py +28 -0
  923. numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
  924. numpy/typing/tests/data/pass/comparisons.py +316 -0
  925. numpy/typing/tests/data/pass/dtype.py +57 -0
  926. numpy/typing/tests/data/pass/einsumfunc.py +36 -0
  927. numpy/typing/tests/data/pass/flatiter.py +26 -0
  928. numpy/typing/tests/data/pass/fromnumeric.py +272 -0
  929. numpy/typing/tests/data/pass/index_tricks.py +62 -0
  930. numpy/typing/tests/data/pass/lib_user_array.py +22 -0
  931. numpy/typing/tests/data/pass/lib_utils.py +19 -0
  932. numpy/typing/tests/data/pass/lib_version.py +18 -0
  933. numpy/typing/tests/data/pass/literal.py +52 -0
  934. numpy/typing/tests/data/pass/ma.py +199 -0
  935. numpy/typing/tests/data/pass/mod.py +149 -0
  936. numpy/typing/tests/data/pass/modules.py +45 -0
  937. numpy/typing/tests/data/pass/multiarray.py +77 -0
  938. numpy/typing/tests/data/pass/ndarray_conversion.py +81 -0
  939. numpy/typing/tests/data/pass/ndarray_misc.py +199 -0
  940. numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
  941. numpy/typing/tests/data/pass/nditer.py +4 -0
  942. numpy/typing/tests/data/pass/numeric.py +90 -0
  943. numpy/typing/tests/data/pass/numerictypes.py +17 -0
  944. numpy/typing/tests/data/pass/random.py +1498 -0
  945. numpy/typing/tests/data/pass/recfunctions.py +164 -0
  946. numpy/typing/tests/data/pass/scalars.py +249 -0
  947. numpy/typing/tests/data/pass/shape.py +19 -0
  948. numpy/typing/tests/data/pass/simple.py +170 -0
  949. numpy/typing/tests/data/pass/ufunc_config.py +64 -0
  950. numpy/typing/tests/data/pass/ufunclike.py +52 -0
  951. numpy/typing/tests/data/pass/ufuncs.py +16 -0
  952. numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
  953. numpy/typing/tests/data/reveal/arithmetic.pyi +719 -0
  954. numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
  955. numpy/typing/tests/data/reveal/array_constructors.pyi +277 -0
  956. numpy/typing/tests/data/reveal/arraypad.pyi +27 -0
  957. numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
  958. numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
  959. numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
  960. numpy/typing/tests/data/reveal/bitwise_ops.pyi +166 -0
  961. numpy/typing/tests/data/reveal/char.pyi +225 -0
  962. numpy/typing/tests/data/reveal/chararray.pyi +138 -0
  963. numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
  964. numpy/typing/tests/data/reveal/constants.pyi +14 -0
  965. numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
  966. numpy/typing/tests/data/reveal/datasource.pyi +23 -0
  967. numpy/typing/tests/data/reveal/dtype.pyi +132 -0
  968. numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
  969. numpy/typing/tests/data/reveal/emath.pyi +54 -0
  970. numpy/typing/tests/data/reveal/fft.pyi +37 -0
  971. numpy/typing/tests/data/reveal/flatiter.pyi +86 -0
  972. numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
  973. numpy/typing/tests/data/reveal/getlimits.pyi +53 -0
  974. numpy/typing/tests/data/reveal/histograms.pyi +25 -0
  975. numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
  976. numpy/typing/tests/data/reveal/lib_function_base.pyi +409 -0
  977. numpy/typing/tests/data/reveal/lib_polynomial.pyi +147 -0
  978. numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
  979. numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
  980. numpy/typing/tests/data/reveal/linalg.pyi +154 -0
  981. numpy/typing/tests/data/reveal/ma.pyi +1098 -0
  982. numpy/typing/tests/data/reveal/matrix.pyi +73 -0
  983. numpy/typing/tests/data/reveal/memmap.pyi +19 -0
  984. numpy/typing/tests/data/reveal/mod.pyi +178 -0
  985. numpy/typing/tests/data/reveal/modules.pyi +51 -0
  986. numpy/typing/tests/data/reveal/multiarray.pyi +197 -0
  987. numpy/typing/tests/data/reveal/nbit_base_example.pyi +20 -0
  988. numpy/typing/tests/data/reveal/ndarray_assignability.pyi +82 -0
  989. numpy/typing/tests/data/reveal/ndarray_conversion.pyi +83 -0
  990. numpy/typing/tests/data/reveal/ndarray_misc.pyi +246 -0
  991. numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +47 -0
  992. numpy/typing/tests/data/reveal/nditer.pyi +49 -0
  993. numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
  994. numpy/typing/tests/data/reveal/npyio.pyi +83 -0
  995. numpy/typing/tests/data/reveal/numeric.pyi +170 -0
  996. numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
  997. numpy/typing/tests/data/reveal/polynomial_polybase.pyi +217 -0
  998. numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +218 -0
  999. numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
  1000. numpy/typing/tests/data/reveal/random.pyi +1546 -0
  1001. numpy/typing/tests/data/reveal/rec.pyi +171 -0
  1002. numpy/typing/tests/data/reveal/scalars.pyi +191 -0
  1003. numpy/typing/tests/data/reveal/shape.pyi +13 -0
  1004. numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
  1005. numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
  1006. numpy/typing/tests/data/reveal/strings.pyi +196 -0
  1007. numpy/typing/tests/data/reveal/testing.pyi +198 -0
  1008. numpy/typing/tests/data/reveal/twodim_base.pyi +225 -0
  1009. numpy/typing/tests/data/reveal/type_check.pyi +67 -0
  1010. numpy/typing/tests/data/reveal/ufunc_config.pyi +29 -0
  1011. numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
  1012. numpy/typing/tests/data/reveal/ufuncs.pyi +142 -0
  1013. numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
  1014. numpy/typing/tests/test_isfile.py +38 -0
  1015. numpy/typing/tests/test_runtime.py +110 -0
  1016. numpy/typing/tests/test_typing.py +205 -0
  1017. numpy/version.py +11 -0
  1018. numpy/version.pyi +9 -0
  1019. numpy-2.4.1.dist-info/METADATA +139 -0
  1020. numpy-2.4.1.dist-info/RECORD +1039 -0
  1021. numpy-2.4.1.dist-info/WHEEL +6 -0
  1022. numpy-2.4.1.dist-info/entry_points.txt +13 -0
  1023. numpy-2.4.1.dist-info/licenses/LICENSE.txt +935 -0
  1024. numpy-2.4.1.dist-info/licenses/numpy/_core/include/numpy/libdivide/LICENSE.txt +21 -0
  1025. numpy-2.4.1.dist-info/licenses/numpy/_core/src/common/pythoncapi-compat/COPYING +14 -0
  1026. numpy-2.4.1.dist-info/licenses/numpy/_core/src/highway/LICENSE +371 -0
  1027. numpy-2.4.1.dist-info/licenses/numpy/_core/src/multiarray/dragon4_LICENSE.txt +27 -0
  1028. numpy-2.4.1.dist-info/licenses/numpy/_core/src/npysort/x86-simd-sort/LICENSE.md +28 -0
  1029. numpy-2.4.1.dist-info/licenses/numpy/_core/src/umath/svml/LICENSE +30 -0
  1030. numpy-2.4.1.dist-info/licenses/numpy/fft/pocketfft/LICENSE.md +25 -0
  1031. numpy-2.4.1.dist-info/licenses/numpy/linalg/lapack_lite/LICENSE.txt +48 -0
  1032. numpy-2.4.1.dist-info/licenses/numpy/ma/LICENSE +24 -0
  1033. numpy-2.4.1.dist-info/licenses/numpy/random/LICENSE.md +71 -0
  1034. numpy-2.4.1.dist-info/licenses/numpy/random/src/distributions/LICENSE.md +61 -0
  1035. numpy-2.4.1.dist-info/licenses/numpy/random/src/mt19937/LICENSE.md +61 -0
  1036. numpy-2.4.1.dist-info/licenses/numpy/random/src/pcg64/LICENSE.md +22 -0
  1037. numpy-2.4.1.dist-info/licenses/numpy/random/src/philox/LICENSE.md +31 -0
  1038. numpy-2.4.1.dist-info/licenses/numpy/random/src/sfc64/LICENSE.md +27 -0
  1039. numpy-2.4.1.dist-info/licenses/numpy/random/src/splitmix64/LICENSE.md +9 -0
@@ -0,0 +1,1625 @@
1
+ """
2
+ =================================================
3
+ Power Series (:mod:`numpy.polynomial.polynomial`)
4
+ =================================================
5
+
6
+ This module provides a number of objects (mostly functions) useful for
7
+ dealing with polynomials, including a `Polynomial` class that
8
+ encapsulates the usual arithmetic operations. (General information
9
+ on how this module represents and works with polynomial objects is in
10
+ the docstring for its "parent" sub-package, `numpy.polynomial`).
