numpy 2.4.1__pp311-pypy311_pp73-macosx_14_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- numpy/__config__.py +170 -0
- numpy/__config__.pyi +108 -0
- numpy/__init__.cython-30.pxd +1242 -0
- numpy/__init__.pxd +1155 -0
- numpy/__init__.py +942 -0
- numpy/__init__.pyi +6202 -0
- numpy/_array_api_info.py +346 -0
- numpy/_array_api_info.pyi +206 -0
- numpy/_configtool.py +39 -0
- numpy/_configtool.pyi +1 -0
- numpy/_core/__init__.py +201 -0
- numpy/_core/__init__.pyi +666 -0
- numpy/_core/_add_newdocs.py +7151 -0
- numpy/_core/_add_newdocs.pyi +2 -0
- numpy/_core/_add_newdocs_scalars.py +381 -0
- numpy/_core/_add_newdocs_scalars.pyi +16 -0
- numpy/_core/_asarray.py +130 -0
- numpy/_core/_asarray.pyi +43 -0
- numpy/_core/_dtype.py +366 -0
- numpy/_core/_dtype.pyi +56 -0
- numpy/_core/_dtype_ctypes.py +120 -0
- numpy/_core/_dtype_ctypes.pyi +83 -0
- numpy/_core/_exceptions.py +162 -0
- numpy/_core/_exceptions.pyi +54 -0
- numpy/_core/_internal.py +968 -0
- numpy/_core/_internal.pyi +61 -0
- numpy/_core/_methods.py +252 -0
- numpy/_core/_methods.pyi +22 -0
- numpy/_core/_multiarray_tests.pypy311-pp73-darwin.so +0 -0
- numpy/_core/_multiarray_umath.pypy311-pp73-darwin.so +0 -0
- numpy/_core/_operand_flag_tests.pypy311-pp73-darwin.so +0 -0
- numpy/_core/_rational_tests.pypy311-pp73-darwin.so +0 -0
- numpy/_core/_simd.pyi +35 -0
- numpy/_core/_simd.pypy311-pp73-darwin.so +0 -0
- numpy/_core/_string_helpers.py +100 -0
- numpy/_core/_string_helpers.pyi +12 -0
- numpy/_core/_struct_ufunc_tests.pypy311-pp73-darwin.so +0 -0
- numpy/_core/_type_aliases.py +131 -0
- numpy/_core/_type_aliases.pyi +86 -0
- numpy/_core/_ufunc_config.py +515 -0
- numpy/_core/_ufunc_config.pyi +69 -0
- numpy/_core/_umath_tests.pyi +47 -0
- numpy/_core/_umath_tests.pypy311-pp73-darwin.so +0 -0
- numpy/_core/arrayprint.py +1779 -0
- numpy/_core/arrayprint.pyi +158 -0
- numpy/_core/cversions.py +13 -0
- numpy/_core/defchararray.py +1414 -0
- numpy/_core/defchararray.pyi +1150 -0
- numpy/_core/einsumfunc.py +1650 -0
- numpy/_core/einsumfunc.pyi +184 -0
- numpy/_core/fromnumeric.py +4233 -0
- numpy/_core/fromnumeric.pyi +1735 -0
- numpy/_core/function_base.py +547 -0
- numpy/_core/function_base.pyi +276 -0
- numpy/_core/getlimits.py +462 -0
- numpy/_core/getlimits.pyi +124 -0
- numpy/_core/include/numpy/__multiarray_api.c +376 -0
- numpy/_core/include/numpy/__multiarray_api.h +1628 -0
- numpy/_core/include/numpy/__ufunc_api.c +55 -0
- numpy/_core/include/numpy/__ufunc_api.h +349 -0
- numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
- numpy/_core/include/numpy/_numpyconfig.h +33 -0
- numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
- numpy/_core/include/numpy/arrayobject.h +7 -0
- numpy/_core/include/numpy/arrayscalars.h +198 -0
- numpy/_core/include/numpy/dtype_api.h +547 -0
- numpy/_core/include/numpy/halffloat.h +70 -0
- numpy/_core/include/numpy/ndarrayobject.h +304 -0
- numpy/_core/include/numpy/ndarraytypes.h +1982 -0
- numpy/_core/include/numpy/npy_2_compat.h +249 -0
- numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
- numpy/_core/include/numpy/npy_3kcompat.h +374 -0
- numpy/_core/include/numpy/npy_common.h +989 -0
- numpy/_core/include/numpy/npy_cpu.h +126 -0
- numpy/_core/include/numpy/npy_endian.h +79 -0
- numpy/_core/include/numpy/npy_math.h +602 -0
- numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
- numpy/_core/include/numpy/npy_os.h +42 -0
- numpy/_core/include/numpy/numpyconfig.h +185 -0
- numpy/_core/include/numpy/random/LICENSE.txt +21 -0
- numpy/_core/include/numpy/random/bitgen.h +20 -0
- numpy/_core/include/numpy/random/distributions.h +209 -0
- numpy/_core/include/numpy/random/libdivide.h +2079 -0
- numpy/_core/include/numpy/ufuncobject.h +343 -0
- numpy/_core/include/numpy/utils.h +37 -0
- numpy/_core/lib/libnpymath.a +0 -0
- numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
- numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
- numpy/_core/lib/pkgconfig/numpy.pc +7 -0
- numpy/_core/memmap.py +363 -0
- numpy/_core/memmap.pyi +3 -0
- numpy/_core/multiarray.py +1740 -0
- numpy/_core/multiarray.pyi +1316 -0
- numpy/_core/numeric.py +2758 -0
- numpy/_core/numeric.pyi +1276 -0
- numpy/_core/numerictypes.py +633 -0
- numpy/_core/numerictypes.pyi +196 -0
- numpy/_core/overrides.py +188 -0
- numpy/_core/overrides.pyi +47 -0
- numpy/_core/printoptions.py +32 -0
- numpy/_core/printoptions.pyi +28 -0
- numpy/_core/records.py +1088 -0
- numpy/_core/records.pyi +340 -0
- numpy/_core/shape_base.py +996 -0
- numpy/_core/shape_base.pyi +182 -0
- numpy/_core/strings.py +1813 -0
- numpy/_core/strings.pyi +536 -0
- numpy/_core/tests/_locales.py +72 -0
- numpy/_core/tests/_natype.py +144 -0
- numpy/_core/tests/data/astype_copy.pkl +0 -0
- numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
- numpy/_core/tests/data/recarray_from_file.fits +0 -0
- numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
- numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
- numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
- numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
- numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
- numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
- numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
- numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
- numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
- numpy/_core/tests/examples/cython/checks.pyx +373 -0
- numpy/_core/tests/examples/cython/meson.build +43 -0
- numpy/_core/tests/examples/cython/setup.py +39 -0
- numpy/_core/tests/examples/limited_api/limited_api1.c +17 -0
- numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
- numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
- numpy/_core/tests/examples/limited_api/meson.build +59 -0
- numpy/_core/tests/examples/limited_api/setup.py +24 -0
- numpy/_core/tests/test__exceptions.py +90 -0
- numpy/_core/tests/test_abc.py +54 -0
- numpy/_core/tests/test_api.py +655 -0
- numpy/_core/tests/test_argparse.py +90 -0
- numpy/_core/tests/test_array_api_info.py +113 -0
- numpy/_core/tests/test_array_coercion.py +928 -0
- numpy/_core/tests/test_array_interface.py +222 -0
- numpy/_core/tests/test_arraymethod.py +84 -0
- numpy/_core/tests/test_arrayobject.py +75 -0
- numpy/_core/tests/test_arrayprint.py +1324 -0
- numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
- numpy/_core/tests/test_casting_unittests.py +955 -0
- numpy/_core/tests/test_conversion_utils.py +209 -0
- numpy/_core/tests/test_cpu_dispatcher.py +48 -0
- numpy/_core/tests/test_cpu_features.py +450 -0
- numpy/_core/tests/test_custom_dtypes.py +393 -0
- numpy/_core/tests/test_cython.py +352 -0
- numpy/_core/tests/test_datetime.py +2792 -0
- numpy/_core/tests/test_defchararray.py +858 -0
- numpy/_core/tests/test_deprecations.py +460 -0
- numpy/_core/tests/test_dlpack.py +190 -0
- numpy/_core/tests/test_dtype.py +2110 -0
- numpy/_core/tests/test_einsum.py +1351 -0
- numpy/_core/tests/test_errstate.py +131 -0
- numpy/_core/tests/test_extint128.py +217 -0
- numpy/_core/tests/test_finfo.py +86 -0
- numpy/_core/tests/test_function_base.py +504 -0
- numpy/_core/tests/test_getlimits.py +171 -0
- numpy/_core/tests/test_half.py +593 -0
- numpy/_core/tests/test_hashtable.py +36 -0
- numpy/_core/tests/test_indexerrors.py +122 -0
- numpy/_core/tests/test_indexing.py +1692 -0
- numpy/_core/tests/test_item_selection.py +167 -0
- numpy/_core/tests/test_limited_api.py +102 -0
- numpy/_core/tests/test_longdouble.py +370 -0
- numpy/_core/tests/test_mem_overlap.py +933 -0
- numpy/_core/tests/test_mem_policy.py +453 -0
- numpy/_core/tests/test_memmap.py +248 -0
- numpy/_core/tests/test_multiarray.py +11008 -0
- numpy/_core/tests/test_multiprocessing.py +55 -0
- numpy/_core/tests/test_multithreading.py +377 -0
- numpy/_core/tests/test_nditer.py +3533 -0
- numpy/_core/tests/test_nep50_promotions.py +287 -0
- numpy/_core/tests/test_numeric.py +4295 -0
- numpy/_core/tests/test_numerictypes.py +650 -0
- numpy/_core/tests/test_overrides.py +800 -0
- numpy/_core/tests/test_print.py +202 -0
- numpy/_core/tests/test_protocols.py +46 -0
- numpy/_core/tests/test_records.py +544 -0
- numpy/_core/tests/test_regression.py +2677 -0
- numpy/_core/tests/test_scalar_ctors.py +203 -0
- numpy/_core/tests/test_scalar_methods.py +328 -0
- numpy/_core/tests/test_scalarbuffer.py +153 -0
- numpy/_core/tests/test_scalarinherit.py +105 -0
- numpy/_core/tests/test_scalarmath.py +1168 -0
- numpy/_core/tests/test_scalarprint.py +403 -0
- numpy/_core/tests/test_shape_base.py +904 -0
- numpy/_core/tests/test_simd.py +1345 -0
- numpy/_core/tests/test_simd_module.py +105 -0
- numpy/_core/tests/test_stringdtype.py +1855 -0
- numpy/_core/tests/test_strings.py +1523 -0
- numpy/_core/tests/test_ufunc.py +3405 -0
- numpy/_core/tests/test_umath.py +4962 -0
- numpy/_core/tests/test_umath_accuracy.py +132 -0
- numpy/_core/tests/test_umath_complex.py +631 -0
- numpy/_core/tests/test_unicode.py +369 -0
- numpy/_core/umath.py +60 -0
- numpy/_core/umath.pyi +232 -0
- numpy/_distributor_init.py +15 -0
- numpy/_distributor_init.pyi +1 -0
- numpy/_expired_attrs_2_0.py +78 -0
- numpy/_expired_attrs_2_0.pyi +61 -0
- numpy/_globals.py +121 -0
- numpy/_globals.pyi +17 -0
- numpy/_pyinstaller/__init__.py +0 -0
- numpy/_pyinstaller/__init__.pyi +0 -0
- numpy/_pyinstaller/hook-numpy.py +36 -0
- numpy/_pyinstaller/hook-numpy.pyi +6 -0
- numpy/_pyinstaller/tests/__init__.py +16 -0
- numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
- numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
- numpy/_pytesttester.py +201 -0
- numpy/_pytesttester.pyi +18 -0
- numpy/_typing/__init__.py +173 -0
- numpy/_typing/_add_docstring.py +153 -0
- numpy/_typing/_array_like.py +106 -0
- numpy/_typing/_char_codes.py +213 -0
- numpy/_typing/_dtype_like.py +114 -0
- numpy/_typing/_extended_precision.py +15 -0
- numpy/_typing/_nbit.py +19 -0
- numpy/_typing/_nbit_base.py +94 -0
- numpy/_typing/_nbit_base.pyi +39 -0
- numpy/_typing/_nested_sequence.py +79 -0
- numpy/_typing/_scalars.py +20 -0
- numpy/_typing/_shape.py +8 -0
- numpy/_typing/_ufunc.py +7 -0
- numpy/_typing/_ufunc.pyi +975 -0
- numpy/_utils/__init__.py +95 -0
- numpy/_utils/__init__.pyi +28 -0
- numpy/_utils/_convertions.py +18 -0
- numpy/_utils/_convertions.pyi +4 -0
- numpy/_utils/_inspect.py +192 -0
- numpy/_utils/_inspect.pyi +70 -0
- numpy/_utils/_pep440.py +486 -0
- numpy/_utils/_pep440.pyi +118 -0
- numpy/char/__init__.py +2 -0
- numpy/char/__init__.pyi +111 -0
- numpy/conftest.py +248 -0
- numpy/core/__init__.py +33 -0
- numpy/core/__init__.pyi +0 -0
- numpy/core/_dtype.py +10 -0
- numpy/core/_dtype.pyi +0 -0
- numpy/core/_dtype_ctypes.py +10 -0
- numpy/core/_dtype_ctypes.pyi +0 -0
- numpy/core/_internal.py +27 -0
- numpy/core/_multiarray_umath.py +57 -0
- numpy/core/_utils.py +21 -0
- numpy/core/arrayprint.py +10 -0
- numpy/core/defchararray.py +10 -0
- numpy/core/einsumfunc.py +10 -0
- numpy/core/fromnumeric.py +10 -0
- numpy/core/function_base.py +10 -0
- numpy/core/getlimits.py +10 -0
- numpy/core/multiarray.py +25 -0
- numpy/core/numeric.py +12 -0
- numpy/core/numerictypes.py +10 -0
- numpy/core/overrides.py +10 -0
- numpy/core/overrides.pyi +7 -0
- numpy/core/records.py +10 -0
- numpy/core/shape_base.py +10 -0
- numpy/core/umath.py +10 -0
- numpy/ctypeslib/__init__.py +13 -0
- numpy/ctypeslib/__init__.pyi +15 -0
- numpy/ctypeslib/_ctypeslib.py +603 -0
- numpy/ctypeslib/_ctypeslib.pyi +236 -0
- numpy/distutils/__init__.py +64 -0
- numpy/distutils/__init__.pyi +4 -0
- numpy/distutils/__pycache__/conv_template.pypy311.pyc +0 -0
- numpy/distutils/_shell_utils.py +87 -0
- numpy/distutils/armccompiler.py +26 -0
- numpy/distutils/ccompiler.py +826 -0
- numpy/distutils/ccompiler_opt.py +2668 -0
- numpy/distutils/checks/cpu_asimd.c +27 -0
- numpy/distutils/checks/cpu_asimddp.c +16 -0
- numpy/distutils/checks/cpu_asimdfhm.c +19 -0
- numpy/distutils/checks/cpu_asimdhp.c +15 -0
- numpy/distutils/checks/cpu_avx.c +20 -0
- numpy/distutils/checks/cpu_avx2.c +20 -0
- numpy/distutils/checks/cpu_avx512_clx.c +22 -0
- numpy/distutils/checks/cpu_avx512_cnl.c +24 -0
- numpy/distutils/checks/cpu_avx512_icl.c +26 -0
- numpy/distutils/checks/cpu_avx512_knl.c +25 -0
- numpy/distutils/checks/cpu_avx512_knm.c +30 -0
- numpy/distutils/checks/cpu_avx512_skx.c +26 -0
- numpy/distutils/checks/cpu_avx512_spr.c +26 -0
- numpy/distutils/checks/cpu_avx512cd.c +20 -0
- numpy/distutils/checks/cpu_avx512f.c +20 -0
- numpy/distutils/checks/cpu_f16c.c +22 -0
- numpy/distutils/checks/cpu_fma3.c +22 -0
- numpy/distutils/checks/cpu_fma4.c +13 -0
- numpy/distutils/checks/cpu_lsx.c +11 -0
- numpy/distutils/checks/cpu_neon.c +19 -0
- numpy/distutils/checks/cpu_neon_fp16.c +11 -0
- numpy/distutils/checks/cpu_neon_vfpv4.c +21 -0
- numpy/distutils/checks/cpu_popcnt.c +32 -0
- numpy/distutils/checks/cpu_rvv.c +13 -0
- numpy/distutils/checks/cpu_sse.c +20 -0
- numpy/distutils/checks/cpu_sse2.c +20 -0
- numpy/distutils/checks/cpu_sse3.c +20 -0
- numpy/distutils/checks/cpu_sse41.c +20 -0
- numpy/distutils/checks/cpu_sse42.c +20 -0
- numpy/distutils/checks/cpu_ssse3.c +20 -0
- numpy/distutils/checks/cpu_sve.c +14 -0
- numpy/distutils/checks/cpu_vsx.c +21 -0
- numpy/distutils/checks/cpu_vsx2.c +13 -0
- numpy/distutils/checks/cpu_vsx3.c +13 -0
- numpy/distutils/checks/cpu_vsx4.c +14 -0
- numpy/distutils/checks/cpu_vx.c +16 -0
- numpy/distutils/checks/cpu_vxe.c +25 -0
- numpy/distutils/checks/cpu_vxe2.c +21 -0
- numpy/distutils/checks/cpu_xop.c +12 -0
- numpy/distutils/checks/extra_avx512bw_mask.c +18 -0
- numpy/distutils/checks/extra_avx512dq_mask.c +16 -0
- numpy/distutils/checks/extra_avx512f_reduce.c +41 -0
- numpy/distutils/checks/extra_vsx3_half_double.c +12 -0
- numpy/distutils/checks/extra_vsx4_mma.c +21 -0
- numpy/distutils/checks/extra_vsx_asm.c +36 -0
- numpy/distutils/checks/test_flags.c +1 -0
- numpy/distutils/command/__init__.py +41 -0
- numpy/distutils/command/autodist.py +148 -0
- numpy/distutils/command/bdist_rpm.py +22 -0
- numpy/distutils/command/build.py +62 -0
- numpy/distutils/command/build_clib.py +469 -0
- numpy/distutils/command/build_ext.py +752 -0
- numpy/distutils/command/build_py.py +31 -0
- numpy/distutils/command/build_scripts.py +49 -0
- numpy/distutils/command/build_src.py +773 -0
- numpy/distutils/command/config.py +516 -0
- numpy/distutils/command/config_compiler.py +126 -0
- numpy/distutils/command/develop.py +15 -0
- numpy/distutils/command/egg_info.py +25 -0
- numpy/distutils/command/install.py +79 -0
- numpy/distutils/command/install_clib.py +40 -0
- numpy/distutils/command/install_data.py +24 -0
- numpy/distutils/command/install_headers.py +25 -0
- numpy/distutils/command/sdist.py +27 -0
- numpy/distutils/conv_template.py +329 -0
- numpy/distutils/core.py +215 -0
- numpy/distutils/cpuinfo.py +683 -0
- numpy/distutils/exec_command.py +315 -0
- numpy/distutils/extension.py +101 -0
- numpy/distutils/fcompiler/__init__.py +1035 -0
- numpy/distutils/fcompiler/absoft.py +158 -0
- numpy/distutils/fcompiler/arm.py +71 -0
- numpy/distutils/fcompiler/compaq.py +120 -0
- numpy/distutils/fcompiler/environment.py +88 -0
- numpy/distutils/fcompiler/fujitsu.py +46 -0
- numpy/distutils/fcompiler/g95.py +42 -0
- numpy/distutils/fcompiler/gnu.py +555 -0
- numpy/distutils/fcompiler/hpux.py +41 -0
- numpy/distutils/fcompiler/ibm.py +97 -0
- numpy/distutils/fcompiler/intel.py +211 -0
- numpy/distutils/fcompiler/lahey.py +45 -0
- numpy/distutils/fcompiler/mips.py +54 -0
- numpy/distutils/fcompiler/nag.py +87 -0
- numpy/distutils/fcompiler/none.py +28 -0
- numpy/distutils/fcompiler/nv.py +53 -0
- numpy/distutils/fcompiler/pathf95.py +33 -0
- numpy/distutils/fcompiler/pg.py +128 -0
- numpy/distutils/fcompiler/sun.py +51 -0
- numpy/distutils/fcompiler/vast.py +52 -0
- numpy/distutils/from_template.py +261 -0
- numpy/distutils/fujitsuccompiler.py +28 -0
- numpy/distutils/intelccompiler.py +106 -0
- numpy/distutils/lib2def.py +116 -0
- numpy/distutils/line_endings.py +77 -0
- numpy/distutils/log.py +111 -0
- numpy/distutils/mingw/gfortran_vs2003_hack.c +6 -0
- numpy/distutils/mingw32ccompiler.py +620 -0
- numpy/distutils/misc_util.py +2484 -0
- numpy/distutils/msvc9compiler.py +63 -0
- numpy/distutils/msvccompiler.py +76 -0
- numpy/distutils/npy_pkg_config.py +441 -0
- numpy/distutils/numpy_distribution.py +17 -0
- numpy/distutils/pathccompiler.py +21 -0
- numpy/distutils/system_info.py +3267 -0
- numpy/distutils/tests/__init__.py +0 -0
- numpy/distutils/tests/test_build_ext.py +74 -0
- numpy/distutils/tests/test_ccompiler_opt.py +808 -0
- numpy/distutils/tests/test_ccompiler_opt_conf.py +176 -0
- numpy/distutils/tests/test_exec_command.py +217 -0
- numpy/distutils/tests/test_fcompiler.py +43 -0
- numpy/distutils/tests/test_fcompiler_gnu.py +55 -0
- numpy/distutils/tests/test_fcompiler_intel.py +30 -0
- numpy/distutils/tests/test_fcompiler_nagfor.py +22 -0
- numpy/distutils/tests/test_from_template.py +44 -0
- numpy/distutils/tests/test_log.py +34 -0
- numpy/distutils/tests/test_mingw32ccompiler.py +47 -0
- numpy/distutils/tests/test_misc_util.py +88 -0
- numpy/distutils/tests/test_npy_pkg_config.py +84 -0
- numpy/distutils/tests/test_shell_utils.py +79 -0
- numpy/distutils/tests/test_system_info.py +334 -0
- numpy/distutils/tests/utilities.py +90 -0
- numpy/distutils/unixccompiler.py +141 -0
- numpy/doc/ufuncs.py +138 -0
- numpy/dtypes.py +41 -0
- numpy/dtypes.pyi +630 -0
- numpy/exceptions.py +246 -0
- numpy/exceptions.pyi +27 -0
- numpy/f2py/__init__.py +86 -0
- numpy/f2py/__init__.pyi +5 -0
- numpy/f2py/__main__.py +5 -0
- numpy/f2py/__version__.py +1 -0
- numpy/f2py/__version__.pyi +1 -0
- numpy/f2py/_backends/__init__.py +9 -0
- numpy/f2py/_backends/__init__.pyi +5 -0
- numpy/f2py/_backends/_backend.py +44 -0
- numpy/f2py/_backends/_backend.pyi +46 -0
- numpy/f2py/_backends/_distutils.py +76 -0
- numpy/f2py/_backends/_distutils.pyi +13 -0
- numpy/f2py/_backends/_meson.py +244 -0
- numpy/f2py/_backends/_meson.pyi +62 -0
- numpy/f2py/_backends/meson.build.template +58 -0
- numpy/f2py/_isocbind.py +62 -0
- numpy/f2py/_isocbind.pyi +13 -0
- numpy/f2py/_src_pyf.py +247 -0
- numpy/f2py/_src_pyf.pyi +28 -0
- numpy/f2py/auxfuncs.py +1004 -0
- numpy/f2py/auxfuncs.pyi +262 -0
- numpy/f2py/capi_maps.py +811 -0
- numpy/f2py/capi_maps.pyi +33 -0
- numpy/f2py/cb_rules.py +665 -0
- numpy/f2py/cb_rules.pyi +17 -0
- numpy/f2py/cfuncs.py +1563 -0
- numpy/f2py/cfuncs.pyi +31 -0
- numpy/f2py/common_rules.py +143 -0
- numpy/f2py/common_rules.pyi +9 -0
- numpy/f2py/crackfortran.py +3725 -0
- numpy/f2py/crackfortran.pyi +266 -0
