numpy 2.4.1__pp311-pypy311_pp73-macosx_14_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1039) hide show
  1. numpy/__config__.py +170 -0
  2. numpy/__config__.pyi +108 -0
  3. numpy/__init__.cython-30.pxd +1242 -0
  4. numpy/__init__.pxd +1155 -0
  5. numpy/__init__.py +942 -0
  6. numpy/__init__.pyi +6202 -0
  7. numpy/_array_api_info.py +346 -0
  8. numpy/_array_api_info.pyi +206 -0
  9. numpy/_configtool.py +39 -0
  10. numpy/_configtool.pyi +1 -0
  11. numpy/_core/__init__.py +201 -0
  12. numpy/_core/__init__.pyi +666 -0
  13. numpy/_core/_add_newdocs.py +7151 -0
  14. numpy/_core/_add_newdocs.pyi +2 -0
  15. numpy/_core/_add_newdocs_scalars.py +381 -0
  16. numpy/_core/_add_newdocs_scalars.pyi +16 -0
  17. numpy/_core/_asarray.py +130 -0
  18. numpy/_core/_asarray.pyi +43 -0
  19. numpy/_core/_dtype.py +366 -0
  20. numpy/_core/_dtype.pyi +56 -0
  21. numpy/_core/_dtype_ctypes.py +120 -0
  22. numpy/_core/_dtype_ctypes.pyi +83 -0
  23. numpy/_core/_exceptions.py +162 -0
  24. numpy/_core/_exceptions.pyi +54 -0
  25. numpy/_core/_internal.py +968 -0
  26. numpy/_core/_internal.pyi +61 -0
  27. numpy/_core/_methods.py +252 -0
  28. numpy/_core/_methods.pyi +22 -0
  29. numpy/_core/_multiarray_tests.pypy311-pp73-darwin.so +0 -0
  30. numpy/_core/_multiarray_umath.pypy311-pp73-darwin.so +0 -0
  31. numpy/_core/_operand_flag_tests.pypy311-pp73-darwin.so +0 -0
  32. numpy/_core/_rational_tests.pypy311-pp73-darwin.so +0 -0
  33. numpy/_core/_simd.pyi +35 -0
  34. numpy/_core/_simd.pypy311-pp73-darwin.so +0 -0
  35. numpy/_core/_string_helpers.py +100 -0
  36. numpy/_core/_string_helpers.pyi +12 -0
  37. numpy/_core/_struct_ufunc_tests.pypy311-pp73-darwin.so +0 -0
  38. numpy/_core/_type_aliases.py +131 -0
  39. numpy/_core/_type_aliases.pyi +86 -0
  40. numpy/_core/_ufunc_config.py +515 -0
  41. numpy/_core/_ufunc_config.pyi +69 -0
  42. numpy/_core/_umath_tests.pyi +47 -0
  43. numpy/_core/_umath_tests.pypy311-pp73-darwin.so +0 -0
  44. numpy/_core/arrayprint.py +1779 -0
  45. numpy/_core/arrayprint.pyi +158 -0
  46. numpy/_core/cversions.py +13 -0
  47. numpy/_core/defchararray.py +1414 -0
  48. numpy/_core/defchararray.pyi +1150 -0
  49. numpy/_core/einsumfunc.py +1650 -0
  50. numpy/_core/einsumfunc.pyi +184 -0
  51. numpy/_core/fromnumeric.py +4233 -0
  52. numpy/_core/fromnumeric.pyi +1735 -0
  53. numpy/_core/function_base.py +547 -0
  54. numpy/_core/function_base.pyi +276 -0
  55. numpy/_core/getlimits.py +462 -0
  56. numpy/_core/getlimits.pyi +124 -0
  57. numpy/_core/include/numpy/__multiarray_api.c +376 -0
  58. numpy/_core/include/numpy/__multiarray_api.h +1628 -0
  59. numpy/_core/include/numpy/__ufunc_api.c +55 -0
  60. numpy/_core/include/numpy/__ufunc_api.h +349 -0
  61. numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
  62. numpy/_core/include/numpy/_numpyconfig.h +33 -0
  63. numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
  64. numpy/_core/include/numpy/arrayobject.h +7 -0
  65. numpy/_core/include/numpy/arrayscalars.h +198 -0
  66. numpy/_core/include/numpy/dtype_api.h +547 -0
  67. numpy/_core/include/numpy/halffloat.h +70 -0
  68. numpy/_core/include/numpy/ndarrayobject.h +304 -0
  69. numpy/_core/include/numpy/ndarraytypes.h +1982 -0
  70. numpy/_core/include/numpy/npy_2_compat.h +249 -0
  71. numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
  72. numpy/_core/include/numpy/npy_3kcompat.h +374 -0
  73. numpy/_core/include/numpy/npy_common.h +989 -0
  74. numpy/_core/include/numpy/npy_cpu.h +126 -0
  75. numpy/_core/include/numpy/npy_endian.h +79 -0
  76. numpy/_core/include/numpy/npy_math.h +602 -0
  77. numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
  78. numpy/_core/include/numpy/npy_os.h +42 -0
  79. numpy/_core/include/numpy/numpyconfig.h +185 -0
  80. numpy/_core/include/numpy/random/LICENSE.txt +21 -0
  81. numpy/_core/include/numpy/random/bitgen.h +20 -0
  82. numpy/_core/include/numpy/random/distributions.h +209 -0
  83. numpy/_core/include/numpy/random/libdivide.h +2079 -0
  84. numpy/_core/include/numpy/ufuncobject.h +343 -0
  85. numpy/_core/include/numpy/utils.h +37 -0
  86. numpy/_core/lib/libnpymath.a +0 -0
  87. numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
  88. numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
  89. numpy/_core/lib/pkgconfig/numpy.pc +7 -0
  90. numpy/_core/memmap.py +363 -0
  91. numpy/_core/memmap.pyi +3 -0
  92. numpy/_core/multiarray.py +1740 -0
  93. numpy/_core/multiarray.pyi +1316 -0
  94. numpy/_core/numeric.py +2758 -0
  95. numpy/_core/numeric.pyi +1276 -0
  96. numpy/_core/numerictypes.py +633 -0
  97. numpy/_core/numerictypes.pyi +196 -0
  98. numpy/_core/overrides.py +188 -0
  99. numpy/_core/overrides.pyi +47 -0
  100. numpy/_core/printoptions.py +32 -0
  101. numpy/_core/printoptions.pyi +28 -0
  102. numpy/_core/records.py +1088 -0
  103. numpy/_core/records.pyi +340 -0
  104. numpy/_core/shape_base.py +996 -0
  105. numpy/_core/shape_base.pyi +182 -0
  106. numpy/_core/strings.py +1813 -0
  107. numpy/_core/strings.pyi +536 -0
  108. numpy/_core/tests/_locales.py +72 -0
  109. numpy/_core/tests/_natype.py +144 -0
  110. numpy/_core/tests/data/astype_copy.pkl +0 -0
  111. numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
  112. numpy/_core/tests/data/recarray_from_file.fits +0 -0
  113. numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
  114. numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
  115. numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
  116. numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
  117. numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
  118. numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
  119. numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
  120. numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
  121. numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
  122. numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
  123. numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
  124. numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
  125. numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
  126. numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
  127. numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
  128. numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
  129. numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
  130. numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
  131. numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
  132. numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
  133. numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
  134. numpy/_core/tests/examples/cython/checks.pyx +373 -0
  135. numpy/_core/tests/examples/cython/meson.build +43 -0
  136. numpy/_core/tests/examples/cython/setup.py +39 -0
  137. numpy/_core/tests/examples/limited_api/limited_api1.c +17 -0
  138. numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
  139. numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
  140. numpy/_core/tests/examples/limited_api/meson.build +59 -0
  141. numpy/_core/tests/examples/limited_api/setup.py +24 -0
  142. numpy/_core/tests/test__exceptions.py +90 -0
  143. numpy/_core/tests/test_abc.py +54 -0
  144. numpy/_core/tests/test_api.py +655 -0
  145. numpy/_core/tests/test_argparse.py +90 -0
  146. numpy/_core/tests/test_array_api_info.py +113 -0
  147. numpy/_core/tests/test_array_coercion.py +928 -0
  148. numpy/_core/tests/test_array_interface.py +222 -0
  149. numpy/_core/tests/test_arraymethod.py +84 -0
  150. numpy/_core/tests/test_arrayobject.py +75 -0
  151. numpy/_core/tests/test_arrayprint.py +1324 -0
  152. numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
  153. numpy/_core/tests/test_casting_unittests.py +955 -0
  154. numpy/_core/tests/test_conversion_utils.py +209 -0
  155. numpy/_core/tests/test_cpu_dispatcher.py +48 -0
  156. numpy/_core/tests/test_cpu_features.py +450 -0
  157. numpy/_core/tests/test_custom_dtypes.py +393 -0
  158. numpy/_core/tests/test_cython.py +352 -0
  159. numpy/_core/tests/test_datetime.py +2792 -0
  160. numpy/_core/tests/test_defchararray.py +858 -0
  161. numpy/_core/tests/test_deprecations.py +460 -0
  162. numpy/_core/tests/test_dlpack.py +190 -0
  163. numpy/_core/tests/test_dtype.py +2110 -0
  164. numpy/_core/tests/test_einsum.py +1351 -0
  165. numpy/_core/tests/test_errstate.py +131 -0
  166. numpy/_core/tests/test_extint128.py +217 -0
  167. numpy/_core/tests/test_finfo.py +86 -0
  168. numpy/_core/tests/test_function_base.py +504 -0
  169. numpy/_core/tests/test_getlimits.py +171 -0
  170. numpy/_core/tests/test_half.py +593 -0
  171. numpy/_core/tests/test_hashtable.py +36 -0
  172. numpy/_core/tests/test_indexerrors.py +122 -0
  173. numpy/_core/tests/test_indexing.py +1692 -0
  174. numpy/_core/tests/test_item_selection.py +167 -0
  175. numpy/_core/tests/test_limited_api.py +102 -0
  176. numpy/_core/tests/test_longdouble.py +370 -0
  177. numpy/_core/tests/test_mem_overlap.py +933 -0
  178. numpy/_core/tests/test_mem_policy.py +453 -0
  179. numpy/_core/tests/test_memmap.py +248 -0
  180. numpy/_core/tests/test_multiarray.py +11008 -0
  181. numpy/_core/tests/test_multiprocessing.py +55 -0
  182. numpy/_core/tests/test_multithreading.py +377 -0
  183. numpy/_core/tests/test_nditer.py +3533 -0
  184. numpy/_core/tests/test_nep50_promotions.py +287 -0
  185. numpy/_core/tests/test_numeric.py +4295 -0
  186. numpy/_core/tests/test_numerictypes.py +650 -0
  187. numpy/_core/tests/test_overrides.py +800 -0
  188. numpy/_core/tests/test_print.py +202 -0
  189. numpy/_core/tests/test_protocols.py +46 -0
  190. numpy/_core/tests/test_records.py +544 -0
  191. numpy/_core/tests/test_regression.py +2677 -0
  192. numpy/_core/tests/test_scalar_ctors.py +203 -0
  193. numpy/_core/tests/test_scalar_methods.py +328 -0
  194. numpy/_core/tests/test_scalarbuffer.py +153 -0
  195. numpy/_core/tests/test_scalarinherit.py +105 -0
  196. numpy/_core/tests/test_scalarmath.py +1168 -0
  197. numpy/_core/tests/test_scalarprint.py +403 -0
  198. numpy/_core/tests/test_shape_base.py +904 -0
  199. numpy/_core/tests/test_simd.py +1345 -0
  200. numpy/_core/tests/test_simd_module.py +105 -0
  201. numpy/_core/tests/test_stringdtype.py +1855 -0
  202. numpy/_core/tests/test_strings.py +1523 -0
  203. numpy/_core/tests/test_ufunc.py +3405 -0
  204. numpy/_core/tests/test_umath.py +4962 -0
  205. numpy/_core/tests/test_umath_accuracy.py +132 -0
  206. numpy/_core/tests/test_umath_complex.py +631 -0
  207. numpy/_core/tests/test_unicode.py +369 -0
  208. numpy/_core/umath.py +60 -0
  209. numpy/_core/umath.pyi +232 -0
  210. numpy/_distributor_init.py +15 -0
  211. numpy/_distributor_init.pyi +1 -0
  212. numpy/_expired_attrs_2_0.py +78 -0
  213. numpy/_expired_attrs_2_0.pyi +61 -0
  214. numpy/_globals.py +121 -0
  215. numpy/_globals.pyi +17 -0
  216. numpy/_pyinstaller/__init__.py +0 -0
  217. numpy/_pyinstaller/__init__.pyi +0 -0
  218. numpy/_pyinstaller/hook-numpy.py +36 -0
  219. numpy/_pyinstaller/hook-numpy.pyi +6 -0
  220. numpy/_pyinstaller/tests/__init__.py +16 -0
  221. numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
  222. numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
  223. numpy/_pytesttester.py +201 -0
  224. numpy/_pytesttester.pyi +18 -0
  225. numpy/_typing/__init__.py +173 -0
  226. numpy/_typing/_add_docstring.py +153 -0
  227. numpy/_typing/_array_like.py +106 -0
  228. numpy/_typing/_char_codes.py +213 -0
  229. numpy/_typing/_dtype_like.py +114 -0
  230. numpy/_typing/_extended_precision.py +15 -0
  231. numpy/_typing/_nbit.py +19 -0
  232. numpy/_typing/_nbit_base.py +94 -0
  233. numpy/_typing/_nbit_base.pyi +39 -0
  234. numpy/_typing/_nested_sequence.py +79 -0
  235. numpy/_typing/_scalars.py +20 -0
  236. numpy/_typing/_shape.py +8 -0
  237. numpy/_typing/_ufunc.py +7 -0
  238. numpy/_typing/_ufunc.pyi +975 -0
  239. numpy/_utils/__init__.py +95 -0
  240. numpy/_utils/__init__.pyi +28 -0
  241. numpy/_utils/_convertions.py +18 -0
  242. numpy/_utils/_convertions.pyi +4 -0
  243. numpy/_utils/_inspect.py +192 -0
  244. numpy/_utils/_inspect.pyi +70 -0
  245. numpy/_utils/_pep440.py +486 -0
  246. numpy/_utils/_pep440.pyi +118 -0
  247. numpy/char/__init__.py +2 -0
  248. numpy/char/__init__.pyi +111 -0
  249. numpy/conftest.py +248 -0
  250. numpy/core/__init__.py +33 -0
  251. numpy/core/__init__.pyi +0 -0
  252. numpy/core/_dtype.py +10 -0
  253. numpy/core/_dtype.pyi +0 -0
  254. numpy/core/_dtype_ctypes.py +10 -0
  255. numpy/core/_dtype_ctypes.pyi +0 -0
  256. numpy/core/_internal.py +27 -0
  257. numpy/core/_multiarray_umath.py +57 -0
  258. numpy/core/_utils.py +21 -0
  259. numpy/core/arrayprint.py +10 -0
  260. numpy/core/defchararray.py +10 -0
  261. numpy/core/einsumfunc.py +10 -0
  262. numpy/core/fromnumeric.py +10 -0
  263. numpy/core/function_base.py +10 -0
  264. numpy/core/getlimits.py +10 -0
  265. numpy/core/multiarray.py +25 -0
  266. numpy/core/numeric.py +12 -0
  267. numpy/core/numerictypes.py +10 -0
  268. numpy/core/overrides.py +10 -0
  269. numpy/core/overrides.pyi +7 -0
  270. numpy/core/records.py +10 -0
  271. numpy/core/shape_base.py +10 -0
  272. numpy/core/umath.py +10 -0
  273. numpy/ctypeslib/__init__.py +13 -0
  274. numpy/ctypeslib/__init__.pyi +15 -0
  275. numpy/ctypeslib/_ctypeslib.py +603 -0
  276. numpy/ctypeslib/_ctypeslib.pyi +236 -0
  277. numpy/distutils/__init__.py +64 -0
  278. numpy/distutils/__init__.pyi +4 -0
  279. numpy/distutils/__pycache__/conv_template.pypy311.pyc +0 -0
  280. numpy/distutils/_shell_utils.py +87 -0
  281. numpy/distutils/armccompiler.py +26 -0
  282. numpy/distutils/ccompiler.py +826 -0
  283. numpy/distutils/ccompiler_opt.py +2668 -0
  284. numpy/distutils/checks/cpu_asimd.c +27 -0
  285. numpy/distutils/checks/cpu_asimddp.c +16 -0
  286. numpy/distutils/checks/cpu_asimdfhm.c +19 -0
  287. numpy/distutils/checks/cpu_asimdhp.c +15 -0
  288. numpy/distutils/checks/cpu_avx.c +20 -0
  289. numpy/distutils/checks/cpu_avx2.c +20 -0
  290. numpy/distutils/checks/cpu_avx512_clx.c +22 -0
  291. numpy/distutils/checks/cpu_avx512_cnl.c +24 -0
  292. numpy/distutils/checks/cpu_avx512_icl.c +26 -0
  293. numpy/distutils/checks/cpu_avx512_knl.c +25 -0
  294. numpy/distutils/checks/cpu_avx512_knm.c +30 -0
  295. numpy/distutils/checks/cpu_avx512_skx.c +26 -0
  296. numpy/distutils/checks/cpu_avx512_spr.c +26 -0
  297. numpy/distutils/checks/cpu_avx512cd.c +20 -0
  298. numpy/distutils/checks/cpu_avx512f.c +20 -0
  299. numpy/distutils/checks/cpu_f16c.c +22 -0
  300. numpy/distutils/checks/cpu_fma3.c +22 -0
  301. numpy/distutils/checks/cpu_fma4.c +13 -0
  302. numpy/distutils/checks/cpu_lsx.c +11 -0
  303. numpy/distutils/checks/cpu_neon.c +19 -0
  304. numpy/distutils/checks/cpu_neon_fp16.c +11 -0
  305. numpy/distutils/checks/cpu_neon_vfpv4.c +21 -0
  306. numpy/distutils/checks/cpu_popcnt.c +32 -0
  307. numpy/distutils/checks/cpu_rvv.c +13 -0
  308. numpy/distutils/checks/cpu_sse.c +20 -0
  309. numpy/distutils/checks/cpu_sse2.c +20 -0
  310. numpy/distutils/checks/cpu_sse3.c +20 -0
  311. numpy/distutils/checks/cpu_sse41.c +20 -0
  312. numpy/distutils/checks/cpu_sse42.c +20 -0
  313. numpy/distutils/checks/cpu_ssse3.c +20 -0
  314. numpy/distutils/checks/cpu_sve.c +14 -0
  315. numpy/distutils/checks/cpu_vsx.c +21 -0
  316. numpy/distutils/checks/cpu_vsx2.c +13 -0
  317. numpy/distutils/checks/cpu_vsx3.c +13 -0
  318. numpy/distutils/checks/cpu_vsx4.c +14 -0
  319. numpy/distutils/checks/cpu_vx.c +16 -0
  320. numpy/distutils/checks/cpu_vxe.c +25 -0
  321. numpy/distutils/checks/cpu_vxe2.c +21 -0
  322. numpy/distutils/checks/cpu_xop.c +12 -0
  323. numpy/distutils/checks/extra_avx512bw_mask.c +18 -0
  324. numpy/distutils/checks/extra_avx512dq_mask.c +16 -0
  325. numpy/distutils/checks/extra_avx512f_reduce.c +41 -0
  326. numpy/distutils/checks/extra_vsx3_half_double.c +12 -0
  327. numpy/distutils/checks/extra_vsx4_mma.c +21 -0
  328. numpy/distutils/checks/extra_vsx_asm.c +36 -0
  329. numpy/distutils/checks/test_flags.c +1 -0
  330. numpy/distutils/command/__init__.py +41 -0
  331. numpy/distutils/command/autodist.py +148 -0
  332. numpy/distutils/command/bdist_rpm.py +22 -0
  333. numpy/distutils/command/build.py +62 -0
  334. numpy/distutils/command/build_clib.py +469 -0
  335. numpy/distutils/command/build_ext.py +752 -0
  336. numpy/distutils/command/build_py.py +31 -0
  337. numpy/distutils/command/build_scripts.py +49 -0
  338. numpy/distutils/command/build_src.py +773 -0
  339. numpy/distutils/command/config.py +516 -0
  340. numpy/distutils/command/config_compiler.py +126 -0
  341. numpy/distutils/command/develop.py +15 -0
  342. numpy/distutils/command/egg_info.py +25 -0
  343. numpy/distutils/command/install.py +79 -0
  344. numpy/distutils/command/install_clib.py +40 -0
  345. numpy/distutils/command/install_data.py +24 -0
  346. numpy/distutils/command/install_headers.py +25 -0
  347. numpy/distutils/command/sdist.py +27 -0
  348. numpy/distutils/conv_template.py +329 -0
  349. numpy/distutils/core.py +215 -0
  350. numpy/distutils/cpuinfo.py +683 -0
  351. numpy/distutils/exec_command.py +315 -0
  352. numpy/distutils/extension.py +101 -0
  353. numpy/distutils/fcompiler/__init__.py +1035 -0
  354. numpy/distutils/fcompiler/absoft.py +158 -0
  355. numpy/distutils/fcompiler/arm.py +71 -0
  356. numpy/distutils/fcompiler/compaq.py +120 -0
  357. numpy/distutils/fcompiler/environment.py +88 -0
  358. numpy/distutils/fcompiler/fujitsu.py +46 -0
  359. numpy/distutils/fcompiler/g95.py +42 -0
  360. numpy/distutils/fcompiler/gnu.py +555 -0
  361. numpy/distutils/fcompiler/hpux.py +41 -0
