numpy 2.4.1__pp311-pypy311_pp73-macosx_14_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1039) hide show
  1. numpy/__config__.py +170 -0
  2. numpy/__config__.pyi +108 -0
  3. numpy/__init__.cython-30.pxd +1242 -0
  4. numpy/__init__.pxd +1155 -0
  5. numpy/__init__.py +942 -0
  6. numpy/__init__.pyi +6202 -0
  7. numpy/_array_api_info.py +346 -0
  8. numpy/_array_api_info.pyi +206 -0
  9. numpy/_configtool.py +39 -0
  10. numpy/_configtool.pyi +1 -0
  11. numpy/_core/__init__.py +201 -0
  12. numpy/_core/__init__.pyi +666 -0
  13. numpy/_core/_add_newdocs.py +7151 -0
  14. numpy/_core/_add_newdocs.pyi +2 -0
  15. numpy/_core/_add_newdocs_scalars.py +381 -0
  16. numpy/_core/_add_newdocs_scalars.pyi +16 -0
  17. numpy/_core/_asarray.py +130 -0
  18. numpy/_core/_asarray.pyi +43 -0
  19. numpy/_core/_dtype.py +366 -0
  20. numpy/_core/_dtype.pyi +56 -0
  21. numpy/_core/_dtype_ctypes.py +120 -0
  22. numpy/_core/_dtype_ctypes.pyi +83 -0
  23. numpy/_core/_exceptions.py +162 -0
  24. numpy/_core/_exceptions.pyi +54 -0
  25. numpy/_core/_internal.py +968 -0
  26. numpy/_core/_internal.pyi +61 -0
  27. numpy/_core/_methods.py +252 -0
  28. numpy/_core/_methods.pyi +22 -0
  29. numpy/_core/_multiarray_tests.pypy311-pp73-darwin.so +0 -0
  30. numpy/_core/_multiarray_umath.pypy311-pp73-darwin.so +0 -0
  31. numpy/_core/_operand_flag_tests.pypy311-pp73-darwin.so +0 -0
  32. numpy/_core/_rational_tests.pypy311-pp73-darwin.so +0 -0
  33. numpy/_core/_simd.pyi +35 -0
  34. numpy/_core/_simd.pypy311-pp73-darwin.so +0 -0
  35. numpy/_core/_string_helpers.py +100 -0
  36. numpy/_core/_string_helpers.pyi +12 -0
  37. numpy/_core/_struct_ufunc_tests.pypy311-pp73-darwin.so +0 -0
  38. numpy/_core/_type_aliases.py +131 -0
  39. numpy/_core/_type_aliases.pyi +86 -0
  40. numpy/_core/_ufunc_config.py +515 -0
  41. numpy/_core/_ufunc_config.pyi +69 -0
  42. numpy/_core/_umath_tests.pyi +47 -0
  43. numpy/_core/_umath_tests.pypy311-pp73-darwin.so +0 -0
  44. numpy/_core/arrayprint.py +1779 -0
  45. numpy/_core/arrayprint.pyi +158 -0
  46. numpy/_core/cversions.py +13 -0
  47. numpy/_core/defchararray.py +1414 -0
  48. numpy/_core/defchararray.pyi +1150 -0
  49. numpy/_core/einsumfunc.py +1650 -0
  50. numpy/_core/einsumfunc.pyi +184 -0
  51. numpy/_core/fromnumeric.py +4233 -0
  52. numpy/_core/fromnumeric.pyi +1735 -0
  53. numpy/_core/function_base.py +547 -0
  54. numpy/_core/function_base.pyi +276 -0
  55. numpy/_core/getlimits.py +462 -0
  56. numpy/_core/getlimits.pyi +124 -0
  57. numpy/_core/include/numpy/__multiarray_api.c +376 -0
  58. numpy/_core/include/numpy/__multiarray_api.h +1628 -0
  59. numpy/_core/include/numpy/__ufunc_api.c +55 -0
  60. numpy/_core/include/numpy/__ufunc_api.h +349 -0
  61. numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
  62. numpy/_core/include/numpy/_numpyconfig.h +33 -0
  63. numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
  64. numpy/_core/include/numpy/arrayobject.h +7 -0
  65. numpy/_core/include/numpy/arrayscalars.h +198 -0
  66. numpy/_core/include/numpy/dtype_api.h +547 -0
  67. numpy/_core/include/numpy/halffloat.h +70 -0
  68. numpy/_core/include/numpy/ndarrayobject.h +304 -0
  69. numpy/_core/include/numpy/ndarraytypes.h +1982 -0
  70. numpy/_core/include/numpy/npy_2_compat.h +249 -0
  71. numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
  72. numpy/_core/include/numpy/npy_3kcompat.h +374 -0
  73. numpy/_core/include/numpy/npy_common.h +989 -0
  74. numpy/_core/include/numpy/npy_cpu.h +126 -0
  75. numpy/_core/include/numpy/npy_endian.h +79 -0
  76. numpy/_core/include/numpy/npy_math.h +602 -0
  77. numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
  78. numpy/_core/include/numpy/npy_os.h +42 -0
  79. numpy/_core/include/numpy/numpyconfig.h +185 -0
  80. numpy/_core/include/numpy/random/LICENSE.txt +21 -0
  81. numpy/_core/include/numpy/random/bitgen.h +20 -0
  82. numpy/_core/include/numpy/random/distributions.h +209 -0
  83. numpy/_core/include/numpy/random/libdivide.h +2079 -0
  84. numpy/_core/include/numpy/ufuncobject.h +343 -0
  85. numpy/_core/include/numpy/utils.h +37 -0
  86. numpy/_core/lib/libnpymath.a +0 -0
  87. numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
  88. numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
  89. numpy/_core/lib/pkgconfig/numpy.pc +7 -0
  90. numpy/_core/memmap.py +363 -0
  91. numpy/_core/memmap.pyi +3 -0
  92. numpy/_core/multiarray.py +1740 -0
  93. numpy/_core/multiarray.pyi +1316 -0
  94. numpy/_core/numeric.py +2758 -0
  95. numpy/_core/numeric.pyi +1276 -0
  96. numpy/_core/numerictypes.py +633 -0
  97. numpy/_core/numerictypes.pyi +196 -0
  98. numpy/_core/overrides.py +188 -0
  99. numpy/_core/overrides.pyi +47 -0
  100. numpy/_core/printoptions.py +32 -0
  101. numpy/_core/printoptions.pyi +28 -0
  102. numpy/_core/records.py +1088 -0
  103. numpy/_core/records.pyi +340 -0
  104. numpy/_core/shape_base.py +996 -0
  105. numpy/_core/shape_base.pyi +182 -0
  106. numpy/_core/strings.py +1813 -0
  107. numpy/_core/strings.pyi +536 -0
  108. numpy/_core/tests/_locales.py +72 -0
  109. numpy/_core/tests/_natype.py +144 -0
  110. numpy/_core/tests/data/astype_copy.pkl +0 -0
  111. numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
  112. numpy/_core/tests/data/recarray_from_file.fits +0 -0
  113. numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
  114. numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
  115. numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
  116. numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
  117. numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
  118. numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
  119. numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
  120. numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
  121. numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
  122. numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
  123. numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
  124. numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
  125. numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
  126. numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
  127. numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
  128. numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
  129. numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
  130. numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
  131. numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
  132. numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
  133. numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
  134. numpy/_core/tests/examples/cython/checks.pyx +373 -0
  135. numpy/_core/tests/examples/cython/meson.build +43 -0
  136. numpy/_core/tests/examples/cython/setup.py +39 -0
  137. numpy/_core/tests/examples/limited_api/limited_api1.c +17 -0
  138. numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
  139. numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
  140. numpy/_core/tests/examples/limited_api/meson.build +59 -0
  141. numpy/_core/tests/examples/limited_api/setup.py +24 -0
  142. numpy/_core/tests/test__exceptions.py +90 -0
  143. numpy/_core/tests/test_abc.py +54 -0
  144. numpy/_core/tests/test_api.py +655 -0
  145. numpy/_core/tests/test_argparse.py +90 -0
  146. numpy/_core/tests/test_array_api_info.py +113 -0
  147. numpy/_core/tests/test_array_coercion.py +928 -0
  148. numpy/_core/tests/test_array_interface.py +222 -0
  149. numpy/_core/tests/test_arraymethod.py +84 -0
  150. numpy/_core/tests/test_arrayobject.py +75 -0
  151. numpy/_core/tests/test_arrayprint.py +1324 -0
  152. numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
  153. numpy/_core/tests/test_casting_unittests.py +955 -0
  154. numpy/_core/tests/test_conversion_utils.py +209 -0
  155. numpy/_core/tests/test_cpu_dispatcher.py +48 -0
  156. numpy/_core/tests/test_cpu_features.py +450 -0
  157. numpy/_core/tests/test_custom_dtypes.py +393 -0
  158. numpy/_core/tests/test_cython.py +352 -0
  159. numpy/_core/tests/test_datetime.py +2792 -0
  160. numpy/_core/tests/test_defchararray.py +858 -0
  161. numpy/_core/tests/test_deprecations.py +460 -0
  162. numpy/_core/tests/test_dlpack.py +190 -0
  163. numpy/_core/tests/test_dtype.py +2110 -0
  164. numpy/_core/tests/test_einsum.py +1351 -0
  165. numpy/_core/tests/test_errstate.py +131 -0
  166. numpy/_core/tests/test_extint128.py +217 -0
  167. numpy/_core/tests/test_finfo.py +86 -0
  168. numpy/_core/tests/test_function_base.py +504 -0
  169. numpy/_core/tests/test_getlimits.py +171 -0
  170. numpy/_core/tests/test_half.py +593 -0
  171. numpy/_core/tests/test_hashtable.py +36 -0
  172. numpy/_core/tests/test_indexerrors.py +122 -0
  173. numpy/_core/tests/test_indexing.py +1692 -0
  174. numpy/_core/tests/test_item_selection.py +167 -0
  175. numpy/_core/tests/test_limited_api.py +102 -0
  176. numpy/_core/tests/test_longdouble.py +370 -0
  177. numpy/_core/tests/test_mem_overlap.py +933 -0
  178. numpy/_core/tests/test_mem_policy.py +453 -0
  179. numpy/_core/tests/test_memmap.py +248 -0
  180. numpy/_core/tests/test_multiarray.py +11008 -0
  181. numpy/_core/tests/test_multiprocessing.py +55 -0
  182. numpy/_core/tests/test_multithreading.py +377 -0
  183. numpy/_core/tests/test_nditer.py +3533 -0
  184. numpy/_core/tests/test_nep50_promotions.py +287 -0
  185. numpy/_core/tests/test_numeric.py +4295 -0
  186. numpy/_core/tests/test_numerictypes.py +650 -0
  187. numpy/_core/tests/test_overrides.py +800 -0
  188. numpy/_core/tests/test_print.py +202 -0
  189. numpy/_core/tests/test_protocols.py +46 -0
  190. numpy/_core/tests/test_records.py +544 -0
  191. numpy/_core/tests/test_regression.py +2677 -0
  192. numpy/_core/tests/test_scalar_ctors.py +203 -0
  193. numpy/_core/tests/test_scalar_methods.py +328 -0
  194. numpy/_core/tests/test_scalarbuffer.py +153 -0
  195. numpy/_core/tests/test_scalarinherit.py +105 -0
  196. numpy/_core/tests/test_scalarmath.py +1168 -0
  197. numpy/_core/tests/test_scalarprint.py +403 -0
  198. numpy/_core/tests/test_shape_base.py +904 -0
  199. numpy/_core/tests/test_simd.py +1345 -0
  200. numpy/_core/tests/test_simd_module.py +105 -0
  201. numpy/_core/tests/test_stringdtype.py +1855 -0
  202. numpy/_core/tests/test_strings.py +1523 -0
  203. numpy/_core/tests/test_ufunc.py +3405 -0
  204. numpy/_core/tests/test_umath.py +4962 -0
  205. numpy/_core/tests/test_umath_accuracy.py +132 -0
  206. numpy/_core/tests/test_umath_complex.py +631 -0
  207. numpy/_core/tests/test_unicode.py +369 -0
  208. numpy/_core/umath.py +60 -0
  209. numpy/_core/umath.pyi +232 -0
  210. numpy/_distributor_init.py +15 -0
  211. numpy/_distributor_init.pyi +1 -0
  212. numpy/_expired_attrs_2_0.py +78 -0
  213. numpy/_expired_attrs_2_0.pyi +61 -0
  214. numpy/_globals.py +121 -0
  215. numpy/_globals.pyi +17 -0
  216. numpy/_pyinstaller/__init__.py +0 -0
  217. numpy/_pyinstaller/__init__.pyi +0 -0
  218. numpy/_pyinstaller/hook-numpy.py +36 -0
  219. numpy/_pyinstaller/hook-numpy.pyi +6 -0
  220. numpy/_pyinstaller/tests/__init__.py +16 -0
  221. numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
  222. numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
  223. numpy/_pytesttester.py +201 -0
  224. numpy/_pytesttester.pyi +18 -0
  225. numpy/_typing/__init__.py +173 -0
  226. numpy/_typing/_add_docstring.py +153 -0
  227. numpy/_typing/_array_like.py +106 -0
  228. numpy/_typing/_char_codes.py +213 -0
  229. numpy/_typing/_dtype_like.py +114 -0
  230. numpy/_typing/_extended_precision.py +15 -0
  231. numpy/_typing/_nbit.py +19 -0
  232. numpy/_typing/_nbit_base.py +94 -0
  233. numpy/_typing/_nbit_base.pyi +39 -0
  234. numpy/_typing/_nested_sequence.py +79 -0
  235. numpy/_typing/_scalars.py +20 -0
  236. numpy/_typing/_shape.py +8 -0
  237. numpy/_typing/_ufunc.py +7 -0
  238. numpy/_typing/_ufunc.pyi +975 -0
  239. numpy/_utils/__init__.py +95 -0
  240. numpy/_utils/__init__.pyi +28 -0
  241. numpy/_utils/_convertions.py +18 -0
  242. numpy/_utils/_convertions.pyi +4 -0
  243. numpy/_utils/_inspect.py +192 -0
  244. numpy/_utils/_inspect.pyi +70 -0
  245. numpy/_utils/_pep440.py +486 -0
  246. numpy/_utils/_pep440.pyi +118 -0
  247. numpy/char/__init__.py +2 -0
  248. numpy/char/__init__.pyi +111 -0
  249. numpy/conftest.py +248 -0
  250. numpy/core/__init__.py +33 -0
  251. numpy/core/__init__.pyi +0 -0
  252. numpy/core/_dtype.py +10 -0
  253. numpy/core/_dtype.pyi +0 -0
  254. numpy/core/_dtype_ctypes.py +10 -0
  255. numpy/core/_dtype_ctypes.pyi +0 -0
  256. numpy/core/_internal.py +27 -0
  257. numpy/core/_multiarray_umath.py +57 -0
  258. numpy/core/_utils.py +21 -0
  259. numpy/core/arrayprint.py +10 -0
  260. numpy/core/defchararray.py +10 -0
  261. numpy/core/einsumfunc.py +10 -0
  262. numpy/core/fromnumeric.py +10 -0
  263. numpy/core/function_base.py +10 -0
  264. numpy/core/getlimits.py +10 -0
  265. numpy/core/multiarray.py +25 -0
  266. numpy/core/numeric.py +12 -0
  267. numpy/core/numerictypes.py +10 -0
  268. numpy/core/overrides.py +10 -0
  269. numpy/core/overrides.pyi +7 -0
  270. numpy/core/records.py +10 -0
  271. numpy/core/shape_base.py +10 -0
  272. numpy/core/umath.py +10 -0
  273. numpy/ctypeslib/__init__.py +13 -0
  274. numpy/ctypeslib/__init__.pyi +15 -0
  275. numpy/ctypeslib/_ctypeslib.py +603 -0
  276. numpy/ctypeslib/_ctypeslib.pyi +236 -0
  277. numpy/distutils/__init__.py +64 -0
  278. numpy/distutils/__init__.pyi +4 -0
  279. numpy/distutils/__pycache__/conv_template.pypy311.pyc +0 -0
  280. numpy/distutils/_shell_utils.py +87 -0
  281. numpy/distutils/armccompiler.py +26 -0
  282. numpy/distutils/ccompiler.py +826 -0
  283. numpy/distutils/ccompiler_opt.py +2668 -0
  284. numpy/distutils/checks/cpu_asimd.c +27 -0
  285. numpy/distutils/checks/cpu_asimddp.c +16 -0
  286. numpy/distutils/checks/cpu_asimdfhm.c +19 -0
  287. numpy/distutils/checks/cpu_asimdhp.c +15 -0
  288. numpy/distutils/checks/cpu_avx.c +20 -0
  289. numpy/distutils/checks/cpu_avx2.c +20 -0
  290. numpy/distutils/checks/cpu_avx512_clx.c +22 -0
  291. numpy/distutils/checks/cpu_avx512_cnl.c +24 -0
  292. numpy/distutils/checks/cpu_avx512_icl.c +26 -0
  293. numpy/distutils/checks/cpu_avx512_knl.c +25 -0
  294. numpy/distutils/checks/cpu_avx512_knm.c +30 -0
  295. numpy/distutils/checks/cpu_avx512_skx.c +26 -0
  296. numpy/distutils/checks/cpu_avx512_spr.c +26 -0
  297. numpy/distutils/checks/cpu_avx512cd.c +20 -0
  298. numpy/distutils/checks/cpu_avx512f.c +20 -0
  299. numpy/distutils/checks/cpu_f16c.c +22 -0
  300. numpy/distutils/checks/cpu_fma3.c +22 -0
  301. numpy/distutils/checks/cpu_fma4.c +13 -0
  302. numpy/distutils/checks/cpu_lsx.c +11 -0
  303. numpy/distutils/checks/cpu_neon.c +19 -0
  304. numpy/distutils/checks/cpu_neon_fp16.c +11 -0
  305. numpy/distutils/checks/cpu_neon_vfpv4.c +21 -0
  306. numpy/distutils/checks/cpu_popcnt.c +32 -0
  307. numpy/distutils/checks/cpu_rvv.c +13 -0
  308. numpy/distutils/checks/cpu_sse.c +20 -0
  309. numpy/distutils/checks/cpu_sse2.c +20 -0
  310. numpy/distutils/checks/cpu_sse3.c +20 -0
  311. numpy/distutils/checks/cpu_sse41.c +20 -0
  312. numpy/distutils/checks/cpu_sse42.c +20 -0
  313. numpy/distutils/checks/cpu_ssse3.c +20 -0
  314. numpy/distutils/checks/cpu_sve.c +14 -0
  315. numpy/distutils/checks/cpu_vsx.c +21 -0
  316. numpy/distutils/checks/cpu_vsx2.c +13 -0
  317. numpy/distutils/checks/cpu_vsx3.c +13 -0
  318. numpy/distutils/checks/cpu_vsx4.c +14 -0
  319. numpy/distutils/checks/cpu_vx.c +16 -0
  320. numpy/distutils/checks/cpu_vxe.c +25 -0
  321. numpy/distutils/checks/cpu_vxe2.c +21 -0
  322. numpy/distutils/checks/cpu_xop.c +12 -0
  323. numpy/distutils/checks/extra_avx512bw_mask.c +18 -0
  324. numpy/distutils/checks/extra_avx512dq_mask.c +16 -0
  325. numpy/distutils/checks/extra_avx512f_reduce.c +41 -0
  326. numpy/distutils/checks/extra_vsx3_half_double.c +12 -0
  327. numpy/distutils/checks/extra_vsx4_mma.c +21 -0
  328. numpy/distutils/checks/extra_vsx_asm.c +36 -0
  329. numpy/distutils/checks/test_flags.c +1 -0
  330. numpy/distutils/command/__init__.py +41 -0
  331. numpy/distutils/command/autodist.py +148 -0
  332. numpy/distutils/command/bdist_rpm.py +22 -0
  333. numpy/distutils/command/build.py +62 -0
  334. numpy/distutils/command/build_clib.py +469 -0
  335. numpy/distutils/command/build_ext.py +752 -0
  336. numpy/distutils/command/build_py.py +31 -0
  337. numpy/distutils/command/build_scripts.py +49 -0
  338. numpy/distutils/command/build_src.py +773 -0
  339. numpy/distutils/command/config.py +516 -0
  340. numpy/distutils/command/config_compiler.py +126 -0
  341. numpy/distutils/command/develop.py +15 -0
  342. numpy/distutils/command/egg_info.py +25 -0
  343. numpy/distutils/command/install.py +79 -0
  344. numpy/distutils/command/install_clib.py +40 -0
  345. numpy/distutils/command/install_data.py +24 -0
  346. numpy/distutils/command/install_headers.py +25 -0
  347. numpy/distutils/command/sdist.py +27 -0
  348. numpy/distutils/conv_template.py +329 -0
  349. numpy/distutils/core.py +215 -0
  350. numpy/distutils/cpuinfo.py +683 -0
  351. numpy/distutils/exec_command.py +315 -0
  352. numpy/distutils/extension.py +101 -0
  353. numpy/distutils/fcompiler/__init__.py +1035 -0
  354. numpy/distutils/fcompiler/absoft.py +158 -0
  355. numpy/distutils/fcompiler/arm.py +71 -0
  356. numpy/distutils/fcompiler/compaq.py +120 -0
  357. numpy/distutils/fcompiler/environment.py +88 -0
  358. numpy/distutils/fcompiler/fujitsu.py +46 -0
  359. numpy/distutils/fcompiler/g95.py +42 -0
  360. numpy/distutils/fcompiler/gnu.py +555 -0
  361. numpy/distutils/fcompiler/hpux.py +41 -0
  362. numpy/distutils/fcompiler/ibm.py +97 -0
  363. numpy/distutils/fcompiler/intel.py +211 -0
  364. numpy/distutils/fcompiler/lahey.py +45 -0
  365. numpy/distutils/fcompiler/mips.py +54 -0
  366. numpy/distutils/fcompiler/nag.py +87 -0
  367. numpy/distutils/fcompiler/none.py +28 -0
  368. numpy/distutils/fcompiler/nv.py +53 -0
  369. numpy/distutils/fcompiler/pathf95.py +33 -0
  370. numpy/distutils/fcompiler/pg.py +128 -0
  371. numpy/distutils/fcompiler/sun.py +51 -0
  372. numpy/distutils/fcompiler/vast.py +52 -0
  373. numpy/distutils/from_template.py +261 -0
  374. numpy/distutils/fujitsuccompiler.py +28 -0
  375. numpy/distutils/intelccompiler.py +106 -0
  376. numpy/distutils/lib2def.py +116 -0
  377. numpy/distutils/line_endings.py +77 -0
  378. numpy/distutils/log.py +111 -0
  379. numpy/distutils/mingw/gfortran_vs2003_hack.c +6 -0
  380. numpy/distutils/mingw32ccompiler.py +620 -0
  381. numpy/distutils/misc_util.py +2484 -0
  382. numpy/distutils/msvc9compiler.py +63 -0
  383. numpy/distutils/msvccompiler.py +76 -0