- numpy/f2py/diagnose.py +149 -0
- numpy/f2py/diagnose.pyi +1 -0
- numpy/f2py/f2py2e.py +788 -0
- numpy/f2py/f2py2e.pyi +74 -0
- numpy/f2py/f90mod_rules.py +269 -0
- numpy/f2py/f90mod_rules.pyi +16 -0
- numpy/f2py/func2subr.py +329 -0
- numpy/f2py/func2subr.pyi +7 -0
- numpy/f2py/rules.py +1629 -0
- numpy/f2py/rules.pyi +41 -0
- numpy/f2py/setup.cfg +3 -0
- numpy/f2py/src/fortranobject.c +1436 -0
- numpy/f2py/src/fortranobject.h +173 -0
- numpy/f2py/symbolic.py +1518 -0
- numpy/f2py/symbolic.pyi +219 -0
- numpy/f2py/tests/__init__.py +16 -0
- numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
- numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
- numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
- numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
- numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
- numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
- numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
- numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
- numpy/f2py/tests/src/block_docstring/foo.f +6 -0
- numpy/f2py/tests/src/callback/foo.f +62 -0
- numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
- numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
- numpy/f2py/tests/src/callback/gh25211.f +10 -0
- numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
- numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
- numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
- numpy/f2py/tests/src/cli/hi77.f +3 -0
- numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
- numpy/f2py/tests/src/common/block.f +11 -0
- numpy/f2py/tests/src/common/gh19161.f90 +10 -0
- numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
- numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
- numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
- numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
- numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
- numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
- numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
- numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
- numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
- numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
- numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
- numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
- numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
- numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
- numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
- numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
- numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
- numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
- numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
- numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
- numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
- numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
- numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
- numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
- numpy/f2py/tests/src/kind/foo.f90 +20 -0
- numpy/f2py/tests/src/mixed/foo.f +5 -0
- numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
- numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
- numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
- numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
- numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
- numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
- numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
- numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
- numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
- numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
- numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
- numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
- numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
- numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
- numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
- numpy/f2py/tests/src/quoted_character/foo.f +14 -0
- numpy/f2py/tests/src/regression/AB.inc +1 -0
- numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
- numpy/f2py/tests/src/regression/datonly.f90 +17 -0
- numpy/f2py/tests/src/regression/f77comments.f +26 -0
- numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
- numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
- numpy/f2py/tests/src/regression/incfile.f90 +5 -0
- numpy/f2py/tests/src/regression/inout.f90 +9 -0
- numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
- numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
- numpy/f2py/tests/src/return_character/foo77.f +45 -0
- numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
- numpy/f2py/tests/src/return_complex/foo77.f +45 -0
- numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
- numpy/f2py/tests/src/return_integer/foo77.f +56 -0
- numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
- numpy/f2py/tests/src/return_logical/foo77.f +56 -0
- numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
- numpy/f2py/tests/src/return_real/foo77.f +45 -0
- numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
- numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
- numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
- numpy/f2py/tests/src/routines/subrout.f +4 -0
- numpy/f2py/tests/src/routines/subrout.pyf +10 -0
- numpy/f2py/tests/src/size/foo.f90 +44 -0
- numpy/f2py/tests/src/string/char.f90 +29 -0
- numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
- numpy/f2py/tests/src/string/gh24008.f +8 -0
- numpy/f2py/tests/src/string/gh24662.f90 +7 -0
- numpy/f2py/tests/src/string/gh25286.f90 +14 -0
- numpy/f2py/tests/src/string/gh25286.pyf +12 -0
- numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
- numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
- numpy/f2py/tests/src/string/string.f +12 -0
- numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
- numpy/f2py/tests/test_abstract_interface.py +26 -0
- numpy/f2py/tests/test_array_from_pyobj.py +678 -0
- numpy/f2py/tests/test_assumed_shape.py +50 -0
- numpy/f2py/tests/test_block_docstring.py +20 -0
- numpy/f2py/tests/test_callback.py +263 -0
- numpy/f2py/tests/test_character.py +641 -0
- numpy/f2py/tests/test_common.py +23 -0
- numpy/f2py/tests/test_crackfortran.py +421 -0
- numpy/f2py/tests/test_data.py +71 -0
- numpy/f2py/tests/test_docs.py +66 -0
- numpy/f2py/tests/test_f2cmap.py +17 -0
- numpy/f2py/tests/test_f2py2e.py +983 -0
- numpy/f2py/tests/test_isoc.py +56 -0
- numpy/f2py/tests/test_kind.py +52 -0
- numpy/f2py/tests/test_mixed.py +35 -0
- numpy/f2py/tests/test_modules.py +83 -0
- numpy/f2py/tests/test_parameter.py +129 -0
- numpy/f2py/tests/test_pyf_src.py +43 -0
- numpy/f2py/tests/test_quoted_character.py +18 -0
- numpy/f2py/tests/test_regression.py +187 -0
- numpy/f2py/tests/test_return_character.py +48 -0
- numpy/f2py/tests/test_return_complex.py +67 -0
- numpy/f2py/tests/test_return_integer.py +55 -0
- numpy/f2py/tests/test_return_logical.py +65 -0
- numpy/f2py/tests/test_return_real.py +109 -0
- numpy/f2py/tests/test_routines.py +29 -0
- numpy/f2py/tests/test_semicolon_split.py +75 -0
- numpy/f2py/tests/test_size.py +45 -0
- numpy/f2py/tests/test_string.py +100 -0
- numpy/f2py/tests/test_symbolic.py +500 -0
- numpy/f2py/tests/test_value_attrspec.py +15 -0
- numpy/f2py/tests/util.py +442 -0
- numpy/f2py/use_rules.py +99 -0
- numpy/f2py/use_rules.pyi +9 -0
- numpy/fft/__init__.py +213 -0
- numpy/fft/__init__.pyi +38 -0
- numpy/fft/_helper.py +235 -0
- numpy/fft/_helper.pyi +44 -0
- numpy/fft/_pocketfft.py +1693 -0
- numpy/fft/_pocketfft.pyi +137 -0
- numpy/fft/_pocketfft_umath.pypy311-pp73-darwin.so +0 -0
- numpy/fft/tests/__init__.py +0 -0
- numpy/fft/tests/test_helper.py +167 -0
- numpy/fft/tests/test_pocketfft.py +589 -0
- numpy/lib/__init__.py +97 -0
- numpy/lib/__init__.pyi +52 -0
- numpy/lib/_array_utils_impl.py +62 -0
- numpy/lib/_array_utils_impl.pyi +10 -0
- numpy/lib/_arraypad_impl.py +926 -0
- numpy/lib/_arraypad_impl.pyi +88 -0
- numpy/lib/_arraysetops_impl.py +1158 -0
- numpy/lib/_arraysetops_impl.pyi +462 -0
- numpy/lib/_arrayterator_impl.py +224 -0
- numpy/lib/_arrayterator_impl.pyi +45 -0
- numpy/lib/_datasource.py +700 -0
- numpy/lib/_datasource.pyi +30 -0
- numpy/lib/_format_impl.py +1036 -0
- numpy/lib/_format_impl.pyi +56 -0
- numpy/lib/_function_base_impl.py +5760 -0
- numpy/lib/_function_base_impl.pyi +2324 -0
- numpy/lib/_histograms_impl.py +1085 -0
- numpy/lib/_histograms_impl.pyi +40 -0
- numpy/lib/_index_tricks_impl.py +1048 -0
- numpy/lib/_index_tricks_impl.pyi +267 -0
- numpy/lib/_iotools.py +900 -0
- numpy/lib/_iotools.pyi +116 -0
- numpy/lib/_nanfunctions_impl.py +2006 -0
- numpy/lib/_nanfunctions_impl.pyi +48 -0
- numpy/lib/_npyio_impl.py +2583 -0
- numpy/lib/_npyio_impl.pyi +299 -0
- numpy/lib/_polynomial_impl.py +1465 -0
- numpy/lib/_polynomial_impl.pyi +338 -0
- numpy/lib/_scimath_impl.py +642 -0
- numpy/lib/_scimath_impl.pyi +93 -0
- numpy/lib/_shape_base_impl.py +1289 -0
- numpy/lib/_shape_base_impl.pyi +236 -0
- numpy/lib/_stride_tricks_impl.py +582 -0
- numpy/lib/_stride_tricks_impl.pyi +73 -0
- numpy/lib/_twodim_base_impl.py +1201 -0
- numpy/lib/_twodim_base_impl.pyi +408 -0
- numpy/lib/_type_check_impl.py +710 -0
- numpy/lib/_type_check_impl.pyi +348 -0
- numpy/lib/_ufunclike_impl.py +199 -0
- numpy/lib/_ufunclike_impl.pyi +60 -0
- numpy/lib/_user_array_impl.py +310 -0
- numpy/lib/_user_array_impl.pyi +226 -0
- numpy/lib/_utils_impl.py +784 -0
- numpy/lib/_utils_impl.pyi +22 -0
- numpy/lib/_version.py +153 -0
- numpy/lib/_version.pyi +17 -0
- numpy/lib/array_utils.py +7 -0
- numpy/lib/array_utils.pyi +6 -0
- numpy/lib/format.py +24 -0
- numpy/lib/format.pyi +24 -0
- numpy/lib/introspect.py +94 -0
- numpy/lib/introspect.pyi +3 -0
- numpy/lib/mixins.py +180 -0
- numpy/lib/mixins.pyi +78 -0
- numpy/lib/npyio.py +1 -0
- numpy/lib/npyio.pyi +5 -0
- numpy/lib/recfunctions.py +1681 -0
- numpy/lib/recfunctions.pyi +444 -0
- numpy/lib/scimath.py +13 -0
- numpy/lib/scimath.pyi +12 -0
- numpy/lib/stride_tricks.py +1 -0
- numpy/lib/stride_tricks.pyi +4 -0
- numpy/lib/tests/__init__.py +0 -0
- numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
- numpy/lib/tests/data/py2-objarr.npy +0 -0
- numpy/lib/tests/data/py2-objarr.npz +0 -0
- numpy/lib/tests/data/py3-objarr.npy +0 -0
- numpy/lib/tests/data/py3-objarr.npz +0 -0
- numpy/lib/tests/data/python3.npy +0 -0
- numpy/lib/tests/data/win64python2.npy +0 -0
- numpy/lib/tests/test__datasource.py +328 -0
- numpy/lib/tests/test__iotools.py +358 -0
- numpy/lib/tests/test__version.py +64 -0
- numpy/lib/tests/test_array_utils.py +32 -0
- numpy/lib/tests/test_arraypad.py +1427 -0
- numpy/lib/tests/test_arraysetops.py +1302 -0
- numpy/lib/tests/test_arrayterator.py +45 -0
- numpy/lib/tests/test_format.py +1054 -0
- numpy/lib/tests/test_function_base.py +4750 -0
- numpy/lib/tests/test_histograms.py +855 -0
- numpy/lib/tests/test_index_tricks.py +693 -0
- numpy/lib/tests/test_io.py +2857 -0
- numpy/lib/tests/test_loadtxt.py +1099 -0
- numpy/lib/tests/test_mixins.py +215 -0
- numpy/lib/tests/test_nanfunctions.py +1438 -0
- numpy/lib/tests/test_packbits.py +376 -0
- numpy/lib/tests/test_polynomial.py +325 -0
- numpy/lib/tests/test_recfunctions.py +1042 -0
- numpy/lib/tests/test_regression.py +231 -0
- numpy/lib/tests/test_shape_base.py +813 -0
- numpy/lib/tests/test_stride_tricks.py +655 -0
- numpy/lib/tests/test_twodim_base.py +559 -0
- numpy/lib/tests/test_type_check.py +473 -0
- numpy/lib/tests/test_ufunclike.py +97 -0
- numpy/lib/tests/test_utils.py +80 -0
- numpy/lib/user_array.py +1 -0
- numpy/lib/user_array.pyi +1 -0
- numpy/linalg/__init__.py +95 -0
- numpy/linalg/__init__.pyi +71 -0
- numpy/linalg/_linalg.py +3657 -0
- numpy/linalg/_linalg.pyi +548 -0
- numpy/linalg/_umath_linalg.pyi +60 -0
- numpy/linalg/_umath_linalg.pypy311-pp73-darwin.so +0 -0
- numpy/linalg/lapack_lite.pyi +143 -0
- numpy/linalg/lapack_lite.pypy311-pp73-darwin.so +0 -0
- numpy/linalg/tests/__init__.py +0 -0
- numpy/linalg/tests/test_deprecations.py +21 -0
- numpy/linalg/tests/test_linalg.py +2442 -0
- numpy/linalg/tests/test_regression.py +182 -0
- numpy/ma/API_CHANGES.txt +135 -0
- numpy/ma/LICENSE +24 -0
- numpy/ma/README.rst +236 -0
- numpy/ma/__init__.py +53 -0
- numpy/ma/__init__.pyi +458 -0
- numpy/ma/core.py +8929 -0
- numpy/ma/core.pyi +3720 -0
- numpy/ma/extras.py +2266 -0
- numpy/ma/extras.pyi +297 -0
- numpy/ma/mrecords.py +762 -0
- numpy/ma/mrecords.pyi +96 -0
- numpy/ma/tests/__init__.py +0 -0
- numpy/ma/tests/test_arrayobject.py +40 -0
- numpy/ma/tests/test_core.py +6008 -0
- numpy/ma/tests/test_deprecations.py +65 -0
- numpy/ma/tests/test_extras.py +1945 -0
- numpy/ma/tests/test_mrecords.py +495 -0
- numpy/ma/tests/test_old_ma.py +939 -0
- numpy/ma/tests/test_regression.py +83 -0
- numpy/ma/tests/test_subclassing.py +469 -0
- numpy/ma/testutils.py +294 -0
- numpy/ma/testutils.pyi +69 -0
- numpy/matlib.py +380 -0
- numpy/matlib.pyi +580 -0
- numpy/matrixlib/__init__.py +12 -0
- numpy/matrixlib/__init__.pyi +3 -0
- numpy/matrixlib/defmatrix.py +1119 -0
- numpy/matrixlib/defmatrix.pyi +218 -0
- numpy/matrixlib/tests/__init__.py +0 -0
- numpy/matrixlib/tests/test_defmatrix.py +455 -0
- numpy/matrixlib/tests/test_interaction.py +360 -0
- numpy/matrixlib/tests/test_masked_matrix.py +240 -0
- numpy/matrixlib/tests/test_matrix_linalg.py +110 -0
- numpy/matrixlib/tests/test_multiarray.py +17 -0
- numpy/matrixlib/tests/test_numeric.py +18 -0
- numpy/matrixlib/tests/test_regression.py +31 -0
- numpy/polynomial/__init__.py +187 -0
- numpy/polynomial/__init__.pyi +31 -0
- numpy/polynomial/_polybase.py +1191 -0
- numpy/polynomial/_polybase.pyi +262 -0
- numpy/polynomial/_polytypes.pyi +501 -0
- numpy/polynomial/chebyshev.py +2001 -0
- numpy/polynomial/chebyshev.pyi +180 -0
- numpy/polynomial/hermite.py +1738 -0
- numpy/polynomial/hermite.pyi +106 -0
- numpy/polynomial/hermite_e.py +1640 -0
- numpy/polynomial/hermite_e.pyi +106 -0
- numpy/polynomial/laguerre.py +1673 -0
- numpy/polynomial/laguerre.pyi +100 -0
- numpy/polynomial/legendre.py +1603 -0
- numpy/polynomial/legendre.pyi +100 -0
- numpy/polynomial/polynomial.py +1625 -0
- numpy/polynomial/polynomial.pyi +109 -0
- numpy/polynomial/polyutils.py +759 -0
- numpy/polynomial/polyutils.pyi +307 -0
- numpy/polynomial/tests/__init__.py +0 -0
- numpy/polynomial/tests/test_chebyshev.py +618 -0
- numpy/polynomial/tests/test_classes.py +613 -0
- numpy/polynomial/tests/test_hermite.py +553 -0
- numpy/polynomial/tests/test_hermite_e.py +554 -0
- numpy/polynomial/tests/test_laguerre.py +535 -0
- numpy/polynomial/tests/test_legendre.py +566 -0
- numpy/polynomial/tests/test_polynomial.py +691 -0
- numpy/polynomial/tests/test_polyutils.py +123 -0
- numpy/polynomial/tests/test_printing.py +557 -0
- numpy/polynomial/tests/test_symbol.py +217 -0
- numpy/py.typed +0 -0
- numpy/random/LICENSE.md +71 -0
- numpy/random/__init__.pxd +14 -0
- numpy/random/__init__.py +213 -0
- numpy/random/__init__.pyi +124 -0
- numpy/random/_bounded_integers.pxd +29 -0
- numpy/random/_bounded_integers.pyi +1 -0
- numpy/random/_bounded_integers.pypy311-pp73-darwin.so +0 -0
- numpy/random/_common.pxd +110 -0
- numpy/random/_common.pyi +16 -0
- numpy/random/_common.pypy311-pp73-darwin.so +0 -0
- numpy/random/_examples/cffi/extending.py +44 -0
- numpy/random/_examples/cffi/parse.py +53 -0
- numpy/random/_examples/cython/extending.pyx +77 -0
- numpy/random/_examples/cython/extending_distributions.pyx +117 -0
- numpy/random/_examples/cython/meson.build +53 -0
- numpy/random/_examples/numba/extending.py +86 -0
- numpy/random/_examples/numba/extending_distributions.py +67 -0
- numpy/random/_generator.pyi +862 -0
- numpy/random/_generator.pypy311-pp73-darwin.so +0 -0
- numpy/random/_mt19937.pyi +27 -0
- numpy/random/_mt19937.pypy311-pp73-darwin.so +0 -0
- numpy/random/_pcg64.pyi +41 -0
- numpy/random/_pcg64.pypy311-pp73-darwin.so +0 -0
- numpy/random/_philox.pyi +36 -0
- numpy/random/_philox.pypy311-pp73-darwin.so +0 -0
- numpy/random/_pickle.py +88 -0
- numpy/random/_pickle.pyi +43 -0
- numpy/random/_sfc64.pyi +25 -0
- numpy/random/_sfc64.pypy311-pp73-darwin.so +0 -0
- numpy/random/bit_generator.pxd +40 -0
- numpy/random/bit_generator.pyi +123 -0
- numpy/random/bit_generator.pypy311-pp73-darwin.so +0 -0
- numpy/random/c_distributions.pxd +119 -0
- numpy/random/lib/libnpyrandom.a +0 -0
- numpy/random/mtrand.pyi +759 -0
- numpy/random/mtrand.pypy311-pp73-darwin.so +0 -0
- numpy/random/tests/__init__.py +0 -0
- numpy/random/tests/data/__init__.py +0 -0
- numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
- numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
- numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
- numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
- numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
- numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
- numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
- numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
- numpy/random/tests/data/philox-testset-1.csv +1001 -0
- numpy/random/tests/data/philox-testset-2.csv +1001 -0
- numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
- numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
- numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
- numpy/random/tests/test_direct.py +595 -0
- numpy/random/tests/test_extending.py +131 -0
- numpy/random/tests/test_generator_mt19937.py +2825 -0
- numpy/random/tests/test_generator_mt19937_regressions.py +221 -0
- numpy/random/tests/test_random.py +1724 -0
- numpy/random/tests/test_randomstate.py +2099 -0
- numpy/random/tests/test_randomstate_regression.py +213 -0
- numpy/random/tests/test_regression.py +175 -0
- numpy/random/tests/test_seed_sequence.py +79 -0
- numpy/random/tests/test_smoke.py +882 -0
- numpy/rec/__init__.py +2 -0
- numpy/rec/__init__.pyi +23 -0
- numpy/strings/__init__.py +2 -0
- numpy/strings/__init__.pyi +97 -0
- numpy/testing/__init__.py +22 -0
- numpy/testing/__init__.pyi +107 -0
- numpy/testing/_private/__init__.py +0 -0
- numpy/testing/_private/__init__.pyi +0 -0
- numpy/testing/_private/extbuild.py +250 -0
- numpy/testing/_private/extbuild.pyi +25 -0
- numpy/testing/_private/utils.py +2830 -0
- numpy/testing/_private/utils.pyi +505 -0
- numpy/testing/overrides.py +84 -0
- numpy/testing/overrides.pyi +10 -0
- numpy/testing/print_coercion_tables.py +207 -0
- numpy/testing/print_coercion_tables.pyi +26 -0
- numpy/testing/tests/__init__.py +0 -0
