numpy 2.4.1__pp311-pypy311_pp73-macosx_14_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1039) hide show
  1. numpy/__config__.py +170 -0
  2. numpy/__config__.pyi +108 -0
  3. numpy/__init__.cython-30.pxd +1242 -0
  4. numpy/__init__.pxd +1155 -0
  5. numpy/__init__.py +942 -0
  6. numpy/__init__.pyi +6202 -0
  7. numpy/_array_api_info.py +346 -0
  8. numpy/_array_api_info.pyi +206 -0
  9. numpy/_configtool.py +39 -0
  10. numpy/_configtool.pyi +1 -0
  11. numpy/_core/__init__.py +201 -0
  12. numpy/_core/__init__.pyi +666 -0
  13. numpy/_core/_add_newdocs.py +7151 -0
  14. numpy/_core/_add_newdocs.pyi +2 -0
  15. numpy/_core/_add_newdocs_scalars.py +381 -0
  16. numpy/_core/_add_newdocs_scalars.pyi +16 -0
  17. numpy/_core/_asarray.py +130 -0
  18. numpy/_core/_asarray.pyi +43 -0
  19. numpy/_core/_dtype.py +366 -0
  20. numpy/_core/_dtype.pyi +56 -0
  21. numpy/_core/_dtype_ctypes.py +120 -0
  22. numpy/_core/_dtype_ctypes.pyi +83 -0
  23. numpy/_core/_exceptions.py +162 -0
  24. numpy/_core/_exceptions.pyi +54 -0
  25. numpy/_core/_internal.py +968 -0
  26. numpy/_core/_internal.pyi +61 -0
  27. numpy/_core/_methods.py +252 -0
  28. numpy/_core/_methods.pyi +22 -0
  29. numpy/_core/_multiarray_tests.pypy311-pp73-darwin.so +0 -0
  30. numpy/_core/_multiarray_umath.pypy311-pp73-darwin.so +0 -0
  31. numpy/_core/_operand_flag_tests.pypy311-pp73-darwin.so +0 -0
  32. numpy/_core/_rational_tests.pypy311-pp73-darwin.so +0 -0
  33. numpy/_core/_simd.pyi +35 -0
  34. numpy/_core/_simd.pypy311-pp73-darwin.so +0 -0
  35. numpy/_core/_string_helpers.py +100 -0
  36. numpy/_core/_string_helpers.pyi +12 -0
  37. numpy/_core/_struct_ufunc_tests.pypy311-pp73-darwin.so +0 -0
  38. numpy/_core/_type_aliases.py +131 -0
  39. numpy/_core/_type_aliases.pyi +86 -0
  40. numpy/_core/_ufunc_config.py +515 -0
  41. numpy/_core/_ufunc_config.pyi +69 -0
  42. numpy/_core/_umath_tests.pyi +47 -0
  43. numpy/_core/_umath_tests.pypy311-pp73-darwin.so +0 -0
  44. numpy/_core/arrayprint.py +1779 -0
  45. numpy/_core/arrayprint.pyi +158 -0
  46. numpy/_core/cversions.py +13 -0
  47. numpy/_core/defchararray.py +1414 -0
  48. numpy/_core/defchararray.pyi +1150 -0
  49. numpy/_core/einsumfunc.py +1650 -0
  50. numpy/_core/einsumfunc.pyi +184 -0
  51. numpy/_core/fromnumeric.py +4233 -0
  52. numpy/_core/fromnumeric.pyi +1735 -0
  53. numpy/_core/function_base.py +547 -0
  54. numpy/_core/function_base.pyi +276 -0
  55. numpy/_core/getlimits.py +462 -0
  56. numpy/_core/getlimits.pyi +124 -0
  57. numpy/_core/include/numpy/__multiarray_api.c +376 -0
  58. numpy/_core/include/numpy/__multiarray_api.h +1628 -0
  59. numpy/_core/include/numpy/__ufunc_api.c +55 -0
  60. numpy/_core/include/numpy/__ufunc_api.h +349 -0
  61. numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
  62. numpy/_core/include/numpy/_numpyconfig.h +33 -0
  63. numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
  64. numpy/_core/include/numpy/arrayobject.h +7 -0
  65. numpy/_core/include/numpy/arrayscalars.h +198 -0
  66. numpy/_core/include/numpy/dtype_api.h +547 -0
  67. numpy/_core/include/numpy/halffloat.h +70 -0
  68. numpy/_core/include/numpy/ndarrayobject.h +304 -0
  69. numpy/_core/include/numpy/ndarraytypes.h +1982 -0
  70. numpy/_core/include/numpy/npy_2_compat.h +249 -0
  71. numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
  72. numpy/_core/include/numpy/npy_3kcompat.h +374 -0
  73. numpy/_core/include/numpy/npy_common.h +989 -0
  74. numpy/_core/include/numpy/npy_cpu.h +126 -0
  75. numpy/_core/include/numpy/npy_endian.h +79 -0
  76. numpy/_core/include/numpy/npy_math.h +602 -0
  77. numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
  78. numpy/_core/include/numpy/npy_os.h +42 -0
  79. numpy/_core/include/numpy/numpyconfig.h +185 -0
  80. numpy/_core/include/numpy/random/LICENSE.txt +21 -0
  81. numpy/_core/include/numpy/random/bitgen.h +20 -0
  82. numpy/_core/include/numpy/random/distributions.h +209 -0
  83. numpy/_core/include/numpy/random/libdivide.h +2079 -0
  84. numpy/_core/include/numpy/ufuncobject.h +343 -0
  85. numpy/_core/include/numpy/utils.h +37 -0
  86. numpy/_core/lib/libnpymath.a +0 -0
  87. numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
  88. numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
  89. numpy/_core/lib/pkgconfig/numpy.pc +7 -0
  90. numpy/_core/memmap.py +363 -0
  91. numpy/_core/memmap.pyi +3 -0
  92. numpy/_core/multiarray.py +1740 -0
  93. numpy/_core/multiarray.pyi +1316 -0
  94. numpy/_core/numeric.py +2758 -0
  95. numpy/_core/numeric.pyi +1276 -0
  96. numpy/_core/numerictypes.py +633 -0
  97. numpy/_core/numerictypes.pyi +196 -0
  98. numpy/_core/overrides.py +188 -0
  99. numpy/_core/overrides.pyi +47 -0
  100. numpy/_core/printoptions.py +32 -0
  101. numpy/_core/printoptions.pyi +28 -0
  102. numpy/_core/records.py +1088 -0
  103. numpy/_core/records.pyi +340 -0