  362. numpy/distutils/fcompiler/ibm.py +97 -0
  363. numpy/distutils/fcompiler/intel.py +211 -0
  364. numpy/distutils/fcompiler/lahey.py +45 -0
  365. numpy/distutils/fcompiler/mips.py +54 -0
  366. numpy/distutils/fcompiler/nag.py +87 -0
  367. numpy/distutils/fcompiler/none.py +28 -0
  368. numpy/distutils/fcompiler/nv.py +53 -0
  369. numpy/distutils/fcompiler/pathf95.py +33 -0
  370. numpy/distutils/fcompiler/pg.py +128 -0
  371. numpy/distutils/fcompiler/sun.py +51 -0
  372. numpy/distutils/fcompiler/vast.py +52 -0
  373. numpy/distutils/from_template.py +261 -0
  374. numpy/distutils/fujitsuccompiler.py +28 -0
  375. numpy/distutils/intelccompiler.py +106 -0
  376. numpy/distutils/lib2def.py +116 -0
  377. numpy/distutils/line_endings.py +77 -0
  378. numpy/distutils/log.py +111 -0
  379. numpy/distutils/mingw/gfortran_vs2003_hack.c +6 -0
  380. numpy/distutils/mingw32ccompiler.py +620 -0
  381. numpy/distutils/misc_util.py +2484 -0
  382. numpy/distutils/msvc9compiler.py +63 -0
  383. numpy/distutils/msvccompiler.py +76 -0
  384. numpy/distutils/npy_pkg_config.py +441 -0
  385. numpy/distutils/numpy_distribution.py +17 -0
  386. numpy/distutils/pathccompiler.py +21 -0
  387. numpy/distutils/system_info.py +3267 -0
  388. numpy/distutils/tests/__init__.py +0 -0
  389. numpy/distutils/tests/test_build_ext.py +74 -0
  390. numpy/distutils/tests/test_ccompiler_opt.py +808 -0
  391. numpy/distutils/tests/test_ccompiler_opt_conf.py +176 -0
  392. numpy/distutils/tests/test_exec_command.py +217 -0
  393. numpy/distutils/tests/test_fcompiler.py +43 -0
  394. numpy/distutils/tests/test_fcompiler_gnu.py +55 -0
  395. numpy/distutils/tests/test_fcompiler_intel.py +30 -0
  396. numpy/distutils/tests/test_fcompiler_nagfor.py +22 -0
  397. numpy/distutils/tests/test_from_template.py +44 -0
  398. numpy/distutils/tests/test_log.py +34 -0
  399. numpy/distutils/tests/test_mingw32ccompiler.py +47 -0
  400. numpy/distutils/tests/test_misc_util.py +88 -0
  401. numpy/distutils/tests/test_npy_pkg_config.py +84 -0
  402. numpy/distutils/tests/test_shell_utils.py +79 -0
  403. numpy/distutils/tests/test_system_info.py +334 -0
  404. numpy/distutils/tests/utilities.py +90 -0
  405. numpy/distutils/unixccompiler.py +141 -0
  406. numpy/doc/ufuncs.py +138 -0
  407. numpy/dtypes.py +41 -0
  408. numpy/dtypes.pyi +630 -0
  409. numpy/exceptions.py +246 -0
  410. numpy/exceptions.pyi +27 -0
  411. numpy/f2py/__init__.py +86 -0
  412. numpy/f2py/__init__.pyi +5 -0
  413. numpy/f2py/__main__.py +5 -0
  414. numpy/f2py/__version__.py +1 -0
  415. numpy/f2py/__version__.pyi +1 -0
  416. numpy/f2py/_backends/__init__.py +9 -0
  417. numpy/f2py/_backends/__init__.pyi +5 -0
  418. numpy/f2py/_backends/_backend.py +44 -0
  419. numpy/f2py/_backends/_backend.pyi +46 -0
  420. numpy/f2py/_backends/_distutils.py +76 -0
  421. numpy/f2py/_backends/_distutils.pyi +13 -0
  422. numpy/f2py/_backends/_meson.py +244 -0
  423. numpy/f2py/_backends/_meson.pyi +62 -0
  424. numpy/f2py/_backends/meson.build.template +58 -0
  425. numpy/f2py/_isocbind.py +62 -0
  426. numpy/f2py/_isocbind.pyi +13 -0
  427. numpy/f2py/_src_pyf.py +247 -0
  428. numpy/f2py/_src_pyf.pyi +28 -0
  429. numpy/f2py/auxfuncs.py +1004 -0
  430. numpy/f2py/auxfuncs.pyi +262 -0
  431. numpy/f2py/capi_maps.py +811 -0
  432. numpy/f2py/capi_maps.pyi +33 -0
  433. numpy/f2py/cb_rules.py +665 -0
  434. numpy/f2py/cb_rules.pyi +17 -0
  435. numpy/f2py/cfuncs.py +1563 -0
  436. numpy/f2py/cfuncs.pyi +31 -0
  437. numpy/f2py/common_rules.py +143 -0
  438. numpy/f2py/common_rules.pyi +9 -0
  439. numpy/f2py/crackfortran.py +3725 -0
  440. numpy/f2py/crackfortran.pyi +266 -0
  441. numpy/f2py/diagnose.py +149 -0
  442. numpy/f2py/diagnose.pyi +1 -0
  443. numpy/f2py/f2py2e.py +788 -0
  444. numpy/f2py/f2py2e.pyi +74 -0
  445. numpy/f2py/f90mod_rules.py +269 -0
  446. numpy/f2py/f90mod_rules.pyi +16 -0
  447. numpy/f2py/func2subr.py +329 -0
  448. numpy/f2py/func2subr.pyi +7 -0
  449. numpy/f2py/rules.py +1629 -0
  450. numpy/f2py/rules.pyi +41 -0
  451. numpy/f2py/setup.cfg +3 -0
  452. numpy/f2py/src/fortranobject.c +1436 -0
  453. numpy/f2py/src/fortranobject.h +173 -0
  454. numpy/f2py/symbolic.py +1518 -0
  455. numpy/f2py/symbolic.pyi +219 -0
  456. numpy/f2py/tests/__init__.py +16 -0
  457. numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
  458. numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
  459. numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
  460. numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
  461. numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
  462. numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
  463. numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
  464. numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
  465. numpy/f2py/tests/src/block_docstring/foo.f +6 -0
  466. numpy/f2py/tests/src/callback/foo.f +62 -0
  467. numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
  468. numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
  469. numpy/f2py/tests/src/callback/gh25211.f +10 -0
  470. numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
  471. numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
  472. numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
  473. numpy/f2py/tests/src/cli/hi77.f +3 -0
  474. numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
  475. numpy/f2py/tests/src/common/block.f +11 -0
  476. numpy/f2py/tests/src/common/gh19161.f90 +10 -0
  477. numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
  478. numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
  479. numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
  480. numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
  481. numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
  482. numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
  483. numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
  484. numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
  485. numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
  486. numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
  487. numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
  488. numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
  489. numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
  490. numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
  491. numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
  492. numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
  493. numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
  494. numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
  495. numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
  496. numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
  497. numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
  498. numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
  499. numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
  500. numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
  501. numpy/f2py/tests/src/kind/foo.f90 +20 -0
  502. numpy/f2py/tests/src/mixed/foo.f +5 -0
  503. numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
  504. numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
  505. numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
  506. numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
  507. numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
  508. numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
  509. numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
  510. numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
  511. numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
  512. numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
  513. numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
  514. numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
  515. numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
  516. numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
  517. numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
  518. numpy/f2py/tests/src/quoted_character/foo.f +14 -0
  519. numpy/f2py/tests/src/regression/AB.inc +1 -0
  520. numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
  521. numpy/f2py/tests/src/regression/datonly.f90 +17 -0
  522. numpy/f2py/tests/src/regression/f77comments.f +26 -0
  523. numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
  524. numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
  525. numpy/f2py/tests/src/regression/incfile.f90 +5 -0
  526. numpy/f2py/tests/src/regression/inout.f90 +9 -0
  527. numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
  528. numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
  529. numpy/f2py/tests/src/return_character/foo77.f +45 -0
  530. numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
  531. numpy/f2py/tests/src/return_complex/foo77.f +45 -0
  532. numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
  533. numpy/f2py/tests/src/return_integer/foo77.f +56 -0
  534. numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
  535. numpy/f2py/tests/src/return_logical/foo77.f +56 -0
  536. numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
  537. numpy/f2py/tests/src/return_real/foo77.f +45 -0
  538. numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
  539. numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
  540. numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
  541. numpy/f2py/tests/src/routines/subrout.f +4 -0
  542. numpy/f2py/tests/src/routines/subrout.pyf +10 -0
  543. numpy/f2py/tests/src/size/foo.f90 +44 -0
  544. numpy/f2py/tests/src/string/char.f90 +29 -0
  545. numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
  546. numpy/f2py/tests/src/string/gh24008.f +8 -0
  547. numpy/f2py/tests/src/string/gh24662.f90 +7 -0
  548. numpy/f2py/tests/src/string/gh25286.f90 +14 -0
  549. numpy/f2py/tests/src/string/gh25286.pyf +12 -0
  550. numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
  551. numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
  552. numpy/f2py/tests/src/string/string.f +12 -0
  553. numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
  554. numpy/f2py/tests/test_abstract_interface.py +26 -0
  555. numpy/f2py/tests/test_array_from_pyobj.py +678 -0
  556. numpy/f2py/tests/test_assumed_shape.py +50 -0
  557. numpy/f2py/tests/test_block_docstring.py +20 -0
  558. numpy/f2py/tests/test_callback.py +263 -0
  559. numpy/f2py/tests/test_character.py +641 -0
  560. numpy/f2py/tests/test_common.py +23 -0
  561. numpy/f2py/tests/test_crackfortran.py +421 -0
  562. numpy/f2py/tests/test_data.py +71 -0
  563. numpy/f2py/tests/test_docs.py +66 -0
  564. numpy/f2py/tests/test_f2cmap.py +17 -0
  565. numpy/f2py/tests/test_f2py2e.py +983 -0
  566. numpy/f2py/tests/test_isoc.py +56 -0
  567. numpy/f2py/tests/test_kind.py +52 -0
  568. numpy/f2py/tests/test_mixed.py +35 -0
  569. numpy/f2py/tests/test_modules.py +83 -0
  570. numpy/f2py/tests/test_parameter.py +129 -0
  571. numpy/f2py/tests/test_pyf_src.py +43 -0
  572. numpy/f2py/tests/test_quoted_character.py +18 -0
  573. numpy/f2py/tests/test_regression.py +187 -0
  574. numpy/f2py/tests/test_return_character.py +48 -0
  575. numpy/f2py/tests/test_return_complex.py +67 -0
  576. numpy/f2py/tests/test_return_integer.py +55 -0
  577. numpy/f2py/tests/test_return_logical.py +65 -0
  578. numpy/f2py/tests/test_return_real.py +109 -0
  579. numpy/f2py/tests/test_routines.py +29 -0
  580. numpy/f2py/tests/test_semicolon_split.py +75 -0
  581. numpy/f2py/tests/test_size.py +45 -0
  582. numpy/f2py/tests/test_string.py +100 -0
  583. numpy/f2py/tests/test_symbolic.py +500 -0
  584. numpy/f2py/tests/test_value_attrspec.py +15 -0
  585. numpy/f2py/tests/util.py +442 -0
  586. numpy/f2py/use_rules.py +99 -0
  587. numpy/f2py/use_rules.pyi +9 -0
  588. numpy/fft/__init__.py +213 -0
  589. numpy/fft/__init__.pyi +38 -0
  590. numpy/fft/_helper.py +235 -0
  591. numpy/fft/_helper.pyi +44 -0
  592. numpy/fft/_pocketfft.py +1693 -0
  593. numpy/fft/_pocketfft.pyi +137 -0
  594. numpy/fft/_pocketfft_umath.pypy311-pp73-darwin.so +0 -0
  595. numpy/fft/tests/__init__.py +0 -0
  596. numpy/fft/tests/test_helper.py +167 -0
  597. numpy/fft/tests/test_pocketfft.py +589 -0
  598. numpy/lib/__init__.py +97 -0
  599. numpy/lib/__init__.pyi +52 -0
  600. numpy/lib/_array_utils_impl.py +62 -0
  601. numpy/lib/_array_utils_impl.pyi +10 -0
  602. numpy/lib/_arraypad_impl.py +926 -0
  603. numpy/lib/_arraypad_impl.pyi +88 -0
  604. numpy/lib/_arraysetops_impl.py +1158 -0
  605. numpy/lib/_arraysetops_impl.pyi +462 -0
  606. numpy/lib/_arrayterator_impl.py +224 -0
  607. numpy/lib/_arrayterator_impl.pyi +45 -0
  608. numpy/lib/_datasource.py +700 -0
  609. numpy/lib/_datasource.pyi +30 -0
  610. numpy/lib/_format_impl.py +1036 -0
  611. numpy/lib/_format_impl.pyi +56 -0
  612. numpy/lib/_function_base_impl.py +5760 -0
  613. numpy/lib/_function_base_impl.pyi +2324 -0
  614. numpy/lib/_histograms_impl.py +1085 -0
  615. numpy/lib/_histograms_impl.pyi +40 -0
  616. numpy/lib/_index_tricks_impl.py +1048 -0
  617. numpy/lib/_index_tricks_impl.pyi +267 -0
  618. numpy/lib/_iotools.py +900 -0
  619. numpy/lib/_iotools.pyi +116 -0
  620. numpy/lib/_nanfunctions_impl.py +2006 -0
  621. numpy/lib/_nanfunctions_impl.pyi +48 -0
  622. numpy/lib/_npyio_impl.py +2583 -0
  623. numpy/lib/_npyio_impl.pyi +299 -0
  624. numpy/lib/_polynomial_impl.py +1465 -0
  625. numpy/lib/_polynomial_impl.pyi +338 -0
  626. numpy/lib/_scimath_impl.py +642 -0
  627. numpy/lib/_scimath_impl.pyi +93 -0
  628. numpy/lib/_shape_base_impl.py +1289 -0
  629. numpy/lib/_shape_base_impl.pyi +236 -0
  630. numpy/lib/_stride_tricks_impl.py +582 -0
  631. numpy/lib/_stride_tricks_impl.pyi +73 -0
  632. numpy/lib/_twodim_base_impl.py +1201 -0
  633. numpy/lib/_twodim_base_impl.pyi +408 -0
  634. numpy/lib/_type_check_impl.py +710 -0
  635. numpy/lib/_type_check_impl.pyi +348 -0
  636. numpy/lib/_ufunclike_impl.py +199 -0
  637. numpy/lib/_ufunclike_impl.pyi +60 -0
  638. numpy/lib/_user_array_impl.py +310 -0
  639. numpy/lib/_user_array_impl.pyi +226 -0
  640. numpy/lib/_utils_impl.py +784 -0
  641. numpy/lib/_utils_impl.pyi +22 -0
  642. numpy/lib/_version.py +153 -0
  643. numpy/lib/_version.pyi +17 -0
  644. numpy/lib/array_utils.py +7 -0
  645. numpy/lib/array_utils.pyi +6 -0
  646. numpy/lib/format.py +24 -0
  647. numpy/lib/format.pyi +24 -0
  648. numpy/lib/introspect.py +94 -0
  649. numpy/lib/introspect.pyi +3 -0
  650. numpy/lib/mixins.py +180 -0
  651. numpy/lib/mixins.pyi +78 -0
  652. numpy/lib/npyio.py +1 -0
  653. numpy/lib/npyio.pyi +5 -0
  654. numpy/lib/recfunctions.py +1681 -0
  655. numpy/lib/recfunctions.pyi +444 -0
  656. numpy/lib/scimath.py +13 -0
  657. numpy/lib/scimath.pyi +12 -0
  658. numpy/lib/stride_tricks.py +1 -0
  659. numpy/lib/stride_tricks.pyi +4 -0
  660. numpy/lib/tests/__init__.py +0 -0
  661. numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
  662. numpy/lib/tests/data/py2-objarr.npy +0 -0
  663. numpy/lib/tests/data/py2-objarr.npz +0 -0
  664. numpy/lib/tests/data/py3-objarr.npy +0 -0
  665. numpy/lib/tests/data/py3-objarr.npz +0 -0
  666. numpy/lib/tests/data/python3.npy +0 -0
  667. numpy/lib/tests/data/win64python2.npy +0 -0
  668. numpy/lib/tests/test__datasource.py +328 -0
  669. numpy/lib/tests/test__iotools.py +358 -0
  670. numpy/lib/tests/test__version.py +64 -0
  671. numpy/lib/tests/test_array_utils.py +32 -0
  672. numpy/lib/tests/test_arraypad.py +1427 -0
  673. numpy/lib/tests/test_arraysetops.py +1302 -0
  674. numpy/lib/tests/test_arrayterator.py +45 -0
  675. numpy/lib/tests/test_format.py +1054 -0
  676. numpy/lib/tests/test_function_base.py +4750 -0
  677. numpy/lib/tests/test_histograms.py +855 -0
  678. numpy/lib/tests/test_index_tricks.py +693 -0
  679. numpy/lib/tests/test_io.py +2857 -0
  680. numpy/lib/tests/test_loadtxt.py +1099 -0
  681. numpy/lib/tests/test_mixins.py +215 -0
  682. numpy/lib/tests/test_nanfunctions.py +1438 -0
  683. numpy/lib/tests/test_packbits.py +376 -0
  684. numpy/lib/tests/test_polynomial.py +325 -0
  685. numpy/lib/tests/test_recfunctions.py +1042 -0
  686. numpy/lib/tests/test_regression.py +231 -0
  687. numpy/lib/tests/test_shape_base.py +813 -0
  688. numpy/lib/tests/test_stride_tricks.py +655 -0
  689. numpy/lib/tests/test_twodim_base.py +559 -0
  690. numpy/lib/tests/test_type_check.py +473 -0
  691. numpy/lib/tests/test_ufunclike.py +97 -0
  692. numpy/lib/tests/test_utils.py +80 -0
  693. numpy/lib/user_array.py +1 -0
  694. numpy/lib/user_array.pyi +1 -0
  695. numpy/linalg/__init__.py +95 -0
  696. numpy/linalg/__init__.pyi +71 -0
  697. numpy/linalg/_linalg.py +3657 -0
  698. numpy/linalg/_linalg.pyi +548 -0
  699. numpy/linalg/_umath_linalg.pyi +60 -0
  700. numpy/linalg/_umath_linalg.pypy311-pp73-darwin.so +0 -0
  701. numpy/linalg/lapack_lite.pyi +143 -0
  702. numpy/linalg/lapack_lite.pypy311-pp73-darwin.so +0 -0
  703. numpy/linalg/tests/__init__.py +0 -0
  704. numpy/linalg/tests/test_deprecations.py +21 -0
  705. numpy/linalg/tests/test_linalg.py +2442 -0
  706. numpy/linalg/tests/test_regression.py +182 -0
  707. numpy/ma/API_CHANGES.txt +135 -0
  708. numpy/ma/LICENSE +24 -0
  709. numpy/ma/README.rst +236 -0
  710. numpy/ma/__init__.py +53 -0
  711. numpy/ma/__init__.pyi +458 -0
  712. numpy/ma/core.py +8929 -0
  713. numpy/ma/core.pyi +3720 -0
  714. numpy/ma/extras.py +2266 -0
  715. numpy/ma/extras.pyi +297 -0
  716. numpy/ma/mrecords.py +762 -0
  717. numpy/ma/mrecords.pyi +96 -0
  718. numpy/ma/tests/__init__.py +0 -0
  719. numpy/ma/tests/test_arrayobject.py +40 -0
  720. numpy/ma/tests/test_core.py +6008 -0
  721. numpy/ma/tests/test_deprecations.py +65 -0