  384. numpy/distutils/npy_pkg_config.py +441 -0
  385. numpy/distutils/numpy_distribution.py +17 -0
  386. numpy/distutils/pathccompiler.py +21 -0
  387. numpy/distutils/system_info.py +3267 -0
  388. numpy/distutils/tests/__init__.py +0 -0
  389. numpy/distutils/tests/test_build_ext.py +74 -0
  390. numpy/distutils/tests/test_ccompiler_opt.py +808 -0
  391. numpy/distutils/tests/test_ccompiler_opt_conf.py +176 -0
  392. numpy/distutils/tests/test_exec_command.py +217 -0
  393. numpy/distutils/tests/test_fcompiler.py +43 -0
  394. numpy/distutils/tests/test_fcompiler_gnu.py +55 -0
  395. numpy/distutils/tests/test_fcompiler_intel.py +30 -0
  396. numpy/distutils/tests/test_fcompiler_nagfor.py +22 -0
  397. numpy/distutils/tests/test_from_template.py +44 -0
  398. numpy/distutils/tests/test_log.py +34 -0
  399. numpy/distutils/tests/test_mingw32ccompiler.py +47 -0
  400. numpy/distutils/tests/test_misc_util.py +88 -0
  401. numpy/distutils/tests/test_npy_pkg_config.py +84 -0
  402. numpy/distutils/tests/test_shell_utils.py +79 -0
  403. numpy/distutils/tests/test_system_info.py +334 -0
  404. numpy/distutils/tests/utilities.py +90 -0
  405. numpy/distutils/unixccompiler.py +141 -0
  406. numpy/doc/ufuncs.py +138 -0
  407. numpy/dtypes.py +41 -0
  408. numpy/dtypes.pyi +630 -0
  409. numpy/exceptions.py +246 -0
  410. numpy/exceptions.pyi +27 -0
  411. numpy/f2py/__init__.py +86 -0
  412. numpy/f2py/__init__.pyi +5 -0
  413. numpy/f2py/__main__.py +5 -0
  414. numpy/f2py/__version__.py +1 -0
  415. numpy/f2py/__version__.pyi +1 -0
  416. numpy/f2py/_backends/__init__.py +9 -0
  417. numpy/f2py/_backends/__init__.pyi +5 -0
  418. numpy/f2py/_backends/_backend.py +44 -0
  419. numpy/f2py/_backends/_backend.pyi +46 -0
  420. numpy/f2py/_backends/_distutils.py +76 -0
  421. numpy/f2py/_backends/_distutils.pyi +13 -0
  422. numpy/f2py/_backends/_meson.py +244 -0
  423. numpy/f2py/_backends/_meson.pyi +62 -0
  424. numpy/f2py/_backends/meson.build.template +58 -0
  425. numpy/f2py/_isocbind.py +62 -0
  426. numpy/f2py/_isocbind.pyi +13 -0
  427. numpy/f2py/_src_pyf.py +247 -0
  428. numpy/f2py/_src_pyf.pyi +28 -0
  429. numpy/f2py/auxfuncs.py +1004 -0
  430. numpy/f2py/auxfuncs.pyi +262 -0
  431. numpy/f2py/capi_maps.py +811 -0
  432. numpy/f2py/capi_maps.pyi +33 -0
  433. numpy/f2py/cb_rules.py +665 -0
  434. numpy/f2py/cb_rules.pyi +17 -0
  435. numpy/f2py/cfuncs.py +1563 -0
  436. numpy/f2py/cfuncs.pyi +31 -0
  437. numpy/f2py/common_rules.py +143 -0
  438. numpy/f2py/common_rules.pyi +9 -0
  439. numpy/f2py/crackfortran.py +3725 -0
  440. numpy/f2py/crackfortran.pyi +266 -0
  441. numpy/f2py/diagnose.py +149 -0
  442. numpy/f2py/diagnose.pyi +1 -0
  443. numpy/f2py/f2py2e.py +788 -0
  444. numpy/f2py/f2py2e.pyi +74 -0
  445. numpy/f2py/f90mod_rules.py +269 -0
  446. numpy/f2py/f90mod_rules.pyi +16 -0
  447. numpy/f2py/func2subr.py +329 -0
  448. numpy/f2py/func2subr.pyi +7 -0
  449. numpy/f2py/rules.py +1629 -0
  450. numpy/f2py/rules.pyi +41 -0
  451. numpy/f2py/setup.cfg +3 -0
  452. numpy/f2py/src/fortranobject.c +1436 -0
  453. numpy/f2py/src/fortranobject.h +173 -0
  454. numpy/f2py/symbolic.py +1518 -0
  455. numpy/f2py/symbolic.pyi +219 -0
  456. numpy/f2py/tests/__init__.py +16 -0
  457. numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
  458. numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
  459. numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
  460. numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
  461. numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
  462. numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
  463. numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
  464. numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
  465. numpy/f2py/tests/src/block_docstring/foo.f +6 -0
  466. numpy/f2py/tests/src/callback/foo.f +62 -0
  467. numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
  468. numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
  469. numpy/f2py/tests/src/callback/gh25211.f +10 -0
  470. numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
  471. numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
  472. numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
  473. numpy/f2py/tests/src/cli/hi77.f +3 -0
  474. numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
  475. numpy/f2py/tests/src/common/block.f +11 -0
  476. numpy/f2py/tests/src/common/gh19161.f90 +10 -0
  477. numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
  478. numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
  479. numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
  480. numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
  481. numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
  482. numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
  483. numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
  484. numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
  485. numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
  486. numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
  487. numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
  488. numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
  489. numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
  490. numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
  491. numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
  492. numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
  493. numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
  494. numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
  495. numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
  496. numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
  497. numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
  498. numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
  499. numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
  500. numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
  501. numpy/f2py/tests/src/kind/foo.f90 +20 -0
  502. numpy/f2py/tests/src/mixed/foo.f +5 -0
  503. numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
  504. numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
  505. numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
  506. numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
  507. numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
  508. numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
  509. numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
  510. numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
  511. numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
  512. numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
  513. numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
  514. numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
  515. numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
  516. numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
  517. numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
  518. numpy/f2py/tests/src/quoted_character/foo.f +14 -0
  519. numpy/f2py/tests/src/regression/AB.inc +1 -0
  520. numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
  521. numpy/f2py/tests/src/regression/datonly.f90 +17 -0
  522. numpy/f2py/tests/src/regression/f77comments.f +26 -0
  523. numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
  524. numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
  525. numpy/f2py/tests/src/regression/incfile.f90 +5 -0
  526. numpy/f2py/tests/src/regression/inout.f90 +9 -0
  527. numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
  528. numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
  529. numpy/f2py/tests/src/return_character/foo77.f +45 -0
  530. numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
  531. numpy/f2py/tests/src/return_complex/foo77.f +45 -0
  532. numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
  533. numpy/f2py/tests/src/return_integer/foo77.f +56 -0
  534. numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
  535. numpy/f2py/tests/src/return_logical/foo77.f +56 -0
  536. numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
  537. numpy/f2py/tests/src/return_real/foo77.f +45 -0
  538. numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
  539. numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
  540. numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
  541. numpy/f2py/tests/src/routines/subrout.f +4 -0
  542. numpy/f2py/tests/src/routines/subrout.pyf +10 -0
  543. numpy/f2py/tests/src/size/foo.f90 +44 -0
  544. numpy/f2py/tests/src/string/char.f90 +29 -0
  545. numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
  546. numpy/f2py/tests/src/string/gh24008.f +8 -0
  547. numpy/f2py/tests/src/string/gh24662.f90 +7 -0
  548. numpy/f2py/tests/src/string/gh25286.f90 +14 -0
  549. numpy/f2py/tests/src/string/gh25286.pyf +12 -0
  550. numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
  551. numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
  552. numpy/f2py/tests/src/string/string.f +12 -0
  553. numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
  554. numpy/f2py/tests/test_abstract_interface.py +26 -0
  555. numpy/f2py/tests/test_array_from_pyobj.py +678 -0
  556. numpy/f2py/tests/test_assumed_shape.py +50 -0
  557. numpy/f2py/tests/test_block_docstring.py +20 -0
  558. numpy/f2py/tests/test_callback.py +263 -0
  559. numpy/f2py/tests/test_character.py +641 -0
  560. numpy/f2py/tests/test_common.py +23 -0
  561. numpy/f2py/tests/test_crackfortran.py +421 -0
  562. numpy/f2py/tests/test_data.py +71 -0
  563. numpy/f2py/tests/test_docs.py +66 -0
  564. numpy/f2py/tests/test_f2cmap.py +17 -0
  565. numpy/f2py/tests/test_f2py2e.py +983 -0
  566. numpy/f2py/tests/test_isoc.py +56 -0
  567. numpy/f2py/tests/test_kind.py +52 -0
  568. numpy/f2py/tests/test_mixed.py +35 -0
  569. numpy/f2py/tests/test_modules.py +83 -0
  570. numpy/f2py/tests/test_parameter.py +129 -0
  571. numpy/f2py/tests/test_pyf_src.py +43 -0
  572. numpy/f2py/tests/test_quoted_character.py +18 -0
  573. numpy/f2py/tests/test_regression.py +187 -0
  574. numpy/f2py/tests/test_return_character.py +48 -0
  575. numpy/f2py/tests/test_return_complex.py +67 -0
  576. numpy/f2py/tests/test_return_integer.py +55 -0
  577. numpy/f2py/tests/test_return_logical.py +65 -0
  578. numpy/f2py/tests/test_return_real.py +109 -0
  579. numpy/f2py/tests/test_routines.py +29 -0
  580. numpy/f2py/tests/test_semicolon_split.py +75 -0
  581. numpy/f2py/tests/test_size.py +45 -0
  582. numpy/f2py/tests/test_string.py +100 -0
  583. numpy/f2py/tests/test_symbolic.py +500 -0
  584. numpy/f2py/tests/test_value_attrspec.py +15 -0
  585. numpy/f2py/tests/util.py +442 -0
  586. numpy/f2py/use_rules.py +99 -0
  587. numpy/f2py/use_rules.pyi +9 -0
  588. numpy/fft/__init__.py +213 -0
  589. numpy/fft/__init__.pyi +38 -0
  590. numpy/fft/_helper.py +235 -0
  591. numpy/fft/_helper.pyi +44 -0
  592. numpy/fft/_pocketfft.py +1693 -0
  593. numpy/fft/_pocketfft.pyi +137 -0
  594. numpy/fft/_pocketfft_umath.pypy311-pp73-darwin.so +0 -0
  595. numpy/fft/tests/__init__.py +0 -0
  596. numpy/fft/tests/test_helper.py +167 -0
  597. numpy/fft/tests/test_pocketfft.py +589 -0
  598. numpy/lib/__init__.py +97 -0
  599. numpy/lib/__init__.pyi +52 -0
  600. numpy/lib/_array_utils_impl.py +62 -0
  601. numpy/lib/_array_utils_impl.pyi +10 -0
  602. numpy/lib/_arraypad_impl.py +926 -0
  603. numpy/lib/_arraypad_impl.pyi +88 -0
  604. numpy/lib/_arraysetops_impl.py +1158 -0
  605. numpy/lib/_arraysetops_impl.pyi +462 -0
  606. numpy/lib/_arrayterator_impl.py +224 -0
  607. numpy/lib/_arrayterator_impl.pyi +45 -0
  608. numpy/lib/_datasource.py +700 -0
  609. numpy/lib/_datasource.pyi +30 -0
  610. numpy/lib/_format_impl.py +1036 -0
  611. numpy/lib/_format_impl.pyi +56 -0
  612. numpy/lib/_function_base_impl.py +5760 -0
  613. numpy/lib/_function_base_impl.pyi +2324 -0
  614. numpy/lib/_histograms_impl.py +1085 -0
  615. numpy/lib/_histograms_impl.pyi +40 -0
  616. numpy/lib/_index_tricks_impl.py +1048 -0
  617. numpy/lib/_index_tricks_impl.pyi +267 -0
  618. numpy/lib/_iotools.py +900 -0
  619. numpy/lib/_iotools.pyi +116 -0
  620. numpy/lib/_nanfunctions_impl.py +2006 -0
  621. numpy/lib/_nanfunctions_impl.pyi +48 -0
  622. numpy/lib/_npyio_impl.py +2583 -0
  623. numpy/lib/_npyio_impl.pyi +299 -0
  624. numpy/lib/_polynomial_impl.py +1465 -0
  625. numpy/lib/_polynomial_impl.pyi +338 -0
  626. numpy/lib/_scimath_impl.py +642 -0
  627. numpy/lib/_scimath_impl.pyi +93 -0
  628. numpy/lib/_shape_base_impl.py +1289 -0
  629. numpy/lib/_shape_base_impl.pyi +236 -0
  630. numpy/lib/_stride_tricks_impl.py +582 -0
  631. numpy/lib/_stride_tricks_impl.pyi +73 -0
  632. numpy/lib/_twodim_base_impl.py +1201 -0
  633. numpy/lib/_twodim_base_impl.pyi +408 -0
  634. numpy/lib/_type_check_impl.py +710 -0
  635. numpy/lib/_type_check_impl.pyi +348 -0
  636. numpy/lib/_ufunclike_impl.py +199 -0
  637. numpy/lib/_ufunclike_impl.pyi +60 -0
  638. numpy/lib/_user_array_impl.py +310 -0
  639. numpy/lib/_user_array_impl.pyi +226 -0
  640. numpy/lib/_utils_impl.py +784 -0
  641. numpy/lib/_utils_impl.pyi +22 -0
  642. numpy/lib/_version.py +153 -0
  643. numpy/lib/_version.pyi +17 -0
  644. numpy/lib/array_utils.py +7 -0
  645. numpy/lib/array_utils.pyi +6 -0
  646. numpy/lib/format.py +24 -0
  647. numpy/lib/format.pyi +24 -0
  648. numpy/lib/introspect.py +94 -0
  649. numpy/lib/introspect.pyi +3 -0
  650. numpy/lib/mixins.py +180 -0
  651. numpy/lib/mixins.pyi +78 -0
  652. numpy/lib/npyio.py +1 -0
  653. numpy/lib/npyio.pyi +5 -0
  654. numpy/lib/recfunctions.py +1681 -0
  655. numpy/lib/recfunctions.pyi +444 -0
  656. numpy/lib/scimath.py +13 -0
  657. numpy/lib/scimath.pyi +12 -0
  658. numpy/lib/stride_tricks.py +1 -0
  659. numpy/lib/stride_tricks.pyi +4 -0
  660. numpy/lib/tests/__init__.py +0 -0
  661. numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
  662. numpy/lib/tests/data/py2-objarr.npy +0 -0
  663. numpy/lib/tests/data/py2-objarr.npz +0 -0
  664. numpy/lib/tests/data/py3-objarr.npy +0 -0
  665. numpy/lib/tests/data/py3-objarr.npz +0 -0
  666. numpy/lib/tests/data/python3.npy +0 -0
  667. numpy/lib/tests/data/win64python2.npy +0 -0
  668. numpy/lib/tests/test__datasource.py +328 -0
  669. numpy/lib/tests/test__iotools.py +358 -0
  670. numpy/lib/tests/test__version.py +64 -0
  671. numpy/lib/tests/test_array_utils.py +32 -0
  672. numpy/lib/tests/test_arraypad.py +1427 -0
  673. numpy/lib/tests/test_arraysetops.py +1302 -0
  674. numpy/lib/tests/test_arrayterator.py +45 -0
  675. numpy/lib/tests/test_format.py +1054 -0
  676. numpy/lib/tests/test_function_base.py +4750 -0
  677. numpy/lib/tests/test_histograms.py +855 -0
  678. numpy/lib/tests/test_index_tricks.py +693 -0
  679. numpy/lib/tests/test_io.py +2857 -0
  680. numpy/lib/tests/test_loadtxt.py +1099 -0
  681. numpy/lib/tests/test_mixins.py +215 -0
  682. numpy/lib/tests/test_nanfunctions.py +1438 -0
  683. numpy/lib/tests/test_packbits.py +376 -0
  684. numpy/lib/tests/test_polynomial.py +325 -0
  685. numpy/lib/tests/test_recfunctions.py +1042 -0
  686. numpy/lib/tests/test_regression.py +231 -0
  687. numpy/lib/tests/test_shape_base.py +813 -0
  688. numpy/lib/tests/test_stride_tricks.py +655 -0
  689. numpy/lib/tests/test_twodim_base.py +559 -0
  690. numpy/lib/tests/test_type_check.py +473 -0
  691. numpy/lib/tests/test_ufunclike.py +97 -0
  692. numpy/lib/tests/test_utils.py +80 -0
  693. numpy/lib/user_array.py +1 -0
  694. numpy/lib/user_array.pyi +1 -0
  695. numpy/linalg/__init__.py +95 -0
  696. numpy/linalg/__init__.pyi +71 -0
  697. numpy/linalg/_linalg.py +3657 -0
  698. numpy/linalg/_linalg.pyi +548 -0
  699. numpy/linalg/_umath_linalg.pyi +60 -0
  700. numpy/linalg/_umath_linalg.pypy311-pp73-darwin.so +0 -0
  701. numpy/linalg/lapack_lite.pyi +143 -0
  702. numpy/linalg/lapack_lite.pypy311-pp73-darwin.so +0 -0
  703. numpy/linalg/tests/__init__.py +0 -0
  704. numpy/linalg/tests/test_deprecations.py +21 -0
  705. numpy/linalg/tests/test_linalg.py +2442 -0
  706. numpy/linalg/tests/test_regression.py +182 -0
  707. numpy/ma/API_CHANGES.txt +135 -0
  708. numpy/ma/LICENSE +24 -0
  709. numpy/ma/README.rst +236 -0
  710. numpy/ma/__init__.py +53 -0
  711. numpy/ma/__init__.pyi +458 -0
  712. numpy/ma/core.py +8929 -0
  713. numpy/ma/core.pyi +3720 -0
  714. numpy/ma/extras.py +2266 -0
  715. numpy/ma/extras.pyi +297 -0
  716. numpy/ma/mrecords.py +762 -0
  717. numpy/ma/mrecords.pyi +96 -0
  718. numpy/ma/tests/__init__.py +0 -0
  719. numpy/ma/tests/test_arrayobject.py +40 -0
  720. numpy/ma/tests/test_core.py +6008 -0
  721. numpy/ma/tests/test_deprecations.py +65 -0
  722. numpy/ma/tests/test_extras.py +1945 -0
  723. numpy/ma/tests/test_mrecords.py +495 -0
  724. numpy/ma/tests/test_old_ma.py +939 -0
  725. numpy/ma/tests/test_regression.py +83 -0
  726. numpy/ma/tests/test_subclassing.py +469 -0
  727. numpy/ma/testutils.py +294 -0
  728. numpy/ma/testutils.pyi +69 -0
  729. numpy/matlib.py +380 -0
  730. numpy/matlib.pyi +580 -0
  731. numpy/matrixlib/__init__.py +12 -0
  732. numpy/matrixlib/__init__.pyi +3 -0
  733. numpy/matrixlib/defmatrix.py +1119 -0
  734. numpy/matrixlib/defmatrix.pyi +218 -0
  735. numpy/matrixlib/tests/__init__.py +0 -0
  736. numpy/matrixlib/tests/test_defmatrix.py +455 -0
  737. numpy/matrixlib/tests/test_interaction.py +360 -0
  738. numpy/matrixlib/tests/test_masked_matrix.py +240 -0
  739. numpy/matrixlib/tests/test_matrix_linalg.py +110 -0
  740. numpy/matrixlib/tests/test_multiarray.py +17 -0
  741. numpy/matrixlib/tests/test_numeric.py +18 -0
  742. numpy/matrixlib/tests/test_regression.py +31 -0
  743. numpy/polynomial/__init__.py +187 -0
  744. numpy/polynomial/__init__.pyi +31 -0
  745. numpy/polynomial/_polybase.py +1191 -0
  746. numpy/polynomial/_polybase.pyi +262 -0
  747. numpy/polynomial/_polytypes.pyi +501 -0
  748. numpy/polynomial/chebyshev.py +2001 -0
  749. numpy/polynomial/chebyshev.pyi +180 -0
  750. numpy/polynomial/hermite.py +1738 -0
  751. numpy/polynomial/hermite.pyi +106 -0
  752. numpy/polynomial/hermite_e.py +1640 -0
  753. numpy/polynomial/hermite_e.pyi +106 -0
  754. numpy/polynomial/laguerre.py +1673 -0
  755. numpy/polynomial/laguerre.pyi +100 -0
  756. numpy/polynomial/legendre.py +1603 -0
  757. numpy/polynomial/legendre.pyi +100 -0
  758. numpy/polynomial/polynomial.py +1625 -0
  759. numpy/polynomial/polynomial.pyi +109 -0
  760. numpy/polynomial/polyutils.py +759 -0
  761. numpy/polynomial/polyutils.pyi +307 -0
  762. numpy/polynomial/tests/__init__.py +0 -0
  763. numpy/polynomial/tests/test_chebyshev.py +618 -0
  764. numpy/polynomial/tests/test_classes.py +613 -0