  104. numpy/_core/shape_base.py +996 -0
  105. numpy/_core/shape_base.pyi +182 -0
  106. numpy/_core/strings.py +1813 -0
  107. numpy/_core/strings.pyi +536 -0
  108. numpy/_core/tests/_locales.py +72 -0
  109. numpy/_core/tests/_natype.py +144 -0
  110. numpy/_core/tests/data/astype_copy.pkl +0 -0
  111. numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
  112. numpy/_core/tests/data/recarray_from_file.fits +0 -0
  113. numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
  114. numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
  115. numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
  116. numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
  117. numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
  118. numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
  119. numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
  120. numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
  121. numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
  122. numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
  123. numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
  124. numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
  125. numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
  126. numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
  127. numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
  128. numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
  129. numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
  130. numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
  131. numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
  132. numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
  133. numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
  134. numpy/_core/tests/examples/cython/checks.pyx +373 -0
  135. numpy/_core/tests/examples/cython/meson.build +43 -0
  136. numpy/_core/tests/examples/cython/setup.py +39 -0
  137. numpy/_core/tests/examples/limited_api/limited_api1.c +17 -0
  138. numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
  139. numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
  140. numpy/_core/tests/examples/limited_api/meson.build +59 -0
  141. numpy/_core/tests/examples/limited_api/setup.py +24 -0
  142. numpy/_core/tests/test__exceptions.py +90 -0
  143. numpy/_core/tests/test_abc.py +54 -0
  144. numpy/_core/tests/test_api.py +655 -0
  145. numpy/_core/tests/test_argparse.py +90 -0
  146. numpy/_core/tests/test_array_api_info.py +113 -0
  147. numpy/_core/tests/test_array_coercion.py +928 -0
  148. numpy/_core/tests/test_array_interface.py +222 -0
  149. numpy/_core/tests/test_arraymethod.py +84 -0
  150. numpy/_core/tests/test_arrayobject.py +75 -0
  151. numpy/_core/tests/test_arrayprint.py +1324 -0
  152. numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
  153. numpy/_core/tests/test_casting_unittests.py +955 -0
  154. numpy/_core/tests/test_conversion_utils.py +209 -0
  155. numpy/_core/tests/test_cpu_dispatcher.py +48 -0
  156. numpy/_core/tests/test_cpu_features.py +450 -0
  157. numpy/_core/tests/test_custom_dtypes.py +393 -0
  158. numpy/_core/tests/test_cython.py +352 -0
  159. numpy/_core/tests/test_datetime.py +2792 -0
  160. numpy/_core/tests/test_defchararray.py +858 -0
  161. numpy/_core/tests/test_deprecations.py +460 -0
  162. numpy/_core/tests/test_dlpack.py +190 -0
  163. numpy/_core/tests/test_dtype.py +2110 -0
  164. numpy/_core/tests/test_einsum.py +1351 -0
  165. numpy/_core/tests/test_errstate.py +131 -0
  166. numpy/_core/tests/test_extint128.py +217 -0
  167. numpy/_core/tests/test_finfo.py +86 -0
  168. numpy/_core/tests/test_function_base.py +504 -0
  169. numpy/_core/tests/test_getlimits.py +171 -0
  170. numpy/_core/tests/test_half.py +593 -0
  171. numpy/_core/tests/test_hashtable.py +36 -0
  172. numpy/_core/tests/test_indexerrors.py +122 -0
  173. numpy/_core/tests/test_indexing.py +1692 -0
  174. numpy/_core/tests/test_item_selection.py +167 -0
  175. numpy/_core/tests/test_limited_api.py +102 -0
  176. numpy/_core/tests/test_longdouble.py +370 -0
  177. numpy/_core/tests/test_mem_overlap.py +933 -0
  178. numpy/_core/tests/test_mem_policy.py +453 -0
  179. numpy/_core/tests/test_memmap.py +248 -0
  180. numpy/_core/tests/test_multiarray.py +11008 -0
  181. numpy/_core/tests/test_multiprocessing.py +55 -0
  182. numpy/_core/tests/test_multithreading.py +377 -0
  183. numpy/_core/tests/test_nditer.py +3533 -0
  184. numpy/_core/tests/test_nep50_promotions.py +287 -0
  185. numpy/_core/tests/test_numeric.py +4295 -0
  186. numpy/_core/tests/test_numerictypes.py +650 -0
  187. numpy/_core/tests/test_overrides.py +800 -0
  188. numpy/_core/tests/test_print.py +202 -0
  189. numpy/_core/tests/test_protocols.py +46 -0
  190. numpy/_core/tests/test_records.py +544 -0
  191. numpy/_core/tests/test_regression.py +2677 -0