  722. numpy/ma/tests/test_extras.py +1945 -0
  723. numpy/ma/tests/test_mrecords.py +495 -0
  724. numpy/ma/tests/test_old_ma.py +939 -0
  725. numpy/ma/tests/test_regression.py +83 -0
  726. numpy/ma/tests/test_subclassing.py +469 -0
  727. numpy/ma/testutils.py +294 -0
  728. numpy/ma/testutils.pyi +69 -0
  729. numpy/matlib.py +380 -0
  730. numpy/matlib.pyi +580 -0
  731. numpy/matrixlib/__init__.py +12 -0
  732. numpy/matrixlib/__init__.pyi +3 -0
  733. numpy/matrixlib/defmatrix.py +1119 -0
  734. numpy/matrixlib/defmatrix.pyi +218 -0
  735. numpy/matrixlib/tests/__init__.py +0 -0
  736. numpy/matrixlib/tests/test_defmatrix.py +455 -0
  737. numpy/matrixlib/tests/test_interaction.py +360 -0
  738. numpy/matrixlib/tests/test_masked_matrix.py +240 -0
  739. numpy/matrixlib/tests/test_matrix_linalg.py +110 -0
  740. numpy/matrixlib/tests/test_multiarray.py +17 -0
  741. numpy/matrixlib/tests/test_numeric.py +18 -0
  742. numpy/matrixlib/tests/test_regression.py +31 -0
  743. numpy/polynomial/__init__.py +187 -0
  744. numpy/polynomial/__init__.pyi +31 -0
  745. numpy/polynomial/_polybase.py +1191 -0
  746. numpy/polynomial/_polybase.pyi +262 -0
  747. numpy/polynomial/_polytypes.pyi +501 -0
  748. numpy/polynomial/chebyshev.py +2001 -0
  749. numpy/polynomial/chebyshev.pyi +180 -0
  750. numpy/polynomial/hermite.py +1738 -0
  751. numpy/polynomial/hermite.pyi +106 -0
  752. numpy/polynomial/hermite_e.py +1640 -0
  753. numpy/polynomial/hermite_e.pyi +106 -0
  754. numpy/polynomial/laguerre.py +1673 -0
  755. numpy/polynomial/laguerre.pyi +100 -0
  756. numpy/polynomial/legendre.py +1603 -0
  757. numpy/polynomial/legendre.pyi +100 -0
  758. numpy/polynomial/polynomial.py +1625 -0
  759. numpy/polynomial/polynomial.pyi +109 -0
  760. numpy/polynomial/polyutils.py +759 -0
  761. numpy/polynomial/polyutils.pyi +307 -0
  762. numpy/polynomial/tests/__init__.py +0 -0
  763. numpy/polynomial/tests/test_chebyshev.py +618 -0
  764. numpy/polynomial/tests/test_classes.py +613 -0
  765. numpy/polynomial/tests/test_hermite.py +553 -0
  766. numpy/polynomial/tests/test_hermite_e.py +554 -0
  767. numpy/polynomial/tests/test_laguerre.py +535 -0
  768. numpy/polynomial/tests/test_legendre.py +566 -0
  769. numpy/polynomial/tests/test_polynomial.py +691 -0
  770. numpy/polynomial/tests/test_polyutils.py +123 -0
  771. numpy/polynomial/tests/test_printing.py +557 -0
  772. numpy/polynomial/tests/test_symbol.py +217 -0
  773. numpy/py.typed +0 -0
  774. numpy/random/LICENSE.md +71 -0
  775. numpy/random/__init__.pxd +14 -0
  776. numpy/random/__init__.py +213 -0
  777. numpy/random/__init__.pyi +124 -0
  778. numpy/random/_bounded_integers.pxd +29 -0
  779. numpy/random/_bounded_integers.pyi +1 -0
  780. numpy/random/_bounded_integers.pypy311-pp73-darwin.so +0 -0
  781. numpy/random/_common.pxd +110 -0
  782. numpy/random/_common.pyi +16 -0
  783. numpy/random/_common.pypy311-pp73-darwin.so +0 -0
  784. numpy/random/_examples/cffi/extending.py +44 -0
  785. numpy/random/_examples/cffi/parse.py +53 -0
  786. numpy/random/_examples/cython/extending.pyx +77 -0
  787. numpy/random/_examples/cython/extending_distributions.pyx +117 -0
  788. numpy/random/_examples/cython/meson.build +53 -0
  789. numpy/random/_examples/numba/extending.py +86 -0
  790. numpy/random/_examples/numba/extending_distributions.py +67 -0
  791. numpy/random/_generator.pyi +862 -0
  792. numpy/random/_generator.pypy311-pp73-darwin.so +0 -0
  793. numpy/random/_mt19937.pyi +27 -0
  794. numpy/random/_mt19937.pypy311-pp73-darwin.so +0 -0
  795. numpy/random/_pcg64.pyi +41 -0
  796. numpy/random/_pcg64.pypy311-pp73-darwin.so +0 -0
  797. numpy/random/_philox.pyi +36 -0
  798. numpy/random/_philox.pypy311-pp73-darwin.so +0 -0
  799. numpy/random/_pickle.py +88 -0
  800. numpy/random/_pickle.pyi +43 -0
  801. numpy/random/_sfc64.pyi +25 -0
  802. numpy/random/_sfc64.pypy311-pp73-darwin.so +0 -0
  803. numpy/random/bit_generator.pxd +40 -0
  804. numpy/random/bit_generator.pyi +123 -0
  805. numpy/random/bit_generator.pypy311-pp73-darwin.so +0 -0
  806. numpy/random/c_distributions.pxd +119 -0
  807. numpy/random/lib/libnpyrandom.a +0 -0
  808. numpy/random/mtrand.pyi +759 -0
  809. numpy/random/mtrand.pypy311-pp73-darwin.so +0 -0
  810. numpy/random/tests/__init__.py +0 -0
  811. numpy/random/tests/data/__init__.py +0 -0
  812. numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
  813. numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
  814. numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
  815. numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
  816. numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
  817. numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
  818. numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
  819. numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
  820. numpy/random/tests/data/philox-testset-1.csv +1001 -0
  821. numpy/random/tests/data/philox-testset-2.csv +1001 -0
  822. numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
  823. numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
  824. numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
  825. numpy/random/tests/test_direct.py +595 -0
  826. numpy/random/tests/test_extending.py +131 -0
  827. numpy/random/tests/test_generator_mt19937.py +2825 -0
  828. numpy/random/tests/test_generator_mt19937_regressions.py +221 -0
  829. numpy/random/tests/test_random.py +1724 -0
  830. numpy/random/tests/test_randomstate.py +2099 -0
  831. numpy/random/tests/test_randomstate_regression.py +213 -0
  832. numpy/random/tests/test_regression.py +175 -0
  833. numpy/random/tests/test_seed_sequence.py +79 -0
  834. numpy/random/tests/test_smoke.py +882 -0
  835. numpy/rec/__init__.py +2 -0
  836. numpy/rec/__init__.pyi +23 -0
  837. numpy/strings/__init__.py +2 -0
  838. numpy/strings/__init__.pyi +97 -0
  839. numpy/testing/__init__.py +22 -0
  840. numpy/testing/__init__.pyi +107 -0
  841. numpy/testing/_private/__init__.py +0 -0
  842. numpy/testing/_private/__init__.pyi +0 -0
  843. numpy/testing/_private/extbuild.py +250 -0
  844. numpy/testing/_private/extbuild.pyi +25 -0
  845. numpy/testing/_private/utils.py +2830 -0
  846. numpy/testing/_private/utils.pyi +505 -0
  847. numpy/testing/overrides.py +84 -0
  848. numpy/testing/overrides.pyi +10 -0
  849. numpy/testing/print_coercion_tables.py +207 -0
  850. numpy/testing/print_coercion_tables.pyi +26 -0
  851. numpy/testing/tests/__init__.py +0 -0
  852. numpy/testing/tests/test_utils.py +2123 -0
  853. numpy/tests/__init__.py +0 -0
  854. numpy/tests/test__all__.py +10 -0
  855. numpy/tests/test_configtool.py +51 -0
  856. numpy/tests/test_ctypeslib.py +383 -0
  857. numpy/tests/test_lazyloading.py +42 -0
  858. numpy/tests/test_matlib.py +59 -0
  859. numpy/tests/test_numpy_config.py +47 -0
  860. numpy/tests/test_numpy_version.py +54 -0
  861. numpy/tests/test_public_api.py +807 -0
  862. numpy/tests/test_reloading.py +76 -0
  863. numpy/tests/test_scripts.py +48 -0
  864. numpy/tests/test_warnings.py +79 -0
  865. numpy/typing/__init__.py +233 -0
  866. numpy/typing/__init__.pyi +3 -0
  867. numpy/typing/mypy_plugin.py +200 -0
  868. numpy/typing/tests/__init__.py +0 -0
  869. numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
  870. numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
  871. numpy/typing/tests/data/fail/array_like.pyi +15 -0
  872. numpy/typing/tests/data/fail/array_pad.pyi +6 -0
  873. numpy/typing/tests/data/fail/arrayprint.pyi +15 -0
  874. numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
  875. numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
  876. numpy/typing/tests/data/fail/char.pyi +63 -0
  877. numpy/typing/tests/data/fail/chararray.pyi +61 -0
  878. numpy/typing/tests/data/fail/comparisons.pyi +27 -0
  879. numpy/typing/tests/data/fail/constants.pyi +3 -0
  880. numpy/typing/tests/data/fail/datasource.pyi +16 -0
  881. numpy/typing/tests/data/fail/dtype.pyi +17 -0
  882. numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
  883. numpy/typing/tests/data/fail/flatiter.pyi +38 -0
  884. numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
  885. numpy/typing/tests/data/fail/histograms.pyi +12 -0
  886. numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
  887. numpy/typing/tests/data/fail/lib_function_base.pyi +60 -0
  888. numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
  889. numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
  890. numpy/typing/tests/data/fail/lib_version.pyi +6 -0
  891. numpy/typing/tests/data/fail/linalg.pyi +52 -0
  892. numpy/typing/tests/data/fail/ma.pyi +155 -0
  893. numpy/typing/tests/data/fail/memmap.pyi +5 -0
  894. numpy/typing/tests/data/fail/modules.pyi +17 -0
  895. numpy/typing/tests/data/fail/multiarray.pyi +52 -0
  896. numpy/typing/tests/data/fail/ndarray.pyi +11 -0
  897. numpy/typing/tests/data/fail/ndarray_misc.pyi +49 -0
  898. numpy/typing/tests/data/fail/nditer.pyi +8 -0
  899. numpy/typing/tests/data/fail/nested_sequence.pyi +17 -0
  900. numpy/typing/tests/data/fail/npyio.pyi +24 -0
  901. numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
  902. numpy/typing/tests/data/fail/random.pyi +62 -0
  903. numpy/typing/tests/data/fail/rec.pyi +17 -0
  904. numpy/typing/tests/data/fail/scalars.pyi +86 -0
  905. numpy/typing/tests/data/fail/shape.pyi +7 -0
  906. numpy/typing/tests/data/fail/shape_base.pyi +8 -0
  907. numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
  908. numpy/typing/tests/data/fail/strings.pyi +52 -0
  909. numpy/typing/tests/data/fail/testing.pyi +28 -0
  910. numpy/typing/tests/data/fail/twodim_base.pyi +39 -0
  911. numpy/typing/tests/data/fail/type_check.pyi +12 -0
  912. numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
  913. numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
  914. numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
  915. numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
  916. numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
  917. numpy/typing/tests/data/mypy.ini +8 -0
  918. numpy/typing/tests/data/pass/arithmetic.py +614 -0
  919. numpy/typing/tests/data/pass/array_constructors.py +138 -0
  920. numpy/typing/tests/data/pass/array_like.py +43 -0
  921. numpy/typing/tests/data/pass/arrayprint.py +37 -0
  922. numpy/typing/tests/data/pass/arrayterator.py +28 -0
  923. numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
  924. numpy/typing/tests/data/pass/comparisons.py +316 -0
  925. numpy/typing/tests/data/pass/dtype.py +57 -0
  926. numpy/typing/tests/data/pass/einsumfunc.py +36 -0
  927. numpy/typing/tests/data/pass/flatiter.py +26 -0
  928. numpy/typing/tests/data/pass/fromnumeric.py +272 -0
  929. numpy/typing/tests/data/pass/index_tricks.py +62 -0
  930. numpy/typing/tests/data/pass/lib_user_array.py +22 -0
  931. numpy/typing/tests/data/pass/lib_utils.py +19 -0
  932. numpy/typing/tests/data/pass/lib_version.py +18 -0
  933. numpy/typing/tests/data/pass/literal.py +52 -0
  934. numpy/typing/tests/data/pass/ma.py +199 -0
  935. numpy/typing/tests/data/pass/mod.py +149 -0
  936. numpy/typing/tests/data/pass/modules.py +45 -0
  937. numpy/typing/tests/data/pass/multiarray.py +77 -0
  938. numpy/typing/tests/data/pass/ndarray_conversion.py +81 -0
  939. numpy/typing/tests/data/pass/ndarray_misc.py +199 -0
  940. numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
  941. numpy/typing/tests/data/pass/nditer.py +4 -0
  942. numpy/typing/tests/data/pass/numeric.py +90 -0
  943. numpy/typing/tests/data/pass/numerictypes.py +17 -0
  944. numpy/typing/tests/data/pass/random.py +1498 -0
  945. numpy/typing/tests/data/pass/recfunctions.py +164 -0
  946. numpy/typing/tests/data/pass/scalars.py +249 -0
  947. numpy/typing/tests/data/pass/shape.py +19 -0
  948. numpy/typing/tests/data/pass/simple.py +170 -0
  949. numpy/typing/tests/data/pass/ufunc_config.py +64 -0
  950. numpy/typing/tests/data/pass/ufunclike.py +52 -0
  951. numpy/typing/tests/data/pass/ufuncs.py +16 -0
  952. numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
  953. numpy/typing/tests/data/reveal/arithmetic.pyi +719 -0
  954. numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
  955. numpy/typing/tests/data/reveal/array_constructors.pyi +277 -0
  956. numpy/typing/tests/data/reveal/arraypad.pyi +27 -0
  957. numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
  958. numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
  959. numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
  960. numpy/typing/tests/data/reveal/bitwise_ops.pyi +166 -0
  961. numpy/typing/tests/data/reveal/char.pyi +225 -0
  962. numpy/typing/tests/data/reveal/chararray.pyi +138 -0
  963. numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
  964. numpy/typing/tests/data/reveal/constants.pyi +14 -0
  965. numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
  966. numpy/typing/tests/data/reveal/datasource.pyi +23 -0
  967. numpy/typing/tests/data/reveal/dtype.pyi +132 -0
  968. numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
  969. numpy/typing/tests/data/reveal/emath.pyi +54 -0
  970. numpy/typing/tests/data/reveal/fft.pyi +37 -0
  971. numpy/typing/tests/data/reveal/flatiter.pyi +86 -0
  972. numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
  973. numpy/typing/tests/data/reveal/getlimits.pyi +53 -0
  974. numpy/typing/tests/data/reveal/histograms.pyi +25 -0
  975. numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
  976. numpy/typing/tests/data/reveal/lib_function_base.pyi +409 -0
  977. numpy/typing/tests/data/reveal/lib_polynomial.pyi +147 -0
  978. numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
  979. numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
  980. numpy/typing/tests/data/reveal/linalg.pyi +154 -0
  981. numpy/typing/tests/data/reveal/ma.pyi +1098 -0
  982. numpy/typing/tests/data/reveal/matrix.pyi +73 -0
  983. numpy/typing/tests/data/reveal/memmap.pyi +19 -0
  984. numpy/typing/tests/data/reveal/mod.pyi +178 -0
  985. numpy/typing/tests/data/reveal/modules.pyi +51 -0
  986. numpy/typing/tests/data/reveal/multiarray.pyi +197 -0
  987. numpy/typing/tests/data/reveal/nbit_base_example.pyi +20 -0
  988. numpy/typing/tests/data/reveal/ndarray_assignability.pyi +82 -0
  989. numpy/typing/tests/data/reveal/ndarray_conversion.pyi +83 -0
  990. numpy/typing/tests/data/reveal/ndarray_misc.pyi +246 -0
  991. numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +47 -0
  992. numpy/typing/tests/data/reveal/nditer.pyi +49 -0
  993. numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
  994. numpy/typing/tests/data/reveal/npyio.pyi +83 -0
  995. numpy/typing/tests/data/reveal/numeric.pyi +170 -0
  996. numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
  997. numpy/typing/tests/data/reveal/polynomial_polybase.pyi +217 -0
  998. numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +218 -0
  999. numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
  1000. numpy/typing/tests/data/reveal/random.pyi +1546 -0
  1001. numpy/typing/tests/data/reveal/rec.pyi +171 -0
  1002. numpy/typing/tests/data/reveal/scalars.pyi +191 -0
  1003. numpy/typing/tests/data/reveal/shape.pyi +13 -0
  1004. numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
  1005. numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
  1006. numpy/typing/tests/data/reveal/strings.pyi +196 -0
  1007. numpy/typing/tests/data/reveal/testing.pyi +198 -0
  1008. numpy/typing/tests/data/reveal/twodim_base.pyi +225 -0
  1009. numpy/typing/tests/data/reveal/type_check.pyi +67 -0
  1010. numpy/typing/tests/data/reveal/ufunc_config.pyi +29 -0
  1011. numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
  1012. numpy/typing/tests/data/reveal/ufuncs.pyi +142 -0
  1013. numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
  1014. numpy/typing/tests/test_isfile.py +38 -0
  1015. numpy/typing/tests/test_runtime.py +110 -0
  1016. numpy/typing/tests/test_typing.py +205 -0
  1017. numpy/version.py +11 -0
  1018. numpy/version.pyi +9 -0
  1019. numpy-2.4.1.dist-info/METADATA +139 -0
  1020. numpy-2.4.1.dist-info/RECORD +1039 -0
  1021. numpy-2.4.1.dist-info/WHEEL +6 -0
  1022. numpy-2.4.1.dist-info/entry_points.txt +13 -0
  1023. numpy-2.4.1.dist-info/licenses/LICENSE.txt +935 -0
  1024. numpy-2.4.1.dist-info/licenses/numpy/_core/include/numpy/libdivide/LICENSE.txt +21 -0
  1025. numpy-2.4.1.dist-info/licenses/numpy/_core/src/common/pythoncapi-compat/COPYING +14 -0
  1026. numpy-2.4.1.dist-info/licenses/numpy/_core/src/highway/LICENSE +371 -0
  1027. numpy-2.4.1.dist-info/licenses/numpy/_core/src/multiarray/dragon4_LICENSE.txt +27 -0
  1028. numpy-2.4.1.dist-info/licenses/numpy/_core/src/npysort/x86-simd-sort/LICENSE.md +28 -0
  1029. numpy-2.4.1.dist-info/licenses/numpy/_core/src/umath/svml/LICENSE +30 -0
  1030. numpy-2.4.1.dist-info/licenses/numpy/fft/pocketfft/LICENSE.md +25 -0
  1031. numpy-2.4.1.dist-info/licenses/numpy/linalg/lapack_lite/LICENSE.txt +48 -0
  1032. numpy-2.4.1.dist-info/licenses/numpy/ma/LICENSE +24 -0
  1033. numpy-2.4.1.dist-info/licenses/numpy/random/LICENSE.md +71 -0
  1034. numpy-2.4.1.dist-info/licenses/numpy/random/src/distributions/LICENSE.md +61 -0
  1035. numpy-2.4.1.dist-info/licenses/numpy/random/src/mt19937/LICENSE.md +61 -0
  1036. numpy-2.4.1.dist-info/licenses/numpy/random/src/pcg64/LICENSE.md +22 -0
  1037. numpy-2.4.1.dist-info/licenses/numpy/random/src/philox/LICENSE.md +31 -0
  1038. numpy-2.4.1.dist-info/licenses/numpy/random/src/sfc64/LICENSE.md +27 -0
  1039. numpy-2.4.1.dist-info/licenses/numpy/random/src/splitmix64/LICENSE.md +9 -0
@@ -0,0 +1,1945 @@
1
+ """Tests suite for MaskedArray.