11
+
12
+ Classes
13
+ -------
14
+ .. autosummary::
15
+ :toctree: generated/
16
+
17
+ Polynomial
18
+
19
+ Constants
20
+ ---------
21
+ .. autosummary::
22
+ :toctree: generated/
23
+
24
+ polydomain
25
+ polyzero
26
+ polyone
27
+ polyx
28
+
29
+ Arithmetic
30
+ ----------
31
+ .. autosummary::
32
+ :toctree: generated/
33
+
34
+ polyadd
35
+ polysub
36
+ polymulx
37
+ polymul
38
+ polydiv
39
+ polypow
40
+ polyval
41
+ polyval2d
42
+ polyval3d
43
+ polygrid2d
44
+ polygrid3d
45
+
46
+ Calculus
47
+ --------
48
+ .. autosummary::
49
+ :toctree: generated/
50
+
51
+ polyder
52
+ polyint
53
+
54
+ Misc Functions
55
+ --------------
56
+ .. autosummary::
57
+ :toctree: generated/
58
+
59
+ polyfromroots
60
+ polyroots
61
+ polyvalfromroots
62
+ polyvander
63
+ polyvander2d
64
+ polyvander3d
65
+ polycompanion
66
+ polyfit
67
+ polytrim
68
+ polyline
69
+
70
+ See Also
71
+ --------
72
+ `numpy.polynomial`
73
+
74
+ """
75
+ __all__ = [
76
+ 'polyzero', 'polyone', 'polyx', 'polydomain', 'polyline', 'polyadd',
77
+ 'polysub', 'polymulx', 'polymul', 'polydiv', 'polypow', 'polyval',
78
+ 'polyvalfromroots', 'polyder', 'polyint', 'polyfromroots', 'polyvander',
79
+ 'polyfit', 'polytrim', 'polyroots', 'Polynomial', 'polyval2d', 'polyval3d',
80
+ 'polygrid2d', 'polygrid3d', 'polyvander2d', 'polyvander3d',
81
+ 'polycompanion']
82
+
83
+ import numpy as np
84
+ from numpy._core.overrides import array_function_dispatch as _array_function_dispatch
85
+
86
+ from . import polyutils as pu
87
+ from ._polybase import ABCPolyBase
88
+
89
+ polytrim = pu.trimcoef
90
+
91
+ #
92
+ # These are constant arrays are of integer type so as to be compatible
93
+ # with the widest range of other types, such as Decimal.
94
+ #
95
+
96
+ # Polynomial default domain.
97
+ polydomain = np.array([-1., 1.])
98
+
99
+ # Polynomial coefficients representing zero.
100
+ polyzero = np.array([0])
101
+
102
+ # Polynomial coefficients representing one.
103
+ polyone = np.array([1])
104
+
105
+ # Polynomial coefficients representing the identity x.
106
+ polyx = np.array([0, 1])
107
+
108
+ #
109
+ # Polynomial series functions
110
+ #
111
+
112
+
113
+ def polyline(off, scl):
114
+ """
115
+ Returns an array representing a linear polynomial.
116
+
117
+ Parameters
118
+ ----------
119
+ off, scl : scalars
120
+ The "y-intercept" and "slope" of the line, respectively.
121
+
122
+ Returns
123
+ -------
124
+ y : ndarray
125
+ This module's representation of the linear polynomial ``off +
126
+ scl*x``.
127
+
128
+ See Also
129
+ --------
130
+ numpy.polynomial.chebyshev.chebline
131
+ numpy.polynomial.legendre.legline
132
+ numpy.polynomial.laguerre.lagline
133
+ numpy.polynomial.hermite.hermline
134
+ numpy.polynomial.hermite_e.hermeline
135
+
136
+ Examples
137
+ --------
138
+ >>> from numpy.polynomial import polynomial as P
139
+ >>> P.polyline(1, -1)
140
+ array([ 1, -1])
141
+ >>> P.polyval(1, P.polyline(1, -1)) # should be 0
142
+ 0.0
143
+
144
+ """
145
+ if scl != 0:
146
+ return np.array([off, scl])
147
+ else:
148
+ return np.array([off])
149
+
150
+
151
+ def polyfromroots(roots):
152
+ """
153
+ Generate a monic polynomial with given roots.
154
+
155
+ Return the coefficients of the polynomial
156
+
157
+ .. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),
158
+
159
+ where the :math:`r_n` are the roots specified in `roots`. If a zero has
160
+ multiplicity n, then it must appear in `roots` n times. For instance,
161
+ if 2 is a root of multiplicity three and 3 is a root of multiplicity 2,
162
+ then `roots` looks something like [2, 2, 2, 3, 3]. The roots can appear
163
+ in any order.
164
+
165
+ If the returned coefficients are `c`, then
166
+
167
+ .. math:: p(x) = c_0 + c_1 * x + ... + x^n
168
+
169
+ The coefficient of the last term is 1 for monic polynomials in this
170
+ form.
171
+
172
+ Parameters
173
+ ----------
174
+ roots : array_like
175
+ Sequence containing the roots.
176
+
177
+ Returns
178
+ -------
179
+ out : ndarray
180
+ 1-D array of the polynomial's coefficients If all the roots are
181
+ real, then `out` is also real, otherwise it is complex. (see
182
+ Examples below).
183
+
184
+ See Also
185
+ --------
186
+ numpy.polynomial.chebyshev.chebfromroots
187
+ numpy.polynomial.legendre.legfromroots
188
+ numpy.polynomial.laguerre.lagfromroots
189
+ numpy.polynomial.hermite.hermfromroots
190
+ numpy.polynomial.hermite_e.hermefromroots
191
+
192
+ Notes
193
+ -----
194
+ The coefficients are determined by multiplying together linear factors
195
+ of the form ``(x - r_i)``, i.e.
196
+
197
+ .. math:: p(x) = (x - r_0) (x - r_1) ... (x - r_n)
198
+
199
+ where ``n == len(roots) - 1``; note that this implies that ``1`` is always
200
+ returned for :math:`a_n`.
201
+
202
+ Examples
203
+ --------
204
+ >>> from numpy.polynomial import polynomial as P
205
+ >>> P.polyfromroots((-1,0,1)) # x(x - 1)(x + 1) = x^3 - x
206
+ array([ 0., -1., 0., 1.])
207
+ >>> j = complex(0,1)
208
+ >>> P.polyfromroots((-j,j)) # complex returned, though values are real
209
+ array([1.+0.j, 0.+0.j, 1.+0.j])
210
+
211
+ """
212
+ return pu._fromroots(polyline, polymul, roots)
213
+
214
+
215
+ def polyadd(c1, c2):
216
+ """
217
+ Add one polynomial to another.
218
+
219
+ Returns the sum of two polynomials `c1` + `c2`. The arguments are
220
+ sequences of coefficients from lowest order term to highest, i.e.,
221
+ [1,2,3] represents the polynomial ``1 + 2*x + 3*x**2``.
222
+
223
+ Parameters
224
+ ----------
225
+ c1, c2 : array_like
226
+ 1-D arrays of polynomial coefficients ordered from low to high.
227
+
228
+ Returns
229
+ -------
230
+ out : ndarray
231
+ The coefficient array representing their sum.
232
+
233
+ See Also
234
+ --------
235
+ polysub, polymulx, polymul, polydiv, polypow
236
+
237
+ Examples
238
+ --------
239
+ >>> from numpy.polynomial import polynomial as P
240
+ >>> c1 = (1, 2, 3)
241
+ >>> c2 = (3, 2, 1)
242
+ >>> sum = P.polyadd(c1,c2); sum
243
+ array([4., 4., 4.])
244
+ >>> P.polyval(2, sum) # 4 + 4(2) + 4(2**2)
245
+ 28.0
246
+
247
+ """
248
+ return pu._add(c1, c2)
249
+
250
+
251
+ def polysub(c1, c2):
252
+ """
253
+ Subtract one polynomial from another.
254
+
255
+ Returns the difference of two polynomials `c1` - `c2`. The arguments
256
+ are sequences of coefficients from lowest order term to highest, i.e.,
257
+ [1,2,3] represents the polynomial ``1 + 2*x + 3*x**2``.
258
+
259
+ Parameters
260
+ ----------
261
+ c1, c2 : array_like
262
+ 1-D arrays of polynomial coefficients ordered from low to
263
+ high.
264
+
265
+ Returns
266
+ -------
267
+ out : ndarray
268
+ Of coefficients representing their difference.
269
+
270
+ See Also
271
+ --------
272
+ polyadd, polymulx, polymul, polydiv, polypow
273
+
274
+ Examples
275
+ --------
276
+ >>> from numpy.polynomial import polynomial as P
277
+ >>> c1 = (1, 2, 3)
278
+ >>> c2 = (3, 2, 1)
279
+ >>> P.polysub(c1,c2)
280
+ array([-2., 0., 2.])
281
+ >>> P.polysub(c2, c1) # -P.polysub(c1,c2)
282
+ array([ 2., 0., -2.])
283
+
284
+ """
285
+ return pu._sub(c1, c2)
286
+
287
+
288
+ def polymulx(c):
289
+ """Multiply a polynomial by x.
290
+
291
+ Multiply the polynomial `c` by x, where x is the independent
292
+ variable.
293
+
294
+
295
+ Parameters
296
+ ----------
297
+ c : array_like
298
+ 1-D array of polynomial coefficients ordered from low to
299
+ high.
300
+
301
+ Returns
302
+ -------
303
+ out : ndarray
304
+ Array representing the result of the multiplication.
305
+
306
+ See Also
307
+ --------
308
+ polyadd, polysub, polymul, polydiv, polypow
309
+
310
+ Examples
311
+ --------
312
+ >>> from numpy.polynomial import polynomial as P
313
+ >>> c = (1, 2, 3)
314
+ >>> P.polymulx(c)
315
+ array([0., 1., 2., 3.])