  192. numpy/_core/tests/test_scalar_ctors.py +203 -0
  193. numpy/_core/tests/test_scalar_methods.py +328 -0
  194. numpy/_core/tests/test_scalarbuffer.py +153 -0
  195. numpy/_core/tests/test_scalarinherit.py +105 -0
  196. numpy/_core/tests/test_scalarmath.py +1168 -0
  197. numpy/_core/tests/test_scalarprint.py +403 -0
  198. numpy/_core/tests/test_shape_base.py +904 -0
  199. numpy/_core/tests/test_simd.py +1345 -0
  200. numpy/_core/tests/test_simd_module.py +105 -0
  201. numpy/_core/tests/test_stringdtype.py +1855 -0
  202. numpy/_core/tests/test_strings.py +1523 -0
  203. numpy/_core/tests/test_ufunc.py +3405 -0
  204. numpy/_core/tests/test_umath.py +4962 -0
  205. numpy/_core/tests/test_umath_accuracy.py +132 -0
  206. numpy/_core/tests/test_umath_complex.py +631 -0
  207. numpy/_core/tests/test_unicode.py +369 -0
  208. numpy/_core/umath.py +60 -0
  209. numpy/_core/umath.pyi +232 -0
  210. numpy/_distributor_init.py +15 -0
  211. numpy/_distributor_init.pyi +1 -0
  212. numpy/_expired_attrs_2_0.py +78 -0
  213. numpy/_expired_attrs_2_0.pyi +61 -0
  214. numpy/_globals.py +121 -0
  215. numpy/_globals.pyi +17 -0
  216. numpy/_pyinstaller/__init__.py +0 -0
  217. numpy/_pyinstaller/__init__.pyi +0 -0
  218. numpy/_pyinstaller/hook-numpy.py +36 -0
  219. numpy/_pyinstaller/hook-numpy.pyi +6 -0
  220. numpy/_pyinstaller/tests/__init__.py +16 -0
  221. numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
  222. numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
  223. numpy/_pytesttester.py +201 -0
  224. numpy/_pytesttester.pyi +18 -0
  225. numpy/_typing/__init__.py +173 -0
  226. numpy/_typing/_add_docstring.py +153 -0
  227. numpy/_typing/_array_like.py +106 -0
  228. numpy/_typing/_char_codes.py +213 -0
  229. numpy/_typing/_dtype_like.py +114 -0
  230. numpy/_typing/_extended_precision.py +15 -0
  231. numpy/_typing/_nbit.py +19 -0
  232. numpy/_typing/_nbit_base.py +94 -0
  233. numpy/_typing/_nbit_base.pyi +39 -0
  234. numpy/_typing/_nested_sequence.py +79 -0
  235. numpy/_typing/_scalars.py +20 -0
  236. numpy/_typing/_shape.py +8 -0
  237. numpy/_typing/_ufunc.py +7 -0
  238. numpy/_typing/_ufunc.pyi +975 -0
  239. numpy/_utils/__init__.py +95 -0
  240. numpy/_utils/__init__.pyi +28 -0
  241. numpy/_utils/_convertions.py +18 -0
  242. numpy/_utils/_convertions.pyi +4 -0
  243. numpy/_utils/_inspect.py +192 -0
  244. numpy/_utils/_inspect.pyi +70 -0
  245. numpy/_utils/_pep440.py +486 -0
  246. numpy/_utils/_pep440.pyi +118 -0
  247. numpy/char/__init__.py +2 -0
  248. numpy/char/__init__.pyi +111 -0
  249. numpy/conftest.py +248 -0
  250. numpy/core/__init__.py +33 -0
  251. numpy/core/__init__.pyi +0 -0
  252. numpy/core/_dtype.py +10 -0
  253. numpy/core/_dtype.pyi +0 -0
  254. numpy/core/_dtype_ctypes.py +10 -0
  255. numpy/core/_dtype_ctypes.pyi +0 -0
  256. numpy/core/_internal.py +27 -0
  257. numpy/core/_multiarray_umath.py +57 -0
  258. numpy/core/_utils.py +21 -0
  259. numpy/core/arrayprint.py +10 -0
  260. numpy/core/defchararray.py +10 -0
  261. numpy/core/einsumfunc.py +10 -0
  262. numpy/core/fromnumeric.py +10 -0
  263. numpy/core/function_base.py +10 -0
  264. numpy/core/getlimits.py +10 -0
  265. numpy/core/multiarray.py +25 -0
  266. numpy/core/numeric.py +12 -0
  267. numpy/core/numerictypes.py +10 -0
  268. numpy/core/overrides.py +10 -0
  269. numpy/core/overrides.pyi +7 -0
  270. numpy/core/records.py +10 -0
  271. numpy/core/shape_base.py +10 -0
  272. numpy/core/umath.py +10 -0
  273. numpy/ctypeslib/__init__.py +13 -0
  274. numpy/ctypeslib/__init__.pyi +15 -0
  275. numpy/ctypeslib/_ctypeslib.py +603 -0
  276. numpy/ctypeslib/_ctypeslib.pyi +236 -0
  277. numpy/distutils/__init__.py +64 -0
  278. numpy/distutils/__init__.pyi +4 -0
  279. numpy/distutils/__pycache__/conv_template.pypy311.pyc +0 -0
  280. numpy/distutils/_shell_utils.py +87 -0
  281. numpy/distutils/armccompiler.py +26 -0
  282. numpy/distutils/ccompiler.py +826 -0
  283. numpy/distutils/ccompiler_opt.py +2668 -0
  284. numpy/distutils/checks/cpu_asimd.c +27 -0
  285. numpy/distutils/checks/cpu_asimddp.c +16 -0
  286. numpy/distutils/checks/cpu_asimdfhm.c +19 -0
  287. numpy/distutils/checks/cpu_asimdhp.c +15 -0
  288. numpy/distutils/checks/cpu_avx.c +20 -0
  289. numpy/distutils/checks/cpu_avx2.c +20 -0
  290. numpy/distutils/checks/cpu_avx512_clx.c +22 -0
  291. numpy/distutils/checks/cpu_avx512_cnl.c +24 -0
  292. numpy/distutils/checks/cpu_avx512_icl.c +26 -0
  293. numpy/distutils/checks/cpu_avx512_knl.c +25 -0
  294. numpy/distutils/checks/cpu_avx512_knm.c +30 -0
  295. numpy/distutils/checks/cpu_avx512_skx.c +26 -0
  296. numpy/distutils/checks/cpu_avx512_spr.c +26 -0
  297. numpy/distutils/checks/cpu_avx512cd.c +20 -0
  298. numpy/distutils/checks/cpu_avx512f.c +20 -0
  299. numpy/distutils/checks/cpu_f16c.c +22 -0
  300. numpy/distutils/checks/cpu_fma3.c +22 -0
  301. numpy/distutils/checks/cpu_fma4.c +13 -0