- numpy/testing/tests/test_utils.py +2123 -0
- numpy/tests/__init__.py +0 -0
- numpy/tests/test__all__.py +10 -0
- numpy/tests/test_configtool.py +51 -0
- numpy/tests/test_ctypeslib.py +383 -0
- numpy/tests/test_lazyloading.py +42 -0
- numpy/tests/test_matlib.py +59 -0
- numpy/tests/test_numpy_config.py +47 -0
- numpy/tests/test_numpy_version.py +54 -0
- numpy/tests/test_public_api.py +807 -0
- numpy/tests/test_reloading.py +76 -0
- numpy/tests/test_scripts.py +48 -0
- numpy/tests/test_warnings.py +79 -0
- numpy/typing/__init__.py +233 -0
- numpy/typing/__init__.pyi +3 -0
- numpy/typing/mypy_plugin.py +200 -0
- numpy/typing/tests/__init__.py +0 -0
- numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
- numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
- numpy/typing/tests/data/fail/array_like.pyi +15 -0
- numpy/typing/tests/data/fail/array_pad.pyi +6 -0
- numpy/typing/tests/data/fail/arrayprint.pyi +15 -0
- numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
- numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
- numpy/typing/tests/data/fail/char.pyi +63 -0
- numpy/typing/tests/data/fail/chararray.pyi +61 -0
- numpy/typing/tests/data/fail/comparisons.pyi +27 -0
- numpy/typing/tests/data/fail/constants.pyi +3 -0
- numpy/typing/tests/data/fail/datasource.pyi +16 -0
- numpy/typing/tests/data/fail/dtype.pyi +17 -0
- numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
- numpy/typing/tests/data/fail/flatiter.pyi +38 -0
- numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
- numpy/typing/tests/data/fail/histograms.pyi +12 -0
- numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
- numpy/typing/tests/data/fail/lib_function_base.pyi +60 -0
- numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
- numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
- numpy/typing/tests/data/fail/lib_version.pyi +6 -0
- numpy/typing/tests/data/fail/linalg.pyi +52 -0
- numpy/typing/tests/data/fail/ma.pyi +155 -0
- numpy/typing/tests/data/fail/memmap.pyi +5 -0
- numpy/typing/tests/data/fail/modules.pyi +17 -0
- numpy/typing/tests/data/fail/multiarray.pyi +52 -0
- numpy/typing/tests/data/fail/ndarray.pyi +11 -0
- numpy/typing/tests/data/fail/ndarray_misc.pyi +49 -0
- numpy/typing/tests/data/fail/nditer.pyi +8 -0
- numpy/typing/tests/data/fail/nested_sequence.pyi +17 -0
- numpy/typing/tests/data/fail/npyio.pyi +24 -0
- numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
- numpy/typing/tests/data/fail/random.pyi +62 -0
- numpy/typing/tests/data/fail/rec.pyi +17 -0
- numpy/typing/tests/data/fail/scalars.pyi +86 -0
- numpy/typing/tests/data/fail/shape.pyi +7 -0
- numpy/typing/tests/data/fail/shape_base.pyi +8 -0
- numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
- numpy/typing/tests/data/fail/strings.pyi +52 -0
- numpy/typing/tests/data/fail/testing.pyi +28 -0
- numpy/typing/tests/data/fail/twodim_base.pyi +39 -0
- numpy/typing/tests/data/fail/type_check.pyi +12 -0
- numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
- numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
- numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
- numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
- numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
- numpy/typing/tests/data/mypy.ini +8 -0
- numpy/typing/tests/data/pass/arithmetic.py +614 -0
- numpy/typing/tests/data/pass/array_constructors.py +138 -0
- numpy/typing/tests/data/pass/array_like.py +43 -0
- numpy/typing/tests/data/pass/arrayprint.py +37 -0
- numpy/typing/tests/data/pass/arrayterator.py +28 -0
- numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
- numpy/typing/tests/data/pass/comparisons.py +316 -0
- numpy/typing/tests/data/pass/dtype.py +57 -0
- numpy/typing/tests/data/pass/einsumfunc.py +36 -0
- numpy/typing/tests/data/pass/flatiter.py +26 -0
- numpy/typing/tests/data/pass/fromnumeric.py +272 -0
- numpy/typing/tests/data/pass/index_tricks.py +62 -0
- numpy/typing/tests/data/pass/lib_user_array.py +22 -0
- numpy/typing/tests/data/pass/lib_utils.py +19 -0
- numpy/typing/tests/data/pass/lib_version.py +18 -0
- numpy/typing/tests/data/pass/literal.py +52 -0
- numpy/typing/tests/data/pass/ma.py +199 -0
- numpy/typing/tests/data/pass/mod.py +149 -0
- numpy/typing/tests/data/pass/modules.py +45 -0
- numpy/typing/tests/data/pass/multiarray.py +77 -0
- numpy/typing/tests/data/pass/ndarray_conversion.py +81 -0
- numpy/typing/tests/data/pass/ndarray_misc.py +199 -0
- numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
- numpy/typing/tests/data/pass/nditer.py +4 -0
- numpy/typing/tests/data/pass/numeric.py +90 -0
- numpy/typing/tests/data/pass/numerictypes.py +17 -0
- numpy/typing/tests/data/pass/random.py +1498 -0
- numpy/typing/tests/data/pass/recfunctions.py +164 -0
- numpy/typing/tests/data/pass/scalars.py +249 -0
- numpy/typing/tests/data/pass/shape.py +19 -0
- numpy/typing/tests/data/pass/simple.py +170 -0
- numpy/typing/tests/data/pass/ufunc_config.py +64 -0
- numpy/typing/tests/data/pass/ufunclike.py +52 -0
- numpy/typing/tests/data/pass/ufuncs.py +16 -0
- numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
- numpy/typing/tests/data/reveal/arithmetic.pyi +719 -0
- numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
- numpy/typing/tests/data/reveal/array_constructors.pyi +277 -0
- numpy/typing/tests/data/reveal/arraypad.pyi +27 -0
- numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
- numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
- numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
- numpy/typing/tests/data/reveal/bitwise_ops.pyi +166 -0
- numpy/typing/tests/data/reveal/char.pyi +225 -0
- numpy/typing/tests/data/reveal/chararray.pyi +138 -0
- numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
- numpy/typing/tests/data/reveal/constants.pyi +14 -0
- numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
- numpy/typing/tests/data/reveal/datasource.pyi +23 -0
- numpy/typing/tests/data/reveal/dtype.pyi +132 -0
- numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
- numpy/typing/tests/data/reveal/emath.pyi +54 -0
- numpy/typing/tests/data/reveal/fft.pyi +37 -0
- numpy/typing/tests/data/reveal/flatiter.pyi +86 -0
- numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
- numpy/typing/tests/data/reveal/getlimits.pyi +53 -0
- numpy/typing/tests/data/reveal/histograms.pyi +25 -0
- numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
- numpy/typing/tests/data/reveal/lib_function_base.pyi +409 -0
- numpy/typing/tests/data/reveal/lib_polynomial.pyi +147 -0
- numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
- numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
- numpy/typing/tests/data/reveal/linalg.pyi +154 -0
- numpy/typing/tests/data/reveal/ma.pyi +1098 -0
- numpy/typing/tests/data/reveal/matrix.pyi +73 -0
- numpy/typing/tests/data/reveal/memmap.pyi +19 -0
- numpy/typing/tests/data/reveal/mod.pyi +178 -0
- numpy/typing/tests/data/reveal/modules.pyi +51 -0
- numpy/typing/tests/data/reveal/multiarray.pyi +197 -0
- numpy/typing/tests/data/reveal/nbit_base_example.pyi +20 -0
- numpy/typing/tests/data/reveal/ndarray_assignability.pyi +82 -0
- numpy/typing/tests/data/reveal/ndarray_conversion.pyi +83 -0
- numpy/typing/tests/data/reveal/ndarray_misc.pyi +246 -0
- numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +47 -0
- numpy/typing/tests/data/reveal/nditer.pyi +49 -0
- numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
- numpy/typing/tests/data/reveal/npyio.pyi +83 -0
- numpy/typing/tests/data/reveal/numeric.pyi +170 -0
- numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
- numpy/typing/tests/data/reveal/polynomial_polybase.pyi +217 -0
- numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +218 -0
- numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
- numpy/typing/tests/data/reveal/random.pyi +1546 -0
- numpy/typing/tests/data/reveal/rec.pyi +171 -0
- numpy/typing/tests/data/reveal/scalars.pyi +191 -0
- numpy/typing/tests/data/reveal/shape.pyi +13 -0
- numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
- numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
- numpy/typing/tests/data/reveal/strings.pyi +196 -0
- numpy/typing/tests/data/reveal/testing.pyi +198 -0
- numpy/typing/tests/data/reveal/twodim_base.pyi +225 -0
- numpy/typing/tests/data/reveal/type_check.pyi +67 -0
- numpy/typing/tests/data/reveal/ufunc_config.pyi +29 -0
- numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
- numpy/typing/tests/data/reveal/ufuncs.pyi +142 -0
- numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
- numpy/typing/tests/test_isfile.py +38 -0
- numpy/typing/tests/test_runtime.py +110 -0
- numpy/typing/tests/test_typing.py +205 -0
- numpy/version.py +11 -0
- numpy/version.pyi +9 -0
- numpy-2.4.1.dist-info/METADATA +139 -0
- numpy-2.4.1.dist-info/RECORD +1039 -0
- numpy-2.4.1.dist-info/WHEEL +6 -0
- numpy-2.4.1.dist-info/entry_points.txt +13 -0
- numpy-2.4.1.dist-info/licenses/LICENSE.txt +935 -0
- numpy-2.4.1.dist-info/licenses/numpy/_core/include/numpy/libdivide/LICENSE.txt +21 -0
- numpy-2.4.1.dist-info/licenses/numpy/_core/src/common/pythoncapi-compat/COPYING +14 -0
- numpy-2.4.1.dist-info/licenses/numpy/_core/src/highway/LICENSE +371 -0
- numpy-2.4.1.dist-info/licenses/numpy/_core/src/multiarray/dragon4_LICENSE.txt +27 -0
- numpy-2.4.1.dist-info/licenses/numpy/_core/src/npysort/x86-simd-sort/LICENSE.md +28 -0
- numpy-2.4.1.dist-info/licenses/numpy/_core/src/umath/svml/LICENSE +30 -0
- numpy-2.4.1.dist-info/licenses/numpy/fft/pocketfft/LICENSE.md +25 -0
- numpy-2.4.1.dist-info/licenses/numpy/linalg/lapack_lite/LICENSE.txt +48 -0
- numpy-2.4.1.dist-info/licenses/numpy/ma/LICENSE +24 -0
- numpy-2.4.1.dist-info/licenses/numpy/random/LICENSE.md +71 -0
- numpy-2.4.1.dist-info/licenses/numpy/random/src/distributions/LICENSE.md +61 -0
- numpy-2.4.1.dist-info/licenses/numpy/random/src/mt19937/LICENSE.md +61 -0
- numpy-2.4.1.dist-info/licenses/numpy/random/src/pcg64/LICENSE.md +22 -0
- numpy-2.4.1.dist-info/licenses/numpy/random/src/philox/LICENSE.md +31 -0
- numpy-2.4.1.dist-info/licenses/numpy/random/src/sfc64/LICENSE.md +27 -0
- numpy-2.4.1.dist-info/licenses/numpy/random/src/splitmix64/LICENSE.md +9 -0
|
@@ -0,0 +1,1945 @@
|
|
|
1
|
+
"""Tests suite for MaskedArray.
|
|
2
|
+
Adapted from the original test_ma by Pierre Gerard-Marchant
|
|
3
|
+
|
|
4
|
+
:author: Pierre Gerard-Marchant
|
|
5
|
+
:contact: pierregm_at_uga_dot_edu
|
|
6
|
+
|
|
7
|
+
"""
|
|
8
|
+
import inspect
|
|
9
|
+
import itertools
|
|
10
|
+
|
|
11
|
+
import pytest
|
|
12
|
+
|
|
13
|
+
import numpy as np
|
|
14
|
+
from numpy._core.numeric import normalize_axis_tuple
|
|
15
|
+
from numpy.ma.core import (
|
|
16
|
+
MaskedArray,
|
|
17
|
+
arange,
|
|
18
|
+
array,
|
|
19
|
+
count,
|
|
20
|
+
getmaskarray,
|
|
21
|
+
masked,
|
|
22
|
+
masked_array,
|
|
23
|
+
nomask,
|
|
24
|
+
ones,
|
|
25
|
+
shape,
|
|
26
|
+
zeros,
|
|
27
|
+
)
|
|
28
|
+
from numpy.ma.extras import (
|
|
29
|
+
_covhelper,
|
|
30
|
+
apply_along_axis,
|
|
31
|
+
apply_over_axes,
|
|
32
|
+
atleast_1d,
|
|
33
|
+
atleast_2d,
|
|
34
|
+
atleast_3d,
|
|
35
|
+
average,
|
|
36
|
+
clump_masked,
|
|
37
|
+
clump_unmasked,
|
|
38
|
+
compress_nd,
|
|
39
|
+
compress_rowcols,
|
|
40
|
+
corrcoef,
|
|
41
|
+
cov,
|
|
42
|
+
diagflat,
|
|
43
|
+
dot,
|
|
44
|
+
ediff1d,
|
|
45
|
+
flatnotmasked_contiguous,
|
|
46
|
+
in1d,
|
|
47
|
+
intersect1d,
|
|
48
|
+
isin,
|
|
49
|
+
mask_rowcols,
|
|
50
|
+
masked_all,
|
|
51
|
+
masked_all_like,
|
|
52
|
+
median,
|
|
53
|
+
mr_,
|
|
54
|
+
ndenumerate,
|
|
55
|
+
notmasked_contiguous,
|
|
56
|
+
notmasked_edges,
|
|
57
|
+
polyfit,
|
|
58
|
+
setdiff1d,
|
|
59
|
+
setxor1d,
|
|
60
|
+
stack,
|
|
61
|
+
union1d,
|
|
62
|
+
unique,
|
|
63
|
+
vstack,
|
|
64
|
+
)
|
|
65
|
+
from numpy.ma.testutils import (
|
|
66
|
+
assert_,
|
|
67
|
+
assert_almost_equal,
|
|
68
|
+
assert_array_equal,
|
|
69
|
+
assert_equal,
|
|
70
|
+
)
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
class TestGeneric:
|
|
74
|
+
#
|
|
75
|
+
def test_masked_all(self):
|
|
76
|
+
# Tests masked_all
|
|
77
|
+
# Standard dtype
|
|
78
|
+
test = masked_all((2,), dtype=float)
|
|
79
|
+
control = array([1, 1], mask=[1, 1], dtype=float)
|
|
80
|
+
assert_equal(test, control)
|
|
81
|
+
# Flexible dtype
|
|
82
|
+
dt = np.dtype({'names': ['a', 'b'], 'formats': ['f', 'f']})
|
|
83
|
+
test = masked_all((2,), dtype=dt)
|
|
84
|
+
control = array([(0, 0), (0, 0)], mask=[(1, 1), (1, 1)], dtype=dt)
|
|
85
|
+
assert_equal(test, control)
|
|
86
|
+
test = masked_all((2, 2), dtype=dt)
|
|
87
|
+
control = array([[(0, 0), (0, 0)], [(0, 0), (0, 0)]],
|
|
88
|
+
mask=[[(1, 1), (1, 1)], [(1, 1), (1, 1)]],
|
|
89
|
+
dtype=dt)
|
|
90
|
+
assert_equal(test, control)
|
|
91
|
+
# Nested dtype
|
|
92
|
+
dt = np.dtype([('a', 'f'), ('b', [('ba', 'f'), ('bb', 'f')])])
|
|
93
|
+
test = masked_all((2,), dtype=dt)
|
|
94
|
+
control = array([(1, (1, 1)), (1, (1, 1))],
|
|
95
|
+
mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt)
|
|
96
|
+
assert_equal(test, control)
|
|
97
|
+
test = masked_all((2,), dtype=dt)
|
|
98
|
+
control = array([(1, (1, 1)), (1, (1, 1))],
|
|
99
|
+
mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt)
|
|
100
|
+
assert_equal(test, control)
|
|
101
|
+
test = masked_all((1, 1), dtype=dt)
|
|
102
|
+
control = array([[(1, (1, 1))]], mask=[[(1, (1, 1))]], dtype=dt)
|
|
103
|
+
assert_equal(test, control)
|
|
104
|
+
|
|
105
|
+
def test_masked_all_with_object_nested(self):
|
|
106
|
+
# Test masked_all works with nested array with dtype of an 'object'
|
|
107
|
+
# refers to issue #15895
|
|
108
|
+
my_dtype = np.dtype([('b', ([('c', object)], (1,)))])
|
|
109
|
+
masked_arr = np.ma.masked_all((1,), my_dtype)
|
|
110
|
+
|
|
111
|
+
assert_equal(type(masked_arr['b']), np.ma.core.MaskedArray)
|
|
112
|
+
assert_equal(type(masked_arr['b']['c']), np.ma.core.MaskedArray)
|
|
113
|
+
assert_equal(len(masked_arr['b']['c']), 1)
|
|
114
|
+
assert_equal(masked_arr['b']['c'].shape, (1, 1))
|
|
115
|
+
assert_equal(masked_arr['b']['c']._fill_value.shape, ())
|
|
116
|
+
|
|
117
|
+
def test_masked_all_with_object(self):
|
|
118
|
+
# same as above except that the array is not nested
|
|
119
|
+
my_dtype = np.dtype([('b', (object, (1,)))])
|
|
120
|
+
masked_arr = np.ma.masked_all((1,), my_dtype)
|
|
121
|
+
|
|
122
|
+
assert_equal(type(masked_arr['b']), np.ma.core.MaskedArray)
|
|
123
|
+
assert_equal(len(masked_arr['b']), 1)
|
|
124
|
+
assert_equal(masked_arr['b'].shape, (1, 1))
|
|
125
|
+
assert_equal(masked_arr['b']._fill_value.shape, ())
|
|
126
|
+
|
|
127
|
+
def test_masked_all_like(self):
|
|
128
|
+
# Tests masked_all
|
|
129
|
+
# Standard dtype
|
|
130
|
+
base = array([1, 2], dtype=float)
|
|
131
|
+
test = masked_all_like(base)
|
|
132
|
+
control = array([1, 1], mask=[1, 1], dtype=float)
|
|
133
|
+
assert_equal(test, control)
|
|
134
|
+
# Flexible dtype
|
|
135
|
+
dt = np.dtype({'names': ['a', 'b'], 'formats': ['f', 'f']})
|
|
136
|
+
base = array([(0, 0), (0, 0)], mask=[(1, 1), (1, 1)], dtype=dt)
|
|
137
|
+
test = masked_all_like(base)
|
|
138
|
+
control = array([(10, 10), (10, 10)], mask=[(1, 1), (1, 1)], dtype=dt)
|
|
139
|
+
assert_equal(test, control)
|
|
140
|
+
# Nested dtype
|
|
141
|
+
dt = np.dtype([('a', 'f'), ('b', [('ba', 'f'), ('bb', 'f')])])
|
|
142
|
+
control = array([(1, (1, 1)), (1, (1, 1))],
|
|
143
|
+
mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt)
|
|
144
|
+
test = masked_all_like(control)
|
|
145
|
+
assert_equal(test, control)
|
|
146
|
+
|
|
147
|
+
def check_clump(self, f):
|
|
148
|
+
for i in range(1, 7):
|
|
149
|
+
for j in range(2**i):
|
|
150
|
+
k = np.arange(i, dtype=int)
|
|
151
|
+
ja = np.full(i, j, dtype=int)
|
|
152
|
+
a = masked_array(2**k)
|
|
153
|
+
a.mask = (ja & (2**k)) != 0
|
|
154
|
+
s = 0
|
|
155
|
+
for sl in f(a):
|
|
156
|
+
s += a.data[sl].sum()
|
|
157
|
+
if f == clump_unmasked:
|
|
158
|
+
assert_equal(a.compressed().sum(), s)
|
|
159
|
+
else:
|
|
160
|
+
a.mask = ~a.mask
|
|
161
|
+
assert_equal(a.compressed().sum(), s)
|
|
162
|
+
|
|
163
|
+
def test_clump_masked(self):
|
|
164
|
+
# Test clump_masked
|
|
165
|
+
a = masked_array(np.arange(10))
|
|
166
|
+
a[[0, 1, 2, 6, 8, 9]] = masked
|
|
167
|
+
#
|
|
168
|
+
test = clump_masked(a)
|
|
169
|
+
control = [slice(0, 3), slice(6, 7), slice(8, 10)]
|
|
170
|
+
assert_equal(test, control)
|
|
171
|
+
|
|
172
|
+
self.check_clump(clump_masked)
|
|
173
|
+
|
|
174
|
+
def test_clump_unmasked(self):
|
|
175
|
+
# Test clump_unmasked
|
|
176
|
+
a = masked_array(np.arange(10))
|
|
177
|
+
a[[0, 1, 2, 6, 8, 9]] = masked
|
|
178
|
+
test = clump_unmasked(a)
|
|
179
|
+
control = [slice(3, 6), slice(7, 8), ]
|
|
180
|
+
assert_equal(test, control)
|
|
181
|
+
|
|
182
|
+
self.check_clump(clump_unmasked)
|
|
183
|
+
|
|
184
|
+
def test_flatnotmasked_contiguous(self):
|
|
185
|
+
# Test flatnotmasked_contiguous
|
|
186
|
+
a = arange(10)
|
|
187
|
+
# No mask
|
|
188
|
+
test = flatnotmasked_contiguous(a)
|
|
189
|
+
assert_equal(test, [slice(0, a.size)])
|
|
190
|
+
# mask of all false
|
|
191
|
+
a.mask = np.zeros(10, dtype=bool)
|
|
192
|
+
assert_equal(test, [slice(0, a.size)])
|
|
193
|
+
# Some mask
|
|
194
|
+
a[(a < 3) | (a > 8) | (a == 5)] = masked
|
|
195
|
+
test = flatnotmasked_contiguous(a)
|
|
196
|
+
assert_equal(test, [slice(3, 5), slice(6, 9)])
|
|
197
|
+
#
|
|
198
|
+
a[:] = masked
|
|
199
|
+
test = flatnotmasked_contiguous(a)
|
|
200
|
+
assert_equal(test, [])
|
|
201
|
+
|
|
202
|
+
|
|
203
|
+
class TestAverage:
|
|
204
|
+
# Several tests of average. Why so many ? Good point...
|
|
205
|
+
def test_testAverage1(self):
|
|
206
|
+
# Test of average.
|
|
207
|
+
ott = array([0., 1., 2., 3.], mask=[True, False, False, False])
|
|
208
|
+
assert_equal(2.0, average(ott, axis=0))
|
|
209
|
+
assert_equal(2.0, average(ott, weights=[1., 1., 2., 1.]))
|
|
210
|
+
result, wts = average(ott, weights=[1., 1., 2., 1.], returned=True)
|
|
211
|
+
assert_equal(2.0, result)
|
|
212
|
+
assert_(wts == 4.0)
|
|
213
|
+
ott[:] = masked
|
|
214
|
+
assert_equal(average(ott, axis=0).mask, [True])
|
|
215
|
+
ott = array([0., 1., 2., 3.], mask=[True, False, False, False])
|
|
216
|
+
ott = ott.reshape(2, 2)
|
|
217
|
+
ott[:, 1] = masked
|
|
218
|
+
assert_equal(average(ott, axis=0), [2.0, 0.0])
|
|
219
|
+
assert_equal(average(ott, axis=1).mask[0], [True])
|
|
220
|
+
assert_equal([2., 0.], average(ott, axis=0))
|
|
221
|
+
result, wts = average(ott, axis=0, returned=True)
|
|
222
|
+
assert_equal(wts, [1., 0.])