316
+
317
+ """
318
+ # c is a trimmed copy
319
+ [c] = pu.as_series([c])
320
+ # The zero series needs special treatment
321
+ if len(c) == 1 and c[0] == 0:
322
+ return c
323
+
324
+ prd = np.empty(len(c) + 1, dtype=c.dtype)
325
+ prd[0] = c[0] * 0
326
+ prd[1:] = c
327
+ return prd
328
+
329
+
330
+ def polymul(c1, c2):
331
+ """
332
+ Multiply one polynomial by another.
333
+
334
+ Returns the product of two polynomials `c1` * `c2`. The arguments are
335
+ sequences of coefficients, from lowest order term to highest, e.g.,
336
+ [1,2,3] represents the polynomial ``1 + 2*x + 3*x**2.``
337
+
338
+ Parameters
339
+ ----------
340
+ c1, c2 : array_like
341
+ 1-D arrays of coefficients representing a polynomial, relative to the
342
+ "standard" basis, and ordered from lowest order term to highest.
343
+
344
+ Returns
345
+ -------
346
+ out : ndarray
347
+ Of the coefficients of their product.
348
+
349
+ See Also
350
+ --------
351
+ polyadd, polysub, polymulx, polydiv, polypow
352
+
353
+ Examples
354
+ --------
355
+ >>> from numpy.polynomial import polynomial as P
356
+ >>> c1 = (1, 2, 3)
357
+ >>> c2 = (3, 2, 1)
358
+ >>> P.polymul(c1, c2)
359
+ array([ 3., 8., 14., 8., 3.])
360
+
361
+ """
362
+ # c1, c2 are trimmed copies
363
+ [c1, c2] = pu.as_series([c1, c2])
364
+ ret = np.convolve(c1, c2)
365
+ return pu.trimseq(ret)
366
+
367
+
368
+ def polydiv(c1, c2):
369
+ """
370
+ Divide one polynomial by another.
371
+
372
+ Returns the quotient-with-remainder of two polynomials `c1` / `c2`.
373
+ The arguments are sequences of coefficients, from lowest order term
374
+ to highest, e.g., [1,2,3] represents ``1 + 2*x + 3*x**2``.
375
+
376
+ Parameters
377
+ ----------
378
+ c1, c2 : array_like
379
+ 1-D arrays of polynomial coefficients ordered from low to high.
380
+
381
+ Returns
382
+ -------
383
+ [quo, rem] : ndarrays
384
+ Of coefficient series representing the quotient and remainder.
385
+
386
+ See Also
387
+ --------
388
+ polyadd, polysub, polymulx, polymul, polypow
389
+
390
+ Examples
391
+ --------
392
+ >>> from numpy.polynomial import polynomial as P
393
+ >>> c1 = (1, 2, 3)
394
+ >>> c2 = (3, 2, 1)
395
+ >>> P.polydiv(c1, c2)
396
+ (array([3.]), array([-8., -4.]))
397
+ >>> P.polydiv(c2, c1)
398
+ (array([ 0.33333333]), array([ 2.66666667, 1.33333333])) # may vary
399
+
400
+ """
401
+ # c1, c2 are trimmed copies
402
+ [c1, c2] = pu.as_series([c1, c2])
403
+ if c2[-1] == 0:
404
+ raise ZeroDivisionError # FIXME: add message with details to exception
405
+
406
+ # note: this is more efficient than `pu._div(polymul, c1, c2)`
407
+ lc1 = len(c1)
408
+ lc2 = len(c2)
409
+ if lc1 < lc2:
410
+ return c1[:1] * 0, c1
411
+ elif lc2 == 1:
412
+ return c1 / c2[-1], c1[:1] * 0
413
+ else:
414
+ dlen = lc1 - lc2
415
+ scl = c2[-1]
416
+ c2 = c2[:-1] / scl
417
+ i = dlen
418
+ j = lc1 - 1
419
+ while i >= 0:
420
+ c1[i:j] -= c2 * c1[j]
421
+ i -= 1
422
+ j -= 1
423
+ return c1[j + 1:] / scl, pu.trimseq(c1[:j + 1])
424
+
425
+
426
+ def polypow(c, pow, maxpower=None):
427
+ """Raise a polynomial to a power.
428
+
429
+ Returns the polynomial `c` raised to the power `pow`. The argument
430
+ `c` is a sequence of coefficients ordered from low to high. i.e.,
431
+ [1,2,3] is the series ``1 + 2*x + 3*x**2.``
432
+
433
+ Parameters
434
+ ----------
435
+ c : array_like
436
+ 1-D array of array of series coefficients ordered from low to
437
+ high degree.
438
+ pow : integer
439
+ Power to which the series will be raised
440
+ maxpower : integer, optional
441
+ Maximum power allowed. This is mainly to limit growth of the series
442
+ to unmanageable size. Default is 16
443
+
444
+ Returns
445
+ -------
446
+ coef : ndarray
447
+ Power series of power.
448
+
449
+ See Also
450
+ --------
451
+ polyadd, polysub, polymulx, polymul, polydiv
452
+
453
+ Examples
454
+ --------
455
+ >>> from numpy.polynomial import polynomial as P
456
+ >>> P.polypow([1, 2, 3], 2)
457
+ array([ 1., 4., 10., 12., 9.])
458
+
459
+ """
460
+ # note: this is more efficient than `pu._pow(polymul, c1, c2)`, as it
461
+ # avoids calling `as_series` repeatedly
462
+ return pu._pow(np.convolve, c, pow, maxpower)
463
+
464
+
465
+ def polyder(c, m=1, scl=1, axis=0):
466
+ """
467
+ Differentiate a polynomial.
468
+
469
+ Returns the polynomial coefficients `c` differentiated `m` times along
470
+ `axis`. At each iteration the result is multiplied by `scl` (the
471
+ scaling factor is for use in a linear change of variable). The
472
+ argument `c` is an array of coefficients from low to high degree along
473
+ each axis, e.g., [1,2,3] represents the polynomial ``1 + 2*x + 3*x**2``
474
+ while [[1,2],[1,2]] represents ``1 + 1*x + 2*y + 2*x*y`` if axis=0 is
475
+ ``x`` and axis=1 is ``y``.
476
+
477
+ Parameters
478
+ ----------
479
+ c : array_like
480
+ Array of polynomial coefficients. If c is multidimensional the
481
+ different axis correspond to different variables with the degree
482
+ in each axis given by the corresponding index.
483
+ m : int, optional
484
+ Number of derivatives taken, must be non-negative. (Default: 1)
485
+ scl : scalar, optional
486
+ Each differentiation is multiplied by `scl`. The end result is
487
+ multiplication by ``scl**m``. This is for use in a linear change
488
+ of variable. (Default: 1)
489
+ axis : int, optional
490
+ Axis over which the derivative is taken. (Default: 0).
491
+
492
+ Returns
493
+ -------
494
+ der : ndarray
495
+ Polynomial coefficients of the derivative.
496
+
497
+ See Also
498
+ --------
499
+ polyint
500
+
501
+ Examples
502
+ --------
503
+ >>> from numpy.polynomial import polynomial as P
504
+ >>> c = (1, 2, 3, 4)
505
+ >>> P.polyder(c) # (d/dx)(c)
506
+ array([ 2., 6., 12.])
507
+ >>> P.polyder(c, 3) # (d**3/dx**3)(c)
508
+ array([24.])
509
+ >>> P.polyder(c, scl=-1) # (d/d(-x))(c)
510
+ array([ -2., -6., -12.])
511
+ >>> P.polyder(c, 2, -1) # (d**2/d(-x)**2)(c)
512
+ array([ 6., 24.])
513
+
514
+ """
515
+ c = np.array(c, ndmin=1, copy=True)
516
+ if c.dtype.char in '?bBhHiIlLqQpP':
517
+ # astype fails with NA
518
+ c = c + 0.0
519
+ cdt = c.dtype
520
+ cnt = pu._as_int(m, "the order of derivation")
521
+ iaxis = pu._as_int(axis, "the axis")
522
+ if cnt < 0:
523
+ raise ValueError("The order of derivation must be non-negative")
524
+ iaxis = np.lib.array_utils.normalize_axis_index(iaxis, c.ndim)
525
+
526
+ if cnt == 0:
527
+ return c
528
+
529
+ c = np.moveaxis(c, iaxis, 0)
530
+ n = len(c)
531
+ if cnt >= n:
532
+ c = c[:1] * 0
533
+ else:
534
+ for i in range(cnt):
535
+ n = n - 1
536
+ c *= scl
537
+ der = np.empty((n,) + c.shape[1:], dtype=cdt)
538
+ for j in range(n, 0, -1):
539
+ der[j - 1] = j * c[j]
540
+ c = der
541
+ c = np.moveaxis(c, 0, iaxis)
542
+ return c
543
+
544
+
545
+ def polyint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
546
+ """
547
+ Integrate a polynomial.
548
+
549
+ Returns the polynomial coefficients `c` integrated `m` times from
550
+ `lbnd` along `axis`. At each iteration the resulting series is
551
+ **multiplied** by `scl` and an integration constant, `k`, is added.
552
+ The scaling factor is for use in a linear change of variable. ("Buyer
553
+ beware": note that, depending on what one is doing, one may want `scl`
554
+ to be the reciprocal of what one might expect; for more information,
555
+ see the Notes section below.) The argument `c` is an array of
556
+ coefficients, from low to high degree along each axis, e.g., [1,2,3]
557
+ represents the polynomial ``1 + 2*x + 3*x**2`` while [[1,2],[1,2]]
558
+ represents ``1 + 1*x + 2*y + 2*x*y`` if axis=0 is ``x`` and axis=1 is
559
+ ``y``.