  765. numpy/polynomial/tests/test_hermite.py +553 -0
  766. numpy/polynomial/tests/test_hermite_e.py +554 -0
  767. numpy/polynomial/tests/test_laguerre.py +535 -0
  768. numpy/polynomial/tests/test_legendre.py +566 -0
  769. numpy/polynomial/tests/test_polynomial.py +691 -0
  770. numpy/polynomial/tests/test_polyutils.py +123 -0
  771. numpy/polynomial/tests/test_printing.py +557 -0
  772. numpy/polynomial/tests/test_symbol.py +217 -0
  773. numpy/py.typed +0 -0
  774. numpy/random/LICENSE.md +71 -0
  775. numpy/random/__init__.pxd +14 -0
  776. numpy/random/__init__.py +213 -0
  777. numpy/random/__init__.pyi +124 -0
  778. numpy/random/_bounded_integers.pxd +29 -0
  779. numpy/random/_bounded_integers.pyi +1 -0
  780. numpy/random/_bounded_integers.pypy311-pp73-darwin.so +0 -0
  781. numpy/random/_common.pxd +110 -0
  782. numpy/random/_common.pyi +16 -0
  783. numpy/random/_common.pypy311-pp73-darwin.so +0 -0
  784. numpy/random/_examples/cffi/extending.py +44 -0
  785. numpy/random/_examples/cffi/parse.py +53 -0
  786. numpy/random/_examples/cython/extending.pyx +77 -0
  787. numpy/random/_examples/cython/extending_distributions.pyx +117 -0
  788. numpy/random/_examples/cython/meson.build +53 -0
  789. numpy/random/_examples/numba/extending.py +86 -0
  790. numpy/random/_examples/numba/extending_distributions.py +67 -0
  791. numpy/random/_generator.pyi +862 -0
  792. numpy/random/_generator.pypy311-pp73-darwin.so +0 -0
  793. numpy/random/_mt19937.pyi +27 -0
  794. numpy/random/_mt19937.pypy311-pp73-darwin.so +0 -0
  795. numpy/random/_pcg64.pyi +41 -0
  796. numpy/random/_pcg64.pypy311-pp73-darwin.so +0 -0
  797. numpy/random/_philox.pyi +36 -0
  798. numpy/random/_philox.pypy311-pp73-darwin.so +0 -0
  799. numpy/random/_pickle.py +88 -0
  800. numpy/random/_pickle.pyi +43 -0
  801. numpy/random/_sfc64.pyi +25 -0
  802. numpy/random/_sfc64.pypy311-pp73-darwin.so +0 -0
  803. numpy/random/bit_generator.pxd +40 -0
  804. numpy/random/bit_generator.pyi +123 -0
  805. numpy/random/bit_generator.pypy311-pp73-darwin.so +0 -0
  806. numpy/random/c_distributions.pxd +119 -0
  807. numpy/random/lib/libnpyrandom.a +0 -0
  808. numpy/random/mtrand.pyi +759 -0
  809. numpy/random/mtrand.pypy311-pp73-darwin.so +0 -0
  810. numpy/random/tests/__init__.py +0 -0
  811. numpy/random/tests/data/__init__.py +0 -0
  812. numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
  813. numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
  814. numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
  815. numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
  816. numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
  817. numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
  818. numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
  819. numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
  820. numpy/random/tests/data/philox-testset-1.csv +1001 -0
  821. numpy/random/tests/data/philox-testset-2.csv +1001 -0
  822. numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
  823. numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
  824. numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
  825. numpy/random/tests/test_direct.py +595 -0
  826. numpy/random/tests/test_extending.py +131 -0
  827. numpy/random/tests/test_generator_mt19937.py +2825 -0
  828. numpy/random/tests/test_generator_mt19937_regressions.py +221 -0
  829. numpy/random/tests/test_random.py +1724 -0
  830. numpy/random/tests/test_randomstate.py +2099 -0
  831. numpy/random/tests/test_randomstate_regression.py +213 -0
  832. numpy/random/tests/test_regression.py +175 -0
  833. numpy/random/tests/test_seed_sequence.py +79 -0
  834. numpy/random/tests/test_smoke.py +882 -0
  835. numpy/rec/__init__.py +2 -0
  836. numpy/rec/__init__.pyi +23 -0
  837. numpy/strings/__init__.py +2 -0
  838. numpy/strings/__init__.pyi +97 -0
  839. numpy/testing/__init__.py +22 -0
  840. numpy/testing/__init__.pyi +107 -0
  841. numpy/testing/_private/__init__.py +0 -0
  842. numpy/testing/_private/__init__.pyi +0 -0
  843. numpy/testing/_private/extbuild.py +250 -0
  844. numpy/testing/_private/extbuild.pyi +25 -0
  845. numpy/testing/_private/utils.py +2830 -0
  846. numpy/testing/_private/utils.pyi +505 -0
  847. numpy/testing/overrides.py +84 -0
  848. numpy/testing/overrides.pyi +10 -0
  849. numpy/testing/print_coercion_tables.py +207 -0
  850. numpy/testing/print_coercion_tables.pyi +26 -0
  851. numpy/testing/tests/__init__.py +0 -0
  852. numpy/testing/tests/test_utils.py +2123 -0
  853. numpy/tests/__init__.py +0 -0
  854. numpy/tests/test__all__.py +10 -0
  855. numpy/tests/test_configtool.py +51 -0
  856. numpy/tests/test_ctypeslib.py +383 -0
  857. numpy/tests/test_lazyloading.py +42 -0
  858. numpy/tests/test_matlib.py +59 -0
  859. numpy/tests/test_numpy_config.py +47 -0
  860. numpy/tests/test_numpy_version.py +54 -0
  861. numpy/tests/test_public_api.py +807 -0
  862. numpy/tests/test_reloading.py +76 -0
  863. numpy/tests/test_scripts.py +48 -0
  864. numpy/tests/test_warnings.py +79 -0
  865. numpy/typing/__init__.py +233 -0
  866. numpy/typing/__init__.pyi +3 -0
  867. numpy/typing/mypy_plugin.py +200 -0
  868. numpy/typing/tests/__init__.py +0 -0
  869. numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
  870. numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
  871. numpy/typing/tests/data/fail/array_like.pyi +15 -0
  872. numpy/typing/tests/data/fail/array_pad.pyi +6 -0
  873. numpy/typing/tests/data/fail/arrayprint.pyi +15 -0
  874. numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
  875. numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
  876. numpy/typing/tests/data/fail/char.pyi +63 -0
  877. numpy/typing/tests/data/fail/chararray.pyi +61 -0
  878. numpy/typing/tests/data/fail/comparisons.pyi +27 -0
  879. numpy/typing/tests/data/fail/constants.pyi +3 -0
  880. numpy/typing/tests/data/fail/datasource.pyi +16 -0
  881. numpy/typing/tests/data/fail/dtype.pyi +17 -0
  882. numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
  883. numpy/typing/tests/data/fail/flatiter.pyi +38 -0
  884. numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
  885. numpy/typing/tests/data/fail/histograms.pyi +12 -0
  886. numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
  887. numpy/typing/tests/data/fail/lib_function_base.pyi +60 -0
  888. numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
  889. numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
  890. numpy/typing/tests/data/fail/lib_version.pyi +6 -0
  891. numpy/typing/tests/data/fail/linalg.pyi +52 -0
  892. numpy/typing/tests/data/fail/ma.pyi +155 -0
  893. numpy/typing/tests/data/fail/memmap.pyi +5 -0
  894. numpy/typing/tests/data/fail/modules.pyi +17 -0
  895. numpy/typing/tests/data/fail/multiarray.pyi +52 -0
  896. numpy/typing/tests/data/fail/ndarray.pyi +11 -0
  897. numpy/typing/tests/data/fail/ndarray_misc.pyi +49 -0
  898. numpy/typing/tests/data/fail/nditer.pyi +8 -0
  899. numpy/typing/tests/data/fail/nested_sequence.pyi +17 -0
  900. numpy/typing/tests/data/fail/npyio.pyi +24 -0
  901. numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
  902. numpy/typing/tests/data/fail/random.pyi +62 -0
  903. numpy/typing/tests/data/fail/rec.pyi +17 -0
  904. numpy/typing/tests/data/fail/scalars.pyi +86 -0
  905. numpy/typing/tests/data/fail/shape.pyi +7 -0
  906. numpy/typing/tests/data/fail/shape_base.pyi +8 -0
  907. numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
  908. numpy/typing/tests/data/fail/strings.pyi +52 -0
  909. numpy/typing/tests/data/fail/testing.pyi +28 -0
  910. numpy/typing/tests/data/fail/twodim_base.pyi +39 -0
  911. numpy/typing/tests/data/fail/type_check.pyi +12 -0
  912. numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
  913. numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
  914. numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
  915. numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
  916. numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
  917. numpy/typing/tests/data/mypy.ini +8 -0
  918. numpy/typing/tests/data/pass/arithmetic.py +614 -0
  919. numpy/typing/tests/data/pass/array_constructors.py +138 -0
  920. numpy/typing/tests/data/pass/array_like.py +43 -0
  921. numpy/typing/tests/data/pass/arrayprint.py +37 -0
  922. numpy/typing/tests/data/pass/arrayterator.py +28 -0
  923. numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
  924. numpy/typing/tests/data/pass/comparisons.py +316 -0
  925. numpy/typing/tests/data/pass/dtype.py +57 -0
  926. numpy/typing/tests/data/pass/einsumfunc.py +36 -0
  927. numpy/typing/tests/data/pass/flatiter.py +26 -0
  928. numpy/typing/tests/data/pass/fromnumeric.py +272 -0
  929. numpy/typing/tests/data/pass/index_tricks.py +62 -0
  930. numpy/typing/tests/data/pass/lib_user_array.py +22 -0
  931. numpy/typing/tests/data/pass/lib_utils.py +19 -0
  932. numpy/typing/tests/data/pass/lib_version.py +18 -0
  933. numpy/typing/tests/data/pass/literal.py +52 -0
  934. numpy/typing/tests/data/pass/ma.py +199 -0
  935. numpy/typing/tests/data/pass/mod.py +149 -0
  936. numpy/typing/tests/data/pass/modules.py +45 -0
  937. numpy/typing/tests/data/pass/multiarray.py +77 -0
  938. numpy/typing/tests/data/pass/ndarray_conversion.py +81 -0
  939. numpy/typing/tests/data/pass/ndarray_misc.py +199 -0
  940. numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
  941. numpy/typing/tests/data/pass/nditer.py +4 -0
  942. numpy/typing/tests/data/pass/numeric.py +90 -0
  943. numpy/typing/tests/data/pass/numerictypes.py +17 -0
  944. numpy/typing/tests/data/pass/random.py +1498 -0
  945. numpy/typing/tests/data/pass/recfunctions.py +164 -0
  946. numpy/typing/tests/data/pass/scalars.py +249 -0
  947. numpy/typing/tests/data/pass/shape.py +19 -0
  948. numpy/typing/tests/data/pass/simple.py +170 -0
  949. numpy/typing/tests/data/pass/ufunc_config.py +64 -0
  950. numpy/typing/tests/data/pass/ufunclike.py +52 -0
  951. numpy/typing/tests/data/pass/ufuncs.py +16 -0
  952. numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
  953. numpy/typing/tests/data/reveal/arithmetic.pyi +719 -0
  954. numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
  955. numpy/typing/tests/data/reveal/array_constructors.pyi +277 -0
  956. numpy/typing/tests/data/reveal/arraypad.pyi +27 -0
  957. numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
  958. numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
  959. numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
  960. numpy/typing/tests/data/reveal/bitwise_ops.pyi +166 -0
  961. numpy/typing/tests/data/reveal/char.pyi +225 -0
  962. numpy/typing/tests/data/reveal/chararray.pyi +138 -0
  963. numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
  964. numpy/typing/tests/data/reveal/constants.pyi +14 -0
  965. numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
  966. numpy/typing/tests/data/reveal/datasource.pyi +23 -0
  967. numpy/typing/tests/data/reveal/dtype.pyi +132 -0
  968. numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
  969. numpy/typing/tests/data/reveal/emath.pyi +54 -0
  970. numpy/typing/tests/data/reveal/fft.pyi +37 -0
  971. numpy/typing/tests/data/reveal/flatiter.pyi +86 -0
  972. numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
  973. numpy/typing/tests/data/reveal/getlimits.pyi +53 -0
  974. numpy/typing/tests/data/reveal/histograms.pyi +25 -0
  975. numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
  976. numpy/typing/tests/data/reveal/lib_function_base.pyi +409 -0
  977. numpy/typing/tests/data/reveal/lib_polynomial.pyi +147 -0
  978. numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
  979. numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
  980. numpy/typing/tests/data/reveal/linalg.pyi +154 -0
  981. numpy/typing/tests/data/reveal/ma.pyi +1098 -0
  982. numpy/typing/tests/data/reveal/matrix.pyi +73 -0
  983. numpy/typing/tests/data/reveal/memmap.pyi +19 -0
  984. numpy/typing/tests/data/reveal/mod.pyi +178 -0
  985. numpy/typing/tests/data/reveal/modules.pyi +51 -0
  986. numpy/typing/tests/data/reveal/multiarray.pyi +197 -0
  987. numpy/typing/tests/data/reveal/nbit_base_example.pyi +20 -0
  988. numpy/typing/tests/data/reveal/ndarray_assignability.pyi +82 -0
  989. numpy/typing/tests/data/reveal/ndarray_conversion.pyi +83 -0
  990. numpy/typing/tests/data/reveal/ndarray_misc.pyi +246 -0
  991. numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +47 -0
  992. numpy/typing/tests/data/reveal/nditer.pyi +49 -0
  993. numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
  994. numpy/typing/tests/data/reveal/npyio.pyi +83 -0
  995. numpy/typing/tests/data/reveal/numeric.pyi +170 -0
  996. numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
  997. numpy/typing/tests/data/reveal/polynomial_polybase.pyi +217 -0
  998. numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +218 -0
  999. numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
  1000. numpy/typing/tests/data/reveal/random.pyi +1546 -0
  1001. numpy/typing/tests/data/reveal/rec.pyi +171 -0
  1002. numpy/typing/tests/data/reveal/scalars.pyi +191 -0
  1003. numpy/typing/tests/data/reveal/shape.pyi +13 -0
  1004. numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
  1005. numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
  1006. numpy/typing/tests/data/reveal/strings.pyi +196 -0
  1007. numpy/typing/tests/data/reveal/testing.pyi +198 -0
  1008. numpy/typing/tests/data/reveal/twodim_base.pyi +225 -0
  1009. numpy/typing/tests/data/reveal/type_check.pyi +67 -0
  1010. numpy/typing/tests/data/reveal/ufunc_config.pyi +29 -0
  1011. numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
  1012. numpy/typing/tests/data/reveal/ufuncs.pyi +142 -0
  1013. numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
  1014. numpy/typing/tests/test_isfile.py +38 -0
  1015. numpy/typing/tests/test_runtime.py +110 -0
  1016. numpy/typing/tests/test_typing.py +205 -0
  1017. numpy/version.py +11 -0
  1018. numpy/version.pyi +9 -0
  1019. numpy-2.4.1.dist-info/METADATA +139 -0
  1020. numpy-2.4.1.dist-info/RECORD +1039 -0
  1021. numpy-2.4.1.dist-info/WHEEL +6 -0
  1022. numpy-2.4.1.dist-info/entry_points.txt +13 -0
  1023. numpy-2.4.1.dist-info/licenses/LICENSE.txt +935 -0
  1024. numpy-2.4.1.dist-info/licenses/numpy/_core/include/numpy/libdivide/LICENSE.txt +21 -0
  1025. numpy-2.4.1.dist-info/licenses/numpy/_core/src/common/pythoncapi-compat/COPYING +14 -0
  1026. numpy-2.4.1.dist-info/licenses/numpy/_core/src/highway/LICENSE +371 -0
  1027. numpy-2.4.1.dist-info/licenses/numpy/_core/src/multiarray/dragon4_LICENSE.txt +27 -0
  1028. numpy-2.4.1.dist-info/licenses/numpy/_core/src/npysort/x86-simd-sort/LICENSE.md +28 -0
  1029. numpy-2.4.1.dist-info/licenses/numpy/_core/src/umath/svml/LICENSE +30 -0
  1030. numpy-2.4.1.dist-info/licenses/numpy/fft/pocketfft/LICENSE.md +25 -0
  1031. numpy-2.4.1.dist-info/licenses/numpy/linalg/lapack_lite/LICENSE.txt +48 -0
  1032. numpy-2.4.1.dist-info/licenses/numpy/ma/LICENSE +24 -0
  1033. numpy-2.4.1.dist-info/licenses/numpy/random/LICENSE.md +71 -0
  1034. numpy-2.4.1.dist-info/licenses/numpy/random/src/distributions/LICENSE.md +61 -0
  1035. numpy-2.4.1.dist-info/licenses/numpy/random/src/mt19937/LICENSE.md +61 -0
  1036. numpy-2.4.1.dist-info/licenses/numpy/random/src/pcg64/LICENSE.md +22 -0
  1037. numpy-2.4.1.dist-info/licenses/numpy/random/src/philox/LICENSE.md +31 -0
  1038. numpy-2.4.1.dist-info/licenses/numpy/random/src/sfc64/LICENSE.md +27 -0
  1039. numpy-2.4.1.dist-info/licenses/numpy/random/src/splitmix64/LICENSE.md +9 -0
@@ -0,0 +1,2830 @@
1
+ """
2
+ Utility function to facilitate testing.
3
+
4
+ """
5
+ import concurrent.futures
6
+ import contextlib
7
+ import gc
8
+ import importlib.metadata
9
+ import operator
10
+ import os
11
+ import pathlib
12
+ import platform
13
+ import pprint
14
+ import re
15
+ import shutil
16
+ import sys
17
+ import sysconfig
18
+ import threading
19
+ import warnings
20
+ from functools import partial, wraps
21
+ from io import StringIO
22
+ from tempfile import mkdtemp, mkstemp
23
+ from unittest.case import SkipTest
24
+ from warnings import WarningMessage
25
+
26
+ import numpy as np
27
+ import numpy.linalg._umath_linalg
28
+ from numpy import isfinite, isnan
29
+ from numpy._core import arange, array, array_repr, empty, float32, intp, isnat, ndarray
30
+
31
+ __all__ = [
32
+ 'assert_equal', 'assert_almost_equal', 'assert_approx_equal',
33
+ 'assert_array_equal', 'assert_array_less', 'assert_string_equal',
34
+ 'assert_array_almost_equal', 'assert_raises', 'build_err_msg',
35
+ 'decorate_methods', 'jiffies', 'memusage', 'print_assert_equal',
36
+ 'rundocs', 'runstring', 'verbose', 'measure',
37
+ 'assert_', 'assert_array_almost_equal_nulp', 'assert_raises_regex',
38
+ 'assert_array_max_ulp', 'assert_warns', 'assert_no_warnings',
39
+ 'assert_allclose', 'IgnoreException', 'clear_and_catch_warnings',
40
+ 'SkipTest', 'KnownFailureException', 'temppath', 'tempdir', 'IS_PYPY',
41
+ 'HAS_REFCOUNT', "IS_WASM", 'suppress_warnings', 'assert_array_compare',
42
+ 'assert_no_gc_cycles', 'break_cycles', 'HAS_LAPACK64', 'IS_PYSTON',
43
+ 'IS_MUSL', 'check_support_sve', 'NOGIL_BUILD',
44
+ 'IS_EDITABLE', 'IS_INSTALLED', 'NUMPY_ROOT', 'run_threaded', 'IS_64BIT',
45
+ 'BLAS_SUPPORTS_FPE',
46
+ ]
47
+
48
+
49
+ class KnownFailureException(Exception):
50
+ '''Raise this exception to mark a test as a known failing test.'''
51
+ pass
52
+
53
+
54
+ KnownFailureTest = KnownFailureException # backwards compat
55
+ verbose = 0
56
+
57
+ NUMPY_ROOT = pathlib.Path(np.__file__).parent
58
+
59
+ try:
60
+ np_dist = importlib.metadata.distribution('numpy')
61
+ except importlib.metadata.PackageNotFoundError:
62
+ IS_INSTALLED = IS_EDITABLE = False
63
+ else:
64
+ IS_INSTALLED = True
65
+ try:
66
+ if sys.version_info >= (3, 13):
67
+ IS_EDITABLE = np_dist.origin.dir_info.editable
68
+ else:
69
+ # Backport importlib.metadata.Distribution.origin
70
+ import json # noqa: E401
71
+ import types
72
+ origin = json.loads(
73
+ np_dist.read_text('direct_url.json') or '{}',
74
+ object_hook=lambda data: types.SimpleNamespace(**data),
75
+ )
76
+ IS_EDITABLE = origin.dir_info.editable
77
+ except AttributeError:
78
+ IS_EDITABLE = False
79
+
80
+ # spin installs numpy directly via meson, instead of using meson-python, and
81
+ # runs the module by setting PYTHONPATH. This is problematic because the
82
+ # resulting installation lacks the Python metadata (.dist-info), and numpy
83
+ # might already be installed on the environment, causing us to find its
84
+ # metadata, even though we are not actually loading that package.
85
+ # Work around this issue by checking if the numpy root matches.