  302. numpy/distutils/checks/cpu_lsx.c +11 -0
  303. numpy/distutils/checks/cpu_neon.c +19 -0
  304. numpy/distutils/checks/cpu_neon_fp16.c +11 -0
  305. numpy/distutils/checks/cpu_neon_vfpv4.c +21 -0
  306. numpy/distutils/checks/cpu_popcnt.c +32 -0
  307. numpy/distutils/checks/cpu_rvv.c +13 -0
  308. numpy/distutils/checks/cpu_sse.c +20 -0
  309. numpy/distutils/checks/cpu_sse2.c +20 -0
  310. numpy/distutils/checks/cpu_sse3.c +20 -0
  311. numpy/distutils/checks/cpu_sse41.c +20 -0
  312. numpy/distutils/checks/cpu_sse42.c +20 -0
  313. numpy/distutils/checks/cpu_ssse3.c +20 -0
  314. numpy/distutils/checks/cpu_sve.c +14 -0
  315. numpy/distutils/checks/cpu_vsx.c +21 -0
  316. numpy/distutils/checks/cpu_vsx2.c +13 -0
  317. numpy/distutils/checks/cpu_vsx3.c +13 -0
  318. numpy/distutils/checks/cpu_vsx4.c +14 -0
  319. numpy/distutils/checks/cpu_vx.c +16 -0
  320. numpy/distutils/checks/cpu_vxe.c +25 -0
  321. numpy/distutils/checks/cpu_vxe2.c +21 -0
  322. numpy/distutils/checks/cpu_xop.c +12 -0
  323. numpy/distutils/checks/extra_avx512bw_mask.c +18 -0
  324. numpy/distutils/checks/extra_avx512dq_mask.c +16 -0
  325. numpy/distutils/checks/extra_avx512f_reduce.c +41 -0
  326. numpy/distutils/checks/extra_vsx3_half_double.c +12 -0
  327. numpy/distutils/checks/extra_vsx4_mma.c +21 -0
  328. numpy/distutils/checks/extra_vsx_asm.c +36 -0
  329. numpy/distutils/checks/test_flags.c +1 -0
  330. numpy/distutils/command/__init__.py +41 -0
  331. numpy/distutils/command/autodist.py +148 -0
  332. numpy/distutils/command/bdist_rpm.py +22 -0
  333. numpy/distutils/command/build.py +62 -0
  334. numpy/distutils/command/build_clib.py +469 -0
  335. numpy/distutils/command/build_ext.py +752 -0
  336. numpy/distutils/command/build_py.py +31 -0
  337. numpy/distutils/command/build_scripts.py +49 -0
  338. numpy/distutils/command/build_src.py +773 -0
  339. numpy/distutils/command/config.py +516 -0
  340. numpy/distutils/command/config_compiler.py +126 -0
  341. numpy/distutils/command/develop.py +15 -0
  342. numpy/distutils/command/egg_info.py +25 -0
  343. numpy/distutils/command/install.py +79 -0
  344. numpy/distutils/command/install_clib.py +40 -0
  345. numpy/distutils/command/install_data.py +24 -0
  346. numpy/distutils/command/install_headers.py +25 -0
  347. numpy/distutils/command/sdist.py +27 -0
  348. numpy/distutils/conv_template.py +329 -0
  349. numpy/distutils/core.py +215 -0
  350. numpy/distutils/cpuinfo.py +683 -0
  351. numpy/distutils/exec_command.py +315 -0
  352. numpy/distutils/extension.py +101 -0
  353. numpy/distutils/fcompiler/__init__.py +1035 -0
  354. numpy/distutils/fcompiler/absoft.py +158 -0
  355. numpy/distutils/fcompiler/arm.py +71 -0
  356. numpy/distutils/fcompiler/compaq.py +120 -0
  357. numpy/distutils/fcompiler/environment.py +88 -0
  358. numpy/distutils/fcompiler/fujitsu.py +46 -0
  359. numpy/distutils/fcompiler/g95.py +42 -0
  360. numpy/distutils/fcompiler/gnu.py +555 -0
  361. numpy/distutils/fcompiler/hpux.py +41 -0
  362. numpy/distutils/fcompiler/ibm.py +97 -0
  363. numpy/distutils/fcompiler/intel.py +211 -0
  364. numpy/distutils/fcompiler/lahey.py +45 -0
  365. numpy/distutils/fcompiler/mips.py +54 -0
  366. numpy/distutils/fcompiler/nag.py +87 -0
  367. numpy/distutils/fcompiler/none.py +28 -0
  368. numpy/distutils/fcompiler/nv.py +53 -0
  369. numpy/distutils/fcompiler/pathf95.py +33 -0
  370. numpy/distutils/fcompiler/pg.py +128 -0
  371. numpy/distutils/fcompiler/sun.py +51 -0
  372. numpy/distutils/fcompiler/vast.py +52 -0
  373. numpy/distutils/from_template.py +261 -0
  374. numpy/distutils/fujitsuccompiler.py +28 -0
  375. numpy/distutils/intelccompiler.py +106 -0
  376. numpy/distutils/lib2def.py +116 -0
  377. numpy/distutils/line_endings.py +77 -0
  378. numpy/distutils/log.py +111 -0
  379. numpy/distutils/mingw/gfortran_vs2003_hack.c +6 -0
  380. numpy/distutils/mingw32ccompiler.py +620 -0
  381. numpy/distutils/misc_util.py +2484 -0
  382. numpy/distutils/msvc9compiler.py +63 -0
  383. numpy/distutils/msvccompiler.py +76 -0
  384. numpy/distutils/npy_pkg_config.py +441 -0
  385. numpy/distutils/numpy_distribution.py +17 -0
  386. numpy/distutils/pathccompiler.py +21 -0
  387. numpy/distutils/system_info.py +3267 -0
  388. numpy/distutils/tests/__init__.py +0 -0
  389. numpy/distutils/tests/test_build_ext.py +74 -0
  390. numpy/distutils/tests/test_ccompiler_opt.py +808 -0
  391. numpy/distutils/tests/test_ccompiler_opt_conf.py +176 -0
  392. numpy/distutils/tests/test_exec_command.py +217 -0
  393. numpy/distutils/tests/test_fcompiler.py +43 -0
  394. numpy/distutils/tests/test_fcompiler_gnu.py +55 -0
  395. numpy/distutils/tests/test_fcompiler_intel.py +30 -0
  396. numpy/distutils/tests/test_fcompiler_nagfor.py +22 -0
  397. numpy/distutils/tests/test_from_template.py +44 -0
  398. numpy/distutils/tests/test_log.py +34 -0