560
+
561
+ Parameters
562
+ ----------
563
+ c : array_like
564
+ 1-D array of polynomial coefficients, ordered from low to high.
565
+ m : int, optional
566
+ Order of integration, must be positive. (Default: 1)
567
+ k : {[], list, scalar}, optional
568
+ Integration constant(s). The value of the first integral at zero
569
+ is the first value in the list, the value of the second integral
570
+ at zero is the second value, etc. If ``k == []`` (the default),
571
+ all constants are set to zero. If ``m == 1``, a single scalar can
572
+ be given instead of a list.
573
+ lbnd : scalar, optional
574
+ The lower bound of the integral. (Default: 0)
575
+ scl : scalar, optional
576
+ Following each integration the result is *multiplied* by `scl`
577
+ before the integration constant is added. (Default: 1)
578
+ axis : int, optional
579
+ Axis over which the integral is taken. (Default: 0).
580
+
581
+ Returns
582
+ -------
583
+ S : ndarray
584
+ Coefficient array of the integral.
585
+
586
+ Raises
587
+ ------
588
+ ValueError
589
+ If ``m < 1``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or
590
+ ``np.ndim(scl) != 0``.
591
+
592
+ See Also
593
+ --------
594
+ polyder
595
+
596
+ Notes
597
+ -----
598
+ Note that the result of each integration is *multiplied* by `scl`. Why
599
+ is this important to note? Say one is making a linear change of
600
+ variable :math:`u = ax + b` in an integral relative to `x`. Then
601
+ :math:`dx = du/a`, so one will need to set `scl` equal to
602
+ :math:`1/a` - perhaps not what one would have first thought.
603
+
604
+ Examples
605
+ --------
606
+ >>> from numpy.polynomial import polynomial as P
607
+ >>> c = (1, 2, 3)
608
+ >>> P.polyint(c) # should return array([0, 1, 1, 1])
609
+ array([0., 1., 1., 1.])
610
+ >>> P.polyint(c, 3) # should return array([0, 0, 0, 1/6, 1/12, 1/20])
611
+ array([ 0. , 0. , 0. , 0.16666667, 0.08333333, # may vary
612
+ 0.05 ])
613
+ >>> P.polyint(c, k=3) # should return array([3, 1, 1, 1])
614
+ array([3., 1., 1., 1.])
615
+ >>> P.polyint(c,lbnd=-2) # should return array([6, 1, 1, 1])
616
+ array([6., 1., 1., 1.])
617
+ >>> P.polyint(c,scl=-2) # should return array([0, -2, -2, -2])
618
+ array([ 0., -2., -2., -2.])
619
+
620
+ """
621
+ c = np.array(c, ndmin=1, copy=True)
622
+ if c.dtype.char in '?bBhHiIlLqQpP':
623
+ # astype doesn't preserve mask attribute.
624
+ c = c + 0.0
625
+ cdt = c.dtype
626
+ if not np.iterable(k):
627
+ k = [k]
628
+ cnt = pu._as_int(m, "the order of integration")
629
+ iaxis = pu._as_int(axis, "the axis")
630
+ if cnt < 0:
631
+ raise ValueError("The order of integration must be non-negative")
632
+ if len(k) > cnt:
633
+ raise ValueError("Too many integration constants")
634
+ if np.ndim(lbnd) != 0:
635
+ raise ValueError("lbnd must be a scalar.")
636
+ if np.ndim(scl) != 0:
637
+ raise ValueError("scl must be a scalar.")
638
+ iaxis = np.lib.array_utils.normalize_axis_index(iaxis, c.ndim)
639
+
640
+ if cnt == 0:
641
+ return c
642
+
643
+ k = list(k) + [0] * (cnt - len(k))
644
+ c = np.moveaxis(c, iaxis, 0)
645
+ for i in range(cnt):
646
+ n = len(c)
647
+ c *= scl
648
+ if n == 1 and np.all(c[0] == 0):
649
+ c[0] += k[i]
650
+ else:
651
+ tmp = np.empty((n + 1,) + c.shape[1:], dtype=cdt)
652
+ tmp[0] = c[0] * 0
653
+ tmp[1] = c[0]
654
+ for j in range(1, n):
655
+ tmp[j + 1] = c[j] / (j + 1)
656
+ tmp[0] += k[i] - polyval(lbnd, tmp)
657
+ c = tmp
658
+ c = np.moveaxis(c, 0, iaxis)
659
+ return c
660
+
661
+
662
+ def polyval(x, c, tensor=True):
663
+ """
664
+ Evaluate a polynomial at points x.
665
+
666
+ If `c` is of length ``n + 1``, this function returns the value
667
+
668
+ .. math:: p(x) = c_0 + c_1 * x + ... + c_n * x^n
669
+
670
+ The parameter `x` is converted to an array only if it is a tuple or a
671
+ list, otherwise it is treated as a scalar. In either case, either `x`
672
+ or its elements must support multiplication and addition both with
673
+ themselves and with the elements of `c`.
674
+
675
+ If `c` is a 1-D array, then ``p(x)`` will have the same shape as `x`. If
676
+ `c` is multidimensional, then the shape of the result depends on the
677
+ value of `tensor`. If `tensor` is true the shape will be c.shape[1:] +
678
+ x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that
679
+ scalars have shape (,).
680
+
681
+ Trailing zeros in the coefficients will be used in the evaluation, so
682
+ they should be avoided if efficiency is a concern.
683
+
684
+ Parameters
685
+ ----------
686
+ x : array_like, compatible object
687
+ If `x` is a list or tuple, it is converted to an ndarray, otherwise
688
+ it is left unchanged and treated as a scalar. In either case, `x`
689
+ or its elements must support addition and multiplication with
690
+ with themselves and with the elements of `c`.
691
+ c : array_like
692
+ Array of coefficients ordered so that the coefficients for terms of
693
+ degree n are contained in c[n]. If `c` is multidimensional the
694
+ remaining indices enumerate multiple polynomials. In the two
695
+ dimensional case the coefficients may be thought of as stored in
696
+ the columns of `c`.
697
+ tensor : boolean, optional
698
+ If True, the shape of the coefficient array is extended with ones
699
+ on the right, one for each dimension of `x`. Scalars have dimension 0
700
+ for this action. The result is that every column of coefficients in
701
+ `c` is evaluated for every element of `x`. If False, `x` is broadcast
702
+ over the columns of `c` for the evaluation. This keyword is useful
703
+ when `c` is multidimensional. The default value is True.
704
+
705
+ Returns
706
+ -------
707
+ values : ndarray, compatible object
708
+ The shape of the returned array is described above.
709
+
710
+ See Also
711
+ --------
712
+ polyval2d, polygrid2d, polyval3d, polygrid3d
713
+
714
+ Notes
715
+ -----
716
+ The evaluation uses Horner's method.
717
+
718
+ When using coefficients from polynomials created with ``Polynomial.fit()``,
719
+ use ``p(x)`` or ``polyval(x, p.convert().coef)`` to handle domain/window
720
+ scaling correctly, not ``polyval(x, p.coef)``.
721
+
722
+ Examples
723
+ --------
724
+ >>> import numpy as np
725
+ >>> from numpy.polynomial.polynomial import polyval
726
+ >>> polyval(1, [1,2,3])
727
+ 6.0
728
+ >>> a = np.arange(4).reshape(2,2)
729
+ >>> a
730
+ array([[0, 1],
731
+ [2, 3]])
732
+ >>> polyval(a, [1, 2, 3])
733
+ array([[ 1., 6.],
734
+ [17., 34.]])
735
+ >>> coef = np.arange(4).reshape(2, 2) # multidimensional coefficients
736
+ >>> coef
737
+ array([[0, 1],
738
+ [2, 3]])
739
+ >>> polyval([1, 2], coef, tensor=True)
740
+ array([[2., 4.],
741
+ [4., 7.]])
742
+ >>> polyval([1, 2], coef, tensor=False)
743
+ array([2., 7.])
744
+
745
+ """
746
+ c = np.array(c, ndmin=1, copy=None)
747
+ if c.dtype.char in '?bBhHiIlLqQpP':
748
+ # astype fails with NA
749
+ c = c + 0.0
750
+ if isinstance(x, (tuple, list)):
751
+ x = np.asarray(x)
752
+ if isinstance(x, np.ndarray) and tensor:
753
+ c = c.reshape(c.shape + (1,) * x.ndim)
754
+
755
+ c0 = c[-1] + x * 0
756
+ for i in range(2, len(c) + 1):
757
+ c0 = c[-i] + c0 * x
758
+ return c0
759
+
760
+
761
+ def polyvalfromroots(x, r, tensor=True):
762
+ """
763
+ Evaluate a polynomial specified by its roots at points x.
764
+
765
+ If `r` is of length ``N``, this function returns the value
766
+
767
+ .. math:: p(x) = \\prod_{n=1}^{N} (x - r_n)
768
+
769
+ The parameter `x` is converted to an array only if it is a tuple or a
770
+ list, otherwise it is treated as a scalar. In either case, either `x`
771
+ or its elements must support multiplication and addition both with
772
+ themselves and with the elements of `r`.
773
+
774
+ If `r` is a 1-D array, then ``p(x)`` will have the same shape as `x`. If `r`
775
+ is multidimensional, then the shape of the result depends on the value of
776
+ `tensor`. If `tensor` is ``True`` the shape will be r.shape[1:] + x.shape;
777
+ that is, each polynomial is evaluated at every value of `x`. If `tensor` is
778
+ ``False``, the shape will be r.shape[1:]; that is, each polynomial is
779
+ evaluated only for the corresponding broadcast value of `x`. Note that
780
+ scalars have shape (,).