86
+ if not IS_EDITABLE and np_dist.locate_file('numpy') != NUMPY_ROOT:
87
+ IS_INSTALLED = False
88
+
89
+ IS_WASM = platform.machine() in ["wasm32", "wasm64"]
90
+ IS_PYPY = sys.implementation.name == 'pypy'
91
+ IS_PYSTON = hasattr(sys, "pyston_version_info")
92
+ HAS_REFCOUNT = getattr(sys, 'getrefcount', None) is not None and not IS_PYSTON
93
+ BLAS_SUPPORTS_FPE = np._core._multiarray_umath._blas_supports_fpe(None)
94
+
95
+ HAS_LAPACK64 = numpy.linalg._umath_linalg._ilp64
96
+
97
+ IS_MUSL = False
98
+ # alternate way is
99
+ # from packaging.tags import sys_tags
100
+ # _tags = list(sys_tags())
101
+ # if 'musllinux' in _tags[0].platform:
102
+ _v = sysconfig.get_config_var('HOST_GNU_TYPE') or ''
103
+ if 'musl' in _v:
104
+ IS_MUSL = True
105
+
106
+ NOGIL_BUILD = bool(sysconfig.get_config_var("Py_GIL_DISABLED"))
107
+ IS_64BIT = np.dtype(np.intp).itemsize == 8
108
+
109
+ def assert_(val, msg=''):
110
+ """
111
+ Assert that works in release mode.
112
+ Accepts callable msg to allow deferring evaluation until failure.
113
+
114
+ The Python built-in ``assert`` does not work when executing code in
115
+ optimized mode (the ``-O`` flag) - no byte-code is generated for it.
116
+
117
+ For documentation on usage, refer to the Python documentation.
118
+
119
+ """
120
+ __tracebackhide__ = True # Hide traceback for py.test
121
+ if not val:
122
+ try:
123
+ smsg = msg()
124
+ except TypeError:
125
+ smsg = msg
126
+ raise AssertionError(smsg)
127
+
128
+
129
+ if os.name == 'nt':
130
+ # Code "stolen" from enthought/debug/memusage.py
131
+ def GetPerformanceAttributes(object, counter, instance=None,
132
+ inum=-1, format=None, machine=None):
133
+ # NOTE: Many counters require 2 samples to give accurate results,
134
+ # including "% Processor Time" (as by definition, at any instant, a
135
+ # thread's CPU usage is either 0 or 100). To read counters like this,
136
+ # you should copy this function, but keep the counter open, and call
137
+ # CollectQueryData() each time you need to know.
138
+ # See http://msdn.microsoft.com/library/en-us/dnperfmo/html/perfmonpt2.asp
139
+ # (dead link)
140
+ # My older explanation for this was that the "AddCounter" process
141
+ # forced the CPU to 100%, but the above makes more sense :)
142
+ import win32pdh
143
+ if format is None:
144
+ format = win32pdh.PDH_FMT_LONG
145
+ path = win32pdh.MakeCounterPath((machine, object, instance, None,
146
+ inum, counter))
147
+ hq = win32pdh.OpenQuery()
148
+ try:
149
+ hc = win32pdh.AddCounter(hq, path)
150
+ try:
151
+ win32pdh.CollectQueryData(hq)
152
+ type, val = win32pdh.GetFormattedCounterValue(hc, format)
153
+ return val
154
+ finally:
155
+ win32pdh.RemoveCounter(hc)
156
+ finally:
157
+ win32pdh.CloseQuery(hq)
158
+
159
+ def memusage(processName="python", instance=0):
160
+ # from win32pdhutil, part of the win32all package
161
+ import win32pdh
162
+ return GetPerformanceAttributes("Process", "Virtual Bytes",
163
+ processName, instance,
164
+ win32pdh.PDH_FMT_LONG, None)
165
+ elif sys.platform[:5] == 'linux':
166
+
167
+ def memusage(_proc_pid_stat=None):
168
+ """
169
+ Return virtual memory size in bytes of the running python.
170
+
171
+ """
172
+ _proc_pid_stat = _proc_pid_stat or f'/proc/{os.getpid()}/stat'
173
+ try:
174
+ with open(_proc_pid_stat) as f:
175
+ l = f.readline().split(' ')
176
+ return int(l[22])
177
+ except Exception:
178
+ return
179
+ else:
180
+ def memusage():
181
+ """
182
+ Return memory usage of running python. [Not implemented]
183
+
184
+ """
185
+ raise NotImplementedError
186
+
187
+
188
+ if sys.platform[:5] == 'linux':
189
+ def jiffies(_proc_pid_stat=None, _load_time=None):
190
+ """
191
+ Return number of jiffies elapsed.
192
+
193
+ Return number of jiffies (1/100ths of a second) that this
194
+ process has been scheduled in user mode. See man 5 proc.
195
+
196
+ """
197
+ _proc_pid_stat = _proc_pid_stat or f'/proc/{os.getpid()}/stat'
198
+ _load_time = _load_time or []
199
+ import time
200
+ if not _load_time:
201
+ _load_time.append(time.time())
202
+ try:
203
+ with open(_proc_pid_stat) as f:
204
+ l = f.readline().split(' ')
205
+ return int(l[13])
206
+ except Exception:
207
+ return int(100 * (time.time() - _load_time[0]))
208
+ else:
209
+ # os.getpid is not in all platforms available.
210
+ # Using time is safe but inaccurate, especially when process
211
+ # was suspended or sleeping.
212
+ def jiffies(_load_time=[]):
213
+ """
214
+ Return number of jiffies elapsed.
215
+
216
+ Return number of jiffies (1/100ths of a second) that this
217
+ process has been scheduled in user mode. See man 5 proc.
218
+
219
+ """
220
+ import time
221
+ if not _load_time:
222
+ _load_time.append(time.time())
223
+ return int(100 * (time.time() - _load_time[0]))
224
+
225
+
226
+ def build_err_msg(arrays, err_msg, header='Items are not equal:',
227
+ verbose=True, names=('ACTUAL', 'DESIRED'), precision=8):
228
+ msg = ['\n' + header]
229
+ err_msg = str(err_msg)
230
+ if err_msg:
231
+ if err_msg.find('\n') == -1 and len(err_msg) < 79 - len(header):
232
+ msg = [msg[0] + ' ' + err_msg]
233
+ else:
234
+ msg.append(err_msg)
235
+ if verbose:
236
+ for i, a in enumerate(arrays):
237
+
238
+ if isinstance(a, ndarray):
239
+ # precision argument is only needed if the objects are ndarrays
240
+ r_func = partial(array_repr, precision=precision)
241
+ else:
242
+ r_func = repr
243
+
244
+ try:
245
+ r = r_func(a)
246
+ except Exception as exc:
247
+ r = f'[repr failed for <{type(a).__name__}>: {exc}]'
248
+ if r.count('\n') > 3:
249
+ r = '\n'.join(r.splitlines()[:3])
250
+ r += '...'
251
+ msg.append(f' {names[i]}: {r}')
252
+ return '\n'.join(msg)
253
+
254
+
255
+ def assert_equal(actual, desired, err_msg='', verbose=True, *, strict=False):
256
+ """
257
+ Raises an AssertionError if two objects are not equal.
258
+
259
+ Given two objects (scalars, lists, tuples, dictionaries or numpy arrays),
260
+ check that all elements of these objects are equal. An exception is raised
261
+ at the first conflicting values.
262
+
263
+ This function handles NaN comparisons as if NaN was a "normal" number.
264
+ That is, AssertionError is not raised if both objects have NaNs in the same
265
+ positions. This is in contrast to the IEEE standard on NaNs, which says
266
+ that NaN compared to anything must return False.
267
+
268
+ Parameters
269
+ ----------
270
+ actual : array_like
271
+ The object to check.
272
+ desired : array_like
273
+ The expected object.
274
+ err_msg : str, optional
275
+ The error message to be printed in case of failure.
276
+ verbose : bool, optional
277
+ If True, the conflicting values are appended to the error message.
278
+ strict : bool, optional
279
+ If True and either of the `actual` and `desired` arguments is an array,
280
+ raise an ``AssertionError`` when either the shape or the data type of
281
+ the arguments does not match. If neither argument is an array, this
282
+ parameter has no effect.
283
+
284
+ .. versionadded:: 2.0.0
285
+
286
+ Raises
287
+ ------
288
+ AssertionError
289
+ If actual and desired are not equal.
290
+
291
+ See Also
292
+ --------
293
+ assert_allclose
294
+ assert_array_almost_equal_nulp,
295
+ assert_array_max_ulp,
296
+
297
+ Notes
298
+ -----
299
+ When one of `actual` and `desired` is a scalar and the other is array_like, the
300
+ function checks that each element of the array_like is equal to the scalar.
301
+ Note that empty arrays are therefore considered equal to scalars.
302
+ This behaviour can be disabled by setting ``strict==True``.
303
+
304
+ Examples
305
+ --------
306
+ >>> np.testing.assert_equal([4, 5], [4, 6])
307
+ Traceback (most recent call last):
308
+ ...
309
+ AssertionError:
310
+ Items are not equal:
311
+ item=1
312
+ ACTUAL: 5
313
+ DESIRED: 6
314
+
315
+ The following comparison does not raise an exception. There are NaNs
316
+ in the inputs, but they are in the same positions.
317
+
318
+ >>> np.testing.assert_equal(np.array([1.0, 2.0, np.nan]), [1, 2, np.nan])
319
+
320
+ As mentioned in the Notes section, `assert_equal` has special
321
+ handling for scalars when one of the arguments is an array.
322
+ Here, the test checks that each value in `x` is 3:
323
+
324
+ >>> x = np.full((2, 5), fill_value=3)
325
+ >>> np.testing.assert_equal(x, 3)
326
+
327
+ Use `strict` to raise an AssertionError when comparing a scalar with an
328
+ array of a different shape:
329
+
330
+ >>> np.testing.assert_equal(x, 3, strict=True)
331
+ Traceback (most recent call last):
332
+ ...
333
+ AssertionError:
334
+ Arrays are not equal
335
+ <BLANKLINE>
336
+ (shapes (2, 5), () mismatch)
337
+ ACTUAL: array([[3, 3, 3, 3, 3],
338
+ [3, 3, 3, 3, 3]])
339
+ DESIRED: array(3)
340
+
341
+ The `strict` parameter also ensures that the array data types match:
342
+
343
+ >>> x = np.array([2, 2, 2])
344
+ >>> y = np.array([2., 2., 2.], dtype=np.float32)
345
+ >>> np.testing.assert_equal(x, y, strict=True)
346
+ Traceback (most recent call last):
347
+ ...
348
+ AssertionError:
349
+ Arrays are not equal
350
+ <BLANKLINE>
351
+ (dtypes int64, float32 mismatch)
352
+ ACTUAL: array([2, 2, 2])
353
+ DESIRED: array([2., 2., 2.], dtype=float32)
354
+ """
355
+ __tracebackhide__ = True # Hide traceback for py.test
356
+ if isinstance(desired, dict):
357
+ if not isinstance(actual, dict):
358
+ raise AssertionError(repr(type(actual)))
359
+ assert_equal(len(actual), len(desired), err_msg, verbose)
360
+ for k in desired:
361
+ if k not in actual:
362
+ raise AssertionError(repr(k))
363
+ assert_equal(actual[k], desired[k], f'key={k!r}\n{err_msg}',
364
+ verbose)
365
+ return
366
+ if isinstance(desired, (list, tuple)) and isinstance(actual, (list, tuple)):
367
+ assert_equal(len(actual), len(desired), err_msg, verbose)
368
+ for k in range(len(desired)):
369
+ assert_equal(actual[k], desired[k], f'item={k!r}\n{err_msg}',
370
+ verbose)
371
+ return
372
+ from numpy import imag, iscomplexobj, real
373
+ from numpy._core import isscalar, ndarray, signbit
374
+ if isinstance(actual, ndarray) or isinstance(desired, ndarray):
375
+ return assert_array_equal(actual, desired, err_msg, verbose,
376
+ strict=strict)
377
+ msg = build_err_msg([actual, desired], err_msg, verbose=verbose)
378
+
379
+ # Handle complex numbers: separate into real/imag to handle
380
+ # nan/inf/negative zero correctly
381
+ # XXX: catch ValueError for subclasses of ndarray where iscomplex fail
382
+ try:
383
+ usecomplex = iscomplexobj(actual) or iscomplexobj(desired)
384
+ except (ValueError, TypeError):
385
+ usecomplex = False
386
+
387
+ if usecomplex:
388
+ if iscomplexobj(actual):
389
+ actualr = real(actual)
390
+ actuali = imag(actual)
391
+ else:
392
+ actualr = actual
393
+ actuali = 0
394
+ if iscomplexobj(desired):
395
+ desiredr = real(desired)
396
+ desiredi = imag(desired)
397
+ else:
398
+ desiredr = desired
399
+ desiredi = 0
400
+ try:
401
+ assert_equal(actualr, desiredr)
402
+ assert_equal(actuali, desiredi)
403
+ except AssertionError:
404
+ raise AssertionError(msg)
405
+
406
+ # isscalar test to check cases such as [np.nan] != np.nan
407
+ if isscalar(desired) != isscalar(actual):
408
+ raise AssertionError(msg)
409
+
410
+ try:
411
+ isdesnat = isnat(desired)
412
+ isactnat = isnat(actual)
413
+ dtypes_match = (np.asarray(desired).dtype.type ==
414
+ np.asarray(actual).dtype.type)
415
+ if isdesnat and isactnat:
416
+ # If both are NaT (and have the same dtype -- datetime or
417
+ # timedelta) they are considered equal.
418
+ if dtypes_match:
419
+ return
420
+ else:
421
+ raise AssertionError(msg)
422
+
423
+ except (TypeError, ValueError, NotImplementedError):
424
+ pass
425
+
426
+ # Inf/nan/negative zero handling
427
+ try:
428
+ isdesnan = isnan(desired)
429
+ isactnan = isnan(actual)
430
+ if isdesnan and isactnan:
431
+ return # both nan, so equal
432
+
433
+ # handle signed zero specially for floats
434
+ array_actual = np.asarray(actual)
435
+ array_desired = np.asarray(desired)
436
+ if (array_actual.dtype.char in 'Mm' or
437
+ array_desired.dtype.char in 'Mm'):
438
+ # version 1.18
439
+ # until this version, isnan failed for datetime64 and timedelta64.
440
+ # Now it succeeds but comparison to scalar with a different type
441
+ # emits a DeprecationWarning.
442
+ # Avoid that by skipping the next check
443
+ raise NotImplementedError('cannot compare to a scalar '
444
+ 'with a different type')
445
+
446
+ if desired == 0 and actual == 0:
447
+ if not signbit(desired) == signbit(actual):
448
+ raise AssertionError(msg)
449
+
450
+ except (TypeError, ValueError, NotImplementedError):
451
+ pass
452
+
453
+ try:
454
+ # Explicitly use __eq__ for comparison, gh-2552
455
+ if not (desired == actual):
456
+ raise AssertionError(msg)
457
+
458
+ except (DeprecationWarning, FutureWarning) as e:
459
+ # this handles the case when the two types are not even comparable
460
+ if 'elementwise == comparison' in e.args[0]:
461
+ raise AssertionError(msg)
462
+ else:
463
+ raise
464
+
465
+
466
+ def print_assert_equal(test_string, actual, desired):
467
+ """
468
+ Test if two objects are equal, and print an error message if test fails.
469
+
470
+ The test is performed with ``actual == desired``.
471
+
472
+ Parameters
473
+ ----------
474
+ test_string : str
475
+ The message supplied to AssertionError.
476
+ actual : object
477
+ The object to test for equality against `desired`.
478
+ desired : object
479
+ The expected result.
480
+
481
+ Examples
482
+ --------
483
+ >>> np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 1])
484
+ >>> np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 2])
485
+ Traceback (most recent call last):
486
+ ...
487
+ AssertionError: Test XYZ of func xyz failed
488
+ ACTUAL:
489
+ [0, 1]
490
+ DESIRED:
491
+ [0, 2]
492
+
493
+ """
494
+ __tracebackhide__ = True # Hide traceback for py.test
495
+ import pprint
496
+
497
+ if not (actual == desired):
498
+ msg = StringIO()
499
+ msg.write(test_string)
500
+ msg.write(' failed\nACTUAL: \n')
501
+ pprint.pprint(actual, msg)
502
+ msg.write('DESIRED: \n')
503
+ pprint.pprint(desired, msg)
504
+ raise AssertionError(msg.getvalue())
505
+
506
+
507
+ def assert_almost_equal(actual, desired, decimal=7, err_msg='', verbose=True):
508
+ """
509
+ Raises an AssertionError if two items are not equal up to desired
510
+ precision.
511
+
512
+ .. note:: It is recommended to use one of `assert_allclose`,
513
+ `assert_array_almost_equal_nulp` or `assert_array_max_ulp`
514
+ instead of this function for more consistent floating point
515
+ comparisons.
516
+
517
+ The test verifies that the elements of `actual` and `desired` satisfy::
518
+
519
+ abs(desired-actual) < float64(1.5 * 10**(-decimal))
520
+
521
+ That is a looser test than originally documented, but agrees with what the
522
+ actual implementation in `assert_array_almost_equal` did up to rounding
523
+ vagaries. An exception is raised at conflicting values. For ndarrays this
524
+ delegates to assert_array_almost_equal
525
+
526
+ Parameters
527
+ ----------
528
+ actual : array_like
529
+ The object to check.
530
+ desired : array_like
531
+ The expected object.
532
+ decimal : int, optional
533
+ Desired precision, default is 7.
534
+ err_msg : str, optional
535
+ The error message to be printed in case of failure.
536
+ verbose : bool, optional
537
+ If True, the conflicting values are appended to the error message.
538
+
539
+ Raises
540
+ ------
541
+ AssertionError
542
+ If actual and desired are not equal up to specified precision.
543
+
544
+ See Also
545
+ --------
546
+ assert_allclose: Compare two array_like objects for equality with desired
547
+ relative and/or absolute precision.
548
+ assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal
549
+
550
+ Examples
551
+ --------
552
+ >>> from numpy.testing import assert_almost_equal
553
+ >>> assert_almost_equal(2.3333333333333, 2.33333334)
554
+ >>> assert_almost_equal(2.3333333333333, 2.33333334, decimal=10)
555
+ Traceback (most recent call last):
556
+ ...
557
+ AssertionError:
558
+ Arrays are not almost equal to 10 decimals
559
+ ACTUAL: 2.3333333333333
560
+ DESIRED: 2.33333334
561
+
562
+ >>> assert_almost_equal(np.array([1.0,2.3333333333333]),
563
+ ... np.array([1.0,2.33333334]), decimal=9)
564
+ Traceback (most recent call last):
565
+ ...
566
+ AssertionError:
567
+ Arrays are not almost equal to 9 decimals
568
+ <BLANKLINE>
569
+ Mismatched elements: 1 / 2 (50%)
570
+ Mismatch at index:
571
+ [1]: 2.3333333333333 (ACTUAL), 2.33333334 (DESIRED)
572
+ Max absolute difference among violations: 6.66669964e-09
573
+ Max relative difference among violations: 2.85715698e-09
574
+ ACTUAL: array([1. , 2.333333333])
575
+ DESIRED: array([1. , 2.33333334])
576
+
577
+ """
578
+ __tracebackhide__ = True # Hide traceback for py.test
579
+ from numpy import imag, iscomplexobj, real
580
+ from numpy._core import ndarray
581
+
582
+ # Handle complex numbers: separate into real/imag to handle
583
+ # nan/inf/negative zero correctly
584
+ # XXX: catch ValueError for subclasses of ndarray where iscomplex fail
585
+ try:
586
+ usecomplex = iscomplexobj(actual) or iscomplexobj(desired)
587
+ except ValueError:
588
+ usecomplex = False
589
+
590
+ def _build_err_msg():
591
+ header = ('Arrays are not almost equal to %d decimals' % decimal)
592
+ return build_err_msg([actual, desired], err_msg, verbose=verbose,
593
+ header=header)
594
+
595
+ if usecomplex:
596
+ if iscomplexobj(actual):
597
+ actualr = real(actual)
598
+ actuali = imag(actual)
599
+ else:
600
+ actualr = actual
601
+ actuali = 0
602
+ if iscomplexobj(desired):
603
+ desiredr = real(desired)
604
+ desiredi = imag(desired)
605
+ else:
606
+ desiredr = desired
607
+ desiredi = 0
608
+ try:
609
+ assert_almost_equal(actualr, desiredr, decimal=decimal)
610
+ assert_almost_equal(actuali, desiredi, decimal=decimal)
611
+ except AssertionError:
612
+ raise AssertionError(_build_err_msg())
613
+
614
+ if isinstance(actual, (ndarray, tuple, list)) \
615
+ or isinstance(desired, (ndarray, tuple, list)):
616
+ return assert_array_almost_equal(actual, desired, decimal, err_msg)
617
+ try:
618
+ # If one of desired/actual is not finite, handle it specially here:
619
+ # check that both are nan if any is a nan, and test for equality
620
+ # otherwise
621
+ if not (isfinite(desired) and isfinite(actual)):
622
+ if isnan(desired) or isnan(actual):
623
+ if not (isnan(desired) and isnan(actual)):
624
+ raise AssertionError(_build_err_msg())
625
+ elif not desired == actual:
626
+ raise AssertionError(_build_err_msg())
627
+ return
628
+ except (NotImplementedError, TypeError):
629
+ pass
630
+ if abs(desired - actual) >= np.float64(1.5 * 10.0**(-decimal)):
631
+ raise AssertionError(_build_err_msg())
632
+
633
+
634
+ def assert_approx_equal(actual, desired, significant=7, err_msg='',
635
+ verbose=True):
636
+ """
637
+ Raises an AssertionError if two items are not equal up to significant
638
+ digits.
639
+
640
+ .. note:: It is recommended to use one of `assert_allclose`,
641
+ `assert_array_almost_equal_nulp` or `assert_array_max_ulp`
642
+ instead of this function for more consistent floating point
643
+ comparisons.
644
+
645
+ Given two numbers, check that they are approximately equal.
646
+ Approximately equal is defined as the number of significant digits
647
+ that agree.