  399. numpy/distutils/tests/test_mingw32ccompiler.py +47 -0
  400. numpy/distutils/tests/test_misc_util.py +88 -0
  401. numpy/distutils/tests/test_npy_pkg_config.py +84 -0
  402. numpy/distutils/tests/test_shell_utils.py +79 -0
  403. numpy/distutils/tests/test_system_info.py +334 -0
  404. numpy/distutils/tests/utilities.py +90 -0
  405. numpy/distutils/unixccompiler.py +141 -0
  406. numpy/doc/ufuncs.py +138 -0
  407. numpy/dtypes.py +41 -0
  408. numpy/dtypes.pyi +630 -0
  409. numpy/exceptions.py +246 -0
  410. numpy/exceptions.pyi +27 -0
  411. numpy/f2py/__init__.py +86 -0
  412. numpy/f2py/__init__.pyi +5 -0
  413. numpy/f2py/__main__.py +5 -0
  414. numpy/f2py/__version__.py +1 -0
  415. numpy/f2py/__version__.pyi +1 -0
  416. numpy/f2py/_backends/__init__.py +9 -0
  417. numpy/f2py/_backends/__init__.pyi +5 -0
  418. numpy/f2py/_backends/_backend.py +44 -0
  419. numpy/f2py/_backends/_backend.pyi +46 -0
  420. numpy/f2py/_backends/_distutils.py +76 -0
  421. numpy/f2py/_backends/_distutils.pyi +13 -0
  422. numpy/f2py/_backends/_meson.py +244 -0
  423. numpy/f2py/_backends/_meson.pyi +62 -0
  424. numpy/f2py/_backends/meson.build.template +58 -0
  425. numpy/f2py/_isocbind.py +62 -0
  426. numpy/f2py/_isocbind.pyi +13 -0
  427. numpy/f2py/_src_pyf.py +247 -0
  428. numpy/f2py/_src_pyf.pyi +28 -0
  429. numpy/f2py/auxfuncs.py +1004 -0
  430. numpy/f2py/auxfuncs.pyi +262 -0
  431. numpy/f2py/capi_maps.py +811 -0
  432. numpy/f2py/capi_maps.pyi +33 -0
  433. numpy/f2py/cb_rules.py +665 -0
  434. numpy/f2py/cb_rules.pyi +17 -0
  435. numpy/f2py/cfuncs.py +1563 -0
  436. numpy/f2py/cfuncs.pyi +31 -0
  437. numpy/f2py/common_rules.py +143 -0
  438. numpy/f2py/common_rules.pyi +9 -0
  439. numpy/f2py/crackfortran.py +3725 -0
  440. numpy/f2py/crackfortran.pyi +266 -0
  441. numpy/f2py/diagnose.py +149 -0
  442. numpy/f2py/diagnose.pyi +1 -0
  443. numpy/f2py/f2py2e.py +788 -0
  444. numpy/f2py/f2py2e.pyi +74 -0
  445. numpy/f2py/f90mod_rules.py +269 -0
  446. numpy/f2py/f90mod_rules.pyi +16 -0
  447. numpy/f2py/func2subr.py +329 -0
  448. numpy/f2py/func2subr.pyi +7 -0
  449. numpy/f2py/rules.py +1629 -0
  450. numpy/f2py/rules.pyi +41 -0
  451. numpy/f2py/setup.cfg +3 -0
  452. numpy/f2py/src/fortranobject.c +1436 -0
  453. numpy/f2py/src/fortranobject.h +173 -0
  454. numpy/f2py/symbolic.py +1518 -0
  455. numpy/f2py/symbolic.pyi +219 -0
  456. numpy/f2py/tests/__init__.py +16 -0
  457. numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
  458. numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
  459. numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
  460. numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
  461. numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
  462. numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
  463. numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
  464. numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
  465. numpy/f2py/tests/src/block_docstring/foo.f +6 -0
  466. numpy/f2py/tests/src/callback/foo.f +62 -0
  467. numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
  468. numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
  469. numpy/f2py/tests/src/callback/gh25211.f +10 -0
  470. numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
  471. numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
  472. numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
  473. numpy/f2py/tests/src/cli/hi77.f +3 -0
  474. numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
  475. numpy/f2py/tests/src/common/block.f +11 -0
  476. numpy/f2py/tests/src/common/gh19161.f90 +10 -0
  477. numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
  478. numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
  479. numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
  480. numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
  481. numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
  482. numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
  483. numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
  484. numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
  485. numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
  486. numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
  487. numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
  488. numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
  489. numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
  490. numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
  491. numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
  492. numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
  493. numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
  494. numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
  495. numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
  496. numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