781
+
782
+ Parameters
783
+ ----------
784
+ x : array_like, compatible object
785
+ If `x` is a list or tuple, it is converted to an ndarray, otherwise
786
+ it is left unchanged and treated as a scalar. In either case, `x`
787
+ or its elements must support addition and multiplication with
788
+ with themselves and with the elements of `r`.
789
+ r : array_like
790
+ Array of roots. If `r` is multidimensional the first index is the
791
+ root index, while the remaining indices enumerate multiple
792
+ polynomials. For instance, in the two dimensional case the roots
793
+ of each polynomial may be thought of as stored in the columns of `r`.
794
+ tensor : boolean, optional
795
+ If True, the shape of the roots array is extended with ones on the
796
+ right, one for each dimension of `x`. Scalars have dimension 0 for this
797
+ action. The result is that every column of coefficients in `r` is
798
+ evaluated for every element of `x`. If False, `x` is broadcast over the
799
+ columns of `r` for the evaluation. This keyword is useful when `r` is
800
+ multidimensional. The default value is True.
801
+
802
+ Returns
803
+ -------
804
+ values : ndarray, compatible object
805
+ The shape of the returned array is described above.
806
+
807
+ See Also
808
+ --------
809
+ polyroots, polyfromroots, polyval
810
+
811
+ Examples
812
+ --------
813
+ >>> from numpy.polynomial.polynomial import polyvalfromroots
814
+ >>> polyvalfromroots(1, [1, 2, 3])
815
+ 0.0
816
+ >>> a = np.arange(4).reshape(2, 2)
817
+ >>> a
818
+ array([[0, 1],
819
+ [2, 3]])
820
+ >>> polyvalfromroots(a, [-1, 0, 1])
821
+ array([[-0., 0.],
822
+ [ 6., 24.]])
823
+ >>> r = np.arange(-2, 2).reshape(2,2) # multidimensional coefficients
824
+ >>> r # each column of r defines one polynomial
825
+ array([[-2, -1],
826
+ [ 0, 1]])
827
+ >>> b = [-2, 1]
828
+ >>> polyvalfromroots(b, r, tensor=True)
829
+ array([[-0., 3.],
830
+ [ 3., 0.]])
831
+ >>> polyvalfromroots(b, r, tensor=False)
832
+ array([-0., 0.])
833
+
834
+ """
835
+ r = np.array(r, ndmin=1, copy=None)
836
+ if r.dtype.char in '?bBhHiIlLqQpP':
837
+ r = r.astype(np.double)
838
+ if isinstance(x, (tuple, list)):
839
+ x = np.asarray(x)
840
+ if isinstance(x, np.ndarray):
841
+ if tensor:
842
+ r = r.reshape(r.shape + (1,) * x.ndim)
843
+ elif x.ndim >= r.ndim:
844
+ raise ValueError("x.ndim must be < r.ndim when tensor == False")
845
+ return np.prod(x - r, axis=0)
846
+
847
+ def _polyval2d_dispatcher(x, y, c):
848
+ return (x, y, c)
849
+
850
+ def _polygrid2d_dispatcher(x, y, c):
851
+ return (x, y, c)
852
+
853
+ @_array_function_dispatch(_polyval2d_dispatcher)
854
+ def polyval2d(x, y, c):
855
+ """
856
+ Evaluate a 2-D polynomial at points (x, y).
857
+
858
+ This function returns the value
859
+
860
+ .. math:: p(x,y) = \\sum_{i,j} c_{i,j} * x^i * y^j
861
+
862
+ The parameters `x` and `y` are converted to arrays only if they are
863
+ tuples or a lists, otherwise they are treated as a scalars and they
864
+ must have the same shape after conversion. In either case, either `x`
865
+ and `y` or their elements must support multiplication and addition both
866
+ with themselves and with the elements of `c`.
867
+
868
+ If `c` has fewer than two dimensions, ones are implicitly appended to
869
+ its shape to make it 2-D. The shape of the result will be c.shape[2:] +
870
+ x.shape.
871
+
872
+ Parameters
873
+ ----------
874
+ x, y : array_like, compatible objects
875
+ The two dimensional series is evaluated at the points ``(x, y)``,
876
+ where `x` and `y` must have the same shape. If `x` or `y` is a list
877
+ or tuple, it is first converted to an ndarray, otherwise it is left
878
+ unchanged and, if it isn't an ndarray, it is treated as a scalar.
879
+ c : array_like
880
+ Array of coefficients ordered so that the coefficient of the term
881
+ of multi-degree i,j is contained in ``c[i,j]``. If `c` has
882
+ dimension greater than two the remaining indices enumerate multiple
883
+ sets of coefficients.
884
+
885
+ Returns
886
+ -------
887
+ values : ndarray, compatible object
888
+ The values of the two dimensional polynomial at points formed with
889
+ pairs of corresponding values from `x` and `y`.
890
+
891
+ See Also
892
+ --------
893
+ polyval, polygrid2d, polyval3d, polygrid3d
894
+
895
+ Examples
896
+ --------
897
+ >>> from numpy.polynomial import polynomial as P
898
+ >>> c = ((1, 2, 3), (4, 5, 6))
899
+ >>> P.polyval2d(1, 1, c)
900
+ 21.0
901
+
902
+ """
903
+ return pu._valnd(polyval, c, x, y)
904
+
905
+ @_array_function_dispatch(_polygrid2d_dispatcher)
906
+ def polygrid2d(x, y, c):
907
+ """
908
+ Evaluate a 2-D polynomial on the Cartesian product of x and y.
909
+
910
+ This function returns the values:
911
+
912
+ .. math:: p(a,b) = \\sum_{i,j} c_{i,j} * a^i * b^j
913
+
914
+ where the points ``(a, b)`` consist of all pairs formed by taking
915
+ `a` from `x` and `b` from `y`. The resulting points form a grid with
916
+ `x` in the first dimension and `y` in the second.
917
+
918
+ The parameters `x` and `y` are converted to arrays only if they are
919
+ tuples or a lists, otherwise they are treated as a scalars. In either
920
+ case, either `x` and `y` or their elements must support multiplication
921
+ and addition both with themselves and with the elements of `c`.
922
+
923
+ If `c` has fewer than two dimensions, ones are implicitly appended to
924
+ its shape to make it 2-D. The shape of the result will be c.shape[2:] +
925
+ x.shape + y.shape.
926
+
927
+ Parameters
928
+ ----------
929
+ x, y : array_like, compatible objects
930
+ The two dimensional series is evaluated at the points in the
931
+ Cartesian product of `x` and `y`. If `x` or `y` is a list or
932
+ tuple, it is first converted to an ndarray, otherwise it is left
933
+ unchanged and, if it isn't an ndarray, it is treated as a scalar.
934
+ c : array_like
935
+ Array of coefficients ordered so that the coefficients for terms of
936
+ degree i,j are contained in ``c[i,j]``. If `c` has dimension
937
+ greater than two the remaining indices enumerate multiple sets of
938
+ coefficients.
939
+
940
+ Returns
941
+ -------
942
+ values : ndarray, compatible object
943
+ The values of the two dimensional polynomial at points in the Cartesian
944
+ product of `x` and `y`.
945
+
946
+ See Also
947
+ --------
948
+ polyval, polyval2d, polyval3d, polygrid3d
949
+
950
+ Examples
951
+ --------
952
+ >>> from numpy.polynomial import polynomial as P
953
+ >>> c = ((1, 2, 3), (4, 5, 6))
954
+ >>> P.polygrid2d([0, 1], [0, 1], c)
955
+ array([[ 1., 6.],
956
+ [ 5., 21.]])
957
+
958
+ """
959
+ return pu._gridnd(polyval, c, x, y)
960
+
961
+
962
+ def polyval3d(x, y, z, c):
963
+ """
964
+ Evaluate a 3-D polynomial at points (x, y, z).
965
+
966
+ This function returns the values:
967
+
968
+ .. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * x^i * y^j * z^k
969
+
970
+ The parameters `x`, `y`, and `z` are converted to arrays only if
971
+ they are tuples or a lists, otherwise they are treated as a scalars and
972
+ they must have the same shape after conversion. In either case, either
973
+ `x`, `y`, and `z` or their elements must support multiplication and
974
+ addition both with themselves and with the elements of `c`.
975
+
976
+ If `c` has fewer than 3 dimensions, ones are implicitly appended to its
977
+ shape to make it 3-D. The shape of the result will be c.shape[3:] +
978
+ x.shape.
979
+
980
+ Parameters
981
+ ----------
982
+ x, y, z : array_like, compatible object
983
+ The three dimensional series is evaluated at the points
984
+ ``(x, y, z)``, where `x`, `y`, and `z` must have the same shape. If
985
+ any of `x`, `y`, or `z` is a list or tuple, it is first converted
986
+ to an ndarray, otherwise it is left unchanged and if it isn't an
987
+ ndarray it is treated as a scalar.
988
+ c : array_like
989
+ Array of coefficients ordered so that the coefficient of the term of
990
+ multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension
991
+ greater than 3 the remaining indices enumerate multiple sets of
992
+ coefficients.
993
+
994
+ Returns
995
+ -------
996
+ values : ndarray, compatible object
997
+ The values of the multidimensional polynomial on points formed with
998
+ triples of corresponding values from `x`, `y`, and `z`.