2
+ Adapted from the original test_ma by Pierre Gerard-Marchant
3
+
4
+ :author: Pierre Gerard-Marchant
5
+ :contact: pierregm_at_uga_dot_edu
6
+
7
+ """
8
+ import inspect
9
+ import itertools
10
+
11
+ import pytest
12
+
13
+ import numpy as np
14
+ from numpy._core.numeric import normalize_axis_tuple
15
+ from numpy.ma.core import (
16
+ MaskedArray,
17
+ arange,
18
+ array,
19
+ count,
20
+ getmaskarray,
21
+ masked,
22
+ masked_array,
23
+ nomask,
24
+ ones,
25
+ shape,
26
+ zeros,
27
+ )
28
+ from numpy.ma.extras import (
29
+ _covhelper,
30
+ apply_along_axis,
31
+ apply_over_axes,
32
+ atleast_1d,
33
+ atleast_2d,
34
+ atleast_3d,
35
+ average,
36
+ clump_masked,
37
+ clump_unmasked,
38
+ compress_nd,
39
+ compress_rowcols,
40
+ corrcoef,
41
+ cov,
42
+ diagflat,
43
+ dot,
44
+ ediff1d,
45
+ flatnotmasked_contiguous,
46
+ in1d,
47
+ intersect1d,
48
+ isin,
49
+ mask_rowcols,
50
+ masked_all,
51
+ masked_all_like,
52
+ median,
53
+ mr_,
54
+ ndenumerate,
55
+ notmasked_contiguous,
56
+ notmasked_edges,
57
+ polyfit,
58
+ setdiff1d,
59
+ setxor1d,
60
+ stack,
61
+ union1d,
62
+ unique,
63
+ vstack,
64
+ )
65
+ from numpy.ma.testutils import (
66
+ assert_,
67
+ assert_almost_equal,
68
+ assert_array_equal,
69
+ assert_equal,
70
+ )
71
+
72
+
73
+ class TestGeneric:
74
+ #
75
+ def test_masked_all(self):
76
+ # Tests masked_all
77
+ # Standard dtype
78
+ test = masked_all((2,), dtype=float)
79
+ control = array([1, 1], mask=[1, 1], dtype=float)
80
+ assert_equal(test, control)
81
+ # Flexible dtype
82
+ dt = np.dtype({'names': ['a', 'b'], 'formats': ['f', 'f']})
83
+ test = masked_all((2,), dtype=dt)
84
+ control = array([(0, 0), (0, 0)], mask=[(1, 1), (1, 1)], dtype=dt)
85
+ assert_equal(test, control)
86
+ test = masked_all((2, 2), dtype=dt)
87
+ control = array([[(0, 0), (0, 0)], [(0, 0), (0, 0)]],
88
+ mask=[[(1, 1), (1, 1)], [(1, 1), (1, 1)]],
89
+ dtype=dt)
90
+ assert_equal(test, control)
91
+ # Nested dtype
92
+ dt = np.dtype([('a', 'f'), ('b', [('ba', 'f'), ('bb', 'f')])])
93
+ test = masked_all((2,), dtype=dt)
94
+ control = array([(1, (1, 1)), (1, (1, 1))],
95
+ mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt)
96
+ assert_equal(test, control)
97
+ test = masked_all((2,), dtype=dt)
98
+ control = array([(1, (1, 1)), (1, (1, 1))],
99
+ mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt)
100
+ assert_equal(test, control)
101
+ test = masked_all((1, 1), dtype=dt)
102
+ control = array([[(1, (1, 1))]], mask=[[(1, (1, 1))]], dtype=dt)
103
+ assert_equal(test, control)
104
+
105
+ def test_masked_all_with_object_nested(self):
106
+ # Test masked_all works with nested array with dtype of an 'object'
107
+ # refers to issue #15895
108
+ my_dtype = np.dtype([('b', ([('c', object)], (1,)))])
109
+ masked_arr = np.ma.masked_all((1,), my_dtype)
110
+
111
+ assert_equal(type(masked_arr['b']), np.ma.core.MaskedArray)
112
+ assert_equal(type(masked_arr['b']['c']), np.ma.core.MaskedArray)
113
+ assert_equal(len(masked_arr['b']['c']), 1)
114
+ assert_equal(masked_arr['b']['c'].shape, (1, 1))
115
+ assert_equal(masked_arr['b']['c']._fill_value.shape, ())
116
+
117
+ def test_masked_all_with_object(self):
118
+ # same as above except that the array is not nested
119
+ my_dtype = np.dtype([('b', (object, (1,)))])
120
+ masked_arr = np.ma.masked_all((1,), my_dtype)
121
+
122
+ assert_equal(type(masked_arr['b']), np.ma.core.MaskedArray)
123
+ assert_equal(len(masked_arr['b']), 1)
124
+ assert_equal(masked_arr['b'].shape, (1, 1))
125
+ assert_equal(masked_arr['b']._fill_value.shape, ())
126
+
127
+ def test_masked_all_like(self):
128
+ # Tests masked_all
129
+ # Standard dtype
130
+ base = array([1, 2], dtype=float)
131
+ test = masked_all_like(base)
132
+ control = array([1, 1], mask=[1, 1], dtype=float)
133
+ assert_equal(test, control)
134
+ # Flexible dtype
135
+ dt = np.dtype({'names': ['a', 'b'], 'formats': ['f', 'f']})
136
+ base = array([(0, 0), (0, 0)], mask=[(1, 1), (1, 1)], dtype=dt)
137
+ test = masked_all_like(base)
138
+ control = array([(10, 10), (10, 10)], mask=[(1, 1), (1, 1)], dtype=dt)
139
+ assert_equal(test, control)
140
+ # Nested dtype
141
+ dt = np.dtype([('a', 'f'), ('b', [('ba', 'f'), ('bb', 'f')])])
142
+ control = array([(1, (1, 1)), (1, (1, 1))],
143
+ mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt)
144
+ test = masked_all_like(control)
145
+ assert_equal(test, control)
146
+
147
+ def check_clump(self, f):
148
+ for i in range(1, 7):
149
+ for j in range(2**i):
150
+ k = np.arange(i, dtype=int)
151
+ ja = np.full(i, j, dtype=int)
152
+ a = masked_array(2**k)
153
+ a.mask = (ja & (2**k)) != 0
154
+ s = 0
155
+ for sl in f(a):
156
+ s += a.data[sl].sum()
157
+ if f == clump_unmasked:
158
+ assert_equal(a.compressed().sum(), s)
159
+ else:
160
+ a.mask = ~a.mask
161
+ assert_equal(a.compressed().sum(), s)
162
+
163
+ def test_clump_masked(self):
164
+ # Test clump_masked
165
+ a = masked_array(np.arange(10))
166
+ a[[0, 1, 2, 6, 8, 9]] = masked
167
+ #
168
+ test = clump_masked(a)
169
+ control = [slice(0, 3), slice(6, 7), slice(8, 10)]
170
+ assert_equal(test, control)
171
+
172
+ self.check_clump(clump_masked)
173
+
174
+ def test_clump_unmasked(self):
175
+ # Test clump_unmasked
176
+ a = masked_array(np.arange(10))
177
+ a[[0, 1, 2, 6, 8, 9]] = masked
178
+ test = clump_unmasked(a)
179
+ control = [slice(3, 6), slice(7, 8), ]
180
+ assert_equal(test, control)
181
+
182
+ self.check_clump(clump_unmasked)
183
+
184
+ def test_flatnotmasked_contiguous(self):
185
+ # Test flatnotmasked_contiguous
186
+ a = arange(10)
187
+ # No mask
188
+ test = flatnotmasked_contiguous(a)
189
+ assert_equal(test, [slice(0, a.size)])
190
+ # mask of all false
191
+ a.mask = np.zeros(10, dtype=bool)
192
+ assert_equal(test, [slice(0, a.size)])
193
+ # Some mask
194
+ a[(a < 3) | (a > 8) | (a == 5)] = masked
195
+ test = flatnotmasked_contiguous(a)
196
+ assert_equal(test, [slice(3, 5), slice(6, 9)])
197
+ #
198
+ a[:] = masked
199
+ test = flatnotmasked_contiguous(a)
200
+ assert_equal(test, [])
201
+
202
+
203
+ class TestAverage:
204
+ # Several tests of average. Why so many ? Good point...
205
+ def test_testAverage1(self):
206
+ # Test of average.
207
+ ott = array([0., 1., 2., 3.], mask=[True, False, False, False])
208
+ assert_equal(2.0, average(ott, axis=0))
209
+ assert_equal(2.0, average(ott, weights=[1., 1., 2., 1.]))
210
+ result, wts = average(ott, weights=[1., 1., 2., 1.], returned=True)
211
+ assert_equal(2.0, result)
212
+ assert_(wts == 4.0)
213
+ ott[:] = masked
214
+ assert_equal(average(ott, axis=0).mask, [True])
215
+ ott = array([0., 1., 2., 3.], mask=[True, False, False, False])
216
+ ott = ott.reshape(2, 2)
217
+ ott[:, 1] = masked
218
+ assert_equal(average(ott, axis=0), [2.0, 0.0])
219
+ assert_equal(average(ott, axis=1).mask[0], [True])
220
+ assert_equal([2., 0.], average(ott, axis=0))
221
+ result, wts = average(ott, axis=0, returned=True)
222
+ assert_equal(wts, [1., 0.])
223
+
224
+ def test_testAverage2(self):
225
+ # More tests of average.
226
+ w1 = [0, 1, 1, 1, 1, 0]
227
+ w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]]
228
+ x = arange(6, dtype=np.float64)
229
+ assert_equal(average(x, axis=0), 2.5)
230
+ assert_equal(average(x, axis=0, weights=w1), 2.5)
231
+ y = array([arange(6, dtype=np.float64), 2.0 * arange(6)])
232
+ assert_equal(average(y, None), np.add.reduce(np.arange(6)) * 3. / 12.)
233
+ assert_equal(average(y, axis=0), np.arange(6) * 3. / 2.)
234
+ assert_equal(average(y, axis=1),
235
+ [average(x, axis=0), average(x, axis=0) * 2.0])
236
+ assert_equal(average(y, None, weights=w2), 20. / 6.)
237
+ assert_equal(average(y, axis=0, weights=w2),
238
+ [0., 1., 2., 3., 4., 10.])
239
+ assert_equal(average(y, axis=1),
240
+ [average(x, axis=0), average(x, axis=0) * 2.0])
241
+ m1 = zeros(6)
242
+ m2 = [0, 0, 1, 1, 0, 0]
243
+ m3 = [[0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0]]
244
+ m4 = ones(6)
245
+ m5 = [0, 1, 1, 1, 1, 1]
246
+ assert_equal(average(masked_array(x, m1), axis=0), 2.5)
247
+ assert_equal(average(masked_array(x, m2), axis=0), 2.5)
248
+ assert_equal(average(masked_array(x, m4), axis=0).mask, [True])
249
+ assert_equal(average(masked_array(x, m5), axis=0), 0.0)
250
+ assert_equal(count(average(masked_array(x, m4), axis=0)), 0)
251
+ z = masked_array(y, m3)
252
+ assert_equal(average(z, None), 20. / 6.)
253
+ assert_equal(average(z, axis=0), [0., 1., 99., 99., 4.0, 7.5])
254
+ assert_equal(average(z, axis=1), [2.5, 5.0])
255
+ assert_equal(average(z, axis=0, weights=w2),
256
+ [0., 1., 99., 99., 4.0, 10.0])
257
+
258
+ def test_testAverage3(self):
259
+ # Yet more tests of average!
260
+ a = arange(6)
261
+ b = arange(6) * 3
262
+ r1, w1 = average([[a, b], [b, a]], axis=1, returned=True)
263
+ assert_equal(shape(r1), shape(w1))
264
+ assert_equal(r1.shape, w1.shape)
265
+ r2, w2 = average(ones((2, 2, 3)), axis=0, weights=[3, 1], returned=True)
266
+ assert_equal(shape(w2), shape(r2))
267
+ r2, w2 = average(ones((2, 2, 3)), returned=True)
268
+ assert_equal(shape(w2), shape(r2))
269
+ r2, w2 = average(ones((2, 2, 3)), weights=ones((2, 2, 3)), returned=True)
270
+ assert_equal(shape(w2), shape(r2))
271
+ a2d = array([[1, 2], [0, 4]], float)
272
+ a2dm = masked_array(a2d, [[False, False], [True, False]])
273
+ a2da = average(a2d, axis=0)
274
+ assert_equal(a2da, [0.5, 3.0])
275
+ a2dma = average(a2dm, axis=0)
276
+ assert_equal(a2dma, [1.0, 3.0])
277
+ a2dma = average(a2dm, axis=None)
278
+ assert_equal(a2dma, 7. / 3.)
279
+ a2dma = average(a2dm, axis=1)
280
+ assert_equal(a2dma, [1.5, 4.0])
281
+
282
+ def test_testAverage4(self):
283
+ # Test that `keepdims` works with average
284
+ x = np.array([2, 3, 4]).reshape(3, 1)
285
+ b = np.ma.array(x, mask=[[False], [False], [True]])
286
+ w = np.array([4, 5, 6]).reshape(3, 1)
287
+ actual = average(b, weights=w, axis=1, keepdims=True)
288
+ desired = masked_array([[2.], [3.], [4.]], [[False], [False], [True]])
289
+ assert_equal(actual, desired)
290
+
291
+ def test_weight_and_input_dims_different(self):
292
+ # this test mirrors a test for np.average()
293
+ # in lib/test/test_function_base.py
294
+ y = np.arange(12).reshape(2, 2, 3)
295
+ w = np.array([0., 0., 1., .5, .5, 0., 0., .5, .5, 1., 0., 0.])\
296
+ .reshape(2, 2, 3)
297
+
298
+ m = np.full((2, 2, 3), False)
299
+ yma = np.ma.array(y, mask=m)
300
+ subw0 = w[:, :, 0]
301
+
302
+ actual = average(yma, axis=(0, 1), weights=subw0)
303
+ desired = masked_array([7., 8., 9.], mask=[False, False, False])
304
+ assert_almost_equal(actual, desired)
305
+
306
+ m = np.full((2, 2, 3), False)
307
+ m[:, :, 0] = True
308
+ m[0, 0, 1] = True
309
+ yma = np.ma.array(y, mask=m)
310
+ actual = average(yma, axis=(0, 1), weights=subw0)
311
+ desired = masked_array(
312
+ [np.nan, 8., 9.],
313
+ mask=[True, False, False])
314
+ assert_almost_equal(actual, desired)
315
+
316
+ m = np.full((2, 2, 3), False)
317
+ yma = np.ma.array(y, mask=m)
318
+
319
+ subw1 = w[1, :, :]
320
+ actual = average(yma, axis=(1, 2), weights=subw1)
321
+ desired = masked_array([2.25, 8.25], mask=[False, False])
322
+ assert_almost_equal(actual, desired)
323
+
324
+ # here the weights have the wrong shape for the specified axes
325
+ with pytest.raises(
326
+ ValueError,
327
+ match="Shape of weights must be consistent with "
328
+ "shape of a along specified axis"):
329
+ average(yma, axis=(0, 1, 2), weights=subw0)
330
+
331
+ with pytest.raises(
332
+ ValueError,
333
+ match="Shape of weights must be consistent with "
334
+ "shape of a along specified axis"):
335
+ average(yma, axis=(0, 1), weights=subw1)
336
+
337
+ # swapping the axes should be same as transposing weights
338
+ actual = average(yma, axis=(1, 0), weights=subw0)
339
+ desired = average(yma, axis=(0, 1), weights=subw0.T)
340
+ assert_almost_equal(actual, desired)
341
+
342
+ def test_onintegers_with_mask(self):
343
+ # Test average on integers with mask
344
+ a = average(array([1, 2]))
345
+ assert_equal(a, 1.5)
346
+ a = average(array([1, 2, 3, 4], mask=[False, False, True, True]))
347
+ assert_equal(a, 1.5)
348
+
349
+ def test_complex(self):
350
+ # Test with complex data.
351
+ # (Regression test for https://github.com/numpy/numpy/issues/2684)
352
+ mask = np.array([[0, 0, 0, 1, 0],
353
+ [0, 1, 0, 0, 0]], dtype=bool)
354
+ a = masked_array([[0, 1 + 2j, 3 + 4j, 5 + 6j, 7 + 8j],
355
+ [9j, 0 + 1j, 2 + 3j, 4 + 5j, 7 + 7j]],
356
+ mask=mask)
357
+
358
+ av = average(a)
359
+ expected = np.average(a.compressed())
360
+ assert_almost_equal(av.real, expected.real)
361
+ assert_almost_equal(av.imag, expected.imag)
362
+
363
+ av0 = average(a, axis=0)
364
+ expected0 = average(a.real, axis=0) + average(a.imag, axis=0) * 1j
365
+ assert_almost_equal(av0.real, expected0.real)
366
+ assert_almost_equal(av0.imag, expected0.imag)
367
+
368
+ av1 = average(a, axis=1)
369
+ expected1 = average(a.real, axis=1) + average(a.imag, axis=1) * 1j
370
+ assert_almost_equal(av1.real, expected1.real)
371
+ assert_almost_equal(av1.imag, expected1.imag)
372
+
373
+ # Test with the 'weights' argument.