648
+
649
+ Parameters
650
+ ----------
651
+ actual : scalar
652
+ The object to check.
653
+ desired : scalar
654
+ The expected object.
655
+ significant : int, optional
656
+ Desired precision, default is 7.
657
+ err_msg : str, optional
658
+ The error message to be printed in case of failure.
659
+ verbose : bool, optional
660
+ If True, the conflicting values are appended to the error message.
661
+
662
+ Raises
663
+ ------
664
+ AssertionError
665
+ If actual and desired are not equal up to specified precision.
666
+
667
+ See Also
668
+ --------
669
+ assert_allclose: Compare two array_like objects for equality with desired
670
+ relative and/or absolute precision.
671
+ assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal
672
+
673
+ Examples
674
+ --------
675
+ >>> np.testing.assert_approx_equal(0.12345677777777e-20, 0.1234567e-20)
676
+ >>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345671e-20,
677
+ ... significant=8)
678
+ >>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345672e-20,
679
+ ... significant=8)
680
+ Traceback (most recent call last):
681
+ ...
682
+ AssertionError:
683
+ Items are not equal to 8 significant digits:
684
+ ACTUAL: 1.234567e-21
685
+ DESIRED: 1.2345672e-21
686
+
687
+ the evaluated condition that raises the exception is
688
+
689
+ >>> abs(0.12345670e-20/1e-21 - 0.12345672e-20/1e-21) >= 10**-(8-1)
690
+ True
691
+
692
+ """
693
+ __tracebackhide__ = True # Hide traceback for py.test
694
+ import numpy as np
695
+
696
+ (actual, desired) = map(float, (actual, desired))
697
+ if desired == actual:
698
+ return
699
+ # Normalized the numbers to be in range (-10.0,10.0)
700
+ # scale = float(pow(10,math.floor(math.log10(0.5*(abs(desired)+abs(actual))))))
701
+ with np.errstate(invalid='ignore'):
702
+ scale = 0.5 * (np.abs(desired) + np.abs(actual))
703
+ scale = np.power(10, np.floor(np.log10(scale)))
704
+ try:
705
+ sc_desired = desired / scale
706
+ except ZeroDivisionError:
707
+ sc_desired = 0.0
708
+ try:
709
+ sc_actual = actual / scale
710
+ except ZeroDivisionError:
711
+ sc_actual = 0.0
712
+ msg = build_err_msg(
713
+ [actual, desired], err_msg,
714
+ header='Items are not equal to %d significant digits:' % significant,
715
+ verbose=verbose)
716
+ try:
717
+ # If one of desired/actual is not finite, handle it specially here:
718
+ # check that both are nan if any is a nan, and test for equality
719
+ # otherwise
720
+ if not (isfinite(desired) and isfinite(actual)):
721
+ if isnan(desired) or isnan(actual):
722
+ if not (isnan(desired) and isnan(actual)):
723
+ raise AssertionError(msg)
724
+ elif not desired == actual:
725
+ raise AssertionError(msg)
726
+ return
727
+ except (TypeError, NotImplementedError):
728
+ pass
729
+ if np.abs(sc_desired - sc_actual) >= np.power(10., -(significant - 1)):
730
+ raise AssertionError(msg)
731
+
732
+
733
+ def assert_array_compare(comparison, x, y, err_msg='', verbose=True, header='',
734
+ precision=6, equal_nan=True, equal_inf=True,
735
+ *, strict=False, names=('ACTUAL', 'DESIRED')):
736
+ __tracebackhide__ = True # Hide traceback for py.test
737
+ from numpy._core import all, array2string, errstate, inf, isnan, max, object_
738
+
739
+ x = np.asanyarray(x)
740
+ y = np.asanyarray(y)
741
+
742
+ # original array for output formatting
743
+ ox, oy = x, y
744
+
745
+ def isnumber(x):
746
+ return x.dtype.char in '?bhilqpBHILQPefdgFDG'
747
+
748
+ def istime(x):
749
+ return x.dtype.char in "Mm"
750
+
751
+ def isvstring(x):
752
+ return x.dtype.char == "T"
753
+
754
+ def robust_any_difference(x, y):
755
+ # We include work-arounds here to handle three types of slightly
756
+ # pathological ndarray subclasses:
757
+ # (1) all() on fully masked arrays returns np.ma.masked, so we use != True
758
+ # (np.ma.masked != True evaluates as np.ma.masked, which is falsy).
759
+ # (2) __eq__ on some ndarray subclasses returns Python booleans
760
+ # instead of element-wise comparisons, so we cast to np.bool() in
761
+ # that case (or in case __eq__ returns some other value with no
762
+ # all() method).
763
+ # (3) subclasses with bare-bones __array_function__ implementations may
764
+ # not implement np.all(), so favor using the .all() method
765
+ # We are not committed to supporting cases (2) and (3), but it's nice to
766
+ # support them if possible.
767
+ result = x == y
768
+ if not hasattr(result, "all") or not callable(result.all):
769
+ result = np.bool(result)
770
+ return result.all() != True
771
+
772
+ def func_assert_same_pos(x, y, func=isnan, hasval='nan'):
773
+ """Handling nan/inf.
774
+
775
+ Combine results of running func on x and y, checking that they are True
776
+ at the same locations.
777
+
778
+ """
779
+ __tracebackhide__ = True # Hide traceback for py.test
780
+
781
+ x_id = func(x)
782
+ y_id = func(y)
783
+ if robust_any_difference(x_id, y_id):
784
+ msg = build_err_msg(
785
+ [x, y],
786
+ err_msg + '\n%s location mismatch:'
787
+ % (hasval), verbose=verbose, header=header,
788
+ names=names,
789
+ precision=precision)
790
+ raise AssertionError(msg)
791
+ # If there is a scalar, then here we know the array has the same
792
+ # flag as it everywhere, so we should return the scalar flag.
793
+ # np.ma.masked is also handled and converted to np.False_ (even if the other
794
+ # array has nans/infs etc.; that's OK given the handling later of fully-masked
795
+ # results).
796
+ if isinstance(x_id, bool) or x_id.ndim == 0:
797
+ return np.bool(x_id)
798
+ elif isinstance(y_id, bool) or y_id.ndim == 0:
799
+ return np.bool(y_id)
800
+ else:
801
+ return y_id
802
+
803
+ def assert_same_inf_values(x, y, infs_mask):
804
+ """
805
+ Verify all inf values match in the two arrays
806
+ """
807
+ __tracebackhide__ = True # Hide traceback for py.test
808
+
809
+ if not infs_mask.any():
810
+ return
811
+ if x.ndim > 0 and y.ndim > 0:
812
+ x = x[infs_mask]
813
+ y = y[infs_mask]
814
+ else:
815
+ assert infs_mask.all()
816
+
817
+ if robust_any_difference(x, y):
818
+ msg = build_err_msg(
819
+ [x, y],
820
+ err_msg + '\ninf values mismatch:',
821
+ verbose=verbose, header=header,
822
+ names=names,
823
+ precision=precision)
824
+ raise AssertionError(msg)
825
+
826
+ try:
827
+ if strict:
828
+ cond = x.shape == y.shape and x.dtype == y.dtype
829
+ else:
830
+ cond = (x.shape == () or y.shape == ()) or x.shape == y.shape
831
+ if not cond:
832
+ if x.shape != y.shape:
833
+ reason = f'\n(shapes {x.shape}, {y.shape} mismatch)'
834
+ else:
835
+ reason = f'\n(dtypes {x.dtype}, {y.dtype} mismatch)'
836
+ msg = build_err_msg([x, y],
837
+ err_msg
838
+ + reason,
839
+ verbose=verbose, header=header,
840
+ names=names,
841
+ precision=precision)
842
+ raise AssertionError(msg)
843
+
844
+ flagged = np.bool(False)
845
+ if isnumber(x) and isnumber(y):
846
+ if equal_nan:
847
+ flagged = func_assert_same_pos(x, y, func=isnan, hasval='nan')
848
+
849
+ if equal_inf:
850
+ # If equal_nan=True, skip comparing nans below for equality if they are
851
+ # also infs (e.g. inf+nanj) since that would always fail.
852
+ isinf_func = lambda xy: np.logical_and(np.isinf(xy), np.invert(flagged))
853
+ infs_mask = func_assert_same_pos(
854
+ x, y,
855
+ func=isinf_func,
856
+ hasval='inf')
857
+ assert_same_inf_values(x, y, infs_mask)
858
+ flagged |= infs_mask
859
+
860
+ elif istime(x) and istime(y):
861
+ # If one is datetime64 and the other timedelta64 there is no point
862
+ if equal_nan and x.dtype.type == y.dtype.type:
863
+ flagged = func_assert_same_pos(x, y, func=isnat, hasval="NaT")
864
+
865
+ elif isvstring(x) and isvstring(y):
866
+ dt = x.dtype
867
+ if equal_nan and dt == y.dtype and hasattr(dt, 'na_object'):
868
+ is_nan = (isinstance(dt.na_object, float) and
869
+ np.isnan(dt.na_object))
870
+ bool_errors = 0
871
+ try:
872
+ bool(dt.na_object)
873
+ except TypeError:
874
+ bool_errors = 1
875
+ if is_nan or bool_errors:
876
+ # nan-like NA object
877
+ flagged = func_assert_same_pos(
878
+ x, y, func=isnan, hasval=x.dtype.na_object)
879
+
880
+ if flagged.ndim > 0:
881
+ x, y = x[~flagged], y[~flagged]
882
+ # Only do the comparison if actual values are left
883
+ if x.size == 0:
884
+ return
885
+ elif flagged:
886
+ # no sense doing comparison if everything is flagged.
887
+ return
888
+
889
+ val = comparison(x, y)
890
+ invalids = np.logical_not(val)
891
+
892
+ if isinstance(val, bool):
893
+ cond = val
894
+ reduced = array([val])
895
+ else:
896
+ reduced = val.ravel()
897
+ cond = reduced.all()
898
+
899
+ # The below comparison is a hack to ensure that fully masked
900
+ # results, for which val.ravel().all() returns np.ma.masked,
901
+ # do not trigger a failure (np.ma.masked != True evaluates as
902
+ # np.ma.masked, which is falsy).
903
+ if cond != True:
904
+ n_mismatch = reduced.size - reduced.sum(dtype=intp)
905
+ n_elements = flagged.size if flagged.ndim != 0 else reduced.size
906
+ percent_mismatch = 100 * n_mismatch / n_elements
907
+ remarks = [f'Mismatched elements: {n_mismatch} / {n_elements} '
908
+ f'({percent_mismatch:.3g}%)']
909
+ if invalids.ndim != 0:
910
+ if flagged.ndim > 0:
911
+ positions = np.argwhere(np.asarray(~flagged))[invalids]
912
+ else:
913
+ positions = np.argwhere(np.asarray(invalids))
914
+ s = "\n".join(
915
+ [
916
+ f" {p.tolist()}: {ox if ox.ndim == 0 else ox[tuple(p)]} "
917
+ f"({names[0]}), {oy if oy.ndim == 0 else oy[tuple(p)]} "
918
+ f"({names[1]})"
919
+ for p in positions[:5]
920
+ ]
921
+ )
922
+ if len(positions) == 1:
923
+ remarks.append(
924
+ f"Mismatch at index:\n{s}"
925
+ )
926
+ elif len(positions) <= 5:
927
+ remarks.append(
928
+ f"Mismatch at indices:\n{s}"
929
+ )
930
+ else:
931
+ remarks.append(
932
+ f"First 5 mismatches are at indices:\n{s}"
933
+ )
934
+
935
+ with errstate(all='ignore'):
936
+ # ignore errors for non-numeric types
937
+ with contextlib.suppress(TypeError):
938
+ error = abs(x - y)
939
+ if np.issubdtype(x.dtype, np.unsignedinteger):
940
+ error2 = abs(y - x)
941
+ np.minimum(error, error2, out=error)
942
+
943
+ reduced_error = error[invalids]
944
+ max_abs_error = max(reduced_error)
945
+ if getattr(error, 'dtype', object_) == object_:
946
+ remarks.append(
947
+ 'Max absolute difference among violations: '
948
+ + str(max_abs_error))
949
+ else:
950
+ remarks.append(
951
+ 'Max absolute difference among violations: '
952
+ + array2string(max_abs_error))
953
+
954
+ # note: this definition of relative error matches that one
955
+ # used by assert_allclose (found in np.isclose)
956
+ # Filter values where the divisor would be zero
957
+ nonzero = np.bool(y != 0)
958
+ nonzero_and_invalid = np.logical_and(invalids, nonzero)
959
+
960
+ if all(~nonzero_and_invalid):
961
+ max_rel_error = array(inf)
962
+ else:
963
+ nonzero_invalid_error = error[nonzero_and_invalid]
964
+ broadcasted_y = np.broadcast_to(y, error.shape)
965
+ nonzero_invalid_y = broadcasted_y[nonzero_and_invalid]
966
+ max_rel_error = max(nonzero_invalid_error
967
+ / abs(nonzero_invalid_y))
968
+
969
+ if getattr(error, 'dtype', object_) == object_:
970
+ remarks.append(
971
+ 'Max relative difference among violations: '
972
+ + str(max_rel_error))
973
+ else:
974
+ remarks.append(
975
+ 'Max relative difference among violations: '
976
+ + array2string(max_rel_error))
977
+ err_msg = str(err_msg)
978
+ err_msg += '\n' + '\n'.join(remarks)
979
+ msg = build_err_msg([ox, oy], err_msg,
980
+ verbose=verbose, header=header,
981
+ names=names,
982
+ precision=precision)
983
+ raise AssertionError(msg)
984
+ except ValueError:
985
+ import traceback
986
+ efmt = traceback.format_exc()
987
+ header = f'error during assertion:\n\n{efmt}\n\n{header}'
988
+
989
+ msg = build_err_msg([x, y], err_msg, verbose=verbose, header=header,
990
+ names=names, precision=precision)
991
+ raise ValueError(msg)
992
+
993
+
994
+ def assert_array_equal(actual, desired, err_msg='', verbose=True, *,
995
+ strict=False):
996
+ """
997
+ Raises an AssertionError if two array_like objects are not equal.
998
+
999
+ Given two array_like objects, check that the shape is equal and all
1000
+ elements of these objects are equal (but see the Notes for the special
1001
+ handling of a scalar). An exception is raised at shape mismatch or
1002
+ conflicting values. In contrast to the standard usage in numpy, NaNs
1003
+ are compared like numbers, no assertion is raised if both objects have
1004
+ NaNs in the same positions.
1005
+
1006
+ The usual caution for verifying equality with floating point numbers is
1007
+ advised.
1008
+
1009
+ .. note:: When either `actual` or `desired` is already an instance of
1010
+ `numpy.ndarray` and `desired` is not a ``dict``, the behavior of
1011
+ ``assert_equal(actual, desired)`` is identical to the behavior of this
1012
+ function. Otherwise, this function performs `np.asanyarray` on the
1013
+ inputs before comparison, whereas `assert_equal` defines special
1014
+ comparison rules for common Python types. For example, only
1015
+ `assert_equal` can be used to compare nested Python lists. In new code,
1016
+ consider using only `assert_equal`, explicitly converting either
1017
+ `actual` or `desired` to arrays if the behavior of `assert_array_equal`
1018
+ is desired.
1019
+
1020
+ Parameters
1021
+ ----------
1022
+ actual : array_like
1023
+ The actual object to check.
1024
+ desired : array_like
1025
+ The desired, expected object.
1026
+ err_msg : str, optional
1027
+ The error message to be printed in case of failure.
1028
+ verbose : bool, optional
1029
+ If True, the conflicting values are appended to the error message.
1030
+ strict : bool, optional
1031
+ If True, raise an AssertionError when either the shape or the data
1032
+ type of the array_like objects does not match. The special
1033
+ handling for scalars mentioned in the Notes section is disabled.
1034
+
1035
+ .. versionadded:: 1.24.0
1036
+
1037
+ Raises
1038
+ ------
1039
+ AssertionError
1040
+ If actual and desired objects are not equal.
1041
+
1042
+ See Also
1043
+ --------
1044
+ assert_allclose: Compare two array_like objects for equality with desired
1045
+ relative and/or absolute precision.
1046
+ assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal
1047
+
1048
+ Notes
1049
+ -----
1050
+ When one of `actual` and `desired` is a scalar and the other is array_like, the
1051
+ function checks that each element of the array_like is equal to the scalar.
1052
+ Note that empty arrays are therefore considered equal to scalars.
1053
+ This behaviour can be disabled by setting ``strict==True``.
1054
+
1055
+ Examples
1056
+ --------
1057
+ The first assert does not raise an exception:
1058
+
1059
+ >>> np.testing.assert_array_equal([1.0,2.33333,np.nan],
1060
+ ... [np.exp(0),2.33333, np.nan])
1061
+
1062
+ Assert fails with numerical imprecision with floats:
1063
+
1064
+ >>> np.testing.assert_array_equal([1.0,np.pi,np.nan],
1065
+ ... [1, np.sqrt(np.pi)**2, np.nan])
1066
+ Traceback (most recent call last):
1067
+ ...
1068
+ AssertionError:
1069
+ Arrays are not equal
1070
+ <BLANKLINE>
1071
+ Mismatched elements: 1 / 3 (33.3%)
1072
+ Mismatch at index:
1073
+ [1]: 3.141592653589793 (ACTUAL), 3.1415926535897927 (DESIRED)
1074
+ Max absolute difference among violations: 4.4408921e-16
1075
+ Max relative difference among violations: 1.41357986e-16
1076
+ ACTUAL: array([1. , 3.141593, nan])
1077
+ DESIRED: array([1. , 3.141593, nan])
1078
+
1079
+ Use `assert_allclose` or one of the nulp (number of floating point values)
1080
+ functions for these cases instead:
1081
+
1082
+ >>> np.testing.assert_allclose([1.0,np.pi,np.nan],
1083
+ ... [1, np.sqrt(np.pi)**2, np.nan],
1084
+ ... rtol=1e-10, atol=0)
1085
+
1086
+ As mentioned in the Notes section, `assert_array_equal` has special
1087
+ handling for scalars. Here the test checks that each value in `x` is 3:
1088
+
1089
+ >>> x = np.full((2, 5), fill_value=3)
1090
+ >>> np.testing.assert_array_equal(x, 3)
1091
+
1092
+ Use `strict` to raise an AssertionError when comparing a scalar with an
1093
+ array:
1094
+
1095
+ >>> np.testing.assert_array_equal(x, 3, strict=True)
1096
+ Traceback (most recent call last):
1097
+ ...
1098
+ AssertionError:
1099
+ Arrays are not equal
1100
+ <BLANKLINE>
1101
+ (shapes (2, 5), () mismatch)
1102
+ ACTUAL: array([[3, 3, 3, 3, 3],
1103
+ [3, 3, 3, 3, 3]])
1104
+ DESIRED: array(3)
1105
+
1106
+ The `strict` parameter also ensures that the array data types match:
1107
+
1108
+ >>> x = np.array([2, 2, 2])
1109
+ >>> y = np.array([2., 2., 2.], dtype=np.float32)
1110
+ >>> np.testing.assert_array_equal(x, y, strict=True)
1111
+ Traceback (most recent call last):
1112
+ ...
1113
+ AssertionError:
1114
+ Arrays are not equal
1115
+ <BLANKLINE>
1116
+ (dtypes int64, float32 mismatch)
1117
+ ACTUAL: array([2, 2, 2])
1118
+ DESIRED: array([2., 2., 2.], dtype=float32)
1119
+ """
1120
+ __tracebackhide__ = True # Hide traceback for py.test
1121
+ assert_array_compare(operator.__eq__, actual, desired, err_msg=err_msg,
1122
+ verbose=verbose, header='Arrays are not equal',
1123
+ strict=strict)
1124
+
1125
+
1126
+ def assert_array_almost_equal(actual, desired, decimal=6, err_msg='',
1127
+ verbose=True):
1128
+ """
1129
+ Raises an AssertionError if two objects are not equal up to desired
1130
+ precision.
1131
+
1132
+ .. note:: It is recommended to use one of `assert_allclose`,
1133
+ `assert_array_almost_equal_nulp` or `assert_array_max_ulp`
1134
+ instead of this function for more consistent floating point
1135
+ comparisons.
1136
+
1137
+ The test verifies identical shapes and that the elements of ``actual`` and
1138
+ ``desired`` satisfy::
1139
+
1140
+ abs(desired-actual) < 1.5 * 10**(-decimal)
1141
+
1142
+ That is a looser test than originally documented, but agrees with what the
1143
+ actual implementation did up to rounding vagaries. An exception is raised
1144
+ at shape mismatch or conflicting values. In contrast to the standard usage
1145
+ in numpy, NaNs are compared like numbers, no assertion is raised if both
1146
+ objects have NaNs in the same positions.
1147
+
1148
+ Parameters
1149
+ ----------
1150
+ actual : array_like
1151
+ The actual object to check.
1152
+ desired : array_like
1153
+ The desired, expected object.
1154
+ decimal : int, optional
1155
+ Desired precision, default is 6.
1156
+ err_msg : str, optional
1157
+ The error message to be printed in case of failure.
1158
+ verbose : bool, optional
1159
+ If True, the conflicting values are appended to the error message.
1160
+
1161
+ Raises
1162
+ ------
1163
+ AssertionError
1164
+ If actual and desired are not equal up to specified precision.
1165
+
1166
+ See Also
1167
+ --------
1168
+ assert_allclose: Compare two array_like objects for equality with desired
1169
+ relative and/or absolute precision.
1170
+ assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal
1171
+
1172
+ Examples
1173
+ --------
1174
+ the first assert does not raise an exception
1175
+
1176
+ >>> np.testing.assert_array_almost_equal([1.0,2.333,np.nan],
1177
+ ... [1.0,2.333,np.nan])
1178
+
1179
+ >>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan],
1180
+ ... [1.0,2.33339,np.nan], decimal=5)
1181
+ Traceback (most recent call last):
1182
+ ...