999
+
1000
+ See Also
1001
+ --------
1002
+ polyval, polyval2d, polygrid2d, polygrid3d
1003
+
1004
+ Examples
1005
+ --------
1006
+ >>> from numpy.polynomial import polynomial as P
1007
+ >>> c = ((1, 2, 3), (4, 5, 6), (7, 8, 9))
1008
+ >>> P.polyval3d(1, 1, 1, c)
1009
+ 45.0
1010
+
1011
+ """
1012
+ return pu._valnd(polyval, c, x, y, z)
1013
+
1014
+
1015
+ def polygrid3d(x, y, z, c):
1016
+ """
1017
+ Evaluate a 3-D polynomial on the Cartesian product of x, y and z.
1018
+
1019
+ This function returns the values:
1020
+
1021
+ .. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * a^i * b^j * c^k
1022
+
1023
+ where the points ``(a, b, c)`` consist of all triples formed by taking
1024
+ `a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form
1025
+ a grid with `x` in the first dimension, `y` in the second, and `z` in
1026
+ the third.
1027
+
1028
+ The parameters `x`, `y`, and `z` are converted to arrays only if they
1029
+ are tuples or a lists, otherwise they are treated as a scalars. In
1030
+ either case, either `x`, `y`, and `z` or their elements must support
1031
+ multiplication and addition both with themselves and with the elements
1032
+ of `c`.
1033
+
1034
+ If `c` has fewer than three dimensions, ones are implicitly appended to
1035
+ its shape to make it 3-D. The shape of the result will be c.shape[3:] +
1036
+ x.shape + y.shape + z.shape.
1037
+
1038
+ Parameters
1039
+ ----------
1040
+ x, y, z : array_like, compatible objects
1041
+ The three dimensional series is evaluated at the points in the
1042
+ Cartesian product of `x`, `y`, and `z`. If `x`, `y`, or `z` is a
1043
+ list or tuple, it is first converted to an ndarray, otherwise it is
1044
+ left unchanged and, if it isn't an ndarray, it is treated as a
1045
+ scalar.
1046
+ c : array_like
1047
+ Array of coefficients ordered so that the coefficients for terms of
1048
+ degree i,j are contained in ``c[i,j]``. If `c` has dimension
1049
+ greater than two the remaining indices enumerate multiple sets of
1050
+ coefficients.
1051
+
1052
+ Returns
1053
+ -------
1054
+ values : ndarray, compatible object
1055
+ The values of the two dimensional polynomial at points in the Cartesian
1056
+ product of `x` and `y`.
1057
+
1058
+ See Also
1059
+ --------
1060
+ polyval, polyval2d, polygrid2d, polyval3d
1061
+
1062
+ Examples
1063
+ --------
1064
+ >>> from numpy.polynomial import polynomial as P
1065
+ >>> c = ((1, 2, 3), (4, 5, 6), (7, 8, 9))
1066
+ >>> P.polygrid3d([0, 1], [0, 1], [0, 1], c)
1067
+ array([[ 1., 13.],
1068
+ [ 6., 51.]])
1069
+
1070
+ """
1071
+ return pu._gridnd(polyval, c, x, y, z)
1072
+
1073
+
1074
+ def polyvander(x, deg):
1075
+ """Vandermonde matrix of given degree.
1076
+
1077
+ Returns the Vandermonde matrix of degree `deg` and sample points
1078
+ `x`. The Vandermonde matrix is defined by
1079
+
1080
+ .. math:: V[..., i] = x^i,
1081
+
1082
+ where ``0 <= i <= deg``. The leading indices of `V` index the elements of
1083
+ `x` and the last index is the power of `x`.
1084
+
1085
+ If `c` is a 1-D array of coefficients of length ``n + 1`` and `V` is the
1086
+ matrix ``V = polyvander(x, n)``, then ``np.dot(V, c)`` and
1087
+ ``polyval(x, c)`` are the same up to roundoff. This equivalence is
1088
+ useful both for least squares fitting and for the evaluation of a large
1089
+ number of polynomials of the same degree and sample points.
1090
+
1091
+ Parameters
1092
+ ----------
1093
+ x : array_like
1094
+ Array of points. The dtype is converted to float64 or complex128
1095
+ depending on whether any of the elements are complex. If `x` is
1096
+ scalar it is converted to a 1-D array.
1097
+ deg : int
1098
+ Degree of the resulting matrix.
1099
+
1100
+ Returns
1101
+ -------
1102
+ vander : ndarray.
1103
+ The Vandermonde matrix. The shape of the returned matrix is
1104
+ ``x.shape + (deg + 1,)``, where the last index is the power of `x`.
1105
+ The dtype will be the same as the converted `x`.
1106
+
1107
+ See Also
1108
+ --------
1109
+ polyvander2d, polyvander3d
1110
+
1111
+ Examples
1112
+ --------
1113
+ The Vandermonde matrix of degree ``deg = 5`` and sample points
1114
+ ``x = [-1, 2, 3]`` contains the element-wise powers of `x`
1115
+ from 0 to 5 as its columns.
1116
+
1117
+ >>> from numpy.polynomial import polynomial as P
1118
+ >>> x, deg = [-1, 2, 3], 5
1119
+ >>> P.polyvander(x=x, deg=deg)
1120
+ array([[ 1., -1., 1., -1., 1., -1.],
1121
+ [ 1., 2., 4., 8., 16., 32.],
1122
+ [ 1., 3., 9., 27., 81., 243.]])
1123
+
1124
+ """
1125
+ ideg = pu._as_int(deg, "deg")
1126
+ if ideg < 0:
1127
+ raise ValueError("deg must be non-negative")
1128
+
1129
+ x = np.array(x, copy=None, ndmin=1) + 0.0
1130
+ dims = (ideg + 1,) + x.shape
1131
+ dtyp = x.dtype
1132
+ v = np.empty(dims, dtype=dtyp)
1133
+ v[0] = x * 0 + 1
1134
+ if ideg > 0:
1135
+ v[1] = x
1136
+ for i in range(2, ideg + 1):
1137
+ v[i] = v[i - 1] * x
1138
+ return np.moveaxis(v, 0, -1)
1139
+
1140
+
1141
+ def polyvander2d(x, y, deg):
1142
+ """Pseudo-Vandermonde matrix of given degrees.
1143
+
1144
+ Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
1145
+ points ``(x, y)``. The pseudo-Vandermonde matrix is defined by
1146
+
1147
+ .. math:: V[..., (deg[1] + 1)*i + j] = x^i * y^j,
1148
+
1149
+ where ``0 <= i <= deg[0]`` and ``0 <= j <= deg[1]``. The leading indices of
1150
+ `V` index the points ``(x, y)`` and the last index encodes the powers of
1151
+ `x` and `y`.
1152
+
1153
+ If ``V = polyvander2d(x, y, [xdeg, ydeg])``, then the columns of `V`
1154
+ correspond to the elements of a 2-D coefficient array `c` of shape
1155
+ (xdeg + 1, ydeg + 1) in the order
1156
+
1157
+ .. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...
1158
+
1159
+ and ``np.dot(V, c.flat)`` and ``polyval2d(x, y, c)`` will be the same
1160
+ up to roundoff. This equivalence is useful both for least squares
1161
+ fitting and for the evaluation of a large number of 2-D polynomials
1162
+ of the same degrees and sample points.
1163
+
1164
+ Parameters
1165
+ ----------
1166
+ x, y : array_like
1167
+ Arrays of point coordinates, all of the same shape. The dtypes
1168
+ will be converted to either float64 or complex128 depending on
1169
+ whether any of the elements are complex. Scalars are converted to
1170
+ 1-D arrays.
1171
+ deg : list of ints
1172
+ List of maximum degrees of the form [x_deg, y_deg].
1173
+
1174
+ Returns
1175
+ -------
1176
+ vander2d : ndarray
1177
+ The shape of the returned matrix is ``x.shape + (order,)``, where
1178
+ :math:`order = (deg[0]+1)*(deg([1]+1)`. The dtype will be the same
1179
+ as the converted `x` and `y`.
1180
+
1181
+ See Also
1182
+ --------
1183
+ polyvander, polyvander3d, polyval2d, polyval3d
1184
+
1185
+ Examples
1186
+ --------
1187
+ >>> import numpy as np
1188
+
1189
+ The 2-D pseudo-Vandermonde matrix of degree ``[1, 2]`` and sample
1190
+ points ``x = [-1, 2]`` and ``y = [1, 3]`` is as follows:
1191
+
1192
+ >>> from numpy.polynomial import polynomial as P
1193
+ >>> x = np.array([-1, 2])
1194
+ >>> y = np.array([1, 3])
1195
+ >>> m, n = 1, 2
1196
+ >>> deg = np.array([m, n])
1197
+ >>> V = P.polyvander2d(x=x, y=y, deg=deg)
1198
+ >>> V
1199
+ array([[ 1., 1., 1., -1., -1., -1.],
1200
+ [ 1., 3., 9., 2., 6., 18.]])
1201
+
1202
+ We can verify the columns for any ``0 <= i <= m`` and ``0 <= j <= n``:
1203
+
1204
+ >>> i, j = 0, 1
1205
+ >>> V[:, (deg[1]+1)*i + j] == x**i * y**j
1206
+ array([ True, True])
1207
+
1208
+ The (1D) Vandermonde matrix of sample points ``x`` and degree ``m`` is a
1209
+ special case of the (2D) pseudo-Vandermonde matrix with ``y`` points all
1210
+ zero and degree ``[m, 0]``.