|
|
223
|
+
|
|
224
|
+
def test_testAverage2(self):
|
|
225
|
+
# More tests of average.
|
|
226
|
+
w1 = [0, 1, 1, 1, 1, 0]
|
|
227
|
+
w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]]
|
|
228
|
+
x = arange(6, dtype=np.float64)
|
|
229
|
+
assert_equal(average(x, axis=0), 2.5)
|
|
230
|
+
assert_equal(average(x, axis=0, weights=w1), 2.5)
|
|
231
|
+
y = array([arange(6, dtype=np.float64), 2.0 * arange(6)])
|
|
232
|
+
assert_equal(average(y, None), np.add.reduce(np.arange(6)) * 3. / 12.)
|
|
233
|
+
assert_equal(average(y, axis=0), np.arange(6) * 3. / 2.)
|
|
234
|
+
assert_equal(average(y, axis=1),
|
|
235
|
+
[average(x, axis=0), average(x, axis=0) * 2.0])
|
|
236
|
+
assert_equal(average(y, None, weights=w2), 20. / 6.)
|
|
237
|
+
assert_equal(average(y, axis=0, weights=w2),
|
|
238
|
+
[0., 1., 2., 3., 4., 10.])
|
|
239
|
+
assert_equal(average(y, axis=1),
|
|
240
|
+
[average(x, axis=0), average(x, axis=0) * 2.0])
|
|
241
|
+
m1 = zeros(6)
|
|
242
|
+
m2 = [0, 0, 1, 1, 0, 0]
|
|
243
|
+
m3 = [[0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0]]
|
|
244
|
+
m4 = ones(6)
|
|
245
|
+
m5 = [0, 1, 1, 1, 1, 1]
|
|
246
|
+
assert_equal(average(masked_array(x, m1), axis=0), 2.5)
|
|
247
|
+
assert_equal(average(masked_array(x, m2), axis=0), 2.5)
|
|
248
|
+
assert_equal(average(masked_array(x, m4), axis=0).mask, [True])
|
|
249
|
+
assert_equal(average(masked_array(x, m5), axis=0), 0.0)
|
|
250
|
+
assert_equal(count(average(masked_array(x, m4), axis=0)), 0)
|
|
251
|
+
z = masked_array(y, m3)
|
|
252
|
+
assert_equal(average(z, None), 20. / 6.)
|
|
253
|
+
assert_equal(average(z, axis=0), [0., 1., 99., 99., 4.0, 7.5])
|
|
254
|
+
assert_equal(average(z, axis=1), [2.5, 5.0])
|
|
255
|
+
assert_equal(average(z, axis=0, weights=w2),
|
|
256
|
+
[0., 1., 99., 99., 4.0, 10.0])
|
|
257
|
+
|
|
258
|
+
def test_testAverage3(self):
|
|
259
|
+
# Yet more tests of average!
|
|
260
|
+
a = arange(6)
|
|
261
|
+
b = arange(6) * 3
|
|
262
|
+
r1, w1 = average([[a, b], [b, a]], axis=1, returned=True)
|
|
263
|
+
assert_equal(shape(r1), shape(w1))
|
|
264
|
+
assert_equal(r1.shape, w1.shape)
|
|
265
|
+
r2, w2 = average(ones((2, 2, 3)), axis=0, weights=[3, 1], returned=True)
|
|
266
|
+
assert_equal(shape(w2), shape(r2))
|
|
267
|
+
r2, w2 = average(ones((2, 2, 3)), returned=True)
|
|
268
|
+
assert_equal(shape(w2), shape(r2))
|
|
269
|
+
r2, w2 = average(ones((2, 2, 3)), weights=ones((2, 2, 3)), returned=True)
|
|
270
|
+
assert_equal(shape(w2), shape(r2))
|
|
271
|
+
a2d = array([[1, 2], [0, 4]], float)
|
|
272
|
+
a2dm = masked_array(a2d, [[False, False], [True, False]])
|
|
273
|
+
a2da = average(a2d, axis=0)
|
|
274
|
+
assert_equal(a2da, [0.5, 3.0])
|
|
275
|
+
a2dma = average(a2dm, axis=0)
|
|
276
|
+
assert_equal(a2dma, [1.0, 3.0])
|
|
277
|
+
a2dma = average(a2dm, axis=None)
|
|
278
|
+
assert_equal(a2dma, 7. / 3.)
|
|
279
|
+
a2dma = average(a2dm, axis=1)
|
|
280
|
+
assert_equal(a2dma, [1.5, 4.0])
|
|
281
|
+
|
|
282
|
+
def test_testAverage4(self):
|
|
283
|
+
# Test that `keepdims` works with average
|
|
284
|
+
x = np.array([2, 3, 4]).reshape(3, 1)
|
|
285
|
+
b = np.ma.array(x, mask=[[False], [False], [True]])
|
|
286
|
+
w = np.array([4, 5, 6]).reshape(3, 1)
|
|
287
|
+
actual = average(b, weights=w, axis=1, keepdims=True)
|
|
288
|
+
desired = masked_array([[2.], [3.], [4.]], [[False], [False], [True]])
|
|
289
|
+
assert_equal(actual, desired)
|
|
290
|
+
|
|
291
|
+
def test_weight_and_input_dims_different(self):
|
|
292
|
+
# this test mirrors a test for np.average()
|
|
293
|
+
# in lib/test/test_function_base.py
|
|
294
|
+
y = np.arange(12).reshape(2, 2, 3)
|
|
295
|
+
w = np.array([0., 0., 1., .5, .5, 0., 0., .5, .5, 1., 0., 0.])\
|
|
296
|
+
.reshape(2, 2, 3)
|
|
297
|
+
|
|
298
|
+
m = np.full((2, 2, 3), False)
|
|
299
|
+
yma = np.ma.array(y, mask=m)
|
|
300
|
+
subw0 = w[:, :, 0]
|
|
301
|
+
|
|
302
|
+
actual = average(yma, axis=(0, 1), weights=subw0)
|
|
303
|
+
desired = masked_array([7., 8., 9.], mask=[False, False, False])
|
|
304
|
+
assert_almost_equal(actual, desired)
|
|
305
|
+
|
|
306
|
+
m = np.full((2, 2, 3), False)
|
|
307
|
+
m[:, :, 0] = True
|
|
308
|
+
m[0, 0, 1] = True
|
|
309
|
+
yma = np.ma.array(y, mask=m)
|
|
310
|
+
actual = average(yma, axis=(0, 1), weights=subw0)
|
|
311
|
+
desired = masked_array(
|
|
312
|
+
[np.nan, 8., 9.],
|
|
313
|
+
mask=[True, False, False])
|
|
314
|
+
assert_almost_equal(actual, desired)
|
|
315
|
+
|
|
316
|
+
m = np.full((2, 2, 3), False)
|
|
317
|
+
yma = np.ma.array(y, mask=m)
|
|
318
|
+
|
|
319
|
+
subw1 = w[1, :, :]
|
|
320
|
+
actual = average(yma, axis=(1, 2), weights=subw1)
|
|
321
|
+
desired = masked_array([2.25, 8.25], mask=[False, False])
|
|
322
|
+
assert_almost_equal(actual, desired)
|
|
323
|
+
|
|
324
|
+
# here the weights have the wrong shape for the specified axes
|
|
325
|
+
with pytest.raises(
|
|
326
|
+
ValueError,
|
|
327
|
+
match="Shape of weights must be consistent with "
|
|
328
|
+
"shape of a along specified axis"):
|
|
329
|
+
average(yma, axis=(0, 1, 2), weights=subw0)
|
|
330
|
+
|
|
331
|
+
with pytest.raises(
|
|
332
|
+
ValueError,
|
|
333
|
+
match="Shape of weights must be consistent with "
|
|
334
|
+
"shape of a along specified axis"):
|
|
335
|
+
average(yma, axis=(0, 1), weights=subw1)
|
|
336
|
+
|
|
337
|
+
# swapping the axes should be same as transposing weights
|
|
338
|
+
actual = average(yma, axis=(1, 0), weights=subw0)
|
|
339
|
+
desired = average(yma, axis=(0, 1), weights=subw0.T)
|
|
340
|
+
assert_almost_equal(actual, desired)
|
|
341
|
+
|
|
342
|
+
def test_onintegers_with_mask(self):
|
|
343
|
+
# Test average on integers with mask
|
|
344
|
+
a = average(array([1, 2]))
|
|
345
|
+
assert_equal(a, 1.5)
|
|
346
|
+
a = average(array([1, 2, 3, 4], mask=[False, False, True, True]))
|
|
347
|
+
assert_equal(a, 1.5)
|
|
348
|
+
|
|
349
|
+
def test_complex(self):
|
|
350
|
+
# Test with complex data.
|
|
351
|
+
# (Regression test for https://github.com/numpy/numpy/issues/2684)
|
|
352
|
+
mask = np.array([[0, 0, 0, 1, 0],
|
|
353
|
+
[0, 1, 0, 0, 0]], dtype=bool)
|
|
354
|
+
a = masked_array([[0, 1 + 2j, 3 + 4j, 5 + 6j, 7 + 8j],
|
|
355
|
+
[9j, 0 + 1j, 2 + 3j, 4 + 5j, 7 + 7j]],
|
|
356
|
+
mask=mask)
|
|
357
|
+
|
|
358
|
+
av = average(a)
|
|
359
|
+
expected = np.average(a.compressed())
|
|
360
|
+
assert_almost_equal(av.real, expected.real)
|
|
361
|
+
assert_almost_equal(av.imag, expected.imag)
|
|
362
|
+
|
|
363
|
+
av0 = average(a, axis=0)
|
|
364
|
+
expected0 = average(a.real, axis=0) + average(a.imag, axis=0) * 1j
|
|
365
|
+
assert_almost_equal(av0.real, expected0.real)
|
|
366
|
+
assert_almost_equal(av0.imag, expected0.imag)
|
|
367
|
+
|
|
368
|
+
av1 = average(a, axis=1)
|
|
369
|
+
expected1 = average(a.real, axis=1) + average(a.imag, axis=1) * 1j
|
|
370
|
+
assert_almost_equal(av1.real, expected1.real)
|
|
371
|
+
assert_almost_equal(av1.imag, expected1.imag)
|
|
372
|
+
|
|
373
|
+
# Test with the 'weights' argument.
|
|
374
|
+
wts = np.array([[0.5, 1.0, 2.0, 1.0, 0.5],
|
|
375
|
+
[1.0, 1.0, 1.0, 1.0, 1.0]])
|
|
376
|
+
wav = average(a, weights=wts)
|
|
377
|
+
expected = np.average(a.compressed(), weights=wts[~mask])
|
|
378
|
+
assert_almost_equal(wav.real, expected.real)
|
|
379
|
+
assert_almost_equal(wav.imag, expected.imag)
|
|
380
|
+
|
|
381
|
+
wav0 = average(a, weights=wts, axis=0)
|
|
382
|
+
expected0 = (average(a.real, weights=wts, axis=0) +
|
|
383
|
+
average(a.imag, weights=wts, axis=0) * 1j)
|
|
384
|
+
assert_almost_equal(wav0.real, expected0.real)
|
|
385
|
+
assert_almost_equal(wav0.imag, expected0.imag)
|
|
386
|
+
|
|
387
|
+
wav1 = average(a, weights=wts, axis=1)
|
|
388
|
+
expected1 = (average(a.real, weights=wts, axis=1) +
|
|
389
|
+
average(a.imag, weights=wts, axis=1) * 1j)
|
|
390
|
+
assert_almost_equal(wav1.real, expected1.real)
|
|
391
|
+
assert_almost_equal(wav1.imag, expected1.imag)
|
|
392
|
+
|
|
393
|
+
@pytest.mark.parametrize(
|
|
394
|
+
'x, axis, expected_avg, weights, expected_wavg, expected_wsum',
|
|
395
|
+
[([1, 2, 3], None, [2.0], [3, 4, 1], [1.75], [8.0]),
|
|
396
|
+
([[1, 2, 5], [1, 6, 11]], 0, [[1.0, 4.0, 8.0]],
|
|
397
|
+
[1, 3], [[1.0, 5.0, 9.5]], [[4, 4, 4]])],
|
|
398
|
+
)
|
|
399
|
+
def test_basic_keepdims(self, x, axis, expected_avg,
|
|
400
|
+
weights, expected_wavg, expected_wsum):
|
|
401
|
+
avg = np.ma.average(x, axis=axis, keepdims=True)
|
|
402
|
+
assert avg.shape == np.shape(expected_avg)
|
|
403
|
+
assert_array_equal(avg, expected_avg)
|
|
404
|
+
|
|
405
|
+
wavg = np.ma.average(x, axis=axis, weights=weights, keepdims=True)
|
|
406
|
+
assert wavg.shape == np.shape(expected_wavg)
|
|
407
|
+
assert_array_equal(wavg, expected_wavg)
|
|
408
|
+
|
|
409
|
+
wavg, wsum = np.ma.average(x, axis=axis, weights=weights,
|
|
410
|
+
returned=True, keepdims=True)
|
|
411
|
+
assert wavg.shape == np.shape(expected_wavg)
|
|
412
|
+
assert_array_equal(wavg, expected_wavg)
|
|
413
|
+
assert wsum.shape == np.shape(expected_wsum)
|
|
414
|
+
assert_array_equal(wsum, expected_wsum)
|
|
415
|
+
|
|
416
|
+
def test_masked_weights(self):
|
|
417
|
+
# Test with masked weights.
|
|
418
|
+
# (Regression test for https://github.com/numpy/numpy/issues/10438)
|
|
419
|
+
a = np.ma.array(np.arange(9).reshape(3, 3),
|
|
420
|
+
mask=[[1, 0, 0], [1, 0, 0], [0, 0, 0]])
|
|
421
|
+
weights_unmasked = masked_array([5, 28, 31], mask=False)
|
|
422
|
+
weights_masked = masked_array([5, 28, 31], mask=[1, 0, 0])
|
|
423
|
+
|
|
424
|
+
avg_unmasked = average(a, axis=0,
|
|
425
|
+
weights=weights_unmasked, returned=False)
|
|
426
|
+
expected_unmasked = np.array([6.0, 5.21875, 6.21875])
|
|
427
|
+
assert_almost_equal(avg_unmasked, expected_unmasked)
|
|
428
|
+
|
|
429
|
+
avg_masked = average(a, axis=0, weights=weights_masked, returned=False)
|
|
430
|
+
expected_masked = np.array([6.0, 5.576271186440678, 6.576271186440678])
|
|
431
|
+
assert_almost_equal(avg_masked, expected_masked)
|
|
432
|
+
|
|
433
|
+
# weights should be masked if needed
|
|
434
|
+
# depending on the array mask. This is to avoid summing
|
|
435
|
+
# masked nan or other values that are not cancelled by a zero
|
|
436
|
+
a = np.ma.array([1.0, 2.0, 3.0, 4.0],
|
|
437
|
+
mask=[False, False, True, True])
|
|
438
|
+
avg_unmasked = average(a, weights=[1, 1, 1, np.nan])
|
|
439
|
+
|
|
440
|
+
assert_almost_equal(avg_unmasked, 1.5)
|
|
441
|
+
|
|
442
|
+
a = np.ma.array([
|
|
443
|
+
[1.0, 2.0, 3.0, 4.0],
|
|
444
|
+
[5.0, 6.0, 7.0, 8.0],
|
|
445
|
+
[9.0, 1.0, 2.0, 3.0],
|
|
446
|
+
], mask=[
|
|
447
|
+
[False, True, True, False],
|
|
448
|
+
[True, False, True, True],
|
|
449
|
+
[True, False, True, False],
|
|
450
|
+
])
|
|
451
|
+
|
|
452
|
+
avg_masked = np.ma.average(a, weights=[1, np.nan, 1], axis=0)
|
|
453
|
+
avg_expected = np.ma.array([1.0, np.nan, np.nan, 3.5],
|
|
454
|
+
mask=[False, True, True, False])
|
|
455
|
+
|
|
456
|
+
assert_almost_equal(avg_masked, avg_expected)
|
|
457
|
+
assert_equal(avg_masked.mask, avg_expected.mask)
|
|
458
|
+
|
|
459
|
+
|
|
460
|
+
class TestConcatenator:
|
|
461
|
+
# Tests for mr_, the equivalent of r_ for masked arrays.
|
|
462
|
+
|
|
463
|
+
def test_1d(self):
|
|
464
|
+
# Tests mr_ on 1D arrays.
|
|
465
|
+
assert_array_equal(mr_[1, 2, 3, 4, 5, 6], array([1, 2, 3, 4, 5, 6]))
|
|
466
|
+
b = ones(5)
|
|
467
|
+
m = [1, 0, 0, 0, 0]
|
|
468
|
+
d = masked_array(b, mask=m)
|
|
469
|
+
c = mr_[d, 0, 0, d]
|
|
470
|
+
assert_(isinstance(c, MaskedArray))
|
|
471
|
+
assert_array_equal(c, [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1])
|
|
472
|
+
assert_array_equal(c.mask, mr_[m, 0, 0, m])
|
|
473
|
+
|
|
474
|
+
def test_2d(self):
|
|
475
|
+
# Tests mr_ on 2D arrays.
|
|
476
|
+
a_1 = np.random.rand(5, 5)
|
|
477
|
+
a_2 = np.random.rand(5, 5)
|
|
478
|
+
m_1 = np.round(np.random.rand(5, 5), 0)
|
|
479
|
+
m_2 = np.round(np.random.rand(5, 5), 0)
|
|
480
|
+
b_1 = masked_array(a_1, mask=m_1)
|
|
481
|
+
b_2 = masked_array(a_2, mask=m_2)
|
|
482
|
+
# append columns
|
|
483
|
+
d = mr_['1', b_1, b_2]
|
|
484
|
+
assert_(d.shape == (5, 10))
|
|
485
|
+
assert_array_equal(d[:, :5], b_1)
|
|
486
|
+
assert_array_equal(d[:, 5:], b_2)
|
|
487
|
+
assert_array_equal(d.mask, np.r_['1', m_1, m_2])
|
|
488
|
+
d = mr_[b_1, b_2]
|
|
489
|
+
assert_(d.shape == (10, 5))
|
|
490
|
+
assert_array_equal(d[:5, :], b_1)
|
|
491
|
+
assert_array_equal(d[5:, :], b_2)
|
|
492
|
+
assert_array_equal(d.mask, np.r_[m_1, m_2])
|
|
493
|
+
|
|
494
|
+
def test_masked_constant(self):
|
|
495
|
+
actual = mr_[np.ma.masked, 1]
|
|
496
|
+
assert_equal(actual.mask, [True, False])
|
|
497
|
+
assert_equal(actual.data[1], 1)
|
|
498
|
+
|
|
499
|
+
actual = mr_[[1, 2], np.ma.masked]
|
|
500
|
+
assert_equal(actual.mask, [False, False, True])
|
|
501
|
+
assert_equal(actual.data[:2], [1, 2])
|
|
502
|
+
|
|
503
|
+
|
|
504
|
+
class TestNotMasked:
|
|
505
|
+
# Tests notmasked_edges and notmasked_contiguous.
|
|
506
|
+
|
|
507
|
+
def test_edges(self):
|
|
508
|
+
# Tests unmasked_edges
|
|
509
|
+
data = masked_array(np.arange(25).reshape(5, 5),
|
|
510
|
+
mask=[[0, 0, 1, 0, 0],
|
|
511
|
+
[0, 0, 0, 1, 1],
|
|
512
|
+
[1, 1, 0, 0, 0],
|
|
513
|
+
[0, 0, 0, 0, 0],
|
|
514
|
+
[1, 1, 1, 0, 0]],)
|
|
515
|
+
test = notmasked_edges(data, None)
|
|
516
|
+
assert_equal(test, [0, 24])
|
|
517
|
+
test = notmasked_edges(data, 0)
|
|
518
|
+
assert_equal(test[0], [(0, 0, 1, 0, 0), (0, 1, 2, 3, 4)])
|
|
519
|
+
assert_equal(test[1], [(3, 3, 3, 4, 4), (0, 1, 2, 3, 4)])
|
|
520
|
+
test = notmasked_edges(data, 1)
|
|
521
|
+
assert_equal(test[0], [(0, 1, 2, 3, 4), (0, 0, 2, 0, 3)])
|
|
522
|
+
assert_equal(test[1], [(0, 1, 2, 3, 4), (4, 2, 4, 4, 4)])
|
|
523
|
+
#
|
|
524
|
+
test = notmasked_edges(data.data, None)
|
|
525
|
+
assert_equal(test, [0, 24])
|
|
526
|
+
test = notmasked_edges(data.data, 0)
|
|
527
|
+
assert_equal(test[0], [(0, 0, 0, 0, 0), (0, 1, 2, 3, 4)])
|
|
528
|
+
assert_equal(test[1], [(4, 4, 4, 4, 4), (0, 1, 2, 3, 4)])
|
|
529
|
+
test = notmasked_edges(data.data, -1)
|
|
530
|
+
assert_equal(test[0], [(0, 1, 2, 3, 4), (0, 0, 0, 0, 0)])
|
|
531
|
+
assert_equal(test[1], [(0, 1, 2, 3, 4), (4, 4, 4, 4, 4)])
|
|
532
|
+
#
|
|
533
|
+
data[-2] = masked
|
|
534
|
+
test = notmasked_edges(data, 0)
|
|
535
|
+
assert_equal(test[0], [(0, 0, 1, 0, 0), (0, 1, 2, 3, 4)])
|
|
536
|
+
assert_equal(test[1], [(1, 1, 2, 4, 4), (0, 1, 2, 3, 4)])
|
|
537
|
+
test = notmasked_edges(data, -1)
|
|
538
|
+
assert_equal(test[0], [(0, 1, 2, 4), (0, 0, 2, 3)])
|
|
539
|
+
assert_equal(test[1], [(0, 1, 2, 4), (4, 2, 4, 4)])
|
|
540
|
+
|
|
541
|
+
def test_contiguous(self):
|
|
542
|
+
# Tests notmasked_contiguous
|
|
543
|
+
a = masked_array(np.arange(24).reshape(3, 8),
|
|
544
|
+
mask=[[0, 0, 0, 0, 1, 1, 1, 1],
|
|
545
|
+
[1, 1, 1, 1, 1, 1, 1, 1],
|
|
546
|
+
[0, 0, 0, 0, 0, 0, 1, 0]])
|
|
547
|
+
tmp = notmasked_contiguous(a, None)
|
|
548
|
+
assert_equal(tmp, [
|
|
549
|
+
slice(0, 4, None),
|
|
550
|
+
slice(16, 22, None),
|
|
551
|
+
slice(23, 24, None)
|
|
552
|
+
])
|
|
553
|
+
|
|
554
|
+
tmp = notmasked_contiguous(a, 0)
|
|
555
|
+
assert_equal(tmp, [
|
|
556
|
+
[slice(0, 1, None), slice(2, 3, None)],
|
|
557
|
+
[slice(0, 1, None), slice(2, 3, None)],
|
|
558
|
+
[slice(0, 1, None), slice(2, 3, None)],
|
|
559
|
+
[slice(0, 1, None), slice(2, 3, None)],
|
|
560
|
+
[slice(2, 3, None)],
|
|
561
|
+
[slice(2, 3, None)],
|
|
562
|
+
[],
|
|
563
|
+
[slice(2, 3, None)]
|
|
564
|
+
])
|
|
565
|
+
#
|
|
566
|
+
tmp = notmasked_contiguous(a, 1)
|
|
567
|
+
assert_equal(tmp, [
|
|
568
|
+
[slice(0, 4, None)],
|
|
569
|
+
[],
|
|
570
|
+
[slice(0, 6, None), slice(7, 8, None)]
|
|
571
|
+
])
|
|
572
|
+
|
|
573
|
+
|
|
574
|
+
class TestCompressFunctions:
|
|
575
|
+
|
|
576
|
+
def test_compress_nd(self):
|
|
577
|
+
# Tests compress_nd
|
|
578
|
+
x = np.array(list(range(3 * 4 * 5))).reshape(3, 4, 5)
|
|
579
|
+
m = np.zeros((3, 4, 5)).astype(bool)
|
|
580
|
+
m[1, 1, 1] = True
|
|
581
|
+
x = array(x, mask=m)
|
|
582
|
+
|
|
583
|
+
# axis=None
|
|
584
|
+
a = compress_nd(x)
|
|
585
|
+
assert_equal(a, [[[ 0, 2, 3, 4],
|
|
586
|
+
[10, 12, 13, 14],
|
|
587
|
+
[15, 17, 18, 19]],
|
|
588
|
+
[[40, 42, 43, 44],
|
|
589
|
+
[50, 52, 53, 54],
|
|
590
|
+
[55, 57, 58, 59]]])
|
|
591
|
+
|
|
592
|
+
# axis=0
|
|
593
|
+
a = compress_nd(x, 0)
|
|
594
|
+
assert_equal(a, [[[ 0, 1, 2, 3, 4],
|
|
595
|
+
[ 5, 6, 7, 8, 9],
|
|
596
|
+
[10, 11, 12, 13, 14],
|
|
597
|
+
[15, 16, 17, 18, 19]],
|
|
598
|
+
[[40, 41, 42, 43, 44],
|
|
599
|
+
[45, 46, 47, 48, 49],
|
|
600
|
+
[50, 51, 52, 53, 54],
|
|
601
|
+
[55, 56, 57, 58, 59]]])
|
|
602
|
+
|
|
603
|
+
# axis=1
|
|
604
|
+
a = compress_nd(x, 1)
|
|
605
|
+
assert_equal(a, [[[ 0, 1, 2, 3, 4],
|
|
606
|
+
[10, 11, 12, 13, 14],
|
|
607
|
+
[15, 16, 17, 18, 19]],
|
|
608
|
+
[[20, 21, 22, 23, 24],
|
|
609
|
+
[30, 31, 32, 33, 34],
|
|
610
|
+
[35, 36, 37, 38, 39]],
|
|
611
|
+
[[40, 41, 42, 43, 44],
|
|
612
|
+
[50, 51, 52, 53, 54],
|
|
613
|
+
[55, 56, 57, 58, 59]]])
|
|
614
|
+
|
|
615
|
+
a2 = compress_nd(x, (1,))
|
|
616
|
+
a3 = compress_nd(x, -2)
|
|
617
|
+
a4 = compress_nd(x, (-2,))
|
|
618
|
+
assert_equal(a, a2)
|
|
619
|
+
assert_equal(a, a3)
|
|
620
|
+
assert_equal(a, a4)
|
|
621
|
+
|
|
622
|
+
# axis=2
|
|
623
|
+
a = compress_nd(x, 2)
|
|
624
|
+
assert_equal(a, [[[ 0, 2, 3, 4],
|
|
625
|
+
[ 5, 7, 8, 9],
|
|
626
|
+
[10, 12, 13, 14],
|
|
627
|
+
[15, 17, 18, 19]],
|
|
628
|
+
[[20, 22, 23, 24],
|
|
629
|
+
[25, 27, 28, 29],
|
|
630
|
+
[30, 32, 33, 34],
|
|
631
|
+
[35, 37, 38, 39]],
|
|
632
|
+
[[40, 42, 43, 44],
|
|
633
|
+
[45, 47, 48, 49],
|
|
634
|
+
[50, 52, 53, 54],
|
|
635
|
+
[55, 57, 58, 59]]])
|
|
636
|
+
|
|
637
|
+
a2 = compress_nd(x, (2,))
|
|
638
|
+
a3 = compress_nd(x, -1)
|
|
639
|
+
a4 = compress_nd(x, (-1,))
|
|
640
|
+
assert_equal(a, a2)
|
|
641
|
+
assert_equal(a, a3)
|
|
642
|
+
assert_equal(a, a4)
|
|
643
|
+
|
|
644
|
+
# axis=(0, 1)
|
|
645
|
+
a = compress_nd(x, (0, 1))
|
|
646
|
+
assert_equal(a, [[[ 0, 1, 2, 3, 4],
|
|
647
|
+
[10, 11, 12, 13, 14],
|
|
648
|
+
[15, 16, 17, 18, 19]],
|
|
649
|
+
[[40, 41, 42, 43, 44],
|
|
650
|
+
[50, 51, 52, 53, 54],
|
|
651
|
+
[55, 56, 57, 58, 59]]])
|
|
652
|
+
a2 = compress_nd(x, (0, -2))
|
|
653
|
+
assert_equal(a, a2)
|
|
654
|
+
|
|
655
|
+
# axis=(1, 2)
|
|
656
|
+
a = compress_nd(x, (1, 2))
|
|
657
|
+
assert_equal(a, [[[ 0, 2, 3, 4],
|
|
658
|
+
[10, 12, 13, 14],
|
|
659
|
+
[15, 17, 18, 19]],
|
|
660
|
+
[[20, 22, 23, 24],
|
|
661
|
+
[30, 32, 33, 34],
|
|
662
|
+
[35, 37, 38, 39]],
|
|
663
|
+
[[40, 42, 43, 44],
|
|
664
|
+
[50, 52, 53, 54],
|
|
665
|
+
[55, 57, 58, 59]]])
|
|
666
|
+
|
|
667
|
+
a2 = compress_nd(x, (-2, 2))
|
|
668
|
+
a3 = compress_nd(x, (1, -1))
|
|
669
|
+
a4 = compress_nd(x, (-2, -1))
|
|
670
|
+
assert_equal(a, a2)
|
|
671
|
+
assert_equal(a, a3)
|
|
672
|
+
assert_equal(a, a4)
|
|
673
|
+
|
|
674
|
+
# axis=(0, 2)
|
|
675
|
+
a = compress_nd(x, (0, 2))
|
|
676
|
+
assert_equal(a, [[[ 0, 2, 3, 4],
|
|
677
|
+
[ 5, 7, 8, 9],
|
|
678
|
+
[10, 12, 13, 14],
|
|
679
|
+
[15, 17, 18, 19]],
|
|
680
|
+
[[40, 42, 43, 44],
|
|
681
|
+
[45, 47, 48, 49],
|
|
682
|
+
[50, 52, 53, 54],
|
|
683
|
+
[55, 57, 58, 59]]])
|
|
684
|
+
|
|
685
|
+
a2 = compress_nd(x, (0, -1))
|
|
686
|
+
assert_equal(a, a2)
|
|
687
|
+
|
|
688
|
+
def test_compress_rowcols(self):
|
|
689
|
+
# Tests compress_rowcols
|
|
690
|
+
x = array(np.arange(9).reshape(3, 3),
|
|
691
|
+
mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]])
|
|
692
|
+
assert_equal(compress_rowcols(x), [[4, 5], [7, 8]])
|
|
693
|
+
assert_equal(compress_rowcols(x, 0), [[3, 4, 5], [6, 7, 8]])
|
|
694
|
+
assert_equal(compress_rowcols(x, 1), [[1, 2], [4, 5], [7, 8]])
|
|
695
|
+
x = array(x._data, mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]])
|
|
696
|
+
assert_equal(compress_rowcols(x), [[0, 2], [6, 8]])
|
|
697
|
+
assert_equal(compress_rowcols(x, 0), [[0, 1, 2], [6, 7, 8]])
|
|
698
|
+
assert_equal(compress_rowcols(x, 1), [[0, 2], [3, 5], [6, 8]])
|
|
699
|
+
x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 0]])
|
|
700
|
+
assert_equal(compress_rowcols(x), [[8]])
|
|
701
|
+
assert_equal(compress_rowcols(x, 0), [[6, 7, 8]])
|
|
702
|
+
assert_equal(compress_rowcols(x, 1,), [[2], [5], [8]])
|
|
703
|
+
x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 1]])
|
|
704
|
+
assert_equal(compress_rowcols(x).size, 0)
|
|
705
|
+
assert_equal(compress_rowcols(x, 0).size, 0)
|
|
706
|
+
assert_equal(compress_rowcols(x, 1).size, 0)
|
|
707
|
+
|
|
708
|
+
def test_mask_rowcols(self):
|
|
709
|
+
# Tests mask_rowcols.
|
|
710
|
+
x = array(np.arange(9).reshape(3, 3),
|
|
711
|
+
mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]])
|
|
712
|
+
assert_equal(mask_rowcols(x).mask,
|
|
713
|
+
[[1, 1, 1], [1, 0, 0], [1, 0, 0]])
|
|
714
|
+
assert_equal(mask_rowcols(x, 0).mask,
|
|
715
|
+
[[1, 1, 1], [0, 0, 0], [0, 0, 0]])
|
|
716
|
+
assert_equal(mask_rowcols(x, 1).mask,
|
|
717
|
+
[[1, 0, 0], [1, 0, 0], [1, 0, 0]])
|
|
718
|
+
x = array(x._data, mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]])
|
|
719
|
+
assert_equal(mask_rowcols(x).mask,
|
|
720
|
+
[[0, 1, 0], [1, 1, 1], [0, 1, 0]])
|
|
721
|
+
assert_equal(mask_rowcols(x, 0).mask,
|
|
722
|
+
[[0, 0, 0], [1, 1, 1], [0, 0, 0]])
|
|
723
|
+
assert_equal(mask_rowcols(x, 1).mask,
|
|
724
|
+
[[0, 1, 0], [0, 1, 0], [0, 1, 0]])
|
|
725
|
+
x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 0]])
|
|
726
|
+
assert_equal(mask_rowcols(x).mask,
|
|
727
|
+
[[1, 1, 1], [1, 1, 1], [1, 1, 0]])
|
|
728
|
+
assert_equal(mask_rowcols(x, 0).mask,
|
|
729
|
+
[[1, 1, 1], [1, 1, 1], [0, 0, 0]])
|
|
730
|
+
assert_equal(mask_rowcols(x, 1,).mask,
|
|
731
|
+
[[1, 1, 0], [1, 1, 0], [1, 1, 0]])
|
|
732
|
+
x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 1]])
|
|
733
|
+
assert_(mask_rowcols(x).all() is masked)
|
|
734
|
+
assert_(mask_rowcols(x, 0).all() is masked)
|
|
735
|
+
assert_(mask_rowcols(x, 1).all() is masked)
|
|
736
|
+
assert_(mask_rowcols(x).mask.all())
|
|
737
|
+
assert_(mask_rowcols(x, 0).mask.all())
|
|
738
|
+
assert_(mask_rowcols(x, 1).mask.all())
|
|
739
|
+
|
|
740
|
+
@pytest.mark.parametrize("axis", [None, 0, 1])
|
|
741
|
+
@pytest.mark.parametrize(["func", "rowcols_axis"],
|
|
742
|
+
[(np.ma.mask_rows, 0), (np.ma.mask_cols, 1)])
|
|
743
|
+
def test_mask_row_cols_axis_deprecation(self, axis, func, rowcols_axis):
|
|
744
|
+
# Test deprecation of the axis argument to `mask_rows` and `mask_cols`
|
|
745
|
+
x = array(np.arange(9).reshape(3, 3),
|
|
746
|
+
mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]])
|
|
747
|
+
|
|
748
|
+
with pytest.warns(DeprecationWarning):
|
|
749
|
+
res = func(x, axis=axis)
|
|
750
|
+
assert_equal(res, mask_rowcols(x, rowcols_axis))
|
|
751
|
+
|
|
752
|
+
def test_dot(self):
|
|
753
|
+
# Tests dot product
|
|
754
|
+
n = np.arange(1, 7)
|
|
755
|
+
#
|
|
756
|
+
m = [1, 0, 0, 0, 0, 0]
|
|
757
|
+
a = masked_array(n, mask=m).reshape(2, 3)
|
|
758
|
+
b = masked_array(n, mask=m).reshape(3, 2)
|
|
759
|
+
c = dot(a, b, strict=True)
|
|
760
|
+
assert_equal(c.mask, [[1, 1], [1, 0]])
|
|
761
|
+
c = dot(b, a, strict=True)
|
|
762
|
+
assert_equal(c.mask, [[1, 1, 1], [1, 0, 0], [1, 0, 0]])
|
|
763
|
+
c = dot(a, b, strict=False)
|
|
764
|
+
assert_equal(c, np.dot(a.filled(0), b.filled(0)))
|
|
765
|
+
c = dot(b, a, strict=False)
|
|
766
|
+
assert_equal(c, np.dot(b.filled(0), a.filled(0)))
|
|
767
|
+
#
|
|
768
|
+
m = [0, 0, 0, 0, 0, 1]
|
|
769
|
+
a = masked_array(n, mask=m).reshape(2, 3)
|
|
770
|
+
b = masked_array(n, mask=m).reshape(3, 2)
|
|
771
|
+
c = dot(a, b, strict=True)
|
|
772
|
+
assert_equal(c.mask, [[0, 1], [1, 1]])
|
|
773
|
+
c = dot(b, a, strict=True)
|
|
774
|
+
assert_equal(c.mask, [[0, 0, 1], [0, 0, 1], [1, 1, 1]])
|
|
775
|
+
c = dot(a, b, strict=False)
|
|
776
|
+
assert_equal(c, np.dot(a.filled(0), b.filled(0)))
|
|
777
|
+
assert_equal(c, dot(a, b))
|
|
778
|
+
c = dot(b, a, strict=False)
|
|
779
|
+
assert_equal(c, np.dot(b.filled(0), a.filled(0)))
|
|
780
|
+
#
|
|
781
|
+
m = [0, 0, 0, 0, 0, 0]
|
|
782
|
+
a = masked_array(n, mask=m).reshape(2, 3)
|
|
783
|
+
b = masked_array(n, mask=m).reshape(3, 2)
|
|
784
|
+
c = dot(a, b)
|
|
785
|
+
assert_equal(c.mask, nomask)
|
|
786
|
+
c = dot(b, a)
|
|
787
|
+
assert_equal(c.mask, nomask)
|
|
788
|
+
#
|
|
789
|
+
a = masked_array(n, mask=[1, 0, 0, 0, 0, 0]).reshape(2, 3)
|
|
790
|
+
b = masked_array(n, mask=[0, 0, 0, 0, 0, 0]).reshape(3, 2)
|
|
791
|
+
c = dot(a, b, strict=True)
|
|
792
|
+
assert_equal(c.mask, [[1, 1], [0, 0]])
|
|
793
|
+
c = dot(a, b, strict=False)
|
|
794
|
+
assert_equal(c, np.dot(a.filled(0), b.filled(0)))
|
|
795
|
+
c = dot(b, a, strict=True)
|
|
796
|
+
assert_equal(c.mask, [[1, 0, 0], [1, 0, 0], [1, 0, 0]])
|
|
797
|
+
c = dot(b, a, strict=False)
|
|
798
|
+
assert_equal(c, np.dot(b.filled(0), a.filled(0)))
|
|
799
|
+
#
|
|
800
|
+
a = masked_array(n, mask=[0, 0, 0, 0, 0, 1]).reshape(2, 3)
|
|
801
|
+
b = masked_array(n, mask=[0, 0, 0, 0, 0, 0]).reshape(3, 2)
|
|
802
|
+
c = dot(a, b, strict=True)
|
|
803
|
+
assert_equal(c.mask, [[0, 0], [1, 1]])
|
|
804
|
+
c = dot(a, b)
|
|
805
|
+
assert_equal(c, np.dot(a.filled(0), b.filled(0)))
|
|
806
|
+
c = dot(b, a, strict=True)
|
|
807
|
+
assert_equal(c.mask, [[0, 0, 1], [0, 0, 1], [0, 0, 1]])
|
|
808
|
+
c = dot(b, a, strict=False)
|
|
809
|
+
assert_equal(c, np.dot(b.filled(0), a.filled(0)))
|
|
810
|
+
#
|
|
811
|
+
a = masked_array(n, mask=[0, 0, 0, 0, 0, 1]).reshape(2, 3)
|
|
812
|
+
b = masked_array(n, mask=[0, 0, 1, 0, 0, 0]).reshape(3, 2)
|
|
813
|
+
c = dot(a, b, strict=True)
|
|
814
|
+
assert_equal(c.mask, [[1, 0], [1, 1]])
|
|
815
|
+
c = dot(a, b, strict=False)
|
|
816
|
+
assert_equal(c, np.dot(a.filled(0), b.filled(0)))
|
|
817
|
+
c = dot(b, a, strict=True)
|
|
818
|
+
assert_equal(c.mask, [[0, 0, 1], [1, 1, 1], [0, 0, 1]])
|
|
819
|
+
c = dot(b, a, strict=False)
|
|
820
|
+
assert_equal(c, np.dot(b.filled(0), a.filled(0)))
|
|
821
|
+
#
|
|
822
|
+
a = masked_array(np.arange(8).reshape(2, 2, 2),
|
|
823
|
+
mask=[[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
|
|
824
|
+
b = masked_array(np.arange(8).reshape(2, 2, 2),
|
|
825
|
+
mask=[[[0, 0], [0, 0]], [[0, 0], [0, 1]]])
|
|
826
|
+
c = dot(a, b, strict=True)
|
|
827
|
+
assert_equal(c.mask,
|
|
828
|
+
[[[[1, 1], [1, 1]], [[0, 0], [0, 1]]],
|
|
829
|
+
[[[0, 0], [0, 1]], [[0, 0], [0, 1]]]])
|
|
830
|
+
c = dot(a, b, strict=False)
|
|
831
|
+
assert_equal(c.mask,
|
|
832
|
+
[[[[0, 0], [0, 1]], [[0, 0], [0, 0]]],
|
|
833
|
+
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]])
|
|
834
|
+
c = dot(b, a, strict=True)
|
|
835
|
+
assert_equal(c.mask,
|
|
836
|
+
[[[[1, 0], [0, 0]], [[1, 0], [0, 0]]],
|
|
837
|
+
[[[1, 0], [0, 0]], [[1, 1], [1, 1]]]])
|
|
838
|
+
c = dot(b, a, strict=False)
|
|
839
|
+
assert_equal(c.mask,
|
|
840
|
+
[[[[0, 0], [0, 0]], [[0, 0], [0, 0]]],
|
|
841
|
+
[[[0, 0], [0, 0]], [[1, 0], [0, 0]]]])
|
|
842
|
+
#
|
|
843
|
+
a = masked_array(np.arange(8).reshape(2, 2, 2),
|
|
844
|
+
mask=[[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
|
|
845
|
+
b = 5.
|
|
846
|
+
c = dot(a, b, strict=True)
|
|
847
|
+
assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
|
|
848
|
+
c = dot(a, b, strict=False)
|
|
849
|
+
assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
|
|
850
|
+
c = dot(b, a, strict=True)
|
|
851
|
+
assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
|
|
852
|
+
c = dot(b, a, strict=False)
|
|
853
|
+
assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
|
|
854
|
+
#
|
|
855
|
+
a = masked_array(np.arange(8).reshape(2, 2, 2),
|
|
856
|
+
mask=[[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
|
|
857
|
+
b = masked_array(np.arange(2), mask=[0, 1])
|
|
858
|
+
c = dot(a, b, strict=True)
|
|
859
|
+
assert_equal(c.mask, [[1, 1], [1, 1]])
|
|
860
|
+
c = dot(a, b, strict=False)
|
|
861
|
+
assert_equal(c.mask, [[1, 0], [0, 0]])
|
|
862
|
+
|
|
863
|
+
def test_dot_returns_maskedarray(self):
|
|
864
|
+
# See gh-6611
|
|
865
|
+
a = np.eye(3)
|
|
866
|
+
b = array(a)
|
|
867
|
+
assert_(type(dot(a, a)) is MaskedArray)
|
|
868
|
+
assert_(type(dot(a, b)) is MaskedArray)
|
|
869
|
+
assert_(type(dot(b, a)) is MaskedArray)
|
|
870
|
+
assert_(type(dot(b, b)) is MaskedArray)
|
|
871
|
+
|
|
872
|
+
def test_dot_out(self):
|
|
873
|
+
a = array(np.eye(3))
|
|
874
|
+
out = array(np.zeros((3, 3)))
|
|
875
|
+
res = dot(a, a, out=out)
|
|
876
|
+
assert_(res is out)
|
|
877
|
+
assert_equal(a, res)
|
|
878
|
+
|
|
879
|
+
|
|
880
|
+
class TestApplyAlongAxis:
|
|
881
|
+
# Tests 2D functions
|
|
882
|
+
def test_3d(self):
|
|
883
|
+
a = arange(12.).reshape(2, 2, 3)
|
|
884
|
+
|
|
885
|
+
def myfunc(b):
|
|
886
|
+
return b[1]
|
|
887
|
+
|
|
888
|
+
xa = apply_along_axis(myfunc, 2, a)
|
|
889
|
+
assert_equal(xa, [[1, 4], [7, 10]])
|
|
890
|
+
|
|
891
|
+
# Tests kwargs functions
|
|
892
|
+
def test_3d_kwargs(self):
|
|
893
|
+
a = arange(12).reshape(2, 2, 3)
|
|
894
|
+
|
|
895
|
+
def myfunc(b, offset=0):
|
|
896
|
+
return b[1 + offset]
|
|
897
|
+
|
|
898
|
+
xa = apply_along_axis(myfunc, 2, a, offset=1)
|
|
899
|
+
assert_equal(xa, [[2, 5], [8, 11]])
|
|
900
|
+
|
|
901
|
+
|
|
902
|
+
class TestApplyOverAxes:
|
|
903
|
+
# Tests apply_over_axes
|
|
904
|
+
def test_basic(self):
|
|
905
|
+
a = arange(24).reshape(2, 3, 4)
|
|
906
|
+
test = apply_over_axes(np.sum, a, [0, 2])
|
|
907
|
+
ctrl = np.array([[[60], [92], [124]]])
|
|
908
|
+
assert_equal(test, ctrl)
|
|
909
|
+
a[(a % 2).astype(bool)] = masked
|
|
910
|
+
test = apply_over_axes(np.sum, a, [0, 2])
|
|
911
|
+
ctrl = np.array([[[28], [44], [60]]])
|
|
912
|
+
assert_equal(test, ctrl)
|
|
913
|
+
|
|
914
|
+
|
|
915
|
+
class TestMedian:
|
|
916
|
+
def test_pytype(self):
|
|
917
|
+
r = np.ma.median([[np.inf, np.inf], [np.inf, np.inf]], axis=-1)
|
|
918
|
+
assert_equal(r, np.inf)
|
|
919
|
+
|
|
920
|
+
def test_inf(self):
|
|
921
|
+
# test that even which computes handles inf / x = masked
|
|
922
|
+
r = np.ma.median(np.ma.masked_array([[np.inf, np.inf],
|
|
923
|
+
[np.inf, np.inf]]), axis=-1)
|
|
924
|
+
assert_equal(r, np.inf)
|
|
925
|
+
r = np.ma.median(np.ma.masked_array([[np.inf, np.inf],
|
|
926
|
+
[np.inf, np.inf]]), axis=None)
|
|
927
|
+
assert_equal(r, np.inf)
|
|
928
|
+
# all masked
|
|
929
|
+
r = np.ma.median(np.ma.masked_array([[np.inf, np.inf],
|
|
930
|
+
[np.inf, np.inf]], mask=True),
|
|
931
|
+
axis=-1)
|
|
932
|
+
assert_equal(r.mask, True)
|
|
933
|
+
r = np.ma.median(np.ma.masked_array([[np.inf, np.inf],
|
|
934
|
+
[np.inf, np.inf]], mask=True),
|
|
935
|
+
axis=None)
|
|
936
|
+
assert_equal(r.mask, True)
|
|
937
|
+
|
|
938
|
+
def test_non_masked(self):
|
|
939
|
+
x = np.arange(9)
|
|
940
|
+
assert_equal(np.ma.median(x), 4.)