  497. numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
  498. numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
  499. numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
  500. numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
  501. numpy/f2py/tests/src/kind/foo.f90 +20 -0
  502. numpy/f2py/tests/src/mixed/foo.f +5 -0
  503. numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
  504. numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
  505. numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
  506. numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
  507. numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
  508. numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
  509. numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
  510. numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
  511. numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
  512. numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
  513. numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
  514. numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
  515. numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
  516. numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
  517. numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
  518. numpy/f2py/tests/src/quoted_character/foo.f +14 -0
  519. numpy/f2py/tests/src/regression/AB.inc +1 -0
  520. numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
  521. numpy/f2py/tests/src/regression/datonly.f90 +17 -0
  522. numpy/f2py/tests/src/regression/f77comments.f +26 -0
  523. numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
  524. numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
  525. numpy/f2py/tests/src/regression/incfile.f90 +5 -0
  526. numpy/f2py/tests/src/regression/inout.f90 +9 -0
  527. numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
  528. numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
  529. numpy/f2py/tests/src/return_character/foo77.f +45 -0
  530. numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
  531. numpy/f2py/tests/src/return_complex/foo77.f +45 -0
  532. numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
  533. numpy/f2py/tests/src/return_integer/foo77.f +56 -0
  534. numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
  535. numpy/f2py/tests/src/return_logical/foo77.f +56 -0
  536. numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
  537. numpy/f2py/tests/src/return_real/foo77.f +45 -0
  538. numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
  539. numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
  540. numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
  541. numpy/f2py/tests/src/routines/subrout.f +4 -0
  542. numpy/f2py/tests/src/routines/subrout.pyf +10 -0
  543. numpy/f2py/tests/src/size/foo.f90 +44 -0
  544. numpy/f2py/tests/src/string/char.f90 +29 -0
  545. numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
  546. numpy/f2py/tests/src/string/gh24008.f +8 -0
  547. numpy/f2py/tests/src/string/gh24662.f90 +7 -0
  548. numpy/f2py/tests/src/string/gh25286.f90 +14 -0
  549. numpy/f2py/tests/src/string/gh25286.pyf +12 -0
  550. numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
  551. numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
  552. numpy/f2py/tests/src/string/string.f +12 -0
  553. numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
  554. numpy/f2py/tests/test_abstract_interface.py +26 -0
  555. numpy/f2py/tests/test_array_from_pyobj.py +678 -0
  556. numpy/f2py/tests/test_assumed_shape.py +50 -0
  557. numpy/f2py/tests/test_block_docstring.py +20 -0
  558. numpy/f2py/tests/test_callback.py +263 -0
  559. numpy/f2py/tests/test_character.py +641 -0
  560. numpy/f2py/tests/test_common.py +23 -0
  561. numpy/f2py/tests/test_crackfortran.py +421 -0
  562. numpy/f2py/tests/test_data.py +71 -0
  563. numpy/f2py/tests/test_docs.py +66 -0
  564. numpy/f2py/tests/test_f2cmap.py +17 -0
  565. numpy/f2py/tests/test_f2py2e.py +983 -0
  566. numpy/f2py/tests/test_isoc.py +56 -0
  567. numpy/f2py/tests/test_kind.py +52 -0
  568. numpy/f2py/tests/test_mixed.py +35 -0
  569. numpy/f2py/tests/test_modules.py +83 -0
  570. numpy/f2py/tests/test_parameter.py +129 -0
  571. numpy/f2py/tests/test_pyf_src.py +43 -0
  572. numpy/f2py/tests/test_quoted_character.py +18 -0
  573. numpy/f2py/tests/test_regression.py +187 -0
  574. numpy/f2py/tests/test_return_character.py +48 -0
  575. numpy/f2py/tests/test_return_complex.py +67 -0
  576. numpy/f2py/tests/test_return_integer.py +55 -0
  577. numpy/f2py/tests/test_return_logical.py +65 -0
  578. numpy/f2py/tests/test_return_real.py +109 -0
  579. numpy/f2py/tests/test_routines.py +29 -0
  580. numpy/f2py/tests/test_semicolon_split.py +75 -0
  581. numpy/f2py/tests/test_size.py +45 -0
  582. numpy/f2py/tests/test_string.py +100 -0