1211
+
1212
+ >>> P.polyvander2d(x=x, y=0*x, deg=(m, 0)) == P.polyvander(x=x, deg=m)
1213
+ array([[ True, True],
1214
+ [ True, True]])
1215
+
1216
+ """
1217
+ return pu._vander_nd_flat((polyvander, polyvander), (x, y), deg)
1218
+
1219
+
1220
+ def polyvander3d(x, y, z, deg):
1221
+ """Pseudo-Vandermonde matrix of given degrees.
1222
+
1223
+ Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
1224
+ points ``(x, y, z)``. If `l`, `m`, `n` are the given degrees in `x`, `y`, `z`,
1225
+ then The pseudo-Vandermonde matrix is defined by
1226
+
1227
+ .. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = x^i * y^j * z^k,
1228
+
1229
+ where ``0 <= i <= l``, ``0 <= j <= m``, and ``0 <= j <= n``. The leading
1230
+ indices of `V` index the points ``(x, y, z)`` and the last index encodes
1231
+ the powers of `x`, `y`, and `z`.
1232
+
1233
+ If ``V = polyvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns
1234
+ of `V` correspond to the elements of a 3-D coefficient array `c` of
1235
+ shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order
1236
+
1237
+ .. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...
1238
+
1239
+ and ``np.dot(V, c.flat)`` and ``polyval3d(x, y, z, c)`` will be the
1240
+ same up to roundoff. This equivalence is useful both for least squares
1241
+ fitting and for the evaluation of a large number of 3-D polynomials
1242
+ of the same degrees and sample points.
1243
+
1244
+ Parameters
1245
+ ----------
1246
+ x, y, z : array_like
1247
+ Arrays of point coordinates, all of the same shape. The dtypes will
1248
+ be converted to either float64 or complex128 depending on whether
1249
+ any of the elements are complex. Scalars are converted to 1-D
1250
+ arrays.
1251
+ deg : list of ints
1252
+ List of maximum degrees of the form [x_deg, y_deg, z_deg].
1253
+
1254
+ Returns
1255
+ -------
1256
+ vander3d : ndarray
1257
+ The shape of the returned matrix is ``x.shape + (order,)``, where
1258
+ :math:`order = (deg[0]+1)*(deg([1]+1)*(deg[2]+1)`. The dtype will
1259
+ be the same as the converted `x`, `y`, and `z`.
1260
+
1261
+ See Also
1262
+ --------
1263
+ polyvander, polyvander3d, polyval2d, polyval3d
1264
+
1265
+ Examples
1266
+ --------
1267
+ >>> import numpy as np
1268
+ >>> from numpy.polynomial import polynomial as P
1269
+ >>> x = np.asarray([-1, 2, 1])
1270
+ >>> y = np.asarray([1, -2, -3])
1271
+ >>> z = np.asarray([2, 2, 5])
1272
+ >>> l, m, n = [2, 2, 1]
1273
+ >>> deg = [l, m, n]
1274
+ >>> V = P.polyvander3d(x=x, y=y, z=z, deg=deg)
1275
+ >>> V
1276
+ array([[ 1., 2., 1., 2., 1., 2., -1., -2., -1.,
1277
+ -2., -1., -2., 1., 2., 1., 2., 1., 2.],
1278
+ [ 1., 2., -2., -4., 4., 8., 2., 4., -4.,
1279
+ -8., 8., 16., 4., 8., -8., -16., 16., 32.],
1280
+ [ 1., 5., -3., -15., 9., 45., 1., 5., -3.,
1281
+ -15., 9., 45., 1., 5., -3., -15., 9., 45.]])
1282
+
1283
+ We can verify the columns for any ``0 <= i <= l``, ``0 <= j <= m``,
1284
+ and ``0 <= k <= n``
1285
+
1286
+ >>> i, j, k = 2, 1, 0
1287
+ >>> V[:, (m+1)*(n+1)*i + (n+1)*j + k] == x**i * y**j * z**k
1288
+ array([ True, True, True])
1289
+
1290
+ """
1291
+ return pu._vander_nd_flat((polyvander, polyvander, polyvander), (x, y, z), deg)
1292
+
1293
+
1294
+ def polyfit(x, y, deg, rcond=None, full=False, w=None):
1295
+ """
1296
+ Least-squares fit of a polynomial to data.
1297
+
1298
+ Return the coefficients of a polynomial of degree `deg` that is the
1299
+ least squares fit to the data values `y` given at points `x`. If `y` is
1300
+ 1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple
1301
+ fits are done, one for each column of `y`, and the resulting
1302
+ coefficients are stored in the corresponding columns of a 2-D return.
1303
+ The fitted polynomial(s) are in the form
1304
+
1305
+ .. math:: p(x) = c_0 + c_1 * x + ... + c_n * x^n,
1306
+
1307
+ where `n` is `deg`.
1308
+
1309
+ Parameters
1310
+ ----------
1311
+ x : array_like, shape (`M`,)
1312
+ x-coordinates of the `M` sample (data) points ``(x[i], y[i])``.
1313
+ y : array_like, shape (`M`,) or (`M`, `K`)
1314
+ y-coordinates of the sample points. Several sets of sample points
1315
+ sharing the same x-coordinates can be (independently) fit with one
1316
+ call to `polyfit` by passing in for `y` a 2-D array that contains
1317
+ one data set per column.
1318
+ deg : int or 1-D array_like
1319
+ Degree(s) of the fitting polynomials. If `deg` is a single integer
1320
+ all terms up to and including the `deg`'th term are included in the
1321
+ fit. For NumPy versions >= 1.11.0 a list of integers specifying the
1322
+ degrees of the terms to include may be used instead.
1323
+ rcond : float, optional
1324
+ Relative condition number of the fit. Singular values smaller
1325
+ than `rcond`, relative to the largest singular value, will be
1326
+ ignored. The default value is ``len(x)*eps``, where `eps` is the
1327
+ relative precision of the platform's float type, about 2e-16 in
1328
+ most cases.
1329
+ full : bool, optional
1330
+ Switch determining the nature of the return value. When ``False``
1331
+ (the default) just the coefficients are returned; when ``True``,
1332
+ diagnostic information from the singular value decomposition (used
1333
+ to solve the fit's matrix equation) is also returned.
1334
+ w : array_like, shape (`M`,), optional
1335
+ Weights. If not None, the weight ``w[i]`` applies to the unsquared
1336
+ residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
1337
+ chosen so that the errors of the products ``w[i]*y[i]`` all have the
1338
+ same variance. When using inverse-variance weighting, use
1339
+ ``w[i] = 1/sigma(y[i])``. The default value is None.
1340
+
1341
+ Returns
1342
+ -------
1343
+ coef : ndarray, shape (`deg` + 1,) or (`deg` + 1, `K`)
1344
+ Polynomial coefficients ordered from low to high. If `y` was 2-D,
1345
+ the coefficients in column `k` of `coef` represent the polynomial
1346
+ fit to the data in `y`'s `k`-th column.
1347
+
1348
+ [residuals, rank, singular_values, rcond] : list
1349
+ These values are only returned if ``full == True``
1350
+
1351
+ - residuals -- sum of squared residuals of the least squares fit
1352
+ - rank -- the numerical rank of the scaled Vandermonde matrix
1353
+ - singular_values -- singular values of the scaled Vandermonde matrix
1354
+ - rcond -- value of `rcond`.
1355
+
1356
+ For more details, see `numpy.linalg.lstsq`.
1357
+
1358
+ Raises
1359
+ ------
1360
+ RankWarning
1361
+ Raised if the matrix in the least-squares fit is rank deficient.
1362
+ The warning is only raised if ``full == False``. The warnings can
1363
+ be turned off by:
1364
+
1365
+ >>> import warnings
1366
+ >>> warnings.simplefilter('ignore', np.exceptions.RankWarning)
1367
+
1368
+ See Also
1369
+ --------
1370
+ numpy.polynomial.chebyshev.chebfit
1371
+ numpy.polynomial.legendre.legfit
1372
+ numpy.polynomial.laguerre.lagfit
1373
+ numpy.polynomial.hermite.hermfit
1374
+ numpy.polynomial.hermite_e.hermefit
1375
+ polyval : Evaluates a polynomial.
1376
+ polyvander : Vandermonde matrix for powers.
1377
+ numpy.linalg.lstsq : Computes a least-squares fit from the matrix.
1378
+ scipy.interpolate.UnivariateSpline : Computes spline fits.
1379
+
1380
+ Notes
1381
+ -----
1382
+ The solution is the coefficients of the polynomial `p` that minimizes
1383
+ the sum of the weighted squared errors
1384
+
1385
+ .. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2,
1386
+
1387
+ where the :math:`w_j` are the weights. This problem is solved by
1388
+ setting up the (typically) over-determined matrix equation:
1389
+
1390
+ .. math:: V(x) * c = w * y,
1391
+
1392
+ where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the
1393
+ coefficients to be solved for, `w` are the weights, and `y` are the
1394
+ observed values. This equation is then solved using the singular value
1395
+ decomposition of `V`.
1396
+
1397
+ If some of the singular values of `V` are so small that they are
1398
+ neglected (and `full` == ``False``), a `~exceptions.RankWarning` will be
1399
+ raised. This means that the coefficient values may be poorly determined.
1400
+ Fitting to a lower order polynomial will usually get rid of the warning
1401
+ (but may not be what you want, of course; if you have independent
1402
+ reason(s) for choosing the degree which isn't working, you may have to:
1403
+ a) reconsider those reasons, and/or b) reconsider the quality of your
1404
+ data). The `rcond` parameter can also be set to a value smaller than
1405
+ its default, but the resulting fit may be spurious and have large
1406
+ contributions from roundoff error.