374
+ wts = np.array([[0.5, 1.0, 2.0, 1.0, 0.5],
375
+ [1.0, 1.0, 1.0, 1.0, 1.0]])
376
+ wav = average(a, weights=wts)
377
+ expected = np.average(a.compressed(), weights=wts[~mask])
378
+ assert_almost_equal(wav.real, expected.real)
379
+ assert_almost_equal(wav.imag, expected.imag)
380
+
381
+ wav0 = average(a, weights=wts, axis=0)
382
+ expected0 = (average(a.real, weights=wts, axis=0) +
383
+ average(a.imag, weights=wts, axis=0) * 1j)
384
+ assert_almost_equal(wav0.real, expected0.real)
385
+ assert_almost_equal(wav0.imag, expected0.imag)
386
+
387
+ wav1 = average(a, weights=wts, axis=1)
388
+ expected1 = (average(a.real, weights=wts, axis=1) +
389
+ average(a.imag, weights=wts, axis=1) * 1j)
390
+ assert_almost_equal(wav1.real, expected1.real)
391
+ assert_almost_equal(wav1.imag, expected1.imag)
392
+
393
+ @pytest.mark.parametrize(
394
+ 'x, axis, expected_avg, weights, expected_wavg, expected_wsum',
395
+ [([1, 2, 3], None, [2.0], [3, 4, 1], [1.75], [8.0]),
396
+ ([[1, 2, 5], [1, 6, 11]], 0, [[1.0, 4.0, 8.0]],
397
+ [1, 3], [[1.0, 5.0, 9.5]], [[4, 4, 4]])],
398
+ )
399
+ def test_basic_keepdims(self, x, axis, expected_avg,
400
+ weights, expected_wavg, expected_wsum):
401
+ avg = np.ma.average(x, axis=axis, keepdims=True)
402
+ assert avg.shape == np.shape(expected_avg)
403
+ assert_array_equal(avg, expected_avg)
404
+
405
+ wavg = np.ma.average(x, axis=axis, weights=weights, keepdims=True)
406
+ assert wavg.shape == np.shape(expected_wavg)
407
+ assert_array_equal(wavg, expected_wavg)
408
+
409
+ wavg, wsum = np.ma.average(x, axis=axis, weights=weights,
410
+ returned=True, keepdims=True)
411
+ assert wavg.shape == np.shape(expected_wavg)
412
+ assert_array_equal(wavg, expected_wavg)
413
+ assert wsum.shape == np.shape(expected_wsum)
414
+ assert_array_equal(wsum, expected_wsum)
415
+
416
+ def test_masked_weights(self):
417
+ # Test with masked weights.
418
+ # (Regression test for https://github.com/numpy/numpy/issues/10438)
419
+ a = np.ma.array(np.arange(9).reshape(3, 3),
420
+ mask=[[1, 0, 0], [1, 0, 0], [0, 0, 0]])
421
+ weights_unmasked = masked_array([5, 28, 31], mask=False)
422
+ weights_masked = masked_array([5, 28, 31], mask=[1, 0, 0])
423
+
424
+ avg_unmasked = average(a, axis=0,
425
+ weights=weights_unmasked, returned=False)
426
+ expected_unmasked = np.array([6.0, 5.21875, 6.21875])
427
+ assert_almost_equal(avg_unmasked, expected_unmasked)
428
+
429
+ avg_masked = average(a, axis=0, weights=weights_masked, returned=False)
430
+ expected_masked = np.array([6.0, 5.576271186440678, 6.576271186440678])
431
+ assert_almost_equal(avg_masked, expected_masked)
432
+
433
+ # weights should be masked if needed
434
+ # depending on the array mask. This is to avoid summing
435
+ # masked nan or other values that are not cancelled by a zero
436
+ a = np.ma.array([1.0, 2.0, 3.0, 4.0],
437
+ mask=[False, False, True, True])
438
+ avg_unmasked = average(a, weights=[1, 1, 1, np.nan])
439
+
440
+ assert_almost_equal(avg_unmasked, 1.5)
441
+
442
+ a = np.ma.array([
443
+ [1.0, 2.0, 3.0, 4.0],
444
+ [5.0, 6.0, 7.0, 8.0],
445
+ [9.0, 1.0, 2.0, 3.0],
446
+ ], mask=[
447
+ [False, True, True, False],
448
+ [True, False, True, True],
449
+ [True, False, True, False],
450
+ ])
451
+
452
+ avg_masked = np.ma.average(a, weights=[1, np.nan, 1], axis=0)
453
+ avg_expected = np.ma.array([1.0, np.nan, np.nan, 3.5],
454
+ mask=[False, True, True, False])
455
+
456
+ assert_almost_equal(avg_masked, avg_expected)
457
+ assert_equal(avg_masked.mask, avg_expected.mask)
458
+
459
+
460
+ class TestConcatenator:
461
+ # Tests for mr_, the equivalent of r_ for masked arrays.
462
+
463
+ def test_1d(self):
464
+ # Tests mr_ on 1D arrays.
465
+ assert_array_equal(mr_[1, 2, 3, 4, 5, 6], array([1, 2, 3, 4, 5, 6]))
466
+ b = ones(5)
467
+ m = [1, 0, 0, 0, 0]
468
+ d = masked_array(b, mask=m)
469
+ c = mr_[d, 0, 0, d]
470
+ assert_(isinstance(c, MaskedArray))
471
+ assert_array_equal(c, [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1])
472
+ assert_array_equal(c.mask, mr_[m, 0, 0, m])
473
+
474
+ def test_2d(self):
475
+ # Tests mr_ on 2D arrays.
476
+ a_1 = np.random.rand(5, 5)
477
+ a_2 = np.random.rand(5, 5)
478
+ m_1 = np.round(np.random.rand(5, 5), 0)
479
+ m_2 = np.round(np.random.rand(5, 5), 0)
480
+ b_1 = masked_array(a_1, mask=m_1)
481
+ b_2 = masked_array(a_2, mask=m_2)
482
+ # append columns
483
+ d = mr_['1', b_1, b_2]
484
+ assert_(d.shape == (5, 10))
485
+ assert_array_equal(d[:, :5], b_1)
486
+ assert_array_equal(d[:, 5:], b_2)
487
+ assert_array_equal(d.mask, np.r_['1', m_1, m_2])
488
+ d = mr_[b_1, b_2]
489
+ assert_(d.shape == (10, 5))
490
+ assert_array_equal(d[:5, :], b_1)
491
+ assert_array_equal(d[5:, :], b_2)
492
+ assert_array_equal(d.mask, np.r_[m_1, m_2])
493
+
494
+ def test_masked_constant(self):
495
+ actual = mr_[np.ma.masked, 1]
496
+ assert_equal(actual.mask, [True, False])
497
+ assert_equal(actual.data[1], 1)
498
+
499
+ actual = mr_[[1, 2], np.ma.masked]
500
+ assert_equal(actual.mask, [False, False, True])
501
+ assert_equal(actual.data[:2], [1, 2])
502
+
503
+
504
+ class TestNotMasked:
505
+ # Tests notmasked_edges and notmasked_contiguous.
506
+
507
+ def test_edges(self):
508
+ # Tests unmasked_edges
509
+ data = masked_array(np.arange(25).reshape(5, 5),
510
+ mask=[[0, 0, 1, 0, 0],
511
+ [0, 0, 0, 1, 1],
512
+ [1, 1, 0, 0, 0],
513
+ [0, 0, 0, 0, 0],
514
+ [1, 1, 1, 0, 0]],)
515
+ test = notmasked_edges(data, None)
516
+ assert_equal(test, [0, 24])
517
+ test = notmasked_edges(data, 0)
518
+ assert_equal(test[0], [(0, 0, 1, 0, 0), (0, 1, 2, 3, 4)])
519
+ assert_equal(test[1], [(3, 3, 3, 4, 4), (0, 1, 2, 3, 4)])
520
+ test = notmasked_edges(data, 1)
521
+ assert_equal(test[0], [(0, 1, 2, 3, 4), (0, 0, 2, 0, 3)])
522
+ assert_equal(test[1], [(0, 1, 2, 3, 4), (4, 2, 4, 4, 4)])
523
+ #
524
+ test = notmasked_edges(data.data, None)
525
+ assert_equal(test, [0, 24])
526
+ test = notmasked_edges(data.data, 0)
527
+ assert_equal(test[0], [(0, 0, 0, 0, 0), (0, 1, 2, 3, 4)])
528
+ assert_equal(test[1], [(4, 4, 4, 4, 4), (0, 1, 2, 3, 4)])
529
+ test = notmasked_edges(data.data, -1)
530
+ assert_equal(test[0], [(0, 1, 2, 3, 4), (0, 0, 0, 0, 0)])
531
+ assert_equal(test[1], [(0, 1, 2, 3, 4), (4, 4, 4, 4, 4)])
532
+ #
533
+ data[-2] = masked
534
+ test = notmasked_edges(data, 0)
535
+ assert_equal(test[0], [(0, 0, 1, 0, 0), (0, 1, 2, 3, 4)])
536
+ assert_equal(test[1], [(1, 1, 2, 4, 4), (0, 1, 2, 3, 4)])
537
+ test = notmasked_edges(data, -1)
538
+ assert_equal(test[0], [(0, 1, 2, 4), (0, 0, 2, 3)])
539
+ assert_equal(test[1], [(0, 1, 2, 4), (4, 2, 4, 4)])
540
+
541
+ def test_contiguous(self):
542
+ # Tests notmasked_contiguous
543
+ a = masked_array(np.arange(24).reshape(3, 8),
544
+ mask=[[0, 0, 0, 0, 1, 1, 1, 1],
545
+ [1, 1, 1, 1, 1, 1, 1, 1],
546
+ [0, 0, 0, 0, 0, 0, 1, 0]])
547
+ tmp = notmasked_contiguous(a, None)
548
+ assert_equal(tmp, [
549
+ slice(0, 4, None),
550
+ slice(16, 22, None),
551
+ slice(23, 24, None)
552
+ ])
553
+
554
+ tmp = notmasked_contiguous(a, 0)
555
+ assert_equal(tmp, [
556
+ [slice(0, 1, None), slice(2, 3, None)],
557
+ [slice(0, 1, None), slice(2, 3, None)],
558
+ [slice(0, 1, None), slice(2, 3, None)],
559
+ [slice(0, 1, None), slice(2, 3, None)],
560
+ [slice(2, 3, None)],
561
+ [slice(2, 3, None)],
562
+ [],
563
+ [slice(2, 3, None)]
564
+ ])
565
+ #
566
+ tmp = notmasked_contiguous(a, 1)
567
+ assert_equal(tmp, [
568
+ [slice(0, 4, None)],
569
+ [],
570
+ [slice(0, 6, None), slice(7, 8, None)]
571
+ ])
572
+
573
+
574
+ class TestCompressFunctions:
575
+
576
+ def test_compress_nd(self):
577
+ # Tests compress_nd
578
+ x = np.array(list(range(3 * 4 * 5))).reshape(3, 4, 5)
579
+ m = np.zeros((3, 4, 5)).astype(bool)
580
+ m[1, 1, 1] = True
581
+ x = array(x, mask=m)
582
+
583
+ # axis=None
584
+ a = compress_nd(x)
585
+ assert_equal(a, [[[ 0, 2, 3, 4],
586
+ [10, 12, 13, 14],
587
+ [15, 17, 18, 19]],
588
+ [[40, 42, 43, 44],
589
+ [50, 52, 53, 54],
590
+ [55, 57, 58, 59]]])
591
+
592
+ # axis=0
593
+ a = compress_nd(x, 0)
594
+ assert_equal(a, [[[ 0, 1, 2, 3, 4],
595
+ [ 5, 6, 7, 8, 9],
596
+ [10, 11, 12, 13, 14],
597
+ [15, 16, 17, 18, 19]],
598
+ [[40, 41, 42, 43, 44],
599
+ [45, 46, 47, 48, 49],
600
+ [50, 51, 52, 53, 54],
601
+ [55, 56, 57, 58, 59]]])
602
+
603
+ # axis=1
604
+ a = compress_nd(x, 1)
605
+ assert_equal(a, [[[ 0, 1, 2, 3, 4],
606
+ [10, 11, 12, 13, 14],
607
+ [15, 16, 17, 18, 19]],
608
+ [[20, 21, 22, 23, 24],
609
+ [30, 31, 32, 33, 34],
610
+ [35, 36, 37, 38, 39]],
611
+ [[40, 41, 42, 43, 44],
612
+ [50, 51, 52, 53, 54],
613
+ [55, 56, 57, 58, 59]]])
614
+
615
+ a2 = compress_nd(x, (1,))
616
+ a3 = compress_nd(x, -2)
617
+ a4 = compress_nd(x, (-2,))
618
+ assert_equal(a, a2)
619
+ assert_equal(a, a3)
620
+ assert_equal(a, a4)
621
+
622
+ # axis=2
623
+ a = compress_nd(x, 2)
624
+ assert_equal(a, [[[ 0, 2, 3, 4],
625
+ [ 5, 7, 8, 9],
626
+ [10, 12, 13, 14],
627
+ [15, 17, 18, 19]],
628
+ [[20, 22, 23, 24],
629
+ [25, 27, 28, 29],
630
+ [30, 32, 33, 34],
631
+ [35, 37, 38, 39]],
632
+ [[40, 42, 43, 44],
633
+ [45, 47, 48, 49],
634
+ [50, 52, 53, 54],
635
+ [55, 57, 58, 59]]])
636
+
637
+ a2 = compress_nd(x, (2,))
638
+ a3 = compress_nd(x, -1)
639
+ a4 = compress_nd(x, (-1,))
640
+ assert_equal(a, a2)
641
+ assert_equal(a, a3)
642
+ assert_equal(a, a4)
643
+
644
+ # axis=(0, 1)
645
+ a = compress_nd(x, (0, 1))
646
+ assert_equal(a, [[[ 0, 1, 2, 3, 4],
647
+ [10, 11, 12, 13, 14],
648
+ [15, 16, 17, 18, 19]],
649
+ [[40, 41, 42, 43, 44],
650
+ [50, 51, 52, 53, 54],
651
+ [55, 56, 57, 58, 59]]])
652
+ a2 = compress_nd(x, (0, -2))
653
+ assert_equal(a, a2)
654
+
655
+ # axis=(1, 2)
656
+ a = compress_nd(x, (1, 2))
657
+ assert_equal(a, [[[ 0, 2, 3, 4],
658
+ [10, 12, 13, 14],
659
+ [15, 17, 18, 19]],
660
+ [[20, 22, 23, 24],
661
+ [30, 32, 33, 34],
662
+ [35, 37, 38, 39]],
663
+ [[40, 42, 43, 44],
664
+ [50, 52, 53, 54],
665
+ [55, 57, 58, 59]]])
666
+
667
+ a2 = compress_nd(x, (-2, 2))
668
+ a3 = compress_nd(x, (1, -1))
669
+ a4 = compress_nd(x, (-2, -1))
670
+ assert_equal(a, a2)
671
+ assert_equal(a, a3)
672
+ assert_equal(a, a4)
673
+
674
+ # axis=(0, 2)
675
+ a = compress_nd(x, (0, 2))
676
+ assert_equal(a, [[[ 0, 2, 3, 4],
677
+ [ 5, 7, 8, 9],
678
+ [10, 12, 13, 14],
679
+ [15, 17, 18, 19]],
680
+ [[40, 42, 43, 44],
681
+ [45, 47, 48, 49],
682
+ [50, 52, 53, 54],
683
+ [55, 57, 58, 59]]])
684
+
685
+ a2 = compress_nd(x, (0, -1))
686
+ assert_equal(a, a2)
687
+
688
+ def test_compress_rowcols(self):
689
+ # Tests compress_rowcols
690
+ x = array(np.arange(9).reshape(3, 3),
691
+ mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]])
692
+ assert_equal(compress_rowcols(x), [[4, 5], [7, 8]])
693
+ assert_equal(compress_rowcols(x, 0), [[3, 4, 5], [6, 7, 8]])
694
+ assert_equal(compress_rowcols(x, 1), [[1, 2], [4, 5], [7, 8]])
695
+ x = array(x._data, mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]])
696
+ assert_equal(compress_rowcols(x), [[0, 2], [6, 8]])
697
+ assert_equal(compress_rowcols(x, 0), [[0, 1, 2], [6, 7, 8]])
698
+ assert_equal(compress_rowcols(x, 1), [[0, 2], [3, 5], [6, 8]])
699
+ x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 0]])
700
+ assert_equal(compress_rowcols(x), [[8]])
701
+ assert_equal(compress_rowcols(x, 0), [[6, 7, 8]])
702
+ assert_equal(compress_rowcols(x, 1,), [[2], [5], [8]])
703
+ x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 1]])
704
+ assert_equal(compress_rowcols(x).size, 0)
705
+ assert_equal(compress_rowcols(x, 0).size, 0)
706
+ assert_equal(compress_rowcols(x, 1).size, 0)
707
+
708
+ def test_mask_rowcols(self):
709
+ # Tests mask_rowcols.