|
|
941
|
+
assert_(type(np.ma.median(x)) is not MaskedArray)
|
|
942
|
+
x = range(8)
|
|
943
|
+
assert_equal(np.ma.median(x), 3.5)
|
|
944
|
+
assert_(type(np.ma.median(x)) is not MaskedArray)
|
|
945
|
+
x = 5
|
|
946
|
+
assert_equal(np.ma.median(x), 5.)
|
|
947
|
+
assert_(type(np.ma.median(x)) is not MaskedArray)
|
|
948
|
+
# integer
|
|
949
|
+
x = np.arange(9 * 8).reshape(9, 8)
|
|
950
|
+
assert_equal(np.ma.median(x, axis=0), np.median(x, axis=0))
|
|
951
|
+
assert_equal(np.ma.median(x, axis=1), np.median(x, axis=1))
|
|
952
|
+
assert_(np.ma.median(x, axis=1) is not MaskedArray)
|
|
953
|
+
# float
|
|
954
|
+
x = np.arange(9 * 8.).reshape(9, 8)
|
|
955
|
+
assert_equal(np.ma.median(x, axis=0), np.median(x, axis=0))
|
|
956
|
+
assert_equal(np.ma.median(x, axis=1), np.median(x, axis=1))
|
|
957
|
+
assert_(np.ma.median(x, axis=1) is not MaskedArray)
|
|
958
|
+
|
|
959
|
+
def test_docstring_examples(self):
|
|
960
|
+
"test the examples given in the docstring of ma.median"
|
|
961
|
+
x = array(np.arange(8), mask=[0] * 4 + [1] * 4)
|
|
962
|
+
assert_equal(np.ma.median(x), 1.5)
|
|
963
|
+
assert_equal(np.ma.median(x).shape, (), "shape mismatch")
|
|
964
|
+
assert_(type(np.ma.median(x)) is not MaskedArray)
|
|
965
|
+
x = array(np.arange(10).reshape(2, 5), mask=[0] * 6 + [1] * 4)
|
|
966
|
+
assert_equal(np.ma.median(x), 2.5)
|
|
967
|
+
assert_equal(np.ma.median(x).shape, (), "shape mismatch")
|
|
968
|
+
assert_(type(np.ma.median(x)) is not MaskedArray)
|
|
969
|
+
ma_x = np.ma.median(x, axis=-1, overwrite_input=True)
|
|
970
|
+
assert_equal(ma_x, [2., 5.])
|
|
971
|
+
assert_equal(ma_x.shape, (2,), "shape mismatch")
|
|
972
|
+
assert_(type(ma_x) is MaskedArray)
|
|
973
|
+
|
|
974
|
+
def test_axis_argument_errors(self):
|
|
975
|
+
msg = "mask = %s, ndim = %s, axis = %s, overwrite_input = %s"
|
|
976
|
+
for ndmin in range(5):
|
|
977
|
+
for mask in [False, True]:
|
|
978
|
+
x = array(1, ndmin=ndmin, mask=mask)
|
|
979
|
+
|
|
980
|
+
# Valid axis values should not raise exception
|
|
981
|
+
args = itertools.product(range(-ndmin, ndmin), [False, True])
|
|
982
|
+
for axis, over in args:
|
|
983
|
+
try:
|
|
984
|
+
np.ma.median(x, axis=axis, overwrite_input=over)
|
|
985
|
+
except Exception:
|
|
986
|
+
raise AssertionError(msg % (mask, ndmin, axis, over))
|
|
987
|
+
|
|
988
|
+
# Invalid axis values should raise exception
|
|
989
|
+
args = itertools.product([-(ndmin + 1), ndmin], [False, True])
|
|
990
|
+
for axis, over in args:
|
|
991
|
+
try:
|
|
992
|
+
np.ma.median(x, axis=axis, overwrite_input=over)
|
|
993
|
+
except np.exceptions.AxisError:
|
|
994
|
+
pass
|
|
995
|
+
else:
|
|
996
|
+
raise AssertionError(msg % (mask, ndmin, axis, over))
|
|
997
|
+
|
|
998
|
+
def test_masked_0d(self):
|
|
999
|
+
# Check values
|
|
1000
|
+
x = array(1, mask=False)
|
|
1001
|
+
assert_equal(np.ma.median(x), 1)
|
|
1002
|
+
x = array(1, mask=True)
|
|
1003
|
+
assert_equal(np.ma.median(x), np.ma.masked)
|
|
1004
|
+
|
|
1005
|
+
def test_masked_1d(self):
|
|
1006
|
+
x = array(np.arange(5), mask=True)
|
|
1007
|
+
assert_equal(np.ma.median(x), np.ma.masked)
|
|
1008
|
+
assert_equal(np.ma.median(x).shape, (), "shape mismatch")
|
|
1009
|
+
assert_(type(np.ma.median(x)) is np.ma.core.MaskedConstant)
|
|
1010
|
+
x = array(np.arange(5), mask=False)
|
|
1011
|
+
assert_equal(np.ma.median(x), 2.)
|
|
1012
|
+
assert_equal(np.ma.median(x).shape, (), "shape mismatch")
|
|
1013
|
+
assert_(type(np.ma.median(x)) is not MaskedArray)
|
|
1014
|
+
x = array(np.arange(5), mask=[0, 1, 0, 0, 0])
|
|
1015
|
+
assert_equal(np.ma.median(x), 2.5)
|
|
1016
|
+
assert_equal(np.ma.median(x).shape, (), "shape mismatch")
|
|
1017
|
+
assert_(type(np.ma.median(x)) is not MaskedArray)
|
|
1018
|
+
x = array(np.arange(5), mask=[0, 1, 1, 1, 1])
|
|
1019
|
+
assert_equal(np.ma.median(x), 0.)
|
|
1020
|
+
assert_equal(np.ma.median(x).shape, (), "shape mismatch")
|
|
1021
|
+
assert_(type(np.ma.median(x)) is not MaskedArray)
|
|
1022
|
+
# integer
|
|
1023
|
+
x = array(np.arange(5), mask=[0, 1, 1, 0, 0])
|
|
1024
|
+
assert_equal(np.ma.median(x), 3.)
|
|
1025
|
+
assert_equal(np.ma.median(x).shape, (), "shape mismatch")
|
|
1026
|
+
assert_(type(np.ma.median(x)) is not MaskedArray)
|
|
1027
|
+
# float
|
|
1028
|
+
x = array(np.arange(5.), mask=[0, 1, 1, 0, 0])
|
|
1029
|
+
assert_equal(np.ma.median(x), 3.)
|
|
1030
|
+
assert_equal(np.ma.median(x).shape, (), "shape mismatch")
|
|
1031
|
+
assert_(type(np.ma.median(x)) is not MaskedArray)
|
|
1032
|
+
# integer
|
|
1033
|
+
x = array(np.arange(6), mask=[0, 1, 1, 1, 1, 0])
|
|
1034
|
+
assert_equal(np.ma.median(x), 2.5)
|
|
1035
|
+
assert_equal(np.ma.median(x).shape, (), "shape mismatch")
|
|
1036
|
+
assert_(type(np.ma.median(x)) is not MaskedArray)
|
|
1037
|
+
# float
|
|
1038
|
+
x = array(np.arange(6.), mask=[0, 1, 1, 1, 1, 0])
|
|
1039
|
+
assert_equal(np.ma.median(x), 2.5)
|
|
1040
|
+
assert_equal(np.ma.median(x).shape, (), "shape mismatch")
|
|
1041
|
+
assert_(type(np.ma.median(x)) is not MaskedArray)
|
|
1042
|
+
|
|
1043
|
+
def test_1d_shape_consistency(self):
|
|
1044
|
+
assert_equal(np.ma.median(array([1, 2, 3], mask=[0, 0, 0])).shape,
|
|
1045
|
+
np.ma.median(array([1, 2, 3], mask=[0, 1, 0])).shape)
|
|
1046
|
+
|
|
1047
|
+
def test_2d(self):
|
|
1048
|
+
# Tests median w/ 2D
|
|
1049
|
+
(n, p) = (101, 30)
|
|
1050
|
+
x = masked_array(np.linspace(-1., 1., n),)
|
|
1051
|
+
x[:10] = x[-10:] = masked
|
|
1052
|
+
z = masked_array(np.empty((n, p), dtype=float))
|
|
1053
|
+
z[:, 0] = x[:]
|
|
1054
|
+
idx = np.arange(len(x))
|
|
1055
|
+
for i in range(1, p):
|
|
1056
|
+
np.random.shuffle(idx)
|
|
1057
|
+
z[:, i] = x[idx]
|
|
1058
|
+
assert_equal(median(z[:, 0]), 0)
|
|
1059
|
+
assert_equal(median(z), 0)
|
|
1060
|
+
assert_equal(median(z, axis=0), np.zeros(p))
|
|
1061
|
+
assert_equal(median(z.T, axis=1), np.zeros(p))
|
|
1062
|
+
|
|
1063
|
+
def test_2d_waxis(self):
|
|
1064
|
+
# Tests median w/ 2D arrays and different axis.
|
|
1065
|
+
x = masked_array(np.arange(30).reshape(10, 3))
|
|
1066
|
+
x[:3] = x[-3:] = masked
|
|
1067
|
+
assert_equal(median(x), 14.5)
|
|
1068
|
+
assert_(type(np.ma.median(x)) is not MaskedArray)
|
|
1069
|
+
assert_equal(median(x, axis=0), [13.5, 14.5, 15.5])
|
|
1070
|
+
assert_(type(np.ma.median(x, axis=0)) is MaskedArray)
|
|
1071
|
+
assert_equal(median(x, axis=1), [0, 0, 0, 10, 13, 16, 19, 0, 0, 0])
|
|
1072
|
+
assert_(type(np.ma.median(x, axis=1)) is MaskedArray)
|
|
1073
|
+
assert_equal(median(x, axis=1).mask, [1, 1, 1, 0, 0, 0, 0, 1, 1, 1])
|
|
1074
|
+
|
|
1075
|
+
def test_3d(self):
|
|
1076
|
+
# Tests median w/ 3D
|
|
1077
|
+
x = np.ma.arange(24).reshape(3, 4, 2)
|
|
1078
|
+
x[x % 3 == 0] = masked
|
|
1079
|
+
assert_equal(median(x, 0), [[12, 9], [6, 15], [12, 9], [18, 15]])
|
|
1080
|
+
x = x.reshape((4, 3, 2))
|
|
1081
|
+
assert_equal(median(x, 0), [[99, 10], [11, 99], [13, 14]])
|
|
1082
|
+
x = np.ma.arange(24).reshape(4, 3, 2)
|
|
1083
|
+
x[x % 5 == 0] = masked
|
|
1084
|
+
assert_equal(median(x, 0), [[12, 10], [8, 9], [16, 17]])
|
|
1085
|
+
|
|
1086
|
+
def test_neg_axis(self):
|
|
1087
|
+
x = masked_array(np.arange(30).reshape(10, 3))
|
|
1088
|
+
x[:3] = x[-3:] = masked
|
|
1089
|
+
assert_equal(median(x, axis=-1), median(x, axis=1))
|
|
1090
|
+
|
|
1091
|
+
def test_out_1d(self):
|
|
1092
|
+
# integer float even odd
|
|
1093
|
+
for v in (30, 30., 31, 31.):
|
|
1094
|
+
x = masked_array(np.arange(v))
|
|
1095
|
+
x[:3] = x[-3:] = masked
|
|
1096
|
+
out = masked_array(np.ones(()))
|
|
1097
|
+
r = median(x, out=out)
|
|
1098
|
+
if v == 30:
|
|
1099
|
+
assert_equal(out, 14.5)
|
|
1100
|
+
else:
|
|
1101
|
+
assert_equal(out, 15.)
|
|
1102
|
+
assert_(r is out)
|
|
1103
|
+
assert_(type(r) is MaskedArray)
|
|
1104
|
+
|
|
1105
|
+
def test_out(self):
|
|
1106
|
+
# integer float even odd
|
|
1107
|
+
for v in (40, 40., 30, 30.):
|
|
1108
|
+
x = masked_array(np.arange(v).reshape(10, -1))
|
|
1109
|
+
x[:3] = x[-3:] = masked
|
|
1110
|
+
out = masked_array(np.ones(10))
|
|
1111
|
+
r = median(x, axis=1, out=out)
|
|
1112
|
+
if v == 30:
|
|
1113
|
+
e = masked_array([0.] * 3 + [10, 13, 16, 19] + [0.] * 3,
|
|
1114
|
+
mask=[True] * 3 + [False] * 4 + [True] * 3)
|
|
1115
|
+
else:
|
|
1116
|
+
e = masked_array([0.] * 3 + [13.5, 17.5, 21.5, 25.5] + [0.] * 3,
|
|
1117
|
+
mask=[True] * 3 + [False] * 4 + [True] * 3)
|
|
1118
|
+
assert_equal(r, e)
|
|
1119
|
+
assert_(r is out)
|
|
1120
|
+
assert_(type(r) is MaskedArray)
|
|
1121
|
+
|
|
1122
|
+
@pytest.mark.parametrize(
|
|
1123
|
+
argnames='axis',
|
|
1124
|
+
argvalues=[
|
|
1125
|
+
None,
|
|
1126
|
+
1,
|
|
1127
|
+
(1, ),
|
|
1128
|
+
(0, 1),
|
|
1129
|
+
(-3, -1),
|
|
1130
|
+
]
|
|
1131
|
+
)
|
|
1132
|
+
def test_keepdims_out(self, axis):
|
|
1133
|
+
mask = np.zeros((3, 5, 7, 11), dtype=bool)
|
|
1134
|
+
# Randomly set some elements to True:
|
|
1135
|
+
w = np.random.random((4, 200)) * np.array(mask.shape)[:, None]
|
|
1136
|
+
w = w.astype(np.intp)
|
|
1137
|
+
mask[tuple(w)] = np.nan
|
|
1138
|
+
d = masked_array(np.ones(mask.shape), mask=mask)
|
|
1139
|
+
if axis is None:
|
|
1140
|
+
shape_out = (1,) * d.ndim
|
|
1141
|
+
else:
|
|
1142
|
+
axis_norm = normalize_axis_tuple(axis, d.ndim)
|
|
1143
|
+
shape_out = tuple(
|
|
1144
|
+
1 if i in axis_norm else d.shape[i] for i in range(d.ndim))
|
|
1145
|
+
out = masked_array(np.empty(shape_out))
|
|
1146
|
+
result = median(d, axis=axis, keepdims=True, out=out)
|
|
1147
|
+
assert result is out
|
|
1148
|
+
assert_equal(result.shape, shape_out)
|
|
1149
|
+
|
|
1150
|
+
def test_single_non_masked_value_on_axis(self):
|
|
1151
|
+
data = [[1., 0.],
|
|
1152
|
+
[0., 3.],
|
|
1153
|
+
[0., 0.]]
|
|
1154
|
+
masked_arr = np.ma.masked_equal(data, 0)
|
|
1155
|
+
expected = [1., 3.]
|
|
1156
|
+
assert_array_equal(np.ma.median(masked_arr, axis=0),
|
|
1157
|
+
expected)
|
|
1158
|
+
|
|
1159
|
+
def test_nan(self):
|
|
1160
|
+
for mask in (False, np.zeros(6, dtype=bool)):
|
|
1161
|
+
dm = np.ma.array([[1, np.nan, 3], [1, 2, 3]])
|
|
1162
|
+
dm.mask = mask
|
|
1163
|
+
|
|
1164
|
+
# scalar result
|
|
1165
|
+
r = np.ma.median(dm, axis=None)
|
|
1166
|
+
assert_(np.isscalar(r))
|
|
1167
|
+
assert_array_equal(r, np.nan)
|
|
1168
|
+
r = np.ma.median(dm.ravel(), axis=0)
|
|
1169
|
+
assert_(np.isscalar(r))
|
|
1170
|
+
assert_array_equal(r, np.nan)
|
|
1171
|
+
|
|
1172
|
+
r = np.ma.median(dm, axis=0)
|
|
1173
|
+
assert_equal(type(r), MaskedArray)
|
|
1174
|
+
assert_array_equal(r, [1, np.nan, 3])
|
|
1175
|
+
r = np.ma.median(dm, axis=1)
|
|
1176
|
+
assert_equal(type(r), MaskedArray)
|
|
1177
|
+
assert_array_equal(r, [np.nan, 2])
|
|
1178
|
+
r = np.ma.median(dm, axis=-1)
|
|
1179
|
+
assert_equal(type(r), MaskedArray)
|
|
1180
|
+
assert_array_equal(r, [np.nan, 2])
|
|
1181
|
+
|
|
1182
|
+
dm = np.ma.array([[1, np.nan, 3], [1, 2, 3]])
|
|
1183
|
+
dm[:, 2] = np.ma.masked
|
|
1184
|
+
assert_array_equal(np.ma.median(dm, axis=None), np.nan)
|
|
1185
|
+
assert_array_equal(np.ma.median(dm, axis=0), [1, np.nan, 3])
|
|
1186
|
+
assert_array_equal(np.ma.median(dm, axis=1), [np.nan, 1.5])
|
|
1187
|
+
|
|
1188
|
+
def test_out_nan(self):
|
|
1189
|
+
o = np.ma.masked_array(np.zeros((4,)))
|
|
1190
|
+
d = np.ma.masked_array(np.ones((3, 4)))
|
|
1191
|
+
d[2, 1] = np.nan
|
|
1192
|
+
d[2, 2] = np.ma.masked
|
|
1193
|
+
assert_equal(np.ma.median(d, 0, out=o), o)
|
|
1194
|
+
o = np.ma.masked_array(np.zeros((3,)))
|
|
1195
|
+
assert_equal(np.ma.median(d, 1, out=o), o)
|
|
1196
|
+
o = np.ma.masked_array(np.zeros(()))
|
|
1197
|
+
assert_equal(np.ma.median(d, out=o), o)
|
|
1198
|
+
|
|
1199
|
+
def test_nan_behavior(self):
|
|
1200
|
+
a = np.ma.masked_array(np.arange(24, dtype=float))
|
|
1201
|
+
a[::3] = np.ma.masked
|
|
1202
|
+
a[2] = np.nan
|
|
1203
|
+
assert_array_equal(np.ma.median(a), np.nan)
|
|
1204
|
+
assert_array_equal(np.ma.median(a, axis=0), np.nan)
|
|
1205
|
+
|
|
1206
|
+
a = np.ma.masked_array(np.arange(24, dtype=float).reshape(2, 3, 4))
|
|
1207
|
+
a.mask = np.arange(a.size) % 2 == 1
|
|
1208
|
+
aorig = a.copy()
|
|
1209
|
+
a[1, 2, 3] = np.nan
|
|
1210
|
+
a[1, 1, 2] = np.nan
|
|
1211
|
+
|
|
1212
|
+
# no axis
|
|
1213
|
+
assert_array_equal(np.ma.median(a), np.nan)
|
|
1214
|
+
assert_(np.isscalar(np.ma.median(a)))
|
|
1215
|
+
|
|
1216
|
+
# axis0
|
|
1217
|
+
b = np.ma.median(aorig, axis=0)
|
|
1218
|
+
b[2, 3] = np.nan
|
|
1219
|
+
b[1, 2] = np.nan
|
|
1220
|
+
assert_equal(np.ma.median(a, 0), b)
|
|
1221
|
+
|
|
1222
|
+
# axis1
|
|
1223
|
+
b = np.ma.median(aorig, axis=1)
|
|
1224
|
+
b[1, 3] = np.nan
|
|
1225
|
+
b[1, 2] = np.nan
|
|
1226
|
+
assert_equal(np.ma.median(a, 1), b)
|
|
1227
|
+
|
|
1228
|
+
# axis02
|
|
1229
|
+
b = np.ma.median(aorig, axis=(0, 2))
|
|
1230
|
+
b[1] = np.nan
|
|
1231
|
+
b[2] = np.nan
|
|
1232
|
+
assert_equal(np.ma.median(a, (0, 2)), b)
|
|
1233
|
+
|
|
1234
|
+
def test_ambigous_fill(self):
|
|
1235
|
+
# 255 is max value, used as filler for sort
|
|
1236
|
+
a = np.array([[3, 3, 255], [3, 3, 255]], dtype=np.uint8)
|
|
1237
|
+
a = np.ma.masked_array(a, mask=a == 3)
|
|
1238
|
+
assert_array_equal(np.ma.median(a, axis=1), 255)
|
|
1239
|
+
assert_array_equal(np.ma.median(a, axis=1).mask, False)
|
|
1240
|
+
assert_array_equal(np.ma.median(a, axis=0), a[0])
|
|
1241
|
+
assert_array_equal(np.ma.median(a), 255)
|
|
1242
|
+
|
|
1243
|
+
def test_special(self):
|
|
1244
|
+
for inf in [np.inf, -np.inf]:
|
|
1245
|
+
a = np.array([[inf, np.nan], [np.nan, np.nan]])
|
|
1246
|
+
a = np.ma.masked_array(a, mask=np.isnan(a))
|
|
1247
|
+
assert_equal(np.ma.median(a, axis=0), [inf, np.nan])
|
|
1248
|
+
assert_equal(np.ma.median(a, axis=1), [inf, np.nan])
|
|
1249
|
+
assert_equal(np.ma.median(a), inf)
|
|
1250
|
+
|
|
1251
|
+
a = np.array([[np.nan, np.nan, inf], [np.nan, np.nan, inf]])
|
|
1252
|
+
a = np.ma.masked_array(a, mask=np.isnan(a))
|
|
1253
|
+
assert_array_equal(np.ma.median(a, axis=1), inf)
|
|
1254
|
+
assert_array_equal(np.ma.median(a, axis=1).mask, False)
|
|
1255
|
+
assert_array_equal(np.ma.median(a, axis=0), a[0])
|
|
1256
|
+
assert_array_equal(np.ma.median(a), inf)
|
|
1257
|
+
|
|
1258
|
+
# no mask
|
|
1259
|
+
a = np.array([[inf, inf], [inf, inf]])
|
|
1260
|
+
assert_equal(np.ma.median(a), inf)
|
|
1261
|
+
assert_equal(np.ma.median(a, axis=0), inf)
|
|
1262
|
+
assert_equal(np.ma.median(a, axis=1), inf)
|
|
1263
|
+
|
|
1264
|
+
a = np.array([[inf, 7, -inf, -9],
|
|
1265
|
+
[-10, np.nan, np.nan, 5],
|
|
1266
|
+
[4, np.nan, np.nan, inf]],
|
|
1267
|
+
dtype=np.float32)
|
|
1268
|
+
a = np.ma.masked_array(a, mask=np.isnan(a))
|
|
1269
|
+
if inf > 0:
|
|
1270
|
+
assert_equal(np.ma.median(a, axis=0), [4., 7., -inf, 5.])