1183
+ AssertionError:
1184
+ Arrays are not almost equal to 5 decimals
1185
+ <BLANKLINE>
1186
+ Mismatched elements: 1 / 3 (33.3%)
1187
+ Mismatch at index:
1188
+ [1]: 2.33333 (ACTUAL), 2.33339 (DESIRED)
1189
+ Max absolute difference among violations: 6.e-05
1190
+ Max relative difference among violations: 2.57136612e-05
1191
+ ACTUAL: array([1. , 2.33333, nan])
1192
+ DESIRED: array([1. , 2.33339, nan])
1193
+
1194
+ >>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan],
1195
+ ... [1.0,2.33333, 5], decimal=5)
1196
+ Traceback (most recent call last):
1197
+ ...
1198
+ AssertionError:
1199
+ Arrays are not almost equal to 5 decimals
1200
+ <BLANKLINE>
1201
+ nan location mismatch:
1202
+ ACTUAL: array([1. , 2.33333, nan])
1203
+ DESIRED: array([1. , 2.33333, 5. ])
1204
+
1205
+ """
1206
+ __tracebackhide__ = True # Hide traceback for py.test
1207
+ from numpy._core import number, result_type
1208
+ from numpy._core.numerictypes import issubdtype
1209
+
1210
+ def compare(x, y):
1211
+ # make sure y is an inexact type to avoid abs(MIN_INT); will cause
1212
+ # casting of x later.
1213
+ dtype = result_type(y, 1.)
1214
+ y = np.asanyarray(y, dtype)
1215
+ z = abs(x - y)
1216
+
1217
+ if not issubdtype(z.dtype, number):
1218
+ z = z.astype(np.float64) # handle object arrays
1219
+
1220
+ return z < 1.5 * 10.0**(-decimal)
1221
+
1222
+ assert_array_compare(compare, actual, desired, err_msg=err_msg,
1223
+ verbose=verbose,
1224
+ header=('Arrays are not almost equal to %d decimals' % decimal),
1225
+ precision=decimal)
1226
+
1227
+
1228
+ def assert_array_less(x, y, err_msg='', verbose=True, *, strict=False):
1229
+ """
1230
+ Raises an AssertionError if two array_like objects are not ordered by less
1231
+ than.
1232
+
1233
+ Given two array_like objects `x` and `y`, check that the shape is equal and
1234
+ all elements of `x` are strictly less than the corresponding elements of
1235
+ `y` (but see the Notes for the special handling of a scalar). An exception
1236
+ is raised at shape mismatch or values that are not correctly ordered. In
1237
+ contrast to the standard usage in NumPy, no assertion is raised if both
1238
+ objects have NaNs in the same positions.
1239
+
1240
+ Parameters
1241
+ ----------
1242
+ x : array_like
1243
+ The smaller object to check.
1244
+ y : array_like
1245
+ The larger object to compare.
1246
+ err_msg : string
1247
+ The error message to be printed in case of failure.
1248
+ verbose : bool
1249
+ If True, the conflicting values are appended to the error message.
1250
+ strict : bool, optional
1251
+ If True, raise an AssertionError when either the shape or the data
1252
+ type of the array_like objects does not match. The special
1253
+ handling for scalars mentioned in the Notes section is disabled.
1254
+
1255
+ .. versionadded:: 2.0.0
1256
+
1257
+ Raises
1258
+ ------
1259
+ AssertionError
1260
+ If x is not strictly smaller than y, element-wise.
1261
+
1262
+ See Also
1263
+ --------
1264
+ assert_array_equal: tests objects for equality
1265
+ assert_array_almost_equal: test objects for equality up to precision
1266
+
1267
+ Notes
1268
+ -----
1269
+ When one of `x` and `y` is a scalar and the other is array_like, the
1270
+ function performs the comparison as though the scalar were broadcasted
1271
+ to the shape of the array. This behaviour can be disabled with the `strict`
1272
+ parameter.
1273
+
1274
+ Examples
1275
+ --------
1276
+ The following assertion passes because each finite element of `x` is
1277
+ strictly less than the corresponding element of `y`, and the NaNs are in
1278
+ corresponding locations.
1279
+
1280
+ >>> x = [1.0, 1.0, np.nan]
1281
+ >>> y = [1.1, 2.0, np.nan]
1282
+ >>> np.testing.assert_array_less(x, y)
1283
+
1284
+ The following assertion fails because the zeroth element of `x` is no
1285
+ longer strictly less than the zeroth element of `y`.
1286
+
1287
+ >>> y[0] = 1
1288
+ >>> np.testing.assert_array_less(x, y)
1289
+ Traceback (most recent call last):
1290
+ ...
1291
+ AssertionError:
1292
+ Arrays are not strictly ordered `x < y`
1293
+ <BLANKLINE>
1294
+ Mismatched elements: 1 / 3 (33.3%)
1295
+ Mismatch at index:
1296
+ [0]: 1.0 (x), 1.0 (y)
1297
+ Max absolute difference among violations: 0.
1298
+ Max relative difference among violations: 0.
1299
+ x: array([ 1., 1., nan])
1300
+ y: array([ 1., 2., nan])
1301
+
1302
+ Here, `y` is a scalar, so each element of `x` is compared to `y`, and
1303
+ the assertion passes.
1304
+
1305
+ >>> x = [1.0, 4.0]
1306
+ >>> y = 5.0
1307
+ >>> np.testing.assert_array_less(x, y)
1308
+
1309
+ However, with ``strict=True``, the assertion will fail because the shapes
1310
+ do not match.
1311
+
1312
+ >>> np.testing.assert_array_less(x, y, strict=True)
1313
+ Traceback (most recent call last):
1314
+ ...
1315
+ AssertionError:
1316
+ Arrays are not strictly ordered `x < y`
1317
+ <BLANKLINE>
1318
+ (shapes (2,), () mismatch)
1319
+ x: array([1., 4.])
1320
+ y: array(5.)
1321
+
1322
+ With ``strict=True``, the assertion also fails if the dtypes of the two
1323
+ arrays do not match.
1324
+
1325
+ >>> y = [5, 5]
1326
+ >>> np.testing.assert_array_less(x, y, strict=True)
1327
+ Traceback (most recent call last):
1328
+ ...
1329
+ AssertionError:
1330
+ Arrays are not strictly ordered `x < y`
1331
+ <BLANKLINE>
1332
+ (dtypes float64, int64 mismatch)
1333
+ x: array([1., 4.])
1334
+ y: array([5, 5])
1335
+ """
1336
+ __tracebackhide__ = True # Hide traceback for py.test
1337
+ assert_array_compare(operator.__lt__, x, y, err_msg=err_msg,
1338
+ verbose=verbose,
1339
+ header='Arrays are not strictly ordered `x < y`',
1340
+ equal_inf=False,
1341
+ strict=strict,
1342
+ names=('x', 'y'))
1343
+
1344
+
1345
+ def runstring(astr, dict):
1346
+ exec(astr, dict)
1347
+
1348
+
1349
+ def assert_string_equal(actual, desired):
1350
+ """
1351
+ Test if two strings are equal.
1352
+
1353
+ If the given strings are equal, `assert_string_equal` does nothing.
1354
+ If they are not equal, an AssertionError is raised, and the diff
1355
+ between the strings is shown.
1356
+
1357
+ Parameters
1358
+ ----------
1359
+ actual : str
1360
+ The string to test for equality against the expected string.
1361
+ desired : str
1362
+ The expected string.
1363
+
1364
+ Examples
1365
+ --------
1366
+ >>> np.testing.assert_string_equal('abc', 'abc')
1367
+ >>> np.testing.assert_string_equal('abc', 'abcd')
1368
+ Traceback (most recent call last):
1369
+ File "<stdin>", line 1, in <module>
1370
+ ...
1371
+ AssertionError: Differences in strings:
1372
+ - abc+ abcd? +
1373
+
1374
+ """
1375
+ # delay import of difflib to reduce startup time
1376
+ __tracebackhide__ = True # Hide traceback for py.test
1377
+ import difflib
1378
+
1379
+ if not isinstance(actual, str):
1380
+ raise AssertionError(repr(type(actual)))
1381
+ if not isinstance(desired, str):
1382
+ raise AssertionError(repr(type(desired)))
1383
+ if desired == actual:
1384
+ return
1385
+
1386
+ diff = list(difflib.Differ().compare(actual.splitlines(True),
1387
+ desired.splitlines(True)))
1388
+ diff_list = []
1389
+ while diff:
1390
+ d1 = diff.pop(0)
1391
+ if d1.startswith(' '):
1392
+ continue
1393
+ if d1.startswith('- '):
1394
+ l = [d1]
1395
+ d2 = diff.pop(0)
1396
+ if d2.startswith('? '):
1397
+ l.append(d2)
1398
+ d2 = diff.pop(0)
1399
+ if not d2.startswith('+ '):
1400
+ raise AssertionError(repr(d2))
1401
+ l.append(d2)
1402
+ if diff:
1403
+ d3 = diff.pop(0)
1404
+ if d3.startswith('? '):
1405
+ l.append(d3)
1406
+ else:
1407
+ diff.insert(0, d3)
1408
+ if d2[2:] == d1[2:]:
1409
+ continue
1410
+ diff_list.extend(l)
1411
+ continue
1412
+ raise AssertionError(repr(d1))
1413
+ if not diff_list:
1414
+ return
1415
+ msg = f"Differences in strings:\n{''.join(diff_list).rstrip()}"
1416
+ if actual != desired:
1417
+ raise AssertionError(msg)
1418
+
1419
+
1420
+ def rundocs(filename=None, raise_on_error=True):
1421
+ """
1422
+ Run doctests found in the given file.
1423
+
1424
+ By default `rundocs` raises an AssertionError on failure.
1425
+
1426
+ Parameters
1427
+ ----------
1428
+ filename : str
1429
+ The path to the file for which the doctests are run.
1430
+ raise_on_error : bool
1431
+ Whether to raise an AssertionError when a doctest fails. Default is
1432
+ True.
1433
+
1434
+ Notes
1435
+ -----
1436
+ The doctests can be run by the user/developer by adding the ``doctests``
1437
+ argument to the ``test()`` call. For example, to run all tests (including
1438
+ doctests) for ``numpy.lib``:
1439
+
1440
+ >>> np.lib.test(doctests=True) # doctest: +SKIP
1441
+ """
1442
+ import doctest
1443
+
1444
+ from numpy.distutils.misc_util import exec_mod_from_location
1445
+ if filename is None:
1446
+ f = sys._getframe(1)
1447
+ filename = f.f_globals['__file__']
1448
+ name = os.path.splitext(os.path.basename(filename))[0]
1449
+ m = exec_mod_from_location(name, filename)
1450
+
1451
+ tests = doctest.DocTestFinder().find(m)
1452
+ runner = doctest.DocTestRunner(verbose=False)
1453
+
1454
+ msg = []
1455
+ if raise_on_error:
1456
+ out = msg.append
1457
+ else:
1458
+ out = None
1459
+
1460
+ for test in tests:
1461
+ runner.run(test, out=out)
1462
+
1463
+ if runner.failures > 0 and raise_on_error:
1464
+ raise AssertionError("Some doctests failed:\n%s" % "\n".join(msg))
1465
+
1466
+
1467
+ def check_support_sve(__cache=[]):
1468
+ """
1469
+ gh-22982
1470
+ """
1471
+
1472
+ if __cache:
1473
+ return __cache[0]
1474
+
1475
+ import subprocess
1476
+ cmd = 'lscpu'
1477
+ try:
1478
+ output = subprocess.run(cmd, capture_output=True, text=True)
1479
+ result = 'sve' in output.stdout
1480
+ except (OSError, subprocess.SubprocessError):
1481
+ result = False
1482
+ __cache.append(result)
1483
+ return __cache[0]
1484
+
1485
+
1486
+ #
1487
+ # assert_raises and assert_raises_regex are taken from unittest.
1488
+ #
1489
+ import unittest
1490
+
1491
+
1492
+ class _Dummy(unittest.TestCase):
1493
+ def nop(self):
1494
+ pass
1495
+
1496
+
1497
+ _d = _Dummy('nop')
1498
+
1499
+
1500
+ def assert_raises(*args, **kwargs):
1501
+ """
1502
+ assert_raises(exception_class, callable, *args, **kwargs)
1503
+ assert_raises(exception_class)
1504
+
1505
+ Fail unless an exception of class exception_class is thrown
1506
+ by callable when invoked with arguments args and keyword
1507
+ arguments kwargs. If a different type of exception is
1508
+ thrown, it will not be caught, and the test case will be
1509
+ deemed to have suffered an error, exactly as for an
1510
+ unexpected exception.
1511
+
1512
+ Alternatively, `assert_raises` can be used as a context manager:
1513
+
1514
+ >>> from numpy.testing import assert_raises
1515
+ >>> with assert_raises(ZeroDivisionError):
1516
+ ... 1 / 0
1517
+
1518
+ is equivalent to
1519
+
1520
+ >>> def div(x, y):
1521
+ ... return x / y
1522
+ >>> assert_raises(ZeroDivisionError, div, 1, 0)
1523
+
1524
+ """
1525
+ __tracebackhide__ = True # Hide traceback for py.test
1526
+ return _d.assertRaises(*args, **kwargs)
1527
+
1528
+
1529
+ def assert_raises_regex(exception_class, expected_regexp, *args, **kwargs):
1530
+ """
1531
+ assert_raises_regex(exception_class, expected_regexp, callable, *args,
1532
+ **kwargs)
1533
+ assert_raises_regex(exception_class, expected_regexp)
1534
+
1535
+ Fail unless an exception of class exception_class and with message that
1536
+ matches expected_regexp is thrown by callable when invoked with arguments
1537
+ args and keyword arguments kwargs.
1538
+
1539
+ Alternatively, can be used as a context manager like `assert_raises`.
1540
+ """
1541
+ __tracebackhide__ = True # Hide traceback for py.test
1542
+ return _d.assertRaisesRegex(exception_class, expected_regexp, *args, **kwargs)
1543
+
1544
+
1545
+ def decorate_methods(cls, decorator, testmatch=None):
1546
+ """
1547
+ Apply a decorator to all methods in a class matching a regular expression.
1548
+
1549
+ The given decorator is applied to all public methods of `cls` that are
1550
+ matched by the regular expression `testmatch`
1551
+ (``testmatch.search(methodname)``). Methods that are private, i.e. start
1552
+ with an underscore, are ignored.
1553
+
1554
+ Parameters
1555
+ ----------
1556
+ cls : class
1557
+ Class whose methods to decorate.
1558
+ decorator : function
1559
+ Decorator to apply to methods
1560
+ testmatch : compiled regexp or str, optional
1561
+ The regular expression. Default value is None, in which case the
1562
+ nose default (``re.compile(r'(?:^|[\\b_\\.%s-])[Tt]est' % os.sep)``)
1563
+ is used.
1564
+ If `testmatch` is a string, it is compiled to a regular expression
1565
+ first.
1566
+
1567
+ """
1568
+ if testmatch is None:
1569
+ testmatch = re.compile(r'(?:^|[\\b_\\.%s-])[Tt]est' % os.sep)
1570
+ else:
1571
+ testmatch = re.compile(testmatch)
1572
+ cls_attr = cls.__dict__
1573
+
1574
+ # delayed import to reduce startup time
1575
+ from inspect import isfunction
1576
+
1577
+ methods = [_m for _m in cls_attr.values() if isfunction(_m)]
1578
+ for function in methods:
1579
+ try:
1580
+ if hasattr(function, 'compat_func_name'):
1581
+ funcname = function.compat_func_name
1582
+ else:
1583
+ funcname = function.__name__
1584
+ except AttributeError:
1585
+ # not a function
1586
+ continue
1587
+ if testmatch.search(funcname) and not funcname.startswith('_'):
1588
+ setattr(cls, funcname, decorator(function))
1589
+
1590
+
1591
+ def measure(code_str, times=1, label=None):
1592
+ """
1593
+ Return elapsed time for executing code in the namespace of the caller.
1594
+
1595
+ The supplied code string is compiled with the Python builtin ``compile``.
1596
+ The precision of the timing is 10 milli-seconds. If the code will execute
1597
+ fast on this timescale, it can be executed many times to get reasonable
1598
+ timing accuracy.
1599
+
1600
+ Parameters
1601
+ ----------
1602
+ code_str : str
1603
+ The code to be timed.
1604
+ times : int, optional
1605
+ The number of times the code is executed. Default is 1. The code is
1606
+ only compiled once.
1607
+ label : str, optional
1608
+ A label to identify `code_str` with. This is passed into ``compile``
1609
+ as the second argument (for run-time error messages).
1610
+
1611
+ Returns
1612
+ -------
1613
+ elapsed : float
1614
+ Total elapsed time in seconds for executing `code_str` `times` times.
1615
+
1616
+ Examples
1617
+ --------
1618
+ >>> times = 10
1619
+ >>> etime = np.testing.measure('for i in range(1000): np.sqrt(i**2)', times=times)
1620
+ >>> print("Time for a single execution : ", etime / times, "s") # doctest: +SKIP
1621
+ Time for a single execution : 0.005 s
1622
+
1623
+ """
1624
+ frame = sys._getframe(1)
1625
+ locs, globs = frame.f_locals, frame.f_globals
1626
+
1627
+ code = compile(code_str, f'Test name: {label} ', 'exec')
1628
+ i = 0
1629
+ elapsed = jiffies()
1630
+ while i < times:
1631
+ i += 1
1632
+ exec(code, globs, locs)
1633
+ elapsed = jiffies() - elapsed
1634
+ return 0.01 * elapsed
1635
+
1636
+
1637
+ def _assert_valid_refcount(op):
1638
+ """
1639
+ Check that ufuncs don't mishandle refcount of object `1`.
1640
+ Used in a few regression tests.
1641
+ """
1642
+ if not HAS_REFCOUNT:
1643
+ return True
1644
+
1645
+ import gc
1646
+
1647
+ import numpy as np
1648
+
1649
+ b = np.arange(100 * 100).reshape(100, 100)
1650
+ c = b
1651
+ i = 1
1652
+
1653
+ gc.disable()
1654
+ try:
1655
+ rc = sys.getrefcount(i)
1656
+ for j in range(15):
1657
+ d = op(b, c)
1658
+ assert_(sys.getrefcount(i) >= rc)
1659
+ finally:
1660
+ gc.enable()
1661
+
1662
+
1663
+ def assert_allclose(actual, desired, rtol=1e-7, atol=0, equal_nan=True,
1664
+ err_msg='', verbose=True, *, strict=False):
1665
+ """
1666
+ Raises an AssertionError if two objects are not equal up to desired
1667
+ tolerance.
1668
+
1669
+ Given two array_like objects, check that their shapes and all elements
1670
+ are equal (but see the Notes for the special handling of a scalar). An
1671
+ exception is raised if the shapes mismatch or any values conflict. In
1672
+ contrast to the standard usage in numpy, NaNs are compared like numbers,
1673
+ no assertion is raised if both objects have NaNs in the same positions.
1674
+
1675
+ The test is equivalent to ``allclose(actual, desired, rtol, atol)``,
1676
+ except that it is stricter: it doesn't broadcast its operands, and has
1677
+ tighter default tolerance values. It compares the difference between
1678
+ `actual` and `desired` to ``atol + rtol * abs(desired)``.
1679
+
1680
+ Parameters
1681
+ ----------
1682
+ actual : array_like
1683
+ Array obtained.
1684
+ desired : array_like
1685
+ Array desired.
1686
+ rtol : float, optional
1687
+ Relative tolerance.
1688
+ atol : float, optional
1689
+ Absolute tolerance.
1690
+ equal_nan : bool, optional.
1691
+ If True, NaNs will compare equal.
1692
+ err_msg : str, optional
1693
+ The error message to be printed in case of failure.
1694
+ verbose : bool, optional
1695
+ If True, the conflicting values are appended to the error message.
1696
+ strict : bool, optional
1697
+ If True, raise an ``AssertionError`` when either the shape or the data
1698
+ type of the arguments does not match. The special handling of scalars
1699
+ mentioned in the Notes section is disabled.
1700
+
1701
+ .. versionadded:: 2.0.0
1702
+
1703
+ Raises
1704
+ ------
1705
+ AssertionError
1706
+ If actual and desired are not equal up to specified precision.
1707
+
1708
+ See Also
1709
+ --------
1710
+ assert_array_almost_equal_nulp, assert_array_max_ulp
1711
+
1712
+ Notes
1713
+ -----
1714
+ When one of `actual` and `desired` is a scalar and the other is array_like, the
1715
+ function performs the comparison as if the scalar were broadcasted to the shape
1716
+ of the array. Note that empty arrays are therefore considered equal to scalars.
1717
+ This behaviour can be disabled by setting ``strict==True``.
1718
+
1719
+ Examples
1720
+ --------
1721
+ >>> x = [1e-5, 1e-3, 1e-1]
1722
+ >>> y = np.arccos(np.cos(x))
1723
+ >>> np.testing.assert_allclose(x, y, rtol=1e-5, atol=0)
1724
+
1725
+ As mentioned in the Notes section, `assert_allclose` has special
1726
+ handling for scalars. Here, the test checks that the value of `numpy.sin`
1727
+ is nearly zero at integer multiples of π.
1728
+
1729
+ >>> x = np.arange(3) * np.pi
1730
+ >>> np.testing.assert_allclose(np.sin(x), 0, atol=1e-15)
1731
+
1732
+ Use `strict` to raise an ``AssertionError`` when comparing an array
1733
+ with one or more dimensions against a scalar.
1734
+
1735
+ >>> np.testing.assert_allclose(np.sin(x), 0, atol=1e-15, strict=True)
1736
+ Traceback (most recent call last):
1737
+ ...