710
+ x = array(np.arange(9).reshape(3, 3),
711
+ mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]])
712
+ assert_equal(mask_rowcols(x).mask,
713
+ [[1, 1, 1], [1, 0, 0], [1, 0, 0]])
714
+ assert_equal(mask_rowcols(x, 0).mask,
715
+ [[1, 1, 1], [0, 0, 0], [0, 0, 0]])
716
+ assert_equal(mask_rowcols(x, 1).mask,
717
+ [[1, 0, 0], [1, 0, 0], [1, 0, 0]])
718
+ x = array(x._data, mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]])
719
+ assert_equal(mask_rowcols(x).mask,
720
+ [[0, 1, 0], [1, 1, 1], [0, 1, 0]])
721
+ assert_equal(mask_rowcols(x, 0).mask,
722
+ [[0, 0, 0], [1, 1, 1], [0, 0, 0]])
723
+ assert_equal(mask_rowcols(x, 1).mask,
724
+ [[0, 1, 0], [0, 1, 0], [0, 1, 0]])
725
+ x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 0]])
726
+ assert_equal(mask_rowcols(x).mask,
727
+ [[1, 1, 1], [1, 1, 1], [1, 1, 0]])
728
+ assert_equal(mask_rowcols(x, 0).mask,
729
+ [[1, 1, 1], [1, 1, 1], [0, 0, 0]])
730
+ assert_equal(mask_rowcols(x, 1,).mask,
731
+ [[1, 1, 0], [1, 1, 0], [1, 1, 0]])
732
+ x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 1]])
733
+ assert_(mask_rowcols(x).all() is masked)
734
+ assert_(mask_rowcols(x, 0).all() is masked)
735
+ assert_(mask_rowcols(x, 1).all() is masked)
736
+ assert_(mask_rowcols(x).mask.all())
737
+ assert_(mask_rowcols(x, 0).mask.all())
738
+ assert_(mask_rowcols(x, 1).mask.all())
739
+
740
+ @pytest.mark.parametrize("axis", [None, 0, 1])
741
+ @pytest.mark.parametrize(["func", "rowcols_axis"],
742
+ [(np.ma.mask_rows, 0), (np.ma.mask_cols, 1)])
743
+ def test_mask_row_cols_axis_deprecation(self, axis, func, rowcols_axis):
744
+ # Test deprecation of the axis argument to `mask_rows` and `mask_cols`
745
+ x = array(np.arange(9).reshape(3, 3),
746
+ mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]])
747
+
748
+ with pytest.warns(DeprecationWarning):
749
+ res = func(x, axis=axis)
750
+ assert_equal(res, mask_rowcols(x, rowcols_axis))
751
+
752
+ def test_dot(self):
753
+ # Tests dot product
754
+ n = np.arange(1, 7)
755
+ #
756
+ m = [1, 0, 0, 0, 0, 0]
757
+ a = masked_array(n, mask=m).reshape(2, 3)
758
+ b = masked_array(n, mask=m).reshape(3, 2)
759
+ c = dot(a, b, strict=True)
760
+ assert_equal(c.mask, [[1, 1], [1, 0]])
761
+ c = dot(b, a, strict=True)
762
+ assert_equal(c.mask, [[1, 1, 1], [1, 0, 0], [1, 0, 0]])
763
+ c = dot(a, b, strict=False)
764
+ assert_equal(c, np.dot(a.filled(0), b.filled(0)))
765
+ c = dot(b, a, strict=False)
766
+ assert_equal(c, np.dot(b.filled(0), a.filled(0)))
767
+ #
768
+ m = [0, 0, 0, 0, 0, 1]
769
+ a = masked_array(n, mask=m).reshape(2, 3)
770
+ b = masked_array(n, mask=m).reshape(3, 2)
771
+ c = dot(a, b, strict=True)
772
+ assert_equal(c.mask, [[0, 1], [1, 1]])
773
+ c = dot(b, a, strict=True)
774
+ assert_equal(c.mask, [[0, 0, 1], [0, 0, 1], [1, 1, 1]])
775
+ c = dot(a, b, strict=False)
776
+ assert_equal(c, np.dot(a.filled(0), b.filled(0)))
777
+ assert_equal(c, dot(a, b))
778
+ c = dot(b, a, strict=False)
779
+ assert_equal(c, np.dot(b.filled(0), a.filled(0)))
780
+ #
781
+ m = [0, 0, 0, 0, 0, 0]
782
+ a = masked_array(n, mask=m).reshape(2, 3)
783
+ b = masked_array(n, mask=m).reshape(3, 2)
784
+ c = dot(a, b)
785
+ assert_equal(c.mask, nomask)
786
+ c = dot(b, a)
787
+ assert_equal(c.mask, nomask)
788
+ #
789
+ a = masked_array(n, mask=[1, 0, 0, 0, 0, 0]).reshape(2, 3)
790
+ b = masked_array(n, mask=[0, 0, 0, 0, 0, 0]).reshape(3, 2)
791
+ c = dot(a, b, strict=True)
792
+ assert_equal(c.mask, [[1, 1], [0, 0]])
793
+ c = dot(a, b, strict=False)
794
+ assert_equal(c, np.dot(a.filled(0), b.filled(0)))
795
+ c = dot(b, a, strict=True)
796
+ assert_equal(c.mask, [[1, 0, 0], [1, 0, 0], [1, 0, 0]])
797
+ c = dot(b, a, strict=False)
798
+ assert_equal(c, np.dot(b.filled(0), a.filled(0)))
799
+ #
800
+ a = masked_array(n, mask=[0, 0, 0, 0, 0, 1]).reshape(2, 3)
801
+ b = masked_array(n, mask=[0, 0, 0, 0, 0, 0]).reshape(3, 2)
802
+ c = dot(a, b, strict=True)
803
+ assert_equal(c.mask, [[0, 0], [1, 1]])
804
+ c = dot(a, b)
805
+ assert_equal(c, np.dot(a.filled(0), b.filled(0)))
806
+ c = dot(b, a, strict=True)
807
+ assert_equal(c.mask, [[0, 0, 1], [0, 0, 1], [0, 0, 1]])
808
+ c = dot(b, a, strict=False)
809
+ assert_equal(c, np.dot(b.filled(0), a.filled(0)))
810
+ #
811
+ a = masked_array(n, mask=[0, 0, 0, 0, 0, 1]).reshape(2, 3)
812
+ b = masked_array(n, mask=[0, 0, 1, 0, 0, 0]).reshape(3, 2)
813
+ c = dot(a, b, strict=True)
814
+ assert_equal(c.mask, [[1, 0], [1, 1]])
815
+ c = dot(a, b, strict=False)
816
+ assert_equal(c, np.dot(a.filled(0), b.filled(0)))
817
+ c = dot(b, a, strict=True)
818
+ assert_equal(c.mask, [[0, 0, 1], [1, 1, 1], [0, 0, 1]])
819
+ c = dot(b, a, strict=False)
820
+ assert_equal(c, np.dot(b.filled(0), a.filled(0)))
821
+ #
822
+ a = masked_array(np.arange(8).reshape(2, 2, 2),
823
+ mask=[[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
824
+ b = masked_array(np.arange(8).reshape(2, 2, 2),
825
+ mask=[[[0, 0], [0, 0]], [[0, 0], [0, 1]]])
826
+ c = dot(a, b, strict=True)
827
+ assert_equal(c.mask,
828
+ [[[[1, 1], [1, 1]], [[0, 0], [0, 1]]],
829
+ [[[0, 0], [0, 1]], [[0, 0], [0, 1]]]])
830
+ c = dot(a, b, strict=False)
831
+ assert_equal(c.mask,
832
+ [[[[0, 0], [0, 1]], [[0, 0], [0, 0]]],
833
+ [[[0, 0], [0, 0]], [[0, 0], [0, 0]]]])
834
+ c = dot(b, a, strict=True)
835
+ assert_equal(c.mask,
836
+ [[[[1, 0], [0, 0]], [[1, 0], [0, 0]]],
837
+ [[[1, 0], [0, 0]], [[1, 1], [1, 1]]]])
838
+ c = dot(b, a, strict=False)
839
+ assert_equal(c.mask,
840
+ [[[[0, 0], [0, 0]], [[0, 0], [0, 0]]],
841
+ [[[0, 0], [0, 0]], [[1, 0], [0, 0]]]])
842
+ #
843
+ a = masked_array(np.arange(8).reshape(2, 2, 2),
844
+ mask=[[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
845
+ b = 5.
846
+ c = dot(a, b, strict=True)
847
+ assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
848
+ c = dot(a, b, strict=False)
849
+ assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
850
+ c = dot(b, a, strict=True)
851
+ assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
852
+ c = dot(b, a, strict=False)
853
+ assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
854
+ #
855
+ a = masked_array(np.arange(8).reshape(2, 2, 2),
856
+ mask=[[[1, 0], [0, 0]], [[0, 0], [0, 0]]])
857
+ b = masked_array(np.arange(2), mask=[0, 1])
858
+ c = dot(a, b, strict=True)
859
+ assert_equal(c.mask, [[1, 1], [1, 1]])
860
+ c = dot(a, b, strict=False)
861
+ assert_equal(c.mask, [[1, 0], [0, 0]])
862
+
863
+ def test_dot_returns_maskedarray(self):
864
+ # See gh-6611
865
+ a = np.eye(3)
866
+ b = array(a)
867
+ assert_(type(dot(a, a)) is MaskedArray)
868
+ assert_(type(dot(a, b)) is MaskedArray)
869
+ assert_(type(dot(b, a)) is MaskedArray)
870
+ assert_(type(dot(b, b)) is MaskedArray)
871
+
872
+ def test_dot_out(self):
873
+ a = array(np.eye(3))
874
+ out = array(np.zeros((3, 3)))
875
+ res = dot(a, a, out=out)
876
+ assert_(res is out)
877
+ assert_equal(a, res)
878
+
879
+
880
+ class TestApplyAlongAxis:
881
+ # Tests 2D functions
882
+ def test_3d(self):
883
+ a = arange(12.).reshape(2, 2, 3)
884
+
885
+ def myfunc(b):
886
+ return b[1]
887
+
888
+ xa = apply_along_axis(myfunc, 2, a)
889
+ assert_equal(xa, [[1, 4], [7, 10]])
890
+
891
+ # Tests kwargs functions
892
+ def test_3d_kwargs(self):
893
+ a = arange(12).reshape(2, 2, 3)
894
+
895
+ def myfunc(b, offset=0):
896
+ return b[1 + offset]
897
+
898
+ xa = apply_along_axis(myfunc, 2, a, offset=1)
899
+ assert_equal(xa, [[2, 5], [8, 11]])
900
+
901
+
902
+ class TestApplyOverAxes:
903
+ # Tests apply_over_axes
904
+ def test_basic(self):
905
+ a = arange(24).reshape(2, 3, 4)
906
+ test = apply_over_axes(np.sum, a, [0, 2])
907
+ ctrl = np.array([[[60], [92], [124]]])
908
+ assert_equal(test, ctrl)
909
+ a[(a % 2).astype(bool)] = masked
910
+ test = apply_over_axes(np.sum, a, [0, 2])
911
+ ctrl = np.array([[[28], [44], [60]]])
912
+ assert_equal(test, ctrl)
913
+
914
+
915
+ class TestMedian:
916
+ def test_pytype(self):
917
+ r = np.ma.median([[np.inf, np.inf], [np.inf, np.inf]], axis=-1)
918
+ assert_equal(r, np.inf)
919
+
920
+ def test_inf(self):
921
+ # test that even which computes handles inf / x = masked
922
+ r = np.ma.median(np.ma.masked_array([[np.inf, np.inf],
923
+ [np.inf, np.inf]]), axis=-1)
924
+ assert_equal(r, np.inf)
925
+ r = np.ma.median(np.ma.masked_array([[np.inf, np.inf],
926
+ [np.inf, np.inf]]), axis=None)
927
+ assert_equal(r, np.inf)
928
+ # all masked
929
+ r = np.ma.median(np.ma.masked_array([[np.inf, np.inf],
930
+ [np.inf, np.inf]], mask=True),
931
+ axis=-1)
932
+ assert_equal(r.mask, True)
933
+ r = np.ma.median(np.ma.masked_array([[np.inf, np.inf],
934
+ [np.inf, np.inf]], mask=True),
935
+ axis=None)
936
+ assert_equal(r.mask, True)
937
+
938
+ def test_non_masked(self):
939
+ x = np.arange(9)
940
+ assert_equal(np.ma.median(x), 4.)
941
+ assert_(type(np.ma.median(x)) is not MaskedArray)
942
+ x = range(8)
943
+ assert_equal(np.ma.median(x), 3.5)
944
+ assert_(type(np.ma.median(x)) is not MaskedArray)
945
+ x = 5
946
+ assert_equal(np.ma.median(x), 5.)
947
+ assert_(type(np.ma.median(x)) is not MaskedArray)
948
+ # integer
949
+ x = np.arange(9 * 8).reshape(9, 8)
950
+ assert_equal(np.ma.median(x, axis=0), np.median(x, axis=0))
951
+ assert_equal(np.ma.median(x, axis=1), np.median(x, axis=1))
952
+ assert_(np.ma.median(x, axis=1) is not MaskedArray)
953
+ # float
954
+ x = np.arange(9 * 8.).reshape(9, 8)
955
+ assert_equal(np.ma.median(x, axis=0), np.median(x, axis=0))
956
+ assert_equal(np.ma.median(x, axis=1), np.median(x, axis=1))
957
+ assert_(np.ma.median(x, axis=1) is not MaskedArray)
958
+
959
+ def test_docstring_examples(self):
960
+ "test the examples given in the docstring of ma.median"
961
+ x = array(np.arange(8), mask=[0] * 4 + [1] * 4)
962
+ assert_equal(np.ma.median(x), 1.5)
963
+ assert_equal(np.ma.median(x).shape, (), "shape mismatch")
964
+ assert_(type(np.ma.median(x)) is not MaskedArray)
965
+ x = array(np.arange(10).reshape(2, 5), mask=[0] * 6 + [1] * 4)
966
+ assert_equal(np.ma.median(x), 2.5)
967
+ assert_equal(np.ma.median(x).shape, (), "shape mismatch")
968
+ assert_(type(np.ma.median(x)) is not MaskedArray)
969
+ ma_x = np.ma.median(x, axis=-1, overwrite_input=True)
970
+ assert_equal(ma_x, [2., 5.])
971
+ assert_equal(ma_x.shape, (2,), "shape mismatch")
972
+ assert_(type(ma_x) is MaskedArray)
973
+
974
+ def test_axis_argument_errors(self):
975
+ msg = "mask = %s, ndim = %s, axis = %s, overwrite_input = %s"
976
+ for ndmin in range(5):
977
+ for mask in [False, True]:
978
+ x = array(1, ndmin=ndmin, mask=mask)
979
+
980
+ # Valid axis values should not raise exception
981
+ args = itertools.product(range(-ndmin, ndmin), [False, True])
982
+ for axis, over in args:
983
+ try:
984
+ np.ma.median(x, axis=axis, overwrite_input=over)
985
+ except Exception:
986
+ raise AssertionError(msg % (mask, ndmin, axis, over))
987
+
988
+ # Invalid axis values should raise exception
989
+ args = itertools.product([-(ndmin + 1), ndmin], [False, True])
990
+ for axis, over in args:
991
+ try:
992
+ np.ma.median(x, axis=axis, overwrite_input=over)
993
+ except np.exceptions.AxisError:
994
+ pass
995
+ else:
996
+ raise AssertionError(msg % (mask, ndmin, axis, over))
997
+
998
+ def test_masked_0d(self):
999
+ # Check values
1000
+ x = array(1, mask=False)
1001
+ assert_equal(np.ma.median(x), 1)
1002
+ x = array(1, mask=True)
1003
+ assert_equal(np.ma.median(x), np.ma.masked)
1004
+
1005
+ def test_masked_1d(self):
1006
+ x = array(np.arange(5), mask=True)
1007
+ assert_equal(np.ma.median(x), np.ma.masked)
1008
+ assert_equal(np.ma.median(x).shape, (), "shape mismatch")
1009
+ assert_(type(np.ma.median(x)) is np.ma.core.MaskedConstant)
1010
+ x = array(np.arange(5), mask=False)
1011
+ assert_equal(np.ma.median(x), 2.)
1012
+ assert_equal(np.ma.median(x).shape, (), "shape mismatch")
1013
+ assert_(type(np.ma.median(x)) is not MaskedArray)
1014
+ x = array(np.arange(5), mask=[0, 1, 0, 0, 0])
1015
+ assert_equal(np.ma.median(x), 2.5)
1016
+ assert_equal(np.ma.median(x).shape, (), "shape mismatch")
1017
+ assert_(type(np.ma.median(x)) is not MaskedArray)
1018
+ x = array(np.arange(5), mask=[0, 1, 1, 1, 1])
1019
+ assert_equal(np.ma.median(x), 0.)
1020
+ assert_equal(np.ma.median(x).shape, (), "shape mismatch")
1021
+ assert_(type(np.ma.median(x)) is not MaskedArray)
1022
+ # integer
1023
+ x = array(np.arange(5), mask=[0, 1, 1, 0, 0])
1024
+ assert_equal(np.ma.median(x), 3.)
1025
+ assert_equal(np.ma.median(x).shape, (), "shape mismatch")
1026
+ assert_(type(np.ma.median(x)) is not MaskedArray)
1027
+ # float
1028
+ x = array(np.arange(5.), mask=[0, 1, 1, 0, 0])
1029
+ assert_equal(np.ma.median(x), 3.)
1030
+ assert_equal(np.ma.median(x).shape, (), "shape mismatch")
1031
+ assert_(type(np.ma.median(x)) is not MaskedArray)
1032
+ # integer
1033
+ x = array(np.arange(6), mask=[0, 1, 1, 1, 1, 0])
1034
+ assert_equal(np.ma.median(x), 2.5)
1035
+ assert_equal(np.ma.median(x).shape, (), "shape mismatch")
1036
+ assert_(type(np.ma.median(x)) is not MaskedArray)
1037
+ # float
1038
+ x = array(np.arange(6.), mask=[0, 1, 1, 1, 1, 0])
1039
+ assert_equal(np.ma.median(x), 2.5)
1040
+ assert_equal(np.ma.median(x).shape, (), "shape mismatch")
1041
+ assert_(type(np.ma.median(x)) is not MaskedArray)
1042
+
1043
+ def test_1d_shape_consistency(self):
1044
+ assert_equal(np.ma.median(array([1, 2, 3], mask=[0, 0, 0])).shape,
1045
+ np.ma.median(array([1, 2, 3], mask=[0, 1, 0])).shape)
1046
+
1047
+ def test_2d(self):
1048
+ # Tests median w/ 2D
1049
+ (n, p) = (101, 30)
1050
+ x = masked_array(np.linspace(-1., 1., n),)
1051
+ x[:10] = x[-10:] = masked
1052
+ z = masked_array(np.empty((n, p), dtype=float))
1053
+ z[:, 0] = x[:]
1054
+ idx = np.arange(len(x))
1055
+ for i in range(1, p):
1056
+ np.random.shuffle(idx)
1057
+ z[:, i] = x[idx]
1058
+ assert_equal(median(z[:, 0]), 0)
1059
+ assert_equal(median(z), 0)
1060
+ assert_equal(median(z, axis=0), np.zeros(p))
1061
+ assert_equal(median(z.T, axis=1), np.zeros(p))
1062
+
1063
+ def test_2d_waxis(self):
1064
+ # Tests median w/ 2D arrays and different axis.
1065
+ x = masked_array(np.arange(30).reshape(10, 3))
1066
+ x[:3] = x[-3:] = masked
1067
+ assert_equal(median(x), 14.5)
1068
+ assert_(type(np.ma.median(x)) is not MaskedArray)
1069
+ assert_equal(median(x, axis=0), [13.5, 14.5, 15.5])
1070
+ assert_(type(np.ma.median(x, axis=0)) is MaskedArray)
1071
+ assert_equal(median(x, axis=1), [0, 0, 0, 10, 13, 16, 19, 0, 0, 0])
1072
+ assert_(type(np.ma.median(x, axis=1)) is MaskedArray)
1073
+ assert_equal(median(x, axis=1).mask, [1, 1, 1, 0, 0, 0, 0, 1, 1, 1])
1074
+
1075
+ def test_3d(self):
1076
+ # Tests median w/ 3D
1077
+ x = np.ma.arange(24).reshape(3, 4, 2)
1078
+ x[x % 3 == 0] = masked
1079
+ assert_equal(median(x, 0), [[12, 9], [6, 15], [12, 9], [18, 15]])
1080
+ x = x.reshape((4, 3, 2))
1081
+ assert_equal(median(x, 0), [[99, 10], [11, 99], [13, 14]])
1082
+ x = np.ma.arange(24).reshape(4, 3, 2)
1083
+ x[x % 5 == 0] = masked
1084
+ assert_equal(median(x, 0), [[12, 10], [8, 9], [16, 17]])
1085
+
1086
+ def test_neg_axis(self):
1087
+ x = masked_array(np.arange(30).reshape(10, 3))
1088
+ x[:3] = x[-3:] = masked
1089
+ assert_equal(median(x, axis=-1), median(x, axis=1))
1090
+
1091
+ def test_out_1d(self):
1092
+ # integer float even odd
1093
+ for v in (30, 30., 31, 31.):
1094
+ x = masked_array(np.arange(v))
1095
+ x[:3] = x[-3:] = masked
1096
+ out = masked_array(np.ones(()))
1097
+ r = median(x, out=out)
1098
+ if v == 30:
1099
+ assert_equal(out, 14.5)
1100
+ else:
1101
+ assert_equal(out, 15.)
1102
+ assert_(r is out)
1103
+ assert_(type(r) is MaskedArray)
1104
+
1105
+ def test_out(self):
1106
+ # integer float even odd
1107
+ for v in (40, 40., 30, 30.):
1108
+ x = masked_array(np.arange(v).reshape(10, -1))
1109
+ x[:3] = x[-3:] = masked
1110
+ out = masked_array(np.ones(10))
1111
+ r = median(x, axis=1, out=out)
1112
+ if v == 30:
1113
+ e = masked_array([0.] * 3 + [10, 13, 16, 19] + [0.] * 3,
1114
+ mask=[True] * 3 + [False] * 4 + [True] * 3)
1115
+ else:
1116
+ e = masked_array([0.] * 3 + [13.5, 17.5, 21.5, 25.5] + [0.] * 3,
1117
+ mask=[True] * 3 + [False] * 4 + [True] * 3)
1118
+ assert_equal(r, e)
1119
+ assert_(r is out)
1120
+ assert_(type(r) is MaskedArray)
1121
+
1122
+ @pytest.mark.parametrize(
1123
+ argnames='axis',
1124
+ argvalues=[
1125
+ None,
1126
+ 1,
1127
+ (1, ),
1128
+ (0, 1),
1129
+ (-3, -1),
1130
+ ]
1131
+ )
1132
+ def test_keepdims_out(self, axis):
1133
+ mask = np.zeros((3, 5, 7, 11), dtype=bool)
1134
+ # Randomly set some elements to True:
1135
+ w = np.random.random((4, 200)) * np.array(mask.shape)[:, None]
1136
+ w = w.astype(np.intp)
1137
+ mask[tuple(w)] = np.nan
1138
+ d = masked_array(np.ones(mask.shape), mask=mask)
1139
+ if axis is None:
1140
+ shape_out = (1,) * d.ndim
1141
+ else:
1142
+ axis_norm = normalize_axis_tuple(axis, d.ndim)
1143
+ shape_out = tuple(
1144
+ 1 if i in axis_norm else d.shape[i] for i in range(d.ndim))
1145
+ out = masked_array(np.empty(shape_out))
1146
+ result = median(d, axis=axis, keepdims=True, out=out)
1147
+ assert result is out
1148
+ assert_equal(result.shape, shape_out)
1149
+
1150
+ def test_single_non_masked_value_on_axis(self):
1151
+ data = [[1., 0.],
1152
+ [0., 3.],
1153
+ [0., 0.]]