|
|
1271
|
+
assert_equal(np.ma.median(a), 4.5)
|
|
1272
|
+
else:
|
|
1273
|
+
assert_equal(np.ma.median(a, axis=0), [-10., 7., -inf, -9.])
|
|
1274
|
+
assert_equal(np.ma.median(a), -2.5)
|
|
1275
|
+
assert_equal(np.ma.median(a, axis=1), [-1., -2.5, inf])
|
|
1276
|
+
|
|
1277
|
+
for i in range(10):
|
|
1278
|
+
for j in range(1, 10):
|
|
1279
|
+
a = np.array([([np.nan] * i) + ([inf] * j)] * 2)
|
|
1280
|
+
a = np.ma.masked_array(a, mask=np.isnan(a))
|
|
1281
|
+
assert_equal(np.ma.median(a), inf)
|
|
1282
|
+
assert_equal(np.ma.median(a, axis=1), inf)
|
|
1283
|
+
assert_equal(np.ma.median(a, axis=0),
|
|
1284
|
+
([np.nan] * i) + [inf] * j)
|
|
1285
|
+
|
|
1286
|
+
def test_empty(self):
|
|
1287
|
+
# empty arrays
|
|
1288
|
+
a = np.ma.masked_array(np.array([], dtype=float))
|
|
1289
|
+
with pytest.warns(RuntimeWarning):
|
|
1290
|
+
assert_array_equal(np.ma.median(a), np.nan)
|
|
1291
|
+
|
|
1292
|
+
# multiple dimensions
|
|
1293
|
+
a = np.ma.masked_array(np.array([], dtype=float, ndmin=3))
|
|
1294
|
+
# no axis
|
|
1295
|
+
with pytest.warns(RuntimeWarning):
|
|
1296
|
+
assert_array_equal(np.ma.median(a), np.nan)
|
|
1297
|
+
|
|
1298
|
+
# axis 0 and 1
|
|
1299
|
+
b = np.ma.masked_array(np.array([], dtype=float, ndmin=2))
|
|
1300
|
+
assert_equal(np.ma.median(a, axis=0), b)
|
|
1301
|
+
assert_equal(np.ma.median(a, axis=1), b)
|
|
1302
|
+
|
|
1303
|
+
# axis 2
|
|
1304
|
+
b = np.ma.masked_array(np.array(np.nan, dtype=float, ndmin=2))
|
|
1305
|
+
with pytest.warns(RuntimeWarning):
|
|
1306
|
+
assert_equal(np.ma.median(a, axis=2), b)
|
|
1307
|
+
|
|
1308
|
+
def test_object(self):
|
|
1309
|
+
o = np.ma.masked_array(np.arange(7.))
|
|
1310
|
+
assert_(type(np.ma.median(o.astype(object))), float)
|
|
1311
|
+
o[2] = np.nan
|
|
1312
|
+
assert_(type(np.ma.median(o.astype(object))), float)
|
|
1313
|
+
|
|
1314
|
+
|
|
1315
|
+
class TestCov:
|
|
1316
|
+
|
|
1317
|
+
def _create_data(self):
|
|
1318
|
+
return array(np.random.rand(12))
|
|
1319
|
+
|
|
1320
|
+
def test_covhelper(self):
|
|
1321
|
+
x = self._create_data()
|
|
1322
|
+
# Test not mask output type is a float.
|
|
1323
|
+
assert_(_covhelper(x, rowvar=True)[1].dtype, np.float32)
|
|
1324
|
+
assert_(_covhelper(x, y=x, rowvar=False)[1].dtype, np.float32)
|
|
1325
|
+
# Test not mask output is equal after casting to float.
|
|
1326
|
+
mask = x > 0.5
|
|
1327
|
+
assert_array_equal(
|
|
1328
|
+
_covhelper(
|
|
1329
|
+
np.ma.masked_array(x, mask), rowvar=True
|
|
1330
|
+
)[1].astype(bool),
|
|
1331
|
+
~mask.reshape(1, -1),
|
|
1332
|
+
)
|
|
1333
|
+
assert_array_equal(
|
|
1334
|
+
_covhelper(
|
|
1335
|
+
np.ma.masked_array(x, mask), y=x, rowvar=False
|
|
1336
|
+
)[1].astype(bool),
|
|
1337
|
+
np.vstack((~mask, ~mask)),
|
|
1338
|
+
)
|
|
1339
|
+
|
|
1340
|
+
def test_1d_without_missing(self):
|
|
1341
|
+
# Test cov on 1D variable w/o missing values
|
|
1342
|
+
x = self._create_data()
|
|
1343
|
+
assert_almost_equal(np.cov(x), cov(x))
|
|
1344
|
+
assert_almost_equal(np.cov(x, rowvar=False), cov(x, rowvar=False))
|
|
1345
|
+
assert_almost_equal(np.cov(x, rowvar=False, bias=True),
|
|
1346
|
+
cov(x, rowvar=False, bias=True))
|
|
1347
|
+
|
|
1348
|
+
def test_2d_without_missing(self):
|
|
1349
|
+
# Test cov on 1 2D variable w/o missing values
|
|
1350
|
+
x = self._create_data().reshape(3, 4)
|
|
1351
|
+
assert_almost_equal(np.cov(x), cov(x))
|
|
1352
|
+
assert_almost_equal(np.cov(x, rowvar=False), cov(x, rowvar=False))
|
|
1353
|
+
assert_almost_equal(np.cov(x, rowvar=False, bias=True),
|
|
1354
|
+
cov(x, rowvar=False, bias=True))
|
|
1355
|
+
|
|
1356
|
+
def test_1d_with_missing(self):
|
|
1357
|
+
# Test cov 1 1D variable w/missing values
|
|
1358
|
+
x = self._create_data()
|
|
1359
|
+
x[-1] = masked
|
|
1360
|
+
x -= x.mean()
|
|
1361
|
+
nx = x.compressed()
|
|
1362
|
+
assert_almost_equal(np.cov(nx), cov(x))
|
|
1363
|
+
assert_almost_equal(np.cov(nx, rowvar=False), cov(x, rowvar=False))
|
|
1364
|
+
assert_almost_equal(np.cov(nx, rowvar=False, bias=True),
|
|
1365
|
+
cov(x, rowvar=False, bias=True))
|
|
1366
|
+
#
|
|
1367
|
+
try:
|
|
1368
|
+
cov(x, allow_masked=False)
|
|
1369
|
+
except ValueError:
|
|
1370
|
+
pass
|
|
1371
|
+
#
|
|
1372
|
+
# 2 1D variables w/ missing values
|
|
1373
|
+
nx = x[1:-1]
|
|
1374
|
+
assert_almost_equal(np.cov(nx, nx[::-1]), cov(x, x[::-1]))
|
|
1375
|
+
assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False),
|
|
1376
|
+
cov(x, x[::-1], rowvar=False))
|
|
1377
|
+
assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False, bias=True),
|
|
1378
|
+
cov(x, x[::-1], rowvar=False, bias=True))
|
|
1379
|
+
|
|
1380
|
+
def test_2d_with_missing(self):
|
|
1381
|
+
# Test cov on 2D variable w/ missing value
|
|
1382
|
+
x = self._create_data()
|
|
1383
|
+
x[-1] = masked
|
|
1384
|
+
x = x.reshape(3, 4)
|
|
1385
|
+
valid = np.logical_not(getmaskarray(x)).astype(int)
|
|
1386
|
+
frac = np.dot(valid, valid.T)
|
|
1387
|
+
xf = (x - x.mean(1)[:, None]).filled(0)
|
|
1388
|
+
assert_almost_equal(cov(x),
|
|
1389
|
+
np.cov(xf) * (x.shape[1] - 1) / (frac - 1.))
|
|
1390
|
+
assert_almost_equal(cov(x, bias=True),
|
|
1391
|
+
np.cov(xf, bias=True) * x.shape[1] / frac)
|
|
1392
|
+
frac = np.dot(valid.T, valid)
|
|
1393
|
+
xf = (x - x.mean(0)).filled(0)
|
|
1394
|
+
assert_almost_equal(cov(x, rowvar=False),
|
|
1395
|
+
(np.cov(xf, rowvar=False) *
|
|
1396
|
+
(x.shape[0] - 1) / (frac - 1.)))
|
|
1397
|
+
assert_almost_equal(cov(x, rowvar=False, bias=True),
|
|
1398
|
+
(np.cov(xf, rowvar=False, bias=True) *
|
|
1399
|
+
x.shape[0] / frac))
|
|
1400
|
+
|
|
1401
|
+
|
|
1402
|
+
class TestCorrcoef:
|
|
1403
|
+
|
|
1404
|
+
def _create_data(self):
|
|
1405
|
+
data = array(np.random.rand(12))
|
|
1406
|
+
data2 = array(np.random.rand(12))
|
|
1407
|
+
return data, data2
|
|
1408
|
+
|
|
1409
|
+
def test_1d_without_missing(self):
|
|
1410
|
+
# Test cov on 1D variable w/o missing values
|
|
1411
|
+
x = self._create_data()[0]
|
|
1412
|
+
assert_almost_equal(np.corrcoef(x), corrcoef(x))
|
|
1413
|
+
assert_almost_equal(np.corrcoef(x, rowvar=False),
|
|
1414
|
+
corrcoef(x, rowvar=False))
|
|
1415
|
+
|
|
1416
|
+
def test_2d_without_missing(self):
|
|
1417
|
+
# Test corrcoef on 1 2D variable w/o missing values
|
|
1418
|
+
x = self._create_data()[0].reshape(3, 4)
|
|
1419
|
+
assert_almost_equal(np.corrcoef(x), corrcoef(x))
|
|
1420
|
+
assert_almost_equal(np.corrcoef(x, rowvar=False),
|
|
1421
|
+
corrcoef(x, rowvar=False))
|
|
1422
|
+
|
|
1423
|
+
def test_1d_with_missing(self):
|
|
1424
|
+
# Test corrcoef 1 1D variable w/missing values
|
|
1425
|
+
x = self._create_data()[0]
|
|
1426
|
+
x[-1] = masked
|
|
1427
|
+
x -= x.mean()
|
|
1428
|
+
nx = x.compressed()
|
|
1429
|
+
assert_almost_equal(np.corrcoef(nx, rowvar=False),
|
|
1430
|
+
corrcoef(x, rowvar=False))
|
|
1431
|
+
try:
|
|
1432
|
+
corrcoef(x, allow_masked=False)
|
|
1433
|
+
except ValueError:
|
|
1434
|
+
pass
|
|
1435
|
+
# 2 1D variables w/ missing values
|
|
1436
|
+
nx = x[1:-1]
|
|
1437
|
+
assert_almost_equal(np.corrcoef(nx, nx[::-1]), corrcoef(x, x[::-1]))
|
|
1438
|
+
assert_almost_equal(np.corrcoef(nx, nx[::-1], rowvar=False),
|
|
1439
|
+
corrcoef(x, x[::-1], rowvar=False))
|
|
1440
|
+
|
|
1441
|
+
def test_2d_with_missing(self):
|
|
1442
|
+
# Test corrcoef on 2D variable w/ missing value
|
|
1443
|
+
x = self._create_data()[0]
|
|
1444
|
+
x[-1] = masked
|
|
1445
|
+
x = x.reshape(3, 4)
|
|
1446
|
+
|
|
1447
|
+
test = corrcoef(x)
|
|
1448
|
+
control = np.corrcoef(x)
|
|
1449
|
+
assert_almost_equal(test[:-1, :-1], control[:-1, :-1])
|
|
1450
|
+
|
|
1451
|
+
|
|
1452
|
+
class TestPolynomial:
|
|
1453
|
+
|
|
1454
|
+
def test_polyfit(self):
|
|
1455
|
+
# Tests polyfit
|
|
1456
|
+
# On ndarrays
|
|
1457
|
+
x = np.random.rand(10)
|
|
1458
|
+
y = np.random.rand(20).reshape(-1, 2)
|
|
1459
|
+
assert_almost_equal(polyfit(x, y, 3), np.polyfit(x, y, 3))
|
|
1460
|
+
# ON 1D maskedarrays
|
|
1461
|
+
x = x.view(MaskedArray)
|
|
1462
|
+
x[0] = masked
|
|
1463
|
+
y = y.view(MaskedArray)
|
|
1464
|
+
y[0, 0] = y[-1, -1] = masked
|
|
1465
|
+
#
|
|
1466
|
+
(C, R, K, S, D) = polyfit(x, y[:, 0], 3, full=True)
|
|
1467
|
+
(c, r, k, s, d) = np.polyfit(x[1:], y[1:, 0].compressed(), 3,
|
|
1468
|
+
full=True)
|
|
1469
|
+
for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
|
|
1470
|
+
assert_almost_equal(a, a_)
|
|
1471
|
+
#
|
|
1472
|
+
(C, R, K, S, D) = polyfit(x, y[:, -1], 3, full=True)
|
|
1473
|
+
(c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1, -1], 3, full=True)
|
|
1474
|
+
for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
|
|
1475
|
+
assert_almost_equal(a, a_)
|
|
1476
|
+
#
|
|
1477
|
+
(C, R, K, S, D) = polyfit(x, y, 3, full=True)
|
|
1478
|
+
(c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1, :], 3, full=True)
|
|
1479
|
+
for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
|
|
1480
|
+
assert_almost_equal(a, a_)
|
|
1481
|
+
#
|
|
1482
|
+
w = np.random.rand(10) + 1
|
|
1483
|
+
wo = w.copy()
|
|
1484
|
+
xs = x[1:-1]
|
|
1485
|
+
ys = y[1:-1]
|
|
1486
|
+
ws = w[1:-1]
|
|
1487
|
+
(C, R, K, S, D) = polyfit(x, y, 3, full=True, w=w)
|
|
1488
|
+
(c, r, k, s, d) = np.polyfit(xs, ys, 3, full=True, w=ws)
|
|
1489
|
+
assert_equal(w, wo)
|
|
1490
|
+
for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
|
|
1491
|
+
assert_almost_equal(a, a_)
|
|
1492
|
+
|
|
1493
|
+
def test_polyfit_with_masked_NaNs(self):
|
|
1494
|
+
x = np.random.rand(10)
|
|
1495
|
+
y = np.random.rand(20).reshape(-1, 2)
|
|
1496
|
+
|
|
1497
|
+
x[0] = np.nan
|
|
1498
|
+
y[-1, -1] = np.nan
|
|
1499
|
+
x = x.view(MaskedArray)
|
|
1500
|
+
y = y.view(MaskedArray)
|
|
1501
|
+
x[0] = masked
|
|
1502
|
+
y[-1, -1] = masked
|
|
1503
|
+
|
|
1504
|
+
(C, R, K, S, D) = polyfit(x, y, 3, full=True)
|
|
1505
|
+
(c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1, :], 3, full=True)
|
|
1506
|
+
for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
|
|
1507
|
+
assert_almost_equal(a, a_)
|
|
1508
|
+
|
|
1509
|
+
|
|
1510
|
+
class TestArraySetOps:
|
|
1511
|
+
|
|
1512
|
+
def test_unique_onlist(self):
|
|
1513
|
+
# Test unique on list
|
|
1514
|
+
data = [1, 1, 1, 2, 2, 3]
|
|
1515
|
+
test = unique(data, return_index=True, return_inverse=True)
|
|
1516
|
+
assert_(isinstance(test[0], MaskedArray))
|
|
1517
|
+
assert_equal(test[0], masked_array([1, 2, 3], mask=[0, 0, 0]))
|
|
1518
|
+
assert_equal(test[1], [0, 3, 5])
|
|
1519
|
+
assert_equal(test[2], [0, 0, 0, 1, 1, 2])
|
|
1520
|
+
|
|
1521
|
+
def test_unique_onmaskedarray(self):
|
|
1522
|
+
# Test unique on masked data w/use_mask=True
|
|
1523
|
+
data = masked_array([1, 1, 1, 2, 2, 3], mask=[0, 0, 1, 0, 1, 0])
|
|
1524
|
+
test = unique(data, return_index=True, return_inverse=True)
|
|
1525
|
+
assert_equal(test[0], masked_array([1, 2, 3, -1], mask=[0, 0, 0, 1]))
|
|
1526
|
+
assert_equal(test[1], [0, 3, 5, 2])
|
|
1527
|
+
assert_equal(test[2], [0, 0, 3, 1, 3, 2])
|
|
1528
|
+
#
|
|
1529
|
+
data.fill_value = 3
|
|
1530
|
+
data = masked_array(data=[1, 1, 1, 2, 2, 3],
|
|
1531
|
+
mask=[0, 0, 1, 0, 1, 0], fill_value=3)
|
|
1532
|
+
test = unique(data, return_index=True, return_inverse=True)
|
|
1533
|
+
assert_equal(test[0], masked_array([1, 2, 3, -1], mask=[0, 0, 0, 1]))
|
|
1534
|
+
assert_equal(test[1], [0, 3, 5, 2])
|
|
1535
|
+
assert_equal(test[2], [0, 0, 3, 1, 3, 2])
|
|
1536
|
+
|
|
1537
|
+
def test_unique_allmasked(self):
|
|
1538
|
+
# Test all masked
|
|
1539
|
+
data = masked_array([1, 1, 1], mask=True)
|
|
1540
|
+
test = unique(data, return_index=True, return_inverse=True)
|
|
1541
|
+
assert_equal(test[0], masked_array([1, ], mask=[True]))
|
|
1542
|
+
assert_equal(test[1], [0])
|
|
1543
|
+
assert_equal(test[2], [0, 0, 0])
|
|
1544
|
+
#
|
|
1545
|
+
# Test masked
|
|
1546
|
+
data = masked
|
|
1547
|
+
test = unique(data, return_index=True, return_inverse=True)
|
|
1548
|
+
assert_equal(test[0], masked_array(masked))
|
|
1549
|
+
assert_equal(test[1], [0])
|
|
1550
|
+
assert_equal(test[2], [0])
|
|
1551
|
+
|
|
1552
|
+
def test_ediff1d(self):
|
|
1553
|
+
# Tests mediff1d
|
|
1554
|
+
x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
|
|
1555
|
+
control = array([1, 1, 1, 4], mask=[1, 0, 0, 1])
|
|
1556
|
+
test = ediff1d(x)
|
|
1557
|
+
assert_equal(test, control)
|
|
1558
|
+
assert_equal(test.filled(0), control.filled(0))
|
|
1559
|
+
assert_equal(test.mask, control.mask)
|
|
1560
|
+
|
|
1561
|
+
def test_ediff1d_tobegin(self):
|
|
1562
|
+
# Test ediff1d w/ to_begin
|
|
1563
|
+
x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
|
|
1564
|
+
test = ediff1d(x, to_begin=masked)
|
|
1565
|
+
control = array([0, 1, 1, 1, 4], mask=[1, 1, 0, 0, 1])
|
|
1566
|
+
assert_equal(test, control)
|
|
1567
|
+
assert_equal(test.filled(0), control.filled(0))
|
|
1568
|
+
assert_equal(test.mask, control.mask)
|
|
1569
|
+
#
|
|
1570
|
+
test = ediff1d(x, to_begin=[1, 2, 3])
|
|
1571
|
+
control = array([1, 2, 3, 1, 1, 1, 4], mask=[0, 0, 0, 1, 0, 0, 1])
|
|
1572
|
+
assert_equal(test, control)
|
|
1573
|
+
assert_equal(test.filled(0), control.filled(0))
|
|
1574
|
+
assert_equal(test.mask, control.mask)
|
|
1575
|
+
|
|
1576
|
+
def test_ediff1d_toend(self):
|
|
1577
|
+
# Test ediff1d w/ to_end
|
|
1578
|
+
x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
|
|
1579
|
+
test = ediff1d(x, to_end=masked)
|
|
1580
|
+
control = array([1, 1, 1, 4, 0], mask=[1, 0, 0, 1, 1])
|
|
1581
|
+
assert_equal(test, control)
|
|
1582
|
+
assert_equal(test.filled(0), control.filled(0))
|
|
1583
|
+
assert_equal(test.mask, control.mask)
|
|
1584
|
+
#
|
|
1585
|
+
test = ediff1d(x, to_end=[1, 2, 3])
|
|
1586
|
+
control = array([1, 1, 1, 4, 1, 2, 3], mask=[1, 0, 0, 1, 0, 0, 0])
|
|
1587
|
+
assert_equal(test, control)
|
|
1588
|
+
assert_equal(test.filled(0), control.filled(0))
|
|
1589
|
+
assert_equal(test.mask, control.mask)
|
|
1590
|
+
|
|
1591
|
+
def test_ediff1d_tobegin_toend(self):
|
|
1592
|
+
# Test ediff1d w/ to_begin and to_end
|
|
1593
|
+
x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
|
|
1594
|
+
test = ediff1d(x, to_end=masked, to_begin=masked)
|
|
1595
|
+
control = array([0, 1, 1, 1, 4, 0], mask=[1, 1, 0, 0, 1, 1])
|
|
1596
|
+
assert_equal(test, control)
|
|
1597
|
+
assert_equal(test.filled(0), control.filled(0))
|
|
1598
|
+
assert_equal(test.mask, control.mask)
|
|
1599
|
+
#
|
|
1600
|
+
test = ediff1d(x, to_end=[1, 2, 3], to_begin=masked)
|
|
1601
|
+
control = array([0, 1, 1, 1, 4, 1, 2, 3],
|
|
1602
|
+
mask=[1, 1, 0, 0, 1, 0, 0, 0])
|
|
1603
|
+
assert_equal(test, control)
|
|
1604
|
+
assert_equal(test.filled(0), control.filled(0))
|
|
1605
|
+
assert_equal(test.mask, control.mask)
|
|
1606
|
+
|
|
1607
|
+
def test_ediff1d_ndarray(self):
|
|
1608
|
+
# Test ediff1d w/ a ndarray
|
|
1609
|
+
x = np.arange(5)
|
|
1610
|
+
test = ediff1d(x)
|
|
1611
|
+
control = array([1, 1, 1, 1], mask=[0, 0, 0, 0])
|
|
1612
|
+
assert_equal(test, control)
|
|
1613
|
+
assert_(isinstance(test, MaskedArray))
|
|
1614
|
+
assert_equal(test.filled(0), control.filled(0))
|
|
1615
|
+
assert_equal(test.mask, control.mask)
|
|
1616
|
+
#
|
|
1617
|
+
test = ediff1d(x, to_end=masked, to_begin=masked)
|
|
1618
|
+
control = array([0, 1, 1, 1, 1, 0], mask=[1, 0, 0, 0, 0, 1])
|
|
1619
|
+
assert_(isinstance(test, MaskedArray))
|
|
1620
|
+
assert_equal(test.filled(0), control.filled(0))
|
|
1621
|
+
assert_equal(test.mask, control.mask)
|
|
1622
|
+
|
|
1623
|
+
def test_intersect1d(self):
|
|
1624
|
+
# Test intersect1d
|
|
1625
|
+
x = array([1, 3, 3, 3], mask=[0, 0, 0, 1])
|
|
1626
|
+
y = array([3, 1, 1, 1], mask=[0, 0, 0, 1])
|
|
1627
|
+
test = intersect1d(x, y)
|
|
1628
|
+
control = array([1, 3, -1], mask=[0, 0, 1])
|
|
1629
|
+
assert_equal(test, control)
|
|
1630
|
+
|
|
1631
|
+
def test_setxor1d(self):
|
|
1632
|
+
# Test setxor1d
|
|
1633
|
+
a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
|
|
1634
|
+
b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
|
|
1635
|
+
test = setxor1d(a, b)
|
|
1636
|
+
assert_equal(test, array([3, 4, 7]))
|
|
1637
|
+
#
|
|
1638
|
+
a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
|
|
1639
|
+
b = [1, 2, 3, 4, 5]
|
|
1640
|
+
test = setxor1d(a, b)
|
|
1641
|
+
assert_equal(test, array([3, 4, 7, -1], mask=[0, 0, 0, 1]))
|
|
1642
|
+
#
|
|
1643
|
+
a = array([1, 2, 3])
|
|
1644
|
+
b = array([6, 5, 4])
|
|
1645
|
+
test = setxor1d(a, b)
|
|
1646
|
+
assert_(isinstance(test, MaskedArray))
|
|
1647
|
+
assert_equal(test, [1, 2, 3, 4, 5, 6])
|
|
1648
|
+
#
|
|
1649
|
+
a = array([1, 8, 2, 3], mask=[0, 1, 0, 0])
|
|
1650
|
+
b = array([6, 5, 4, 8], mask=[0, 0, 0, 1])
|
|
1651
|
+
test = setxor1d(a, b)
|
|
1652
|
+
assert_(isinstance(test, MaskedArray))
|
|
1653
|
+
assert_equal(test, [1, 2, 3, 4, 5, 6])
|
|
1654
|
+
#
|
|
1655
|
+
assert_array_equal([], setxor1d([], []))
|
|
1656
|
+
|
|
1657
|
+
def test_setxor1d_unique(self):
|
|
1658
|
+
# Test setxor1d with assume_unique=True
|
|
1659
|
+
a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
|
|
1660
|
+
b = [1, 2, 3, 4, 5]
|
|
1661
|
+
test = setxor1d(a, b, assume_unique=True)
|
|
1662
|
+
assert_equal(test, array([3, 4, 7, -1], mask=[0, 0, 0, 1]))
|
|
1663
|
+
#
|
|
1664
|
+
a = array([1, 8, 2, 3], mask=[0, 1, 0, 0])
|
|
1665
|
+
b = array([6, 5, 4, 8], mask=[0, 0, 0, 1])
|
|
1666
|
+
test = setxor1d(a, b, assume_unique=True)
|
|
1667
|
+
assert_(isinstance(test, MaskedArray))
|
|
1668
|
+
assert_equal(test, [1, 2, 3, 4, 5, 6])
|
|
1669
|
+
#
|
|
1670
|
+
a = array([[1], [8], [2], [3]])
|
|
1671
|
+
b = array([[6, 5], [4, 8]])
|
|
1672
|
+
test = setxor1d(a, b, assume_unique=True)
|
|
1673
|
+
assert_(isinstance(test, MaskedArray))
|
|
1674
|
+
assert_equal(test, [1, 2, 3, 4, 5, 6])
|
|
1675
|
+
|
|
1676
|
+
def test_isin(self):