  583. numpy/f2py/tests/test_symbolic.py +500 -0
  584. numpy/f2py/tests/test_value_attrspec.py +15 -0
  585. numpy/f2py/tests/util.py +442 -0
  586. numpy/f2py/use_rules.py +99 -0
  587. numpy/f2py/use_rules.pyi +9 -0
  588. numpy/fft/__init__.py +213 -0
  589. numpy/fft/__init__.pyi +38 -0
  590. numpy/fft/_helper.py +235 -0
  591. numpy/fft/_helper.pyi +44 -0
  592. numpy/fft/_pocketfft.py +1693 -0
  593. numpy/fft/_pocketfft.pyi +137 -0
  594. numpy/fft/_pocketfft_umath.pypy311-pp73-darwin.so +0 -0
  595. numpy/fft/tests/__init__.py +0 -0
  596. numpy/fft/tests/test_helper.py +167 -0
  597. numpy/fft/tests/test_pocketfft.py +589 -0
  598. numpy/lib/__init__.py +97 -0
  599. numpy/lib/__init__.pyi +52 -0
  600. numpy/lib/_array_utils_impl.py +62 -0
  601. numpy/lib/_array_utils_impl.pyi +10 -0
  602. numpy/lib/_arraypad_impl.py +926 -0
  603. numpy/lib/_arraypad_impl.pyi +88 -0
  604. numpy/lib/_arraysetops_impl.py +1158 -0
  605. numpy/lib/_arraysetops_impl.pyi +462 -0
  606. numpy/lib/_arrayterator_impl.py +224 -0
  607. numpy/lib/_arrayterator_impl.pyi +45 -0
  608. numpy/lib/_datasource.py +700 -0
  609. numpy/lib/_datasource.pyi +30 -0
  610. numpy/lib/_format_impl.py +1036 -0
  611. numpy/lib/_format_impl.pyi +56 -0
  612. numpy/lib/_function_base_impl.py +5760 -0
  613. numpy/lib/_function_base_impl.pyi +2324 -0
  614. numpy/lib/_histograms_impl.py +1085 -0
  615. numpy/lib/_histograms_impl.pyi +40 -0
  616. numpy/lib/_index_tricks_impl.py +1048 -0
  617. numpy/lib/_index_tricks_impl.pyi +267 -0
  618. numpy/lib/_iotools.py +900 -0
  619. numpy/lib/_iotools.pyi +116 -0
  620. numpy/lib/_nanfunctions_impl.py +2006 -0
  621. numpy/lib/_nanfunctions_impl.pyi +48 -0
  622. numpy/lib/_npyio_impl.py +2583 -0
  623. numpy/lib/_npyio_impl.pyi +299 -0
  624. numpy/lib/_polynomial_impl.py +1465 -0
  625. numpy/lib/_polynomial_impl.pyi +338 -0
  626. numpy/lib/_scimath_impl.py +642 -0
  627. numpy/lib/_scimath_impl.pyi +93 -0
  628. numpy/lib/_shape_base_impl.py +1289 -0
  629. numpy/lib/_shape_base_impl.pyi +236 -0
  630. numpy/lib/_stride_tricks_impl.py +582 -0
  631. numpy/lib/_stride_tricks_impl.pyi +73 -0
  632. numpy/lib/_twodim_base_impl.py +1201 -0
  633. numpy/lib/_twodim_base_impl.pyi +408 -0
  634. numpy/lib/_type_check_impl.py +710 -0
  635. numpy/lib/_type_check_impl.pyi +348 -0
  636. numpy/lib/_ufunclike_impl.py +199 -0
  637. numpy/lib/_ufunclike_impl.pyi +60 -0
  638. numpy/lib/_user_array_impl.py +310 -0
  639. numpy/lib/_user_array_impl.pyi +226 -0
  640. numpy/lib/_utils_impl.py +784 -0
  641. numpy/lib/_utils_impl.pyi +22 -0
  642. numpy/lib/_version.py +153 -0
  643. numpy/lib/_version.pyi +17 -0
  644. numpy/lib/array_utils.py +7 -0
  645. numpy/lib/array_utils.pyi +6 -0
  646. numpy/lib/format.py +24 -0
  647. numpy/lib/format.pyi +24 -0
  648. numpy/lib/introspect.py +94 -0
  649. numpy/lib/introspect.pyi +3 -0
  650. numpy/lib/mixins.py +180 -0
  651. numpy/lib/mixins.pyi +78 -0
  652. numpy/lib/npyio.py +1 -0
  653. numpy/lib/npyio.pyi +5 -0
  654. numpy/lib/recfunctions.py +1681 -0
  655. numpy/lib/recfunctions.pyi +444 -0
  656. numpy/lib/scimath.py +13 -0
  657. numpy/lib/scimath.pyi +12 -0
  658. numpy/lib/stride_tricks.py +1 -0
  659. numpy/lib/stride_tricks.pyi +4 -0
  660. numpy/lib/tests/__init__.py +0 -0
  661. numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
  662. numpy/lib/tests/data/py2-objarr.npy +0 -0
  663. numpy/lib/tests/data/py2-objarr.npz +0 -0
  664. numpy/lib/tests/data/py3-objarr.npy +0 -0
  665. numpy/lib/tests/data/py3-objarr.npz +0 -0
  666. numpy/lib/tests/data/python3.npy +0 -0
  667. numpy/lib/tests/data/win64python2.npy +0 -0
  668. numpy/lib/tests/test__datasource.py +328 -0
  669. numpy/lib/tests/test__iotools.py +358 -0
  670. numpy/lib/tests/test__version.py +64 -0
  671. numpy/lib/tests/test_array_utils.py +32 -0
  672. numpy/lib/tests/test_arraypad.py +1427 -0
  673. numpy/lib/tests/test_arraysetops.py +1302 -0
  674. numpy/lib/tests/test_arrayterator.py +45 -0
  675. numpy/lib/tests/test_format.py +1054 -0
  676. numpy/lib/tests/test_function_base.py +4750 -0
  677. numpy/lib/tests/test_histograms.py +855 -0
  678. numpy/lib/tests/test_index_tricks.py +693 -0
  679. numpy/lib/tests/test_io.py +2857 -0
  680. numpy/lib/tests/test_loadtxt.py +1099 -0
  681. numpy/lib/tests/test_mixins.py +215 -0
  682. numpy/lib/tests/test_nanfunctions.py +1438 -0
  683. numpy/lib/tests/test_packbits.py +376 -0
  684. numpy/lib/tests/test_polynomial.py +325 -0
  685. numpy/lib/tests/test_recfunctions.py +1042 -0
  686. numpy/lib/tests/test_regression.py +231 -0
  687. numpy/lib/tests/test_shape_base.py +813 -0
  688. numpy/lib/tests/test_stride_tricks.py +655 -0
  689. numpy/lib/tests/test_twodim_base.py +559 -0
  690. numpy/lib/tests/test_type_check.py +473 -0
  691. numpy/lib/tests/test_ufunclike.py +97 -0
  692. numpy/lib/tests/test_utils.py +80 -0