1154
+ masked_arr = np.ma.masked_equal(data, 0)
1155
+ expected = [1., 3.]
1156
+ assert_array_equal(np.ma.median(masked_arr, axis=0),
1157
+ expected)
1158
+
1159
+ def test_nan(self):
1160
+ for mask in (False, np.zeros(6, dtype=bool)):
1161
+ dm = np.ma.array([[1, np.nan, 3], [1, 2, 3]])
1162
+ dm.mask = mask
1163
+
1164
+ # scalar result
1165
+ r = np.ma.median(dm, axis=None)
1166
+ assert_(np.isscalar(r))
1167
+ assert_array_equal(r, np.nan)
1168
+ r = np.ma.median(dm.ravel(), axis=0)
1169
+ assert_(np.isscalar(r))
1170
+ assert_array_equal(r, np.nan)
1171
+
1172
+ r = np.ma.median(dm, axis=0)
1173
+ assert_equal(type(r), MaskedArray)
1174
+ assert_array_equal(r, [1, np.nan, 3])
1175
+ r = np.ma.median(dm, axis=1)
1176
+ assert_equal(type(r), MaskedArray)
1177
+ assert_array_equal(r, [np.nan, 2])
1178
+ r = np.ma.median(dm, axis=-1)
1179
+ assert_equal(type(r), MaskedArray)
1180
+ assert_array_equal(r, [np.nan, 2])
1181
+
1182
+ dm = np.ma.array([[1, np.nan, 3], [1, 2, 3]])
1183
+ dm[:, 2] = np.ma.masked
1184
+ assert_array_equal(np.ma.median(dm, axis=None), np.nan)
1185
+ assert_array_equal(np.ma.median(dm, axis=0), [1, np.nan, 3])
1186
+ assert_array_equal(np.ma.median(dm, axis=1), [np.nan, 1.5])
1187
+
1188
+ def test_out_nan(self):
1189
+ o = np.ma.masked_array(np.zeros((4,)))
1190
+ d = np.ma.masked_array(np.ones((3, 4)))
1191
+ d[2, 1] = np.nan
1192
+ d[2, 2] = np.ma.masked
1193
+ assert_equal(np.ma.median(d, 0, out=o), o)
1194
+ o = np.ma.masked_array(np.zeros((3,)))
1195
+ assert_equal(np.ma.median(d, 1, out=o), o)
1196
+ o = np.ma.masked_array(np.zeros(()))
1197
+ assert_equal(np.ma.median(d, out=o), o)
1198
+
1199
+ def test_nan_behavior(self):
1200
+ a = np.ma.masked_array(np.arange(24, dtype=float))
1201
+ a[::3] = np.ma.masked
1202
+ a[2] = np.nan
1203
+ assert_array_equal(np.ma.median(a), np.nan)
1204
+ assert_array_equal(np.ma.median(a, axis=0), np.nan)
1205
+
1206
+ a = np.ma.masked_array(np.arange(24, dtype=float).reshape(2, 3, 4))
1207
+ a.mask = np.arange(a.size) % 2 == 1
1208
+ aorig = a.copy()
1209
+ a[1, 2, 3] = np.nan
1210
+ a[1, 1, 2] = np.nan
1211
+
1212
+ # no axis
1213
+ assert_array_equal(np.ma.median(a), np.nan)
1214
+ assert_(np.isscalar(np.ma.median(a)))
1215
+
1216
+ # axis0
1217
+ b = np.ma.median(aorig, axis=0)
1218
+ b[2, 3] = np.nan
1219
+ b[1, 2] = np.nan
1220
+ assert_equal(np.ma.median(a, 0), b)
1221
+
1222
+ # axis1
1223
+ b = np.ma.median(aorig, axis=1)
1224
+ b[1, 3] = np.nan
1225
+ b[1, 2] = np.nan
1226
+ assert_equal(np.ma.median(a, 1), b)
1227
+
1228
+ # axis02
1229
+ b = np.ma.median(aorig, axis=(0, 2))
1230
+ b[1] = np.nan
1231
+ b[2] = np.nan
1232
+ assert_equal(np.ma.median(a, (0, 2)), b)
1233
+
1234
+ def test_ambigous_fill(self):
1235
+ # 255 is max value, used as filler for sort
1236
+ a = np.array([[3, 3, 255], [3, 3, 255]], dtype=np.uint8)
1237
+ a = np.ma.masked_array(a, mask=a == 3)
1238
+ assert_array_equal(np.ma.median(a, axis=1), 255)
1239
+ assert_array_equal(np.ma.median(a, axis=1).mask, False)
1240
+ assert_array_equal(np.ma.median(a, axis=0), a[0])
1241
+ assert_array_equal(np.ma.median(a), 255)
1242
+
1243
+ def test_special(self):
1244
+ for inf in [np.inf, -np.inf]:
1245
+ a = np.array([[inf, np.nan], [np.nan, np.nan]])
1246
+ a = np.ma.masked_array(a, mask=np.isnan(a))
1247
+ assert_equal(np.ma.median(a, axis=0), [inf, np.nan])
1248
+ assert_equal(np.ma.median(a, axis=1), [inf, np.nan])
1249
+ assert_equal(np.ma.median(a), inf)
1250
+
1251
+ a = np.array([[np.nan, np.nan, inf], [np.nan, np.nan, inf]])
1252
+ a = np.ma.masked_array(a, mask=np.isnan(a))
1253
+ assert_array_equal(np.ma.median(a, axis=1), inf)
1254
+ assert_array_equal(np.ma.median(a, axis=1).mask, False)
1255
+ assert_array_equal(np.ma.median(a, axis=0), a[0])
1256
+ assert_array_equal(np.ma.median(a), inf)
1257
+
1258
+ # no mask
1259
+ a = np.array([[inf, inf], [inf, inf]])
1260
+ assert_equal(np.ma.median(a), inf)
1261
+ assert_equal(np.ma.median(a, axis=0), inf)
1262
+ assert_equal(np.ma.median(a, axis=1), inf)
1263
+
1264
+ a = np.array([[inf, 7, -inf, -9],
1265
+ [-10, np.nan, np.nan, 5],
1266
+ [4, np.nan, np.nan, inf]],
1267
+ dtype=np.float32)
1268
+ a = np.ma.masked_array(a, mask=np.isnan(a))
1269
+ if inf > 0:
1270
+ assert_equal(np.ma.median(a, axis=0), [4., 7., -inf, 5.])
1271
+ assert_equal(np.ma.median(a), 4.5)
1272
+ else:
1273
+ assert_equal(np.ma.median(a, axis=0), [-10., 7., -inf, -9.])
1274
+ assert_equal(np.ma.median(a), -2.5)
1275
+ assert_equal(np.ma.median(a, axis=1), [-1., -2.5, inf])
1276
+
1277
+ for i in range(10):
1278
+ for j in range(1, 10):
1279
+ a = np.array([([np.nan] * i) + ([inf] * j)] * 2)
1280
+ a = np.ma.masked_array(a, mask=np.isnan(a))
1281
+ assert_equal(np.ma.median(a), inf)
1282
+ assert_equal(np.ma.median(a, axis=1), inf)
1283
+ assert_equal(np.ma.median(a, axis=0),
1284
+ ([np.nan] * i) + [inf] * j)
1285
+
1286
+ def test_empty(self):
1287
+ # empty arrays
1288
+ a = np.ma.masked_array(np.array([], dtype=float))
1289
+ with pytest.warns(RuntimeWarning):
1290
+ assert_array_equal(np.ma.median(a), np.nan)
1291
+
1292
+ # multiple dimensions
1293
+ a = np.ma.masked_array(np.array([], dtype=float, ndmin=3))
1294
+ # no axis
1295
+ with pytest.warns(RuntimeWarning):
1296
+ assert_array_equal(np.ma.median(a), np.nan)
1297
+
1298
+ # axis 0 and 1
1299
+ b = np.ma.masked_array(np.array([], dtype=float, ndmin=2))
1300
+ assert_equal(np.ma.median(a, axis=0), b)
1301
+ assert_equal(np.ma.median(a, axis=1), b)
1302
+
1303
+ # axis 2
1304
+ b = np.ma.masked_array(np.array(np.nan, dtype=float, ndmin=2))
1305
+ with pytest.warns(RuntimeWarning):
1306
+ assert_equal(np.ma.median(a, axis=2), b)
1307
+
1308
+ def test_object(self):
1309
+ o = np.ma.masked_array(np.arange(7.))
1310
+ assert_(type(np.ma.median(o.astype(object))), float)
1311
+ o[2] = np.nan
1312
+ assert_(type(np.ma.median(o.astype(object))), float)
1313
+
1314
+
1315
+ class TestCov:
1316
+
1317
+ def _create_data(self):
1318
+ return array(np.random.rand(12))
1319
+
1320
+ def test_covhelper(self):
1321
+ x = self._create_data()
1322
+ # Test not mask output type is a float.
1323
+ assert_(_covhelper(x, rowvar=True)[1].dtype, np.float32)
1324
+ assert_(_covhelper(x, y=x, rowvar=False)[1].dtype, np.float32)
1325
+ # Test not mask output is equal after casting to float.
1326
+ mask = x > 0.5
1327
+ assert_array_equal(
1328
+ _covhelper(
1329
+ np.ma.masked_array(x, mask), rowvar=True
1330
+ )[1].astype(bool),
1331
+ ~mask.reshape(1, -1),
1332
+ )
1333
+ assert_array_equal(
1334
+ _covhelper(
1335
+ np.ma.masked_array(x, mask), y=x, rowvar=False
1336
+ )[1].astype(bool),
1337
+ np.vstack((~mask, ~mask)),
1338
+ )
1339
+
1340
+ def test_1d_without_missing(self):
1341
+ # Test cov on 1D variable w/o missing values
1342
+ x = self._create_data()
1343
+ assert_almost_equal(np.cov(x), cov(x))
1344
+ assert_almost_equal(np.cov(x, rowvar=False), cov(x, rowvar=False))
1345
+ assert_almost_equal(np.cov(x, rowvar=False, bias=True),
1346
+ cov(x, rowvar=False, bias=True))
1347
+
1348
+ def test_2d_without_missing(self):
1349
+ # Test cov on 1 2D variable w/o missing values
1350
+ x = self._create_data().reshape(3, 4)
1351
+ assert_almost_equal(np.cov(x), cov(x))
1352
+ assert_almost_equal(np.cov(x, rowvar=False), cov(x, rowvar=False))
1353
+ assert_almost_equal(np.cov(x, rowvar=False, bias=True),
1354
+ cov(x, rowvar=False, bias=True))
1355
+
1356
+ def test_1d_with_missing(self):
1357
+ # Test cov 1 1D variable w/missing values
1358
+ x = self._create_data()
1359
+ x[-1] = masked
1360
+ x -= x.mean()
1361
+ nx = x.compressed()
1362
+ assert_almost_equal(np.cov(nx), cov(x))
1363
+ assert_almost_equal(np.cov(nx, rowvar=False), cov(x, rowvar=False))
1364
+ assert_almost_equal(np.cov(nx, rowvar=False, bias=True),
1365
+ cov(x, rowvar=False, bias=True))
1366
+ #
1367
+ try:
1368
+ cov(x, allow_masked=False)
1369
+ except ValueError:
1370
+ pass
1371
+ #
1372
+ # 2 1D variables w/ missing values
1373
+ nx = x[1:-1]
1374
+ assert_almost_equal(np.cov(nx, nx[::-1]), cov(x, x[::-1]))
1375
+ assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False),
1376
+ cov(x, x[::-1], rowvar=False))
1377
+ assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False, bias=True),
1378
+ cov(x, x[::-1], rowvar=False, bias=True))
1379
+
1380
+ def test_2d_with_missing(self):
1381
+ # Test cov on 2D variable w/ missing value
1382
+ x = self._create_data()
1383
+ x[-1] = masked
1384
+ x = x.reshape(3, 4)
1385
+ valid = np.logical_not(getmaskarray(x)).astype(int)
1386
+ frac = np.dot(valid, valid.T)
1387
+ xf = (x - x.mean(1)[:, None]).filled(0)
1388
+ assert_almost_equal(cov(x),
1389
+ np.cov(xf) * (x.shape[1] - 1) / (frac - 1.))
1390
+ assert_almost_equal(cov(x, bias=True),
1391
+ np.cov(xf, bias=True) * x.shape[1] / frac)
1392
+ frac = np.dot(valid.T, valid)
1393
+ xf = (x - x.mean(0)).filled(0)
1394
+ assert_almost_equal(cov(x, rowvar=False),
1395
+ (np.cov(xf, rowvar=False) *
1396
+ (x.shape[0] - 1) / (frac - 1.)))
1397
+ assert_almost_equal(cov(x, rowvar=False, bias=True),
1398
+ (np.cov(xf, rowvar=False, bias=True) *
1399
+ x.shape[0] / frac))
1400
+
1401
+
1402
+ class TestCorrcoef:
1403
+
1404
+ def _create_data(self):
1405
+ data = array(np.random.rand(12))
1406
+ data2 = array(np.random.rand(12))
1407
+ return data, data2
1408
+
1409
+ def test_1d_without_missing(self):
1410
+ # Test cov on 1D variable w/o missing values
1411
+ x = self._create_data()[0]
1412
+ assert_almost_equal(np.corrcoef(x), corrcoef(x))
1413
+ assert_almost_equal(np.corrcoef(x, rowvar=False),
1414
+ corrcoef(x, rowvar=False))
1415
+
1416
+ def test_2d_without_missing(self):
1417
+ # Test corrcoef on 1 2D variable w/o missing values
1418
+ x = self._create_data()[0].reshape(3, 4)
1419
+ assert_almost_equal(np.corrcoef(x), corrcoef(x))
1420
+ assert_almost_equal(np.corrcoef(x, rowvar=False),
1421
+ corrcoef(x, rowvar=False))
1422
+
1423
+ def test_1d_with_missing(self):
1424
+ # Test corrcoef 1 1D variable w/missing values
1425
+ x = self._create_data()[0]
1426
+ x[-1] = masked
1427
+ x -= x.mean()
1428
+ nx = x.compressed()
1429
+ assert_almost_equal(np.corrcoef(nx, rowvar=False),
1430
+ corrcoef(x, rowvar=False))
1431
+ try:
1432
+ corrcoef(x, allow_masked=False)
1433
+ except ValueError:
1434
+ pass
1435
+ # 2 1D variables w/ missing values
1436
+ nx = x[1:-1]
1437
+ assert_almost_equal(np.corrcoef(nx, nx[::-1]), corrcoef(x, x[::-1]))
1438
+ assert_almost_equal(np.corrcoef(nx, nx[::-1], rowvar=False),
1439
+ corrcoef(x, x[::-1], rowvar=False))
1440
+
1441
+ def test_2d_with_missing(self):
1442
+ # Test corrcoef on 2D variable w/ missing value
1443
+ x = self._create_data()[0]
1444
+ x[-1] = masked
1445
+ x = x.reshape(3, 4)
1446
+
1447
+ test = corrcoef(x)
1448
+ control = np.corrcoef(x)
1449
+ assert_almost_equal(test[:-1, :-1], control[:-1, :-1])
1450
+
1451
+
1452
+ class TestPolynomial:
1453
+
1454
+ def test_polyfit(self):
1455
+ # Tests polyfit
1456
+ # On ndarrays
1457
+ x = np.random.rand(10)
1458
+ y = np.random.rand(20).reshape(-1, 2)
1459
+ assert_almost_equal(polyfit(x, y, 3), np.polyfit(x, y, 3))
1460
+ # ON 1D maskedarrays
1461
+ x = x.view(MaskedArray)
1462
+ x[0] = masked
1463
+ y = y.view(MaskedArray)
1464
+ y[0, 0] = y[-1, -1] = masked
1465
+ #
1466
+ (C, R, K, S, D) = polyfit(x, y[:, 0], 3, full=True)
1467
+ (c, r, k, s, d) = np.polyfit(x[1:], y[1:, 0].compressed(), 3,
1468
+ full=True)
1469
+ for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
1470
+ assert_almost_equal(a, a_)
1471
+ #
1472
+ (C, R, K, S, D) = polyfit(x, y[:, -1], 3, full=True)
1473
+ (c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1, -1], 3, full=True)
1474
+ for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
1475
+ assert_almost_equal(a, a_)
1476
+ #
1477
+ (C, R, K, S, D) = polyfit(x, y, 3, full=True)
1478
+ (c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1, :], 3, full=True)
1479
+ for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
1480
+ assert_almost_equal(a, a_)
1481
+ #
1482
+ w = np.random.rand(10) + 1
1483
+ wo = w.copy()
1484
+ xs = x[1:-1]
1485
+ ys = y[1:-1]
1486
+ ws = w[1:-1]
1487
+ (C, R, K, S, D) = polyfit(x, y, 3, full=True, w=w)
1488
+ (c, r, k, s, d) = np.polyfit(xs, ys, 3, full=True, w=ws)
1489
+ assert_equal(w, wo)
1490
+ for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
1491
+ assert_almost_equal(a, a_)
1492
+
1493
+ def test_polyfit_with_masked_NaNs(self):
1494
+ x = np.random.rand(10)
1495
+ y = np.random.rand(20).reshape(-1, 2)
1496
+
1497
+ x[0] = np.nan
1498
+ y[-1, -1] = np.nan
1499
+ x = x.view(MaskedArray)
1500
+ y = y.view(MaskedArray)
1501
+ x[0] = masked
1502
+ y[-1, -1] = masked
1503
+
1504
+ (C, R, K, S, D) = polyfit(x, y, 3, full=True)
1505
+ (c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1, :], 3, full=True)
1506
+ for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
1507
+ assert_almost_equal(a, a_)
1508
+
1509
+
1510
+ class TestArraySetOps:
1511
+
1512
+ def test_unique_onlist(self):
1513
+ # Test unique on list
1514
+ data = [1, 1, 1, 2, 2, 3]
1515
+ test = unique(data, return_index=True, return_inverse=True)
1516
+ assert_(isinstance(test[0], MaskedArray))
1517
+ assert_equal(test[0], masked_array([1, 2, 3], mask=[0, 0, 0]))
1518
+ assert_equal(test[1], [0, 3, 5])
1519
+ assert_equal(test[2], [0, 0, 0, 1, 1, 2])
1520
+
1521
+ def test_unique_onmaskedarray(self):
1522
+ # Test unique on masked data w/use_mask=True
1523
+ data = masked_array([1, 1, 1, 2, 2, 3], mask=[0, 0, 1, 0, 1, 0])
1524
+ test = unique(data, return_index=True, return_inverse=True)
1525
+ assert_equal(test[0], masked_array([1, 2, 3, -1], mask=[0, 0, 0, 1]))
1526
+ assert_equal(test[1], [0, 3, 5, 2])
1527
+ assert_equal(test[2], [0, 0, 3, 1, 3, 2])
1528
+ #
1529
+ data.fill_value = 3
1530
+ data = masked_array(data=[1, 1, 1, 2, 2, 3],
1531
+ mask=[0, 0, 1, 0, 1, 0], fill_value=3)
1532
+ test = unique(data, return_index=True, return_inverse=True)
1533
+ assert_equal(test[0], masked_array([1, 2, 3, -1], mask=[0, 0, 0, 1]))
1534
+ assert_equal(test[1], [0, 3, 5, 2])
1535
+ assert_equal(test[2], [0, 0, 3, 1, 3, 2])
1536
+
1537
+ def test_unique_allmasked(self):
1538
+ # Test all masked
1539
+ data = masked_array([1, 1, 1], mask=True)
1540
+ test = unique(data, return_index=True, return_inverse=True)
1541
+ assert_equal(test[0], masked_array([1, ], mask=[True]))
1542
+ assert_equal(test[1], [0])
1543
+ assert_equal(test[2], [0, 0, 0])
1544
+ #
1545
+ # Test masked
1546
+ data = masked
1547
+ test = unique(data, return_index=True, return_inverse=True)
1548
+ assert_equal(test[0], masked_array(masked))
1549
+ assert_equal(test[1], [0])