1738
+ AssertionError:
1739
+ Not equal to tolerance rtol=1e-07, atol=1e-15
1740
+ <BLANKLINE>
1741
+ (shapes (3,), () mismatch)
1742
+ ACTUAL: array([ 0.000000e+00, 1.224647e-16, -2.449294e-16])
1743
+ DESIRED: array(0)
1744
+
1745
+ The `strict` parameter also ensures that the array data types match:
1746
+
1747
+ >>> y = np.zeros(3, dtype=np.float32)
1748
+ >>> np.testing.assert_allclose(np.sin(x), y, atol=1e-15, strict=True)
1749
+ Traceback (most recent call last):
1750
+ ...
1751
+ AssertionError:
1752
+ Not equal to tolerance rtol=1e-07, atol=1e-15
1753
+ <BLANKLINE>
1754
+ (dtypes float64, float32 mismatch)
1755
+ ACTUAL: array([ 0.000000e+00, 1.224647e-16, -2.449294e-16])
1756
+ DESIRED: array([0., 0., 0.], dtype=float32)
1757
+
1758
+ """
1759
+ __tracebackhide__ = True # Hide traceback for py.test
1760
+ import numpy as np
1761
+
1762
+ def compare(x, y):
1763
+ return np._core.numeric.isclose(x, y, rtol=rtol, atol=atol,
1764
+ equal_nan=equal_nan)
1765
+
1766
+ actual, desired = np.asanyarray(actual), np.asanyarray(desired)
1767
+ header = f'Not equal to tolerance rtol={rtol:g}, atol={atol:g}'
1768
+ assert_array_compare(compare, actual, desired, err_msg=str(err_msg),
1769
+ verbose=verbose, header=header, equal_nan=equal_nan,
1770
+ strict=strict)
1771
+
1772
+
1773
+ def assert_array_almost_equal_nulp(x, y, nulp=1):
1774
+ """
1775
+ Compare two arrays relatively to their spacing.
1776
+
1777
+ This is a relatively robust method to compare two arrays whose amplitude
1778
+ is variable.
1779
+
1780
+ Parameters
1781
+ ----------
1782
+ x, y : array_like
1783
+ Input arrays.
1784
+ nulp : int, optional
1785
+ The maximum number of unit in the last place for tolerance (see Notes).
1786
+ Default is 1.
1787
+
1788
+ Returns
1789
+ -------
1790
+ None
1791
+
1792
+ Raises
1793
+ ------
1794
+ AssertionError
1795
+ If the spacing between `x` and `y` for one or more elements is larger
1796
+ than `nulp`.
1797
+
1798
+ See Also
1799
+ --------
1800
+ assert_array_max_ulp : Check that all items of arrays differ in at most
1801
+ N Units in the Last Place.
1802
+ spacing : Return the distance between x and the nearest adjacent number.
1803
+
1804
+ Notes
1805
+ -----
1806
+ An assertion is raised if the following condition is not met::
1807
+
1808
+ abs(x - y) <= nulp * spacing(maximum(abs(x), abs(y)))
1809
+
1810
+ Examples
1811
+ --------
1812
+ >>> x = np.array([1., 1e-10, 1e-20])
1813
+ >>> eps = np.finfo(x.dtype).eps
1814
+ >>> np.testing.assert_array_almost_equal_nulp(x, x*eps/2 + x)
1815
+
1816
+ >>> np.testing.assert_array_almost_equal_nulp(x, x*eps + x)
1817
+ Traceback (most recent call last):
1818
+ ...
1819
+ AssertionError: Arrays are not equal to 1 ULP (max is 2)
1820
+
1821
+ """
1822
+ __tracebackhide__ = True # Hide traceback for py.test
1823
+ import numpy as np
1824
+ ax = np.abs(x)
1825
+ ay = np.abs(y)
1826
+ ref = nulp * np.spacing(np.where(ax > ay, ax, ay))
1827
+ if not np.all(np.abs(x - y) <= ref):
1828
+ if np.iscomplexobj(x) or np.iscomplexobj(y):
1829
+ msg = f"Arrays are not equal to {nulp} ULP"
1830
+ else:
1831
+ max_nulp = np.max(nulp_diff(x, y))
1832
+ msg = f"Arrays are not equal to {nulp} ULP (max is {max_nulp:g})"
1833
+ raise AssertionError(msg)
1834
+
1835
+
1836
+ def assert_array_max_ulp(a, b, maxulp=1, dtype=None):
1837
+ """
1838
+ Check that all items of arrays differ in at most N Units in the Last Place.
1839
+
1840
+ Parameters
1841
+ ----------
1842
+ a, b : array_like
1843
+ Input arrays to be compared.
1844
+ maxulp : int, optional
1845
+ The maximum number of units in the last place that elements of `a` and
1846
+ `b` can differ. Default is 1.
1847
+ dtype : dtype, optional
1848
+ Data-type to convert `a` and `b` to if given. Default is None.
1849
+
1850
+ Returns
1851
+ -------
1852
+ ret : ndarray
1853
+ Array containing number of representable floating point numbers between
1854
+ items in `a` and `b`.
1855
+
1856
+ Raises
1857
+ ------
1858
+ AssertionError
1859
+ If one or more elements differ by more than `maxulp`.
1860
+
1861
+ Notes
1862
+ -----
1863
+ For computing the ULP difference, this API does not differentiate between
1864
+ various representations of NAN (ULP difference between 0x7fc00000 and 0xffc00000
1865
+ is zero).
1866
+
1867
+ See Also
1868
+ --------
1869
+ assert_array_almost_equal_nulp : Compare two arrays relatively to their
1870
+ spacing.
1871
+
1872
+ Examples
1873
+ --------
1874
+ >>> a = np.linspace(0., 1., 100)
1875
+ >>> res = np.testing.assert_array_max_ulp(a, np.arcsin(np.sin(a)))
1876
+
1877
+ """
1878
+ __tracebackhide__ = True # Hide traceback for py.test
1879
+ import numpy as np
1880
+ ret = nulp_diff(a, b, dtype)
1881
+ if not np.all(ret <= maxulp):
1882
+ raise AssertionError("Arrays are not almost equal up to %g "
1883
+ "ULP (max difference is %g ULP)" %
1884
+ (maxulp, np.max(ret)))
1885
+ return ret
1886
+
1887
+
1888
+ def nulp_diff(x, y, dtype=None):
1889
+ """For each item in x and y, return the number of representable floating
1890
+ points between them.
1891
+
1892
+ Parameters
1893
+ ----------
1894
+ x : array_like
1895
+ first input array
1896
+ y : array_like
1897
+ second input array
1898
+ dtype : dtype, optional
1899
+ Data-type to convert `x` and `y` to if given. Default is None.
1900
+
1901
+ Returns
1902
+ -------
1903
+ nulp : array_like
1904
+ number of representable floating point numbers between each item in x
1905
+ and y.
1906
+
1907
+ Notes
1908
+ -----
1909
+ For computing the ULP difference, this API does not differentiate between
1910
+ various representations of NAN (ULP difference between 0x7fc00000 and 0xffc00000
1911
+ is zero).
1912
+
1913
+ Examples
1914
+ --------
1915
+ # By definition, epsilon is the smallest number such as 1 + eps != 1, so
1916
+ # there should be exactly one ULP between 1 and 1 + eps
1917
+ >>> nulp_diff(1, 1 + np.finfo(x.dtype).eps)
1918
+ 1.0
1919
+ """
1920
+ import numpy as np
1921
+ if dtype:
1922
+ x = np.asarray(x, dtype=dtype)
1923
+ y = np.asarray(y, dtype=dtype)
1924
+ else:
1925
+ x = np.asarray(x)
1926
+ y = np.asarray(y)
1927
+
1928
+ t = np.common_type(x, y)
1929
+ if np.iscomplexobj(x) or np.iscomplexobj(y):
1930
+ raise NotImplementedError("_nulp not implemented for complex array")
1931
+
1932
+ x = np.array([x], dtype=t)
1933
+ y = np.array([y], dtype=t)
1934
+
1935
+ x[np.isnan(x)] = np.nan
1936
+ y[np.isnan(y)] = np.nan
1937
+
1938
+ if not x.shape == y.shape:
1939
+ raise ValueError(f"Arrays do not have the same shape: {x.shape} - {y.shape}")
1940
+
1941
+ def _diff(rx, ry, vdt):
1942
+ diff = np.asarray(rx - ry, dtype=vdt)
1943
+ return np.abs(diff)
1944
+
1945
+ rx = integer_repr(x)
1946
+ ry = integer_repr(y)
1947
+ return _diff(rx, ry, t)
1948
+
1949
+
1950
+ def _integer_repr(x, vdt, comp):
1951
+ # Reinterpret binary representation of the float as sign-magnitude:
1952
+ # take into account two-complement representation
1953
+ # See also
1954
+ # https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
1955
+ rx = x.view(vdt)
1956
+ if not (rx.size == 1):
1957
+ rx[rx < 0] = comp - rx[rx < 0]
1958
+ elif rx < 0:
1959
+ rx = comp - rx
1960
+
1961
+ return rx
1962
+
1963
+
1964
+ def integer_repr(x):
1965
+ """Return the signed-magnitude interpretation of the binary representation
1966
+ of x."""
1967
+ import numpy as np
1968
+ if x.dtype == np.float16:
1969
+ return _integer_repr(x, np.int16, np.int16(-2**15))
1970
+ elif x.dtype == np.float32:
1971
+ return _integer_repr(x, np.int32, np.int32(-2**31))
1972
+ elif x.dtype == np.float64:
1973
+ return _integer_repr(x, np.int64, np.int64(-2**63))
1974
+ else:
1975
+ raise ValueError(f'Unsupported dtype {x.dtype}')
1976
+
1977
+
1978
+ @contextlib.contextmanager
1979
+ def _assert_warns_context(warning_class, name=None):
1980
+ __tracebackhide__ = True # Hide traceback for py.test
1981
+ with suppress_warnings(_warn=False) as sup:
1982
+ l = sup.record(warning_class)
1983
+ yield
1984
+ if not len(l) > 0:
1985
+ name_str = f' when calling {name}' if name is not None else ''
1986
+ raise AssertionError("No warning raised" + name_str)
1987
+
1988
+
1989
+ def assert_warns(warning_class, *args, **kwargs):
1990
+ """
1991
+ Fail unless the given callable throws the specified warning.
1992
+
1993
+ A warning of class warning_class should be thrown by the callable when
1994
+ invoked with arguments args and keyword arguments kwargs.
1995
+ If a different type of warning is thrown, it will not be caught.
1996
+
1997
+ If called with all arguments other than the warning class omitted, may be
1998
+ used as a context manager::
1999
+
2000
+ with assert_warns(SomeWarning):
2001
+ do_something()
2002
+
2003
+ The ability to be used as a context manager is new in NumPy v1.11.0.
2004
+
2005
+ .. deprecated:: 2.4
2006
+
2007
+ This is deprecated. Use `warnings.catch_warnings` or
2008
+ ``pytest.warns`` instead.
2009
+
2010
+ Parameters
2011
+ ----------
2012
+ warning_class : class
2013
+ The class defining the warning that `func` is expected to throw.
2014
+ func : callable, optional
2015
+ Callable to test
2016
+ *args : Arguments
2017
+ Arguments for `func`.
2018
+ **kwargs : Kwargs
2019
+ Keyword arguments for `func`.
2020
+
2021
+ Returns
2022
+ -------
2023
+ The value returned by `func`.
2024
+
2025
+ Examples
2026
+ --------
2027
+ >>> import warnings
2028
+ >>> def deprecated_func(num):
2029
+ ... warnings.warn("Please upgrade", DeprecationWarning)
2030
+ ... return num*num
2031
+ >>> with np.testing.assert_warns(DeprecationWarning):
2032
+ ... assert deprecated_func(4) == 16
2033
+ >>> # or passing a func
2034
+ >>> ret = np.testing.assert_warns(DeprecationWarning, deprecated_func, 4)
2035
+ >>> assert ret == 16
2036
+ """
2037
+ warnings.warn(
2038
+ "NumPy warning suppression and assertion utilities are deprecated. "
2039
+ "Use warnings.catch_warnings, warnings.filterwarnings, pytest.warns, "
2040
+ "or pytest.filterwarnings instead. (Deprecated NumPy 2.4)",
2041
+ DeprecationWarning, stacklevel=2)
2042
+ if not args and not kwargs:
2043
+ return _assert_warns_context(warning_class)
2044
+ elif len(args) < 1:
2045
+ if "match" in kwargs:
2046
+ raise RuntimeError(
2047
+ "assert_warns does not use 'match' kwarg, "
2048
+ "use pytest.warns instead"
2049
+ )
2050
+ raise RuntimeError("assert_warns(...) needs at least one arg")
2051
+
2052
+ func = args[0]
2053
+ args = args[1:]
2054
+ with _assert_warns_context(warning_class, name=func.__name__):
2055
+ return func(*args, **kwargs)
2056
+
2057
+
2058
+ @contextlib.contextmanager
2059
+ def _assert_no_warnings_context(name=None):
2060
+ __tracebackhide__ = True # Hide traceback for py.test
2061
+ with warnings.catch_warnings(record=True) as l:
2062
+ warnings.simplefilter('always')
2063
+ yield
2064
+ if len(l) > 0:
2065
+ name_str = f' when calling {name}' if name is not None else ''
2066
+ raise AssertionError(f'Got warnings{name_str}: {l}')
2067
+
2068
+
2069
+ def assert_no_warnings(*args, **kwargs):
2070
+ """
2071
+ Fail if the given callable produces any warnings.
2072
+
2073
+ If called with all arguments omitted, may be used as a context manager::
2074
+
2075
+ with assert_no_warnings():
2076
+ do_something()
2077
+
2078
+ The ability to be used as a context manager is new in NumPy v1.11.0.
2079
+
2080
+ Parameters
2081
+ ----------
2082
+ func : callable
2083
+ The callable to test.
2084
+ \\*args : Arguments
2085
+ Arguments passed to `func`.
2086
+ \\*\\*kwargs : Kwargs
2087
+ Keyword arguments passed to `func`.
2088
+
2089
+ Returns
2090
+ -------
2091
+ The value returned by `func`.
2092
+
2093
+ """
2094
+ if not args:
2095
+ return _assert_no_warnings_context()
2096
+
2097
+ func = args[0]
2098
+ args = args[1:]
2099
+ with _assert_no_warnings_context(name=func.__name__):
2100
+ return func(*args, **kwargs)
2101
+
2102
+
2103
+ def _gen_alignment_data(dtype=float32, type='binary', max_size=24):
2104
+ """
2105
+ generator producing data with different alignment and offsets
2106
+ to test simd vectorization
2107
+
2108
+ Parameters
2109
+ ----------
2110
+ dtype : dtype
2111
+ data type to produce
2112
+ type : string
2113
+ 'unary': create data for unary operations, creates one input
2114
+ and output array
2115
+ 'binary': create data for unary operations, creates two input
2116
+ and output array
2117
+ max_size : integer
2118
+ maximum size of data to produce
2119
+
2120
+ Returns
2121
+ -------
2122
+ if type is 'unary' yields one output, one input array and a message
2123
+ containing information on the data
2124
+ if type is 'binary' yields one output array, two input array and a message
2125
+ containing information on the data
2126
+
2127
+ """
2128
+ ufmt = 'unary offset=(%d, %d), size=%d, dtype=%r, %s'
2129
+ bfmt = 'binary offset=(%d, %d, %d), size=%d, dtype=%r, %s'
2130
+ for o in range(3):
2131
+ for s in range(o + 2, max(o + 3, max_size)):
2132
+ if type == 'unary':
2133
+ inp = lambda: arange(s, dtype=dtype)[o:]
2134
+ out = empty((s,), dtype=dtype)[o:]
2135
+ yield out, inp(), ufmt % (o, o, s, dtype, 'out of place')
2136
+ d = inp()
2137
+ yield d, d, ufmt % (o, o, s, dtype, 'in place')
2138
+ yield out[1:], inp()[:-1], ufmt % \
2139
+ (o + 1, o, s - 1, dtype, 'out of place')
2140
+ yield out[:-1], inp()[1:], ufmt % \
2141
+ (o, o + 1, s - 1, dtype, 'out of place')
2142
+ yield inp()[:-1], inp()[1:], ufmt % \
2143
+ (o, o + 1, s - 1, dtype, 'aliased')
2144
+ yield inp()[1:], inp()[:-1], ufmt % \
2145
+ (o + 1, o, s - 1, dtype, 'aliased')
2146
+ if type == 'binary':
2147
+ inp1 = lambda: arange(s, dtype=dtype)[o:]
2148
+ inp2 = lambda: arange(s, dtype=dtype)[o:]
2149
+ out = empty((s,), dtype=dtype)[o:]
2150
+ yield out, inp1(), inp2(), bfmt % \
2151
+ (o, o, o, s, dtype, 'out of place')
2152
+ d = inp1()
2153
+ yield d, d, inp2(), bfmt % \
2154
+ (o, o, o, s, dtype, 'in place1')
2155
+ d = inp2()
2156
+ yield d, inp1(), d, bfmt % \
2157
+ (o, o, o, s, dtype, 'in place2')
2158
+ yield out[1:], inp1()[:-1], inp2()[:-1], bfmt % \
2159
+ (o + 1, o, o, s - 1, dtype, 'out of place')
2160
+ yield out[:-1], inp1()[1:], inp2()[:-1], bfmt % \
2161
+ (o, o + 1, o, s - 1, dtype, 'out of place')
2162
+ yield out[:-1], inp1()[:-1], inp2()[1:], bfmt % \
2163
+ (o, o, o + 1, s - 1, dtype, 'out of place')
2164
+ yield inp1()[1:], inp1()[:-1], inp2()[:-1], bfmt % \
2165
+ (o + 1, o, o, s - 1, dtype, 'aliased')
2166
+ yield inp1()[:-1], inp1()[1:], inp2()[:-1], bfmt % \
2167
+ (o, o + 1, o, s - 1, dtype, 'aliased')
2168
+ yield inp1()[:-1], inp1()[:-1], inp2()[1:], bfmt % \
2169
+ (o, o, o + 1, s - 1, dtype, 'aliased')
2170
+
2171
+
2172
+ class IgnoreException(Exception):
2173
+ "Ignoring this exception due to disabled feature"
2174
+ pass
2175
+
2176
+
2177
+ @contextlib.contextmanager
2178
+ def tempdir(*args, **kwargs):
2179
+ """Context manager to provide a temporary test folder.
2180
+
2181
+ All arguments are passed as this to the underlying tempfile.mkdtemp
2182
+ function.
2183
+
2184
+ """
2185
+ tmpdir = mkdtemp(*args, **kwargs)
2186
+ try:
2187
+ yield tmpdir
2188
+ finally:
2189
+ shutil.rmtree(tmpdir)
2190
+
2191
+
2192
+ @contextlib.contextmanager
2193
+ def temppath(*args, **kwargs):
2194
+ """Context manager for temporary files.
2195
+
2196
+ Context manager that returns the path to a closed temporary file. Its
2197
+ parameters are the same as for tempfile.mkstemp and are passed directly
2198
+ to that function. The underlying file is removed when the context is
2199
+ exited, so it should be closed at that time.
2200
+
2201
+ Windows does not allow a temporary file to be opened if it is already
2202
+ open, so the underlying file must be closed after opening before it
2203
+ can be opened again.
2204
+
2205
+ """
2206
+ fd, path = mkstemp(*args, **kwargs)
2207
+ os.close(fd)
2208
+ try:
2209
+ yield path
2210
+ finally:
2211
+ os.remove(path)
2212
+
2213
+
2214
+ class clear_and_catch_warnings(warnings.catch_warnings):
2215
+ """ Context manager that resets warning registry for catching warnings
2216
+
2217
+ Warnings can be slippery, because, whenever a warning is triggered, Python
2218
+ adds a ``__warningregistry__`` member to the *calling* module. This makes
2219
+ it impossible to retrigger the warning in this module, whatever you put in
2220
+ the warnings filters. This context manager accepts a sequence of `modules`
2221
+ as a keyword argument to its constructor and:
2222
+
2223
+ * stores and removes any ``__warningregistry__`` entries in given `modules`
2224
+ on entry;
2225
+ * resets ``__warningregistry__`` to its previous state on exit.
2226
+
2227
+ This makes it possible to trigger any warning afresh inside the context
2228
+ manager without disturbing the state of warnings outside.
2229
+
2230
+ For compatibility with Python, please consider all arguments to be
2231
+ keyword-only.
2232
+
2233
+ Parameters
2234
+ ----------
2235
+ record : bool, optional
2236
+ Specifies whether warnings should be captured by a custom
2237
+ implementation of ``warnings.showwarning()`` and be appended to a list
2238
+ returned by the context manager. Otherwise None is returned by the
2239
+ context manager. The objects appended to the list are arguments whose
2240
+ attributes mirror the arguments to ``showwarning()``.
2241
+ modules : sequence, optional
2242
+ Sequence of modules for which to reset warnings registry on entry and
2243
+ restore on exit. To work correctly, all 'ignore' filters should
2244
+ filter by one of these modules.
2245
+
2246
+ Examples
2247
+ --------
2248
+ >>> import warnings
2249
+ >>> with np.testing.clear_and_catch_warnings(
2250
+ ... modules=[np._core.fromnumeric]):
2251
+ ... warnings.simplefilter('always')
2252
+ ... warnings.filterwarnings('ignore', module='np._core.fromnumeric')
2253
+ ... # do something that raises a warning but ignore those in
2254
+ ... # np._core.fromnumeric
2255
+ """
2256
+ class_modules = ()
2257
+
2258
+ def __init__(self, record=False, modules=()):
2259
+ self.modules = set(modules).union(self.class_modules)
2260
+ self._warnreg_copies = {}
2261
+ super().__init__(record=record)
2262
+
2263
+ def __enter__(self):
2264
+ for mod in self.modules:
2265
+ if hasattr(mod, '__warningregistry__'):
2266
+ mod_reg = mod.__warningregistry__
2267
+ self._warnreg_copies[mod] = mod_reg.copy()
2268
+ mod_reg.clear()
2269
+ return super().__enter__()
2270
+
2271
+ def __exit__(self, *exc_info):
2272
+ super().__exit__(*exc_info)
2273
+ for mod in self.modules:
2274
+ if hasattr(mod, '__warningregistry__'):
2275
+ mod.__warningregistry__.clear()
2276
+ if mod in self._warnreg_copies:
2277
+ mod.__warningregistry__.update(self._warnreg_copies[mod])
2278
+
2279
+
2280
+ class suppress_warnings:
2281
+ """
2282
+ Context manager and decorator doing much the same as
2283
+ ``warnings.catch_warnings``.