1407
+
1408
+ Polynomial fits using double precision tend to "fail" at about
1409
+ (polynomial) degree 20. Fits using Chebyshev or Legendre series are
1410
+ generally better conditioned, but much can still depend on the
1411
+ distribution of the sample points and the smoothness of the data. If
1412
+ the quality of the fit is inadequate, splines may be a good
1413
+ alternative.
1414
+
1415
+ Examples
1416
+ --------
1417
+ >>> import numpy as np
1418
+ >>> from numpy.polynomial import polynomial as P
1419
+ >>> x = np.linspace(-1,1,51) # x "data": [-1, -0.96, ..., 0.96, 1]
1420
+ >>> rng = np.random.default_rng()
1421
+ >>> err = rng.normal(size=len(x))
1422
+ >>> y = x**3 - x + err # x^3 - x + Gaussian noise
1423
+ >>> c, stats = P.polyfit(x,y,3,full=True)
1424
+ >>> c # c[0], c[1] approx. -1, c[2] should be approx. 0, c[3] approx. 1
1425
+ array([ 0.23111996, -1.02785049, -0.2241444 , 1.08405657]) # may vary
1426
+ >>> stats # note the large SSR, explaining the rather poor results
1427
+ [array([48.312088]), # may vary
1428
+ 4,
1429
+ array([1.38446749, 1.32119158, 0.50443316, 0.28853036]),
1430
+ 1.1324274851176597e-14]
1431
+
1432
+ Same thing without the added noise
1433
+
1434
+ >>> y = x**3 - x
1435
+ >>> c, stats = P.polyfit(x,y,3,full=True)
1436
+ >>> c # c[0], c[1] ~= -1, c[2] should be "very close to 0", c[3] ~= 1
1437
+ array([-6.73496154e-17, -1.00000000e+00, 0.00000000e+00, 1.00000000e+00])
1438
+ >>> stats # note the minuscule SSR
1439
+ [array([8.79579319e-31]),
1440
+ np.int32(4),
1441
+ array([1.38446749, 1.32119158, 0.50443316, 0.28853036]),
1442
+ 1.1324274851176597e-14]
1443
+
1444
+ """
1445
+ return pu._fit(polyvander, x, y, deg, rcond, full, w)
1446
+
1447
+
1448
+ def polycompanion(c):
1449
+ """
1450
+ Return the companion matrix of c.
1451
+
1452
+ The companion matrix for power series cannot be made symmetric by
1453
+ scaling the basis, so this function differs from those for the
1454
+ orthogonal polynomials.
1455
+
1456
+ Parameters
1457
+ ----------
1458
+ c : array_like
1459
+ 1-D array of polynomial coefficients ordered from low to high
1460
+ degree.
1461
+
1462
+ Returns
1463
+ -------
1464
+ mat : ndarray
1465
+ Companion matrix of dimensions (deg, deg).
1466
+
1467
+ Examples
1468
+ --------
1469
+ >>> from numpy.polynomial import polynomial as P
1470
+ >>> c = (1, 2, 3)
1471
+ >>> P.polycompanion(c)
1472
+ array([[ 0. , -0.33333333],
1473
+ [ 1. , -0.66666667]])
1474
+
1475
+ """
1476
+ # c is a trimmed copy
1477
+ [c] = pu.as_series([c])
1478
+ if len(c) < 2:
1479
+ raise ValueError('Series must have maximum degree of at least 1.')
1480
+ if len(c) == 2:
1481
+ return np.array([[-c[0] / c[1]]])
1482
+
1483
+ n = len(c) - 1
1484
+ mat = np.zeros((n, n), dtype=c.dtype)
1485
+ bot = mat.reshape(-1)[n::n + 1]
1486
+ bot[...] = 1
1487
+ mat[:, -1] -= c[:-1] / c[-1]
1488
+ return mat
1489
+
1490
+
1491
+ def polyroots(c):
1492
+ """
1493
+ Compute the roots of a polynomial.
1494
+
1495
+ Return the roots (a.k.a. "zeros") of the polynomial
1496
+
1497
+ .. math:: p(x) = \\sum_i c[i] * x^i.
1498
+
1499
+ Parameters
1500
+ ----------
1501
+ c : 1-D array_like
1502
+ 1-D array of polynomial coefficients.
1503
+
1504
+ Returns
1505
+ -------
1506
+ out : ndarray
1507
+ Array of the roots of the polynomial. If all the roots are real,
1508
+ then `out` is also real, otherwise it is complex.
1509
+
1510
+ See Also
1511
+ --------
1512
+ numpy.polynomial.chebyshev.chebroots
1513
+ numpy.polynomial.legendre.legroots
1514
+ numpy.polynomial.laguerre.lagroots
1515
+ numpy.polynomial.hermite.hermroots
1516
+ numpy.polynomial.hermite_e.hermeroots
1517
+
1518
+ Notes
1519
+ -----
1520
+ The root estimates are obtained as the eigenvalues of the companion
1521
+ matrix, Roots far from the origin of the complex plane may have large
1522
+ errors due to the numerical instability of the power series for such
1523
+ values. Roots with multiplicity greater than 1 will also show larger
1524
+ errors as the value of the series near such points is relatively
1525
+ insensitive to errors in the roots. Isolated roots near the origin can
1526
+ be improved by a few iterations of Newton's method.
1527
+
1528
+ Examples
1529
+ --------
1530
+ >>> import numpy.polynomial.polynomial as poly
1531
+ >>> poly.polyroots(poly.polyfromroots((-1,0,1)))
1532
+ array([-1., 0., 1.])
1533
+ >>> poly.polyroots(poly.polyfromroots((-1,0,1))).dtype
1534
+ dtype('float64')
1535
+ >>> j = complex(0,1)
1536
+ >>> poly.polyroots(poly.polyfromroots((-j,0,j)))
1537
+ array([ 0.00000000e+00+0.j, 0.00000000e+00+1.j, 2.77555756e-17-1.j]) # may vary
1538
+
1539
+ """ # noqa: E501
1540
+ # c is a trimmed copy
1541
+ [c] = pu.as_series([c])
1542
+ if len(c) < 2:
1543
+ return np.array([], dtype=c.dtype)
1544
+ if len(c) == 2:
1545
+ return np.array([-c[0] / c[1]])
1546
+
1547
+ m = polycompanion(c)
1548
+ r = np.linalg.eigvals(m)
1549
+ r.sort()
1550
+ return r
1551
+
1552
+
1553
+ #
1554
+ # polynomial class
1555
+ #
1556
+
1557
+ class Polynomial(ABCPolyBase):
1558
+ """A power series class.
1559
+
1560
+ The Polynomial class provides the standard Python numerical methods
1561
+ '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the
1562
+ attributes and methods listed below.
1563
+
1564
+ Parameters
1565
+ ----------
1566
+ coef : array_like
1567
+ Polynomial coefficients in order of increasing degree, i.e.,
1568
+ ``(1, 2, 3)`` give ``1 + 2*x + 3*x**2``.
1569
+ domain : (2,) array_like, optional
1570
+ Domain to use. The interval ``[domain[0], domain[1]]`` is mapped
1571
+ to the interval ``[window[0], window[1]]`` by shifting and scaling.
1572
+ The default value is [-1., 1.].
1573
+ window : (2,) array_like, optional
1574
+ Window, see `domain` for its use. The default value is [-1., 1.].
1575
+ symbol : str, optional
1576
+ Symbol used to represent the independent variable in string
1577
+ representations of the polynomial expression, e.g. for printing.
1578
+ The symbol must be a valid Python identifier. Default value is 'x'.
1579
+
1580
+ .. versionadded:: 1.24
1581
+
1582
+ """
1583
+ # Virtual Functions
1584
+ _add = staticmethod(polyadd)
1585
+ _sub = staticmethod(polysub)
1586
+ _mul = staticmethod(polymul)
1587
+ _div = staticmethod(polydiv)
1588
+ _pow = staticmethod(polypow)
1589
+ _val = staticmethod(polyval)
1590
+ _int = staticmethod(polyint)
1591
+ _der = staticmethod(polyder)
1592
+ _fit = staticmethod(polyfit)
1593
+ _line = staticmethod(polyline)
1594
+ _roots = staticmethod(polyroots)
1595
+ _fromroots = staticmethod(polyfromroots)
1596
+
1597
+ # Virtual properties
1598
+ domain = np.array(polydomain)
1599
+ window = np.array(polydomain)
1600
+ basis_name = None
1601
+
1602
+ @classmethod
1603
+ def _str_term_unicode(cls, i, arg_str):
1604
+ if i == '1':
1605
+ return f"·{arg_str}"
1606
+ else:
1607
+ return f"·{arg_str}{i.translate(cls._superscript_mapping)}"
1608
+
1609
+ @staticmethod
1610
+ def _str_term_ascii(i, arg_str):
1611
+ if i == '1':
1612
+ return f" {arg_str}"
1613
+ else:
1614
+ return f" {arg_str}**{i}"
1615
+
1616
+ @staticmethod
1617
+ def _repr_latex_term(i, arg_str, needs_parens):
1618
+ if needs_parens:
1619
+ arg_str = rf"\left({arg_str}\right)"
1620
+ if i == 0:
1621
+ return '1'
1622
+ elif i == 1:
1623
+ return arg_str
1624
+ else:
1625
+ return f"{arg_str}^{{{i}}}"