1550
+ assert_equal(test[2], [0])
1551
+
1552
+ def test_ediff1d(self):
1553
+ # Tests mediff1d
1554
+ x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
1555
+ control = array([1, 1, 1, 4], mask=[1, 0, 0, 1])
1556
+ test = ediff1d(x)
1557
+ assert_equal(test, control)
1558
+ assert_equal(test.filled(0), control.filled(0))
1559
+ assert_equal(test.mask, control.mask)
1560
+
1561
+ def test_ediff1d_tobegin(self):
1562
+ # Test ediff1d w/ to_begin
1563
+ x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
1564
+ test = ediff1d(x, to_begin=masked)
1565
+ control = array([0, 1, 1, 1, 4], mask=[1, 1, 0, 0, 1])
1566
+ assert_equal(test, control)
1567
+ assert_equal(test.filled(0), control.filled(0))
1568
+ assert_equal(test.mask, control.mask)
1569
+ #
1570
+ test = ediff1d(x, to_begin=[1, 2, 3])
1571
+ control = array([1, 2, 3, 1, 1, 1, 4], mask=[0, 0, 0, 1, 0, 0, 1])
1572
+ assert_equal(test, control)
1573
+ assert_equal(test.filled(0), control.filled(0))
1574
+ assert_equal(test.mask, control.mask)
1575
+
1576
+ def test_ediff1d_toend(self):
1577
+ # Test ediff1d w/ to_end
1578
+ x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
1579
+ test = ediff1d(x, to_end=masked)
1580
+ control = array([1, 1, 1, 4, 0], mask=[1, 0, 0, 1, 1])
1581
+ assert_equal(test, control)
1582
+ assert_equal(test.filled(0), control.filled(0))
1583
+ assert_equal(test.mask, control.mask)
1584
+ #
1585
+ test = ediff1d(x, to_end=[1, 2, 3])
1586
+ control = array([1, 1, 1, 4, 1, 2, 3], mask=[1, 0, 0, 1, 0, 0, 0])
1587
+ assert_equal(test, control)
1588
+ assert_equal(test.filled(0), control.filled(0))
1589
+ assert_equal(test.mask, control.mask)
1590
+
1591
+ def test_ediff1d_tobegin_toend(self):
1592
+ # Test ediff1d w/ to_begin and to_end
1593
+ x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
1594
+ test = ediff1d(x, to_end=masked, to_begin=masked)
1595
+ control = array([0, 1, 1, 1, 4, 0], mask=[1, 1, 0, 0, 1, 1])
1596
+ assert_equal(test, control)
1597
+ assert_equal(test.filled(0), control.filled(0))
1598
+ assert_equal(test.mask, control.mask)
1599
+ #
1600
+ test = ediff1d(x, to_end=[1, 2, 3], to_begin=masked)
1601
+ control = array([0, 1, 1, 1, 4, 1, 2, 3],
1602
+ mask=[1, 1, 0, 0, 1, 0, 0, 0])
1603
+ assert_equal(test, control)
1604
+ assert_equal(test.filled(0), control.filled(0))
1605
+ assert_equal(test.mask, control.mask)
1606
+
1607
+ def test_ediff1d_ndarray(self):
1608
+ # Test ediff1d w/ a ndarray
1609
+ x = np.arange(5)
1610
+ test = ediff1d(x)
1611
+ control = array([1, 1, 1, 1], mask=[0, 0, 0, 0])
1612
+ assert_equal(test, control)
1613
+ assert_(isinstance(test, MaskedArray))
1614
+ assert_equal(test.filled(0), control.filled(0))
1615
+ assert_equal(test.mask, control.mask)
1616
+ #
1617
+ test = ediff1d(x, to_end=masked, to_begin=masked)
1618
+ control = array([0, 1, 1, 1, 1, 0], mask=[1, 0, 0, 0, 0, 1])
1619
+ assert_(isinstance(test, MaskedArray))
1620
+ assert_equal(test.filled(0), control.filled(0))
1621
+ assert_equal(test.mask, control.mask)
1622
+
1623
+ def test_intersect1d(self):
1624
+ # Test intersect1d
1625
+ x = array([1, 3, 3, 3], mask=[0, 0, 0, 1])
1626
+ y = array([3, 1, 1, 1], mask=[0, 0, 0, 1])
1627
+ test = intersect1d(x, y)
1628
+ control = array([1, 3, -1], mask=[0, 0, 1])
1629
+ assert_equal(test, control)
1630
+
1631
+ def test_setxor1d(self):
1632
+ # Test setxor1d
1633
+ a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
1634
+ b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
1635
+ test = setxor1d(a, b)
1636
+ assert_equal(test, array([3, 4, 7]))
1637
+ #
1638
+ a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
1639
+ b = [1, 2, 3, 4, 5]
1640
+ test = setxor1d(a, b)
1641
+ assert_equal(test, array([3, 4, 7, -1], mask=[0, 0, 0, 1]))
1642
+ #
1643
+ a = array([1, 2, 3])
1644
+ b = array([6, 5, 4])
1645
+ test = setxor1d(a, b)
1646
+ assert_(isinstance(test, MaskedArray))
1647
+ assert_equal(test, [1, 2, 3, 4, 5, 6])
1648
+ #
1649
+ a = array([1, 8, 2, 3], mask=[0, 1, 0, 0])
1650
+ b = array([6, 5, 4, 8], mask=[0, 0, 0, 1])
1651
+ test = setxor1d(a, b)
1652
+ assert_(isinstance(test, MaskedArray))
1653
+ assert_equal(test, [1, 2, 3, 4, 5, 6])
1654
+ #
1655
+ assert_array_equal([], setxor1d([], []))
1656
+
1657
+ def test_setxor1d_unique(self):
1658
+ # Test setxor1d with assume_unique=True
1659
+ a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
1660
+ b = [1, 2, 3, 4, 5]
1661
+ test = setxor1d(a, b, assume_unique=True)
1662
+ assert_equal(test, array([3, 4, 7, -1], mask=[0, 0, 0, 1]))
1663
+ #
1664
+ a = array([1, 8, 2, 3], mask=[0, 1, 0, 0])
1665
+ b = array([6, 5, 4, 8], mask=[0, 0, 0, 1])
1666
+ test = setxor1d(a, b, assume_unique=True)
1667
+ assert_(isinstance(test, MaskedArray))
1668
+ assert_equal(test, [1, 2, 3, 4, 5, 6])
1669
+ #
1670
+ a = array([[1], [8], [2], [3]])
1671
+ b = array([[6, 5], [4, 8]])
1672
+ test = setxor1d(a, b, assume_unique=True)
1673
+ assert_(isinstance(test, MaskedArray))
1674
+ assert_equal(test, [1, 2, 3, 4, 5, 6])
1675
+
1676
+ def test_isin(self):
1677
+ # the tests for in1d cover most of isin's behavior
1678
+ # if in1d is removed, would need to change those tests to test
1679
+ # isin instead.
1680
+ a = np.arange(24).reshape([2, 3, 4])
1681
+ mask = np.zeros([2, 3, 4])
1682
+ mask[1, 2, 0] = 1
1683
+ a = array(a, mask=mask)
1684
+ b = array(data=[0, 10, 20, 30, 1, 3, 11, 22, 33],
1685
+ mask=[0, 1, 0, 1, 0, 1, 0, 1, 0])
1686
+ ec = zeros((2, 3, 4), dtype=bool)
1687
+ ec[0, 0, 0] = True
1688
+ ec[0, 0, 1] = True
1689
+ ec[0, 2, 3] = True
1690
+ c = isin(a, b)
1691
+ assert_(isinstance(c, MaskedArray))
1692
+ assert_array_equal(c, ec)
1693
+ # compare results of np.isin to ma.isin
1694
+ d = np.isin(a, b[~b.mask]) & ~a.mask
1695
+ assert_array_equal(c, d)
1696
+
1697
+ def test_in1d(self):
1698
+ # Test in1d
1699
+ a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
1700
+ b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
1701
+ test = in1d(a, b)
1702
+ assert_equal(test, [True, True, True, False, True])
1703
+ #
1704
+ a = array([5, 5, 2, 1, -1], mask=[0, 0, 0, 0, 1])
1705
+ b = array([1, 5, -1], mask=[0, 0, 1])
1706
+ test = in1d(a, b)
1707
+ assert_equal(test, [True, True, False, True, True])
1708
+ #
1709
+ assert_array_equal([], in1d([], []))
1710
+
1711
+ def test_in1d_invert(self):
1712
+ # Test in1d's invert parameter
1713
+ a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
1714
+ b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
1715
+ assert_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True))
1716
+
1717
+ a = array([5, 5, 2, 1, -1], mask=[0, 0, 0, 0, 1])
1718
+ b = array([1, 5, -1], mask=[0, 0, 1])
1719
+ assert_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True))
1720
+
1721
+ assert_array_equal([], in1d([], [], invert=True))
1722
+
1723
+ def test_union1d(self):
1724
+ # Test union1d
1725
+ a = array([1, 2, 5, 7, 5, -1], mask=[0, 0, 0, 0, 0, 1])
1726
+ b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
1727
+ test = union1d(a, b)
1728
+ control = array([1, 2, 3, 4, 5, 7, -1], mask=[0, 0, 0, 0, 0, 0, 1])
1729
+ assert_equal(test, control)
1730
+
1731
+ # Tests gh-10340, arguments to union1d should be
1732
+ # flattened if they are not already 1D
1733
+ x = array([[0, 1, 2], [3, 4, 5]], mask=[[0, 0, 0], [0, 0, 1]])
1734
+ y = array([0, 1, 2, 3, 4], mask=[0, 0, 0, 0, 1])
1735
+ ez = array([0, 1, 2, 3, 4, 5], mask=[0, 0, 0, 0, 0, 1])
1736
+ z = union1d(x, y)
1737
+ assert_equal(z, ez)
1738
+ #
1739
+ assert_array_equal([], union1d([], []))
1740
+
1741
+ def test_setdiff1d(self):
1742
+ # Test setdiff1d
1743
+ a = array([6, 5, 4, 7, 7, 1, 2, 1], mask=[0, 0, 0, 0, 0, 0, 0, 1])
1744
+ b = array([2, 4, 3, 3, 2, 1, 5])
1745
+ test = setdiff1d(a, b)
1746
+ assert_equal(test, array([6, 7, -1], mask=[0, 0, 1]))
1747
+ #
1748
+ a = arange(10)
1749
+ b = arange(8)
1750
+ assert_equal(setdiff1d(a, b), array([8, 9]))
1751
+ a = array([], np.uint32, mask=[])
1752
+ assert_equal(setdiff1d(a, []).dtype, np.uint32)
1753
+
1754
+ def test_setdiff1d_char_array(self):
1755
+ # Test setdiff1d_charray
1756
+ a = np.array(['a', 'b', 'c'])
1757
+ b = np.array(['a', 'b', 's'])
1758
+ assert_array_equal(setdiff1d(a, b), np.array(['c']))
1759
+
1760
+
1761
+ class TestShapeBase:
1762
+
1763
+ def test_atleast_2d(self):
1764
+ # Test atleast_2d
1765
+ a = masked_array([0, 1, 2], mask=[0, 1, 0])
1766
+ b = atleast_2d(a)
1767
+ assert_equal(b.shape, (1, 3))
1768
+ assert_equal(b.mask.shape, b.data.shape)
1769
+ assert_equal(a.shape, (3,))
1770
+ assert_equal(a.mask.shape, a.data.shape)
1771
+ assert_equal(b.mask.shape, b.data.shape)
1772
+
1773
+ def test_shape_scalar(self):
1774
+ # the atleast and diagflat function should work with scalars
1775
+ # GitHub issue #3367
1776
+ # Additionally, the atleast functions should accept multiple scalars
1777
+ # correctly
1778
+ b = atleast_1d(1.0)
1779
+ assert_equal(b.shape, (1,))
1780
+ assert_equal(b.mask.shape, b.shape)
1781
+ assert_equal(b.data.shape, b.shape)
1782
+
1783
+ b = atleast_1d(1.0, 2.0)
1784
+ for a in b:
1785
+ assert_equal(a.shape, (1,))
1786
+ assert_equal(a.mask.shape, a.shape)
1787
+ assert_equal(a.data.shape, a.shape)
1788
+
1789
+ b = atleast_2d(1.0)
1790
+ assert_equal(b.shape, (1, 1))
1791
+ assert_equal(b.mask.shape, b.shape)
1792
+ assert_equal(b.data.shape, b.shape)
1793
+
1794
+ b = atleast_2d(1.0, 2.0)
1795
+ for a in b:
1796
+ assert_equal(a.shape, (1, 1))
1797
+ assert_equal(a.mask.shape, a.shape)
1798
+ assert_equal(a.data.shape, a.shape)
1799
+
1800
+ b = atleast_3d(1.0)
1801
+ assert_equal(b.shape, (1, 1, 1))
1802
+ assert_equal(b.mask.shape, b.shape)
1803
+ assert_equal(b.data.shape, b.shape)
1804
+
1805
+ b = atleast_3d(1.0, 2.0)
1806
+ for a in b:
1807
+ assert_equal(a.shape, (1, 1, 1))
1808
+ assert_equal(a.mask.shape, a.shape)
1809
+ assert_equal(a.data.shape, a.shape)
1810
+
1811
+ b = diagflat(1.0)
1812
+ assert_equal(b.shape, (1, 1))
1813
+ assert_equal(b.mask.shape, b.data.shape)
1814
+
1815
+ @pytest.mark.parametrize("fn", [atleast_1d, vstack, diagflat])
1816
+ def test_inspect_signature(self, fn):
1817
+ name = fn.__name__
1818
+ assert getattr(np.ma, name) is fn
1819
+
1820
+ assert fn.__module__ == "numpy.ma.extras"
1821
+
1822
+ wrapped = getattr(np, fn.__name__)
1823
+ sig_wrapped = inspect.signature(wrapped)
1824
+ sig = inspect.signature(fn)
1825
+ assert sig == sig_wrapped
1826
+
1827
+
1828
+ class TestNDEnumerate:
1829
+
1830
+ def test_ndenumerate_nomasked(self):
1831
+ ordinary = np.arange(6.).reshape((1, 3, 2))
1832
+ empty_mask = np.zeros_like(ordinary, dtype=bool)
1833
+ with_mask = masked_array(ordinary, mask=empty_mask)
1834
+ assert_equal(list(np.ndenumerate(ordinary)),
1835
+ list(ndenumerate(ordinary)))
1836
+ assert_equal(list(ndenumerate(ordinary)),
1837
+ list(ndenumerate(with_mask)))
1838
+ assert_equal(list(ndenumerate(with_mask)),
1839
+ list(ndenumerate(with_mask, compressed=False)))
1840
+
1841
+ def test_ndenumerate_allmasked(self):
1842
+ a = masked_all(())
1843
+ b = masked_all((100,))
1844
+ c = masked_all((2, 3, 4))
1845
+ assert_equal(list(ndenumerate(a)), [])
1846
+ assert_equal(list(ndenumerate(b)), [])
1847
+ assert_equal(list(ndenumerate(b, compressed=False)),
1848
+ list(zip(np.ndindex((100,)), 100 * [masked])))
1849
+ assert_equal(list(ndenumerate(c)), [])
1850
+ assert_equal(list(ndenumerate(c, compressed=False)),
1851
+ list(zip(np.ndindex((2, 3, 4)), 2 * 3 * 4 * [masked])))
1852
+
1853
+ def test_ndenumerate_mixedmasked(self):
1854
+ a = masked_array(np.arange(12).reshape((3, 4)),
1855
+ mask=[[1, 1, 1, 1],
1856
+ [1, 1, 0, 1],
1857
+ [0, 0, 0, 0]])
1858
+ items = [((1, 2), 6),
1859
+ ((2, 0), 8), ((2, 1), 9), ((2, 2), 10), ((2, 3), 11)]
1860
+ assert_equal(list(ndenumerate(a)), items)
1861
+ assert_equal(len(list(ndenumerate(a, compressed=False))), a.size)
1862
+ for coordinate, value in ndenumerate(a, compressed=False):
1863
+ assert_equal(a[coordinate], value)
1864
+
1865
+
1866
+ class TestStack:
1867
+
1868
+ def test_stack_1d(self):
1869
+ a = masked_array([0, 1, 2], mask=[0, 1, 0])
1870
+ b = masked_array([9, 8, 7], mask=[1, 0, 0])
1871
+
1872
+ c = stack([a, b], axis=0)
1873
+ assert_equal(c.shape, (2, 3))
1874
+ assert_array_equal(a.mask, c[0].mask)
1875
+ assert_array_equal(b.mask, c[1].mask)
1876
+
1877
+ d = vstack([a, b])
1878
+ assert_array_equal(c.data, d.data)
1879
+ assert_array_equal(c.mask, d.mask)
1880
+
1881
+ c = stack([a, b], axis=1)
1882
+ assert_equal(c.shape, (3, 2))
1883
+ assert_array_equal(a.mask, c[:, 0].mask)
1884
+ assert_array_equal(b.mask, c[:, 1].mask)
1885
+
1886
+ def test_stack_masks(self):
1887
+ a = masked_array([0, 1, 2], mask=True)
1888
+ b = masked_array([9, 8, 7], mask=False)
1889
+
1890
+ c = stack([a, b], axis=0)
1891
+ assert_equal(c.shape, (2, 3))
1892
+ assert_array_equal(a.mask, c[0].mask)
1893
+ assert_array_equal(b.mask, c[1].mask)
1894
+
1895
+ d = vstack([a, b])
1896
+ assert_array_equal(c.data, d.data)
1897
+ assert_array_equal(c.mask, d.mask)
1898
+
1899
+ c = stack([a, b], axis=1)
1900
+ assert_equal(c.shape, (3, 2))
1901
+ assert_array_equal(a.mask, c[:, 0].mask)
1902
+ assert_array_equal(b.mask, c[:, 1].mask)
1903
+
1904
+ def test_stack_nd(self):
1905
+ # 2D
1906
+ shp = (3, 2)
1907
+ d1 = np.random.randint(0, 10, shp)
1908
+ d2 = np.random.randint(0, 10, shp)
1909
+ m1 = np.random.randint(0, 2, shp).astype(bool)
1910
+ m2 = np.random.randint(0, 2, shp).astype(bool)
1911
+ a1 = masked_array(d1, mask=m1)
1912
+ a2 = masked_array(d2, mask=m2)
1913
+
1914
+ c = stack([a1, a2], axis=0)
1915
+ c_shp = (2,) + shp
1916
+ assert_equal(c.shape, c_shp)
1917
+ assert_array_equal(a1.mask, c[0].mask)
1918
+ assert_array_equal(a2.mask, c[1].mask)
1919
+
1920
+ c = stack([a1, a2], axis=-1)
1921
+ c_shp = shp + (2,)
1922
+ assert_equal(c.shape, c_shp)
1923
+ assert_array_equal(a1.mask, c[..., 0].mask)
1924
+ assert_array_equal(a2.mask, c[..., 1].mask)
1925
+
1926
+ # 4D
1927
+ shp = (3, 2, 4, 5,)
1928
+ d1 = np.random.randint(0, 10, shp)
1929
+ d2 = np.random.randint(0, 10, shp)
1930
+ m1 = np.random.randint(0, 2, shp).astype(bool)
1931
+ m2 = np.random.randint(0, 2, shp).astype(bool)
1932
+ a1 = masked_array(d1, mask=m1)
1933
+ a2 = masked_array(d2, mask=m2)
1934
+
1935
+ c = stack([a1, a2], axis=0)
1936
+ c_shp = (2,) + shp
1937
+ assert_equal(c.shape, c_shp)
1938
+ assert_array_equal(a1.mask, c[0].mask)
1939
+ assert_array_equal(a2.mask, c[1].mask)
1940
+
1941
+ c = stack([a1, a2], axis=-1)
1942
+ c_shp = shp + (2,)
1943
+ assert_equal(c.shape, c_shp)
1944
+ assert_array_equal(a1.mask, c[..., 0].mask)
1945
+ assert_array_equal(a2.mask, c[..., 1].mask)