2284
+
2285
+ However, it also provides a filter mechanism to work around
2286
+ https://bugs.python.org/issue4180.
2287
+
2288
+ This bug causes Python before 3.4 to not reliably show warnings again
2289
+ after they have been ignored once (even within catch_warnings). It
2290
+ means that no "ignore" filter can be used easily, since following
2291
+ tests might need to see the warning. Additionally it allows easier
2292
+ specificity for testing warnings and can be nested.
2293
+
2294
+ .. deprecated:: 2.4
2295
+
2296
+ This is deprecated. Use `warnings.filterwarnings` or
2297
+ ``pytest.filterwarnings`` instead.
2298
+
2299
+ Parameters
2300
+ ----------
2301
+ forwarding_rule : str, optional
2302
+ One of "always", "once", "module", or "location". Analogous to
2303
+ the usual warnings module filter mode, it is useful to reduce
2304
+ noise mostly on the outmost level. Unsuppressed and unrecorded
2305
+ warnings will be forwarded based on this rule. Defaults to "always".
2306
+ "location" is equivalent to the warnings "default", match by exact
2307
+ location the warning warning originated from.
2308
+
2309
+ Notes
2310
+ -----
2311
+ Filters added inside the context manager will be discarded again
2312
+ when leaving it. Upon entering all filters defined outside a
2313
+ context will be applied automatically.
2314
+
2315
+ When a recording filter is added, matching warnings are stored in the
2316
+ ``log`` attribute as well as in the list returned by ``record``.
2317
+
2318
+ If filters are added and the ``module`` keyword is given, the
2319
+ warning registry of this module will additionally be cleared when
2320
+ applying it, entering the context, or exiting it. This could cause
2321
+ warnings to appear a second time after leaving the context if they
2322
+ were configured to be printed once (default) and were already
2323
+ printed before the context was entered.
2324
+
2325
+ Nesting this context manager will work as expected when the
2326
+ forwarding rule is "always" (default). Unfiltered and unrecorded
2327
+ warnings will be passed out and be matched by the outer level.
2328
+ On the outmost level they will be printed (or caught by another
2329
+ warnings context). The forwarding rule argument can modify this
2330
+ behaviour.
2331
+
2332
+ Like ``catch_warnings`` this context manager is not threadsafe.
2333
+
2334
+ Examples
2335
+ --------
2336
+
2337
+ With a context manager::
2338
+
2339
+ with np.testing.suppress_warnings() as sup:
2340
+ sup.filter(DeprecationWarning, "Some text")
2341
+ sup.filter(module=np.ma.core)
2342
+ log = sup.record(FutureWarning, "Does this occur?")
2343
+ command_giving_warnings()
2344
+ # The FutureWarning was given once, the filtered warnings were
2345
+ # ignored. All other warnings abide outside settings (may be
2346
+ # printed/error)
2347
+ assert_(len(log) == 1)
2348
+ assert_(len(sup.log) == 1) # also stored in log attribute
2349
+
2350
+ Or as a decorator::
2351
+
2352
+ sup = np.testing.suppress_warnings()
2353
+ sup.filter(module=np.ma.core) # module must match exactly
2354
+ @sup
2355
+ def some_function():
2356
+ # do something which causes a warning in np.ma.core
2357
+ pass
2358
+ """
2359
+ def __init__(self, forwarding_rule="always", _warn=True):
2360
+ if _warn:
2361
+ warnings.warn(
2362
+ "NumPy warning suppression and assertion utilities are deprecated. "
2363
+ "Use warnings.catch_warnings, warnings.filterwarnings, pytest.warns, "
2364
+ "or pytest.filterwarnings instead. (Deprecated NumPy 2.4)",
2365
+ DeprecationWarning, stacklevel=2)
2366
+ self._entered = False
2367
+
2368
+ # Suppressions are either instance or defined inside one with block:
2369
+ self._suppressions = []
2370
+
2371
+ if forwarding_rule not in {"always", "module", "once", "location"}:
2372
+ raise ValueError("unsupported forwarding rule.")
2373
+ self._forwarding_rule = forwarding_rule
2374
+
2375
+ def _clear_registries(self):
2376
+ if hasattr(warnings, "_filters_mutated"):
2377
+ # clearing the registry should not be necessary on new pythons,
2378
+ # instead the filters should be mutated.
2379
+ warnings._filters_mutated()
2380
+ return
2381
+ # Simply clear the registry, this should normally be harmless,
2382
+ # note that on new pythons it would be invalidated anyway.
2383
+ for module in self._tmp_modules:
2384
+ if hasattr(module, "__warningregistry__"):
2385
+ module.__warningregistry__.clear()
2386
+
2387
+ def _filter(self, category=Warning, message="", module=None, record=False):
2388
+ if record:
2389
+ record = [] # The log where to store warnings
2390
+ else:
2391
+ record = None
2392
+ if self._entered:
2393
+ if module is None:
2394
+ warnings.filterwarnings(
2395
+ "always", category=category, message=message)
2396
+ else:
2397
+ module_regex = module.__name__.replace('.', r'\.') + '$'
2398
+ warnings.filterwarnings(
2399
+ "always", category=category, message=message,
2400
+ module=module_regex)
2401
+ self._tmp_modules.add(module)
2402
+ self._clear_registries()
2403
+
2404
+ self._tmp_suppressions.append(
2405
+ (category, message, re.compile(message, re.I), module, record))
2406
+ else:
2407
+ self._suppressions.append(
2408
+ (category, message, re.compile(message, re.I), module, record))
2409
+
2410
+ return record
2411
+
2412
+ def filter(self, category=Warning, message="", module=None):
2413
+ """
2414
+ Add a new suppressing filter or apply it if the state is entered.
2415
+
2416
+ Parameters
2417
+ ----------
2418
+ category : class, optional
2419
+ Warning class to filter
2420
+ message : string, optional
2421
+ Regular expression matching the warning message.
2422
+ module : module, optional
2423
+ Module to filter for. Note that the module (and its file)
2424
+ must match exactly and cannot be a submodule. This may make
2425
+ it unreliable for external modules.
2426
+
2427
+ Notes
2428
+ -----
2429
+ When added within a context, filters are only added inside
2430
+ the context and will be forgotten when the context is exited.
2431
+ """
2432
+ self._filter(category=category, message=message, module=module,
2433
+ record=False)
2434
+
2435
+ def record(self, category=Warning, message="", module=None):
2436
+ """
2437
+ Append a new recording filter or apply it if the state is entered.
2438
+
2439
+ All warnings matching will be appended to the ``log`` attribute.
2440
+
2441
+ Parameters
2442
+ ----------
2443
+ category : class, optional
2444
+ Warning class to filter
2445
+ message : string, optional
2446
+ Regular expression matching the warning message.
2447
+ module : module, optional
2448
+ Module to filter for. Note that the module (and its file)
2449
+ must match exactly and cannot be a submodule. This may make
2450
+ it unreliable for external modules.
2451
+
2452
+ Returns
2453
+ -------
2454
+ log : list
2455
+ A list which will be filled with all matched warnings.
2456
+
2457
+ Notes
2458
+ -----
2459
+ When added within a context, filters are only added inside
2460
+ the context and will be forgotten when the context is exited.
2461
+ """
2462
+ return self._filter(category=category, message=message, module=module,
2463
+ record=True)
2464
+
2465
+ def __enter__(self):
2466
+ if self._entered:
2467
+ raise RuntimeError("cannot enter suppress_warnings twice.")
2468
+
2469
+ self._orig_show = warnings.showwarning
2470
+ self._filters = warnings.filters
2471
+ warnings.filters = self._filters[:]
2472
+
2473
+ self._entered = True
2474
+ self._tmp_suppressions = []
2475
+ self._tmp_modules = set()
2476
+ self._forwarded = set()
2477
+
2478
+ self.log = [] # reset global log (no need to keep same list)
2479
+
2480
+ for cat, mess, _, mod, log in self._suppressions:
2481
+ if log is not None:
2482
+ del log[:] # clear the log
2483
+ if mod is None:
2484
+ warnings.filterwarnings(
2485
+ "always", category=cat, message=mess)
2486
+ else:
2487
+ module_regex = mod.__name__.replace('.', r'\.') + '$'
2488
+ warnings.filterwarnings(
2489
+ "always", category=cat, message=mess,
2490
+ module=module_regex)
2491
+ self._tmp_modules.add(mod)
2492
+ warnings.showwarning = self._showwarning
2493
+ self._clear_registries()
2494
+
2495
+ return self
2496
+
2497
+ def __exit__(self, *exc_info):
2498
+ warnings.showwarning = self._orig_show
2499
+ warnings.filters = self._filters
2500
+ self._clear_registries()
2501
+ self._entered = False
2502
+ del self._orig_show
2503
+ del self._filters
2504
+
2505
+ def _showwarning(self, message, category, filename, lineno,
2506
+ *args, use_warnmsg=None, **kwargs):
2507
+ for cat, _, pattern, mod, rec in (
2508
+ self._suppressions + self._tmp_suppressions)[::-1]:
2509
+ if (issubclass(category, cat) and
2510
+ pattern.match(message.args[0]) is not None):
2511
+ if mod is None:
2512
+ # Message and category match, either recorded or ignored
2513
+ if rec is not None:
2514
+ msg = WarningMessage(message, category, filename,
2515
+ lineno, **kwargs)
2516
+ self.log.append(msg)
2517
+ rec.append(msg)
2518
+ return
2519
+ # Use startswith, because warnings strips the c or o from
2520
+ # .pyc/.pyo files.
2521
+ elif mod.__file__.startswith(filename):
2522
+ # The message and module (filename) match
2523
+ if rec is not None:
2524
+ msg = WarningMessage(message, category, filename,
2525
+ lineno, **kwargs)
2526
+ self.log.append(msg)
2527
+ rec.append(msg)
2528
+ return
2529
+
2530
+ # There is no filter in place, so pass to the outside handler
2531
+ # unless we should only pass it once
2532
+ if self._forwarding_rule == "always":
2533
+ if use_warnmsg is None:
2534
+ self._orig_show(message, category, filename, lineno,
2535
+ *args, **kwargs)
2536
+ else:
2537
+ self._orig_showmsg(use_warnmsg)
2538
+ return
2539
+
2540
+ if self._forwarding_rule == "once":
2541
+ signature = (message.args, category)
2542
+ elif self._forwarding_rule == "module":
2543
+ signature = (message.args, category, filename)
2544
+ elif self._forwarding_rule == "location":
2545
+ signature = (message.args, category, filename, lineno)
2546
+
2547
+ if signature in self._forwarded:
2548
+ return
2549
+ self._forwarded.add(signature)
2550
+ if use_warnmsg is None:
2551
+ self._orig_show(message, category, filename, lineno, *args,
2552
+ **kwargs)
2553
+ else:
2554
+ self._orig_showmsg(use_warnmsg)
2555
+
2556
+ def __call__(self, func):
2557
+ """
2558
+ Function decorator to apply certain suppressions to a whole
2559
+ function.
2560
+ """
2561
+ @wraps(func)
2562
+ def new_func(*args, **kwargs):
2563
+ with self:
2564
+ return func(*args, **kwargs)
2565
+
2566
+ return new_func
2567
+
2568
+
2569
+ @contextlib.contextmanager
2570
+ def _assert_no_gc_cycles_context(name=None):
2571
+ __tracebackhide__ = True # Hide traceback for py.test
2572
+
2573
+ # not meaningful to test if there is no refcounting
2574
+ if not HAS_REFCOUNT:
2575
+ yield
2576
+ return
2577
+
2578
+ assert_(gc.isenabled())
2579
+ gc.disable()
2580
+ gc_debug = gc.get_debug()
2581
+ try:
2582
+ for i in range(100):
2583
+ if gc.collect() == 0:
2584
+ break
2585
+ else:
2586
+ raise RuntimeError(
2587
+ "Unable to fully collect garbage - perhaps a __del__ method "
2588
+ "is creating more reference cycles?")
2589
+
2590
+ gc.set_debug(gc.DEBUG_SAVEALL)
2591
+ yield
2592
+ # gc.collect returns the number of unreachable objects in cycles that
2593
+ # were found -- we are checking that no cycles were created in the context
2594
+ n_objects_in_cycles = gc.collect()
2595
+ objects_in_cycles = gc.garbage[:]
2596
+ finally:
2597
+ del gc.garbage[:]
2598
+ gc.set_debug(gc_debug)
2599
+ gc.enable()
2600
+
2601
+ if n_objects_in_cycles:
2602
+ name_str = f' when calling {name}' if name is not None else ''
2603
+ raise AssertionError(
2604
+ "Reference cycles were found{}: {} objects were collected, "
2605
+ "of which {} are shown below:{}"
2606
+ .format(
2607
+ name_str,
2608
+ n_objects_in_cycles,
2609
+ len(objects_in_cycles),
2610
+ ''.join(
2611
+ "\n {} object with id={}:\n {}".format(
2612
+ type(o).__name__,
2613
+ id(o),
2614
+ pprint.pformat(o).replace('\n', '\n ')
2615
+ ) for o in objects_in_cycles
2616
+ )
2617
+ )
2618
+ )
2619
+
2620
+
2621
+ def assert_no_gc_cycles(*args, **kwargs):
2622
+ """
2623
+ Fail if the given callable produces any reference cycles.
2624
+
2625
+ If called with all arguments omitted, may be used as a context manager::
2626
+
2627
+ with assert_no_gc_cycles():
2628
+ do_something()
2629
+
2630
+ Parameters
2631
+ ----------
2632
+ func : callable
2633
+ The callable to test.
2634
+ \\*args : Arguments
2635
+ Arguments passed to `func`.
2636
+ \\*\\*kwargs : Kwargs
2637
+ Keyword arguments passed to `func`.
2638
+
2639
+ Returns
2640
+ -------
2641
+ Nothing. The result is deliberately discarded to ensure that all cycles
2642
+ are found.
2643
+
2644
+ """
2645
+ if not args:
2646
+ return _assert_no_gc_cycles_context()
2647
+
2648
+ func = args[0]
2649
+ args = args[1:]
2650
+ with _assert_no_gc_cycles_context(name=func.__name__):
2651
+ func(*args, **kwargs)
2652
+
2653
+
2654
+ def break_cycles():
2655
+ """
2656
+ Break reference cycles by calling gc.collect
2657
+ Objects can call other objects' methods (for instance, another object's
2658
+ __del__) inside their own __del__. On PyPy, the interpreter only runs
2659
+ between calls to gc.collect, so multiple calls are needed to completely
2660
+ release all cycles.
2661
+ """
2662
+
2663
+ gc.collect()
2664
+ if IS_PYPY:
2665
+ # a few more, just to make sure all the finalizers are called
2666
+ gc.collect()
2667
+ gc.collect()
2668
+ gc.collect()
2669
+ gc.collect()
2670
+
2671
+
2672
+ def requires_memory(free_bytes):
2673
+ """Decorator to skip a test if not enough memory is available"""
2674
+ import pytest
2675
+
2676
+ def decorator(func):
2677
+ @wraps(func)
2678
+ def wrapper(*a, **kw):
2679
+ msg = check_free_memory(free_bytes)
2680
+ if msg is not None:
2681
+ pytest.skip(msg)
2682
+
2683
+ try:
2684
+ return func(*a, **kw)
2685
+ except MemoryError:
2686
+ # Probably ran out of memory regardless: don't regard as failure
2687
+ pytest.xfail("MemoryError raised")
2688
+
2689
+ return wrapper
2690
+
2691
+ return decorator
2692
+
2693
+
2694
+ def check_free_memory(free_bytes):
2695
+ """
2696
+ Check whether `free_bytes` amount of memory is currently free.
2697
+ Returns: None if enough memory available, otherwise error message
2698
+ """
2699
+ env_var = 'NPY_AVAILABLE_MEM'
2700
+ env_value = os.environ.get(env_var)
2701
+ if env_value is not None:
2702
+ try:
2703
+ mem_free = _parse_size(env_value)
2704
+ except ValueError as exc:
2705
+ raise ValueError(f'Invalid environment variable {env_var}: {exc}')
2706
+
2707
+ msg = (f'{free_bytes / 1e9} GB memory required, but environment variable '
2708
+ f'NPY_AVAILABLE_MEM={env_value} set')
2709
+ else:
2710
+ mem_free = _get_mem_available()
2711
+
2712
+ if mem_free is None:
2713
+ msg = ("Could not determine available memory; set NPY_AVAILABLE_MEM "
2714
+ "environment variable (e.g. NPY_AVAILABLE_MEM=16GB) to run "
2715
+ "the test.")
2716
+ mem_free = -1
2717
+ else:
2718
+ free_bytes_gb = free_bytes / 1e9
2719
+ mem_free_gb = mem_free / 1e9
2720
+ msg = f'{free_bytes_gb} GB memory required, but {mem_free_gb} GB available'
2721
+
2722
+ return msg if mem_free < free_bytes else None
2723
+
2724
+
2725
+ def _parse_size(size_str):
2726
+ """Convert memory size strings ('12 GB' etc.) to float"""
2727
+ suffixes = {'': 1, 'b': 1,
2728
+ 'k': 1000, 'm': 1000**2, 'g': 1000**3, 't': 1000**4,
2729
+ 'kb': 1000, 'mb': 1000**2, 'gb': 1000**3, 'tb': 1000**4,
2730
+ 'kib': 1024, 'mib': 1024**2, 'gib': 1024**3, 'tib': 1024**4}
2731
+
2732
+ pipe_suffixes = "|".join(suffixes.keys())
2733
+
2734
+ size_re = re.compile(fr'^\s*(\d+|\d+\.\d+)\s*({pipe_suffixes})\s*$', re.I)
2735
+
2736
+ m = size_re.match(size_str.lower())
2737
+ if not m or m.group(2) not in suffixes:
2738
+ raise ValueError(f'value {size_str!r} not a valid size')
2739
+ return int(float(m.group(1)) * suffixes[m.group(2)])
2740
+
2741
+
2742
+ def _get_mem_available():
2743
+ """Return available memory in bytes, or None if unknown."""
2744
+ try:
2745
+ import psutil
2746
+ return psutil.virtual_memory().available
2747
+ except (ImportError, AttributeError):
2748
+ pass
2749
+
2750
+ if sys.platform.startswith('linux'):
2751
+ info = {}
2752
+ with open('/proc/meminfo') as f:
2753
+ for line in f:
2754
+ p = line.split()
2755
+ info[p[0].strip(':').lower()] = int(p[1]) * 1024
2756
+
2757
+ if 'memavailable' in info:
2758
+ # Linux >= 3.14
2759
+ return info['memavailable']
2760
+ else:
2761
+ return info['memfree'] + info['cached']
2762
+
2763
+ return None
2764
+
2765
+
2766
+ def _no_tracing(func):
2767
+ """
2768
+ Decorator to temporarily turn off tracing for the duration of a test.
2769
+ Needed in tests that check refcounting, otherwise the tracing itself
2770
+ influences the refcounts
2771
+ """
2772
+ if not hasattr(sys, 'gettrace'):
2773
+ return func
2774
+ else:
2775
+ @wraps(func)
2776
+ def wrapper(*args, **kwargs):
2777
+ original_trace = sys.gettrace()
2778
+ try:
2779
+ sys.settrace(None)
2780
+ return func(*args, **kwargs)
2781
+ finally:
2782
+ sys.settrace(original_trace)
2783
+ return wrapper
2784
+
2785
+
2786
+ def _get_glibc_version():
2787
+ try:
2788
+ ver = os.confstr('CS_GNU_LIBC_VERSION').rsplit(' ')[1]
2789
+ except Exception:
2790
+ ver = '0.0'
2791
+
2792
+ return ver
2793
+
2794
+
2795
+ _glibcver = _get_glibc_version()
2796
+ _glibc_older_than = lambda x: (_glibcver != '0.0' and _glibcver < x)
2797
+
2798
+
2799
+ def run_threaded(func, max_workers=8, pass_count=False,
2800
+ pass_barrier=False, outer_iterations=1,
2801
+ prepare_args=None):
2802
+ """Runs a function many times in parallel"""
2803
+ for _ in range(outer_iterations):
2804
+ with (concurrent.futures.ThreadPoolExecutor(max_workers=max_workers)
2805
+ as tpe):
2806
+ if prepare_args is None:
2807
+ args = []
2808
+ else:
2809
+ args = prepare_args()
2810
+ if pass_barrier:
2811
+ barrier = threading.Barrier(max_workers)
2812
+ args.append(barrier)
2813
+ if pass_count:
2814
+ all_args = [(func, i, *args) for i in range(max_workers)]
2815
+ else:
2816
+ all_args = [(func, *args) for i in range(max_workers)]
2817
+ try:
2818
+ futures = []
2819
+ for arg in all_args:
2820
+ futures.append(tpe.submit(*arg))
2821
+ except RuntimeError as e:
2822
+ import pytest
2823
+ pytest.skip(f"Spawning {max_workers} threads failed with "
2824
+ f"error {e!r} (likely due to resource limits on the "
2825
+ "system running the tests)")
2826
+ finally:
2827
+ if len(futures) < max_workers and pass_barrier:
2828
+ barrier.abort()
2829
+ for f in futures:
2830
+ f.result()