|
|
1677
|
+
# the tests for in1d cover most of isin's behavior
|
|
1678
|
+
# if in1d is removed, would need to change those tests to test
|
|
1679
|
+
# isin instead.
|
|
1680
|
+
a = np.arange(24).reshape([2, 3, 4])
|
|
1681
|
+
mask = np.zeros([2, 3, 4])
|
|
1682
|
+
mask[1, 2, 0] = 1
|
|
1683
|
+
a = array(a, mask=mask)
|
|
1684
|
+
b = array(data=[0, 10, 20, 30, 1, 3, 11, 22, 33],
|
|
1685
|
+
mask=[0, 1, 0, 1, 0, 1, 0, 1, 0])
|
|
1686
|
+
ec = zeros((2, 3, 4), dtype=bool)
|
|
1687
|
+
ec[0, 0, 0] = True
|
|
1688
|
+
ec[0, 0, 1] = True
|
|
1689
|
+
ec[0, 2, 3] = True
|
|
1690
|
+
c = isin(a, b)
|
|
1691
|
+
assert_(isinstance(c, MaskedArray))
|
|
1692
|
+
assert_array_equal(c, ec)
|
|
1693
|
+
# compare results of np.isin to ma.isin
|
|
1694
|
+
d = np.isin(a, b[~b.mask]) & ~a.mask
|
|
1695
|
+
assert_array_equal(c, d)
|
|
1696
|
+
|
|
1697
|
+
def test_in1d(self):
|
|
1698
|
+
# Test in1d
|
|
1699
|
+
a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
|
|
1700
|
+
b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
|
|
1701
|
+
test = in1d(a, b)
|
|
1702
|
+
assert_equal(test, [True, True, True, False, True])
|
|
1703
|
+
#
|
|
1704
|
+
a = array([5, 5, 2, 1, -1], mask=[0, 0, 0, 0, 1])
|
|
1705
|
+
b = array([1, 5, -1], mask=[0, 0, 1])
|
|
1706
|
+
test = in1d(a, b)
|
|
1707
|
+
assert_equal(test, [True, True, False, True, True])
|
|
1708
|
+
#
|
|
1709
|
+
assert_array_equal([], in1d([], []))
|
|
1710
|
+
|
|
1711
|
+
def test_in1d_invert(self):
|
|
1712
|
+
# Test in1d's invert parameter
|
|
1713
|
+
a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
|
|
1714
|
+
b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
|
|
1715
|
+
assert_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True))
|
|
1716
|
+
|
|
1717
|
+
a = array([5, 5, 2, 1, -1], mask=[0, 0, 0, 0, 1])
|
|
1718
|
+
b = array([1, 5, -1], mask=[0, 0, 1])
|
|
1719
|
+
assert_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True))
|
|
1720
|
+
|
|
1721
|
+
assert_array_equal([], in1d([], [], invert=True))
|
|
1722
|
+
|
|
1723
|
+
def test_union1d(self):
|
|
1724
|
+
# Test union1d
|
|
1725
|
+
a = array([1, 2, 5, 7, 5, -1], mask=[0, 0, 0, 0, 0, 1])
|
|
1726
|
+
b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
|
|
1727
|
+
test = union1d(a, b)
|
|
1728
|
+
control = array([1, 2, 3, 4, 5, 7, -1], mask=[0, 0, 0, 0, 0, 0, 1])
|
|
1729
|
+
assert_equal(test, control)
|
|
1730
|
+
|
|
1731
|
+
# Tests gh-10340, arguments to union1d should be
|
|
1732
|
+
# flattened if they are not already 1D
|
|
1733
|
+
x = array([[0, 1, 2], [3, 4, 5]], mask=[[0, 0, 0], [0, 0, 1]])
|
|
1734
|
+
y = array([0, 1, 2, 3, 4], mask=[0, 0, 0, 0, 1])
|
|
1735
|
+
ez = array([0, 1, 2, 3, 4, 5], mask=[0, 0, 0, 0, 0, 1])
|
|
1736
|
+
z = union1d(x, y)
|
|
1737
|
+
assert_equal(z, ez)
|
|
1738
|
+
#
|
|
1739
|
+
assert_array_equal([], union1d([], []))
|
|
1740
|
+
|
|
1741
|
+
def test_setdiff1d(self):
|
|
1742
|
+
# Test setdiff1d
|
|
1743
|
+
a = array([6, 5, 4, 7, 7, 1, 2, 1], mask=[0, 0, 0, 0, 0, 0, 0, 1])
|
|
1744
|
+
b = array([2, 4, 3, 3, 2, 1, 5])
|
|
1745
|
+
test = setdiff1d(a, b)
|
|
1746
|
+
assert_equal(test, array([6, 7, -1], mask=[0, 0, 1]))
|
|
1747
|
+
#
|
|
1748
|
+
a = arange(10)
|
|
1749
|
+
b = arange(8)
|
|
1750
|
+
assert_equal(setdiff1d(a, b), array([8, 9]))
|
|
1751
|
+
a = array([], np.uint32, mask=[])
|
|
1752
|
+
assert_equal(setdiff1d(a, []).dtype, np.uint32)
|
|
1753
|
+
|
|
1754
|
+
def test_setdiff1d_char_array(self):
|
|
1755
|
+
# Test setdiff1d_charray
|
|
1756
|
+
a = np.array(['a', 'b', 'c'])
|
|
1757
|
+
b = np.array(['a', 'b', 's'])
|
|
1758
|
+
assert_array_equal(setdiff1d(a, b), np.array(['c']))
|
|
1759
|
+
|
|
1760
|
+
|
|
1761
|
+
class TestShapeBase:
|
|
1762
|
+
|
|
1763
|
+
def test_atleast_2d(self):
|
|
1764
|
+
# Test atleast_2d
|
|
1765
|
+
a = masked_array([0, 1, 2], mask=[0, 1, 0])
|
|
1766
|
+
b = atleast_2d(a)
|
|
1767
|
+
assert_equal(b.shape, (1, 3))
|
|
1768
|
+
assert_equal(b.mask.shape, b.data.shape)
|
|
1769
|
+
assert_equal(a.shape, (3,))
|
|
1770
|
+
assert_equal(a.mask.shape, a.data.shape)
|
|
1771
|
+
assert_equal(b.mask.shape, b.data.shape)
|
|
1772
|
+
|
|
1773
|
+
def test_shape_scalar(self):
|
|
1774
|
+
# the atleast and diagflat function should work with scalars
|
|
1775
|
+
# GitHub issue #3367
|
|
1776
|
+
# Additionally, the atleast functions should accept multiple scalars
|
|
1777
|
+
# correctly
|
|
1778
|
+
b = atleast_1d(1.0)
|
|
1779
|
+
assert_equal(b.shape, (1,))
|
|
1780
|
+
assert_equal(b.mask.shape, b.shape)
|
|
1781
|
+
assert_equal(b.data.shape, b.shape)
|
|
1782
|
+
|
|
1783
|
+
b = atleast_1d(1.0, 2.0)
|
|
1784
|
+
for a in b:
|
|
1785
|
+
assert_equal(a.shape, (1,))
|
|
1786
|
+
assert_equal(a.mask.shape, a.shape)
|
|
1787
|
+
assert_equal(a.data.shape, a.shape)
|
|
1788
|
+
|
|
1789
|
+
b = atleast_2d(1.0)
|
|
1790
|
+
assert_equal(b.shape, (1, 1))
|
|
1791
|
+
assert_equal(b.mask.shape, b.shape)
|
|
1792
|
+
assert_equal(b.data.shape, b.shape)
|
|
1793
|
+
|
|
1794
|
+
b = atleast_2d(1.0, 2.0)
|
|
1795
|
+
for a in b:
|
|
1796
|
+
assert_equal(a.shape, (1, 1))
|
|
1797
|
+
assert_equal(a.mask.shape, a.shape)
|
|
1798
|
+
assert_equal(a.data.shape, a.shape)
|
|
1799
|
+
|
|
1800
|
+
b = atleast_3d(1.0)
|
|
1801
|
+
assert_equal(b.shape, (1, 1, 1))
|
|
1802
|
+
assert_equal(b.mask.shape, b.shape)
|
|
1803
|
+
assert_equal(b.data.shape, b.shape)
|
|
1804
|
+
|
|
1805
|
+
b = atleast_3d(1.0, 2.0)
|
|
1806
|
+
for a in b:
|
|
1807
|
+
assert_equal(a.shape, (1, 1, 1))
|
|
1808
|
+
assert_equal(a.mask.shape, a.shape)
|
|
1809
|
+
assert_equal(a.data.shape, a.shape)
|
|
1810
|
+
|
|
1811
|
+
b = diagflat(1.0)
|
|
1812
|
+
assert_equal(b.shape, (1, 1))
|
|
1813
|
+
assert_equal(b.mask.shape, b.data.shape)
|
|
1814
|
+
|
|
1815
|
+
@pytest.mark.parametrize("fn", [atleast_1d, vstack, diagflat])
|
|
1816
|
+
def test_inspect_signature(self, fn):
|
|
1817
|
+
name = fn.__name__
|
|
1818
|
+
assert getattr(np.ma, name) is fn
|
|
1819
|
+
|
|
1820
|
+
assert fn.__module__ == "numpy.ma.extras"
|
|
1821
|
+
|
|
1822
|
+
wrapped = getattr(np, fn.__name__)
|
|
1823
|
+
sig_wrapped = inspect.signature(wrapped)
|
|
1824
|
+
sig = inspect.signature(fn)
|
|
1825
|
+
assert sig == sig_wrapped
|
|
1826
|
+
|
|
1827
|
+
|
|
1828
|
+
class TestNDEnumerate:
|
|
1829
|
+
|
|
1830
|
+
def test_ndenumerate_nomasked(self):
|
|
1831
|
+
ordinary = np.arange(6.).reshape((1, 3, 2))
|
|
1832
|
+
empty_mask = np.zeros_like(ordinary, dtype=bool)
|
|
1833
|
+
with_mask = masked_array(ordinary, mask=empty_mask)
|
|
1834
|
+
assert_equal(list(np.ndenumerate(ordinary)),
|
|
1835
|
+
list(ndenumerate(ordinary)))
|
|
1836
|
+
assert_equal(list(ndenumerate(ordinary)),
|
|
1837
|
+
list(ndenumerate(with_mask)))
|
|
1838
|
+
assert_equal(list(ndenumerate(with_mask)),
|
|
1839
|
+
list(ndenumerate(with_mask, compressed=False)))
|
|
1840
|
+
|
|
1841
|
+
def test_ndenumerate_allmasked(self):
|
|
1842
|
+
a = masked_all(())
|
|
1843
|
+
b = masked_all((100,))
|
|
1844
|
+
c = masked_all((2, 3, 4))
|
|
1845
|
+
assert_equal(list(ndenumerate(a)), [])
|
|
1846
|
+
assert_equal(list(ndenumerate(b)), [])
|
|
1847
|
+
assert_equal(list(ndenumerate(b, compressed=False)),
|
|
1848
|
+
list(zip(np.ndindex((100,)), 100 * [masked])))
|
|
1849
|
+
assert_equal(list(ndenumerate(c)), [])
|
|
1850
|
+
assert_equal(list(ndenumerate(c, compressed=False)),
|
|
1851
|
+
list(zip(np.ndindex((2, 3, 4)), 2 * 3 * 4 * [masked])))
|
|
1852
|
+
|
|
1853
|
+
def test_ndenumerate_mixedmasked(self):
|
|
1854
|
+
a = masked_array(np.arange(12).reshape((3, 4)),
|
|
1855
|
+
mask=[[1, 1, 1, 1],
|
|
1856
|
+
[1, 1, 0, 1],
|
|
1857
|
+
[0, 0, 0, 0]])
|
|
1858
|
+
items = [((1, 2), 6),
|
|
1859
|
+
((2, 0), 8), ((2, 1), 9), ((2, 2), 10), ((2, 3), 11)]
|
|
1860
|
+
assert_equal(list(ndenumerate(a)), items)
|
|
1861
|
+
assert_equal(len(list(ndenumerate(a, compressed=False))), a.size)
|
|
1862
|
+
for coordinate, value in ndenumerate(a, compressed=False):
|
|
1863
|
+
assert_equal(a[coordinate], value)
|
|
1864
|
+
|
|
1865
|
+
|
|
1866
|
+
class TestStack:
|
|
1867
|
+
|
|
1868
|
+
def test_stack_1d(self):
|
|
1869
|
+
a = masked_array([0, 1, 2], mask=[0, 1, 0])
|
|
1870
|
+
b = masked_array([9, 8, 7], mask=[1, 0, 0])
|
|
1871
|
+
|
|
1872
|
+
c = stack([a, b], axis=0)
|
|
1873
|
+
assert_equal(c.shape, (2, 3))
|
|
1874
|
+
assert_array_equal(a.mask, c[0].mask)
|
|
1875
|
+
assert_array_equal(b.mask, c[1].mask)
|
|
1876
|
+
|
|
1877
|
+
d = vstack([a, b])
|
|
1878
|
+
assert_array_equal(c.data, d.data)
|
|
1879
|
+
assert_array_equal(c.mask, d.mask)
|
|
1880
|
+
|
|
1881
|
+
c = stack([a, b], axis=1)
|
|
1882
|
+
assert_equal(c.shape, (3, 2))
|
|
1883
|
+
assert_array_equal(a.mask, c[:, 0].mask)
|
|
1884
|
+
assert_array_equal(b.mask, c[:, 1].mask)
|
|
1885
|
+
|
|
1886
|
+
def test_stack_masks(self):
|
|
1887
|
+
a = masked_array([0, 1, 2], mask=True)
|
|
1888
|
+
b = masked_array([9, 8, 7], mask=False)
|
|
1889
|
+
|
|
1890
|
+
c = stack([a, b], axis=0)
|
|
1891
|
+
assert_equal(c.shape, (2, 3))
|
|
1892
|
+
assert_array_equal(a.mask, c[0].mask)
|
|
1893
|
+
assert_array_equal(b.mask, c[1].mask)
|
|
1894
|
+
|
|
1895
|
+
d = vstack([a, b])
|
|
1896
|
+
assert_array_equal(c.data, d.data)
|
|
1897
|
+
assert_array_equal(c.mask, d.mask)
|
|
1898
|
+
|
|
1899
|
+
c = stack([a, b], axis=1)
|
|
1900
|
+
assert_equal(c.shape, (3, 2))
|
|
1901
|
+
assert_array_equal(a.mask, c[:, 0].mask)
|
|
1902
|
+
assert_array_equal(b.mask, c[:, 1].mask)
|
|
1903
|
+
|
|
1904
|
+
def test_stack_nd(self):
|
|
1905
|
+
# 2D
|
|
1906
|
+
shp = (3, 2)
|
|
1907
|
+
d1 = np.random.randint(0, 10, shp)
|
|
1908
|
+
d2 = np.random.randint(0, 10, shp)
|
|
1909
|
+
m1 = np.random.randint(0, 2, shp).astype(bool)
|
|
1910
|
+
m2 = np.random.randint(0, 2, shp).astype(bool)
|
|
1911
|
+
a1 = masked_array(d1, mask=m1)
|
|
1912
|
+
a2 = masked_array(d2, mask=m2)
|
|
1913
|
+
|
|
1914
|
+
c = stack([a1, a2], axis=0)
|
|
1915
|
+
c_shp = (2,) + shp
|
|
1916
|
+
assert_equal(c.shape, c_shp)
|
|
1917
|
+
assert_array_equal(a1.mask, c[0].mask)
|
|
1918
|
+
assert_array_equal(a2.mask, c[1].mask)
|
|
1919
|
+
|
|
1920
|
+
c = stack([a1, a2], axis=-1)
|
|
1921
|
+
c_shp = shp + (2,)
|
|
1922
|
+
assert_equal(c.shape, c_shp)
|
|
1923
|
+
assert_array_equal(a1.mask, c[..., 0].mask)
|
|
1924
|
+
assert_array_equal(a2.mask, c[..., 1].mask)
|
|
1925
|
+
|
|
1926
|
+
# 4D
|
|
1927
|
+
shp = (3, 2, 4, 5,)
|
|
1928
|
+
d1 = np.random.randint(0, 10, shp)
|
|
1929
|
+
d2 = np.random.randint(0, 10, shp)
|
|
1930
|
+
m1 = np.random.randint(0, 2, shp).astype(bool)
|
|
1931
|
+
m2 = np.random.randint(0, 2, shp).astype(bool)
|
|
1932
|
+
a1 = masked_array(d1, mask=m1)
|
|
1933
|
+
a2 = masked_array(d2, mask=m2)
|
|
1934
|
+
|
|
1935
|
+
c = stack([a1, a2], axis=0)
|
|
1936
|
+
c_shp = (2,) + shp
|
|
1937
|
+
assert_equal(c.shape, c_shp)
|
|
1938
|
+
assert_array_equal(a1.mask, c[0].mask)
|
|
1939
|
+
assert_array_equal(a2.mask, c[1].mask)
|
|
1940
|
+
|
|
1941
|
+
c = stack([a1, a2], axis=-1)
|
|
1942
|
+
c_shp = shp + (2,)
|
|
1943
|
+
assert_equal(c.shape, c_shp)
|
|
1944
|
+
assert_array_equal(a1.mask, c[..., 0].mask)
|
|
1945
|
+
assert_array_equal(a2.mask, c[..., 1].mask)
|