  693. numpy/lib/user_array.py +1 -0
  694. numpy/lib/user_array.pyi +1 -0
  695. numpy/linalg/__init__.py +95 -0
  696. numpy/linalg/__init__.pyi +71 -0
  697. numpy/linalg/_linalg.py +3657 -0
  698. numpy/linalg/_linalg.pyi +548 -0
  699. numpy/linalg/_umath_linalg.pyi +60 -0
  700. numpy/linalg/_umath_linalg.pypy311-pp73-darwin.so +0 -0
  701. numpy/linalg/lapack_lite.pyi +143 -0
  702. numpy/linalg/lapack_lite.pypy311-pp73-darwin.so +0 -0
  703. numpy/linalg/tests/__init__.py +0 -0
  704. numpy/linalg/tests/test_deprecations.py +21 -0
  705. numpy/linalg/tests/test_linalg.py +2442 -0
  706. numpy/linalg/tests/test_regression.py +182 -0
  707. numpy/ma/API_CHANGES.txt +135 -0
  708. numpy/ma/LICENSE +24 -0
  709. numpy/ma/README.rst +236 -0
  710. numpy/ma/__init__.py +53 -0
  711. numpy/ma/__init__.pyi +458 -0
  712. numpy/ma/core.py +8929 -0
  713. numpy/ma/core.pyi +3720 -0
  714. numpy/ma/extras.py +2266 -0
  715. numpy/ma/extras.pyi +297 -0
  716. numpy/ma/mrecords.py +762 -0
  717. numpy/ma/mrecords.pyi +96 -0
  718. numpy/ma/tests/__init__.py +0 -0
  719. numpy/ma/tests/test_arrayobject.py +40 -0
  720. numpy/ma/tests/test_core.py +6008 -0
  721. numpy/ma/tests/test_deprecations.py +65 -0
  722. numpy/ma/tests/test_extras.py +1945 -0
  723. numpy/ma/tests/test_mrecords.py +495 -0
  724. numpy/ma/tests/test_old_ma.py +939 -0
  725. numpy/ma/tests/test_regression.py +83 -0
  726. numpy/ma/tests/test_subclassing.py +469 -0
  727. numpy/ma/testutils.py +294 -0
  728. numpy/ma/testutils.pyi +69 -0
  729. numpy/matlib.py +380 -0
  730. numpy/matlib.pyi +580 -0
  731. numpy/matrixlib/__init__.py +12 -0
  732. numpy/matrixlib/__init__.pyi +3 -0
  733. numpy/matrixlib/defmatrix.py +1119 -0
  734. numpy/matrixlib/defmatrix.pyi +218 -0
  735. numpy/matrixlib/tests/__init__.py +0 -0
  736. numpy/matrixlib/tests/test_defmatrix.py +455 -0
  737. numpy/matrixlib/tests/test_interaction.py +360 -0
  738. numpy/matrixlib/tests/test_masked_matrix.py +240 -0
  739. numpy/matrixlib/tests/test_matrix_linalg.py +110 -0
  740. numpy/matrixlib/tests/test_multiarray.py +17 -0
  741. numpy/matrixlib/tests/test_numeric.py +18 -0
  742. numpy/matrixlib/tests/test_regression.py +31 -0
  743. numpy/polynomial/__init__.py +187 -0
  744. numpy/polynomial/__init__.pyi +31 -0
  745. numpy/polynomial/_polybase.py +1191 -0
  746. numpy/polynomial/_polybase.pyi +262 -0
  747. numpy/polynomial/_polytypes.pyi +501 -0
  748. numpy/polynomial/chebyshev.py +2001 -0
  749. numpy/polynomial/chebyshev.pyi +180 -0
  750. numpy/polynomial/hermite.py +1738 -0
  751. numpy/polynomial/hermite.pyi +106 -0
  752. numpy/polynomial/hermite_e.py +1640 -0
  753. numpy/polynomial/hermite_e.pyi +106 -0
  754. numpy/polynomial/laguerre.py +1673 -0
  755. numpy/polynomial/laguerre.pyi +100 -0
  756. numpy/polynomial/legendre.py +1603 -0
  757. numpy/polynomial/legendre.pyi +100 -0
  758. numpy/polynomial/polynomial.py +1625 -0
  759. numpy/polynomial/polynomial.pyi +109 -0
  760. numpy/polynomial/polyutils.py +759 -0
  761. numpy/polynomial/polyutils.pyi +307 -0
  762. numpy/polynomial/tests/__init__.py +0 -0
  763. numpy/polynomial/tests/test_chebyshev.py +618 -0
  764. numpy/polynomial/tests/test_classes.py +613 -0
  765. numpy/polynomial/tests/test_hermite.py +553 -0
  766. numpy/polynomial/tests/test_hermite_e.py +554 -0
  767. numpy/polynomial/tests/test_laguerre.py +535 -0
  768. numpy/polynomial/tests/test_legendre.py +566 -0
  769. numpy/polynomial/tests/test_polynomial.py +691 -0
  770. numpy/polynomial/tests/test_polyutils.py +123 -0
  771. numpy/polynomial/tests/test_printing.py +557 -0
  772. numpy/polynomial/tests/test_symbol.py +217 -0
  773. numpy/py.typed +0 -0
  774. numpy/random/LICENSE.md +71 -0
  775. numpy/random/__init__.pxd +14 -0
  776. numpy/random/__init__.py +213 -0
  777. numpy/random/__init__.pyi +124 -0
  778. numpy/random/_bounded_integers.pxd +29 -0
  779. numpy/random/_bounded_integers.pyi +1 -0
  780. numpy/random/_bounded_integers.pypy311-pp73-darwin.so +0 -0
  781. numpy/random/_common.pxd +110 -0
  782. numpy/random/_common.pyi +16 -0
  783. numpy/random/_common.pypy311-pp73-darwin.so +0 -0
  784. numpy/random/_examples/cffi/extending.py +44 -0
  785. numpy/random/_examples/cffi/parse.py +53 -0
  786. numpy/random/_examples/cython/extending.pyx +77 -0
  787. numpy/random/_examples/cython/extending_distributions.pyx +117 -0
  788. numpy/random/_examples/cython/meson.build +53 -0
  789. numpy/random/_examples/numba/extending.py +86 -0
  790. numpy/random/_examples/numba/extending_distributions.py +67 -0
  791. numpy/random/_generator.pyi +862 -0
  792. numpy/random/_generator.pypy311-pp73-darwin.so +0 -0
  793. numpy/random/_mt19937.pyi +27 -0
  794. numpy/random/_mt19937.pypy311-pp73-darwin.so +0 -0
  795. numpy/random/_pcg64.pyi +41 -0
  796. numpy/random/_pcg64.pypy311-pp73-darwin.so +0 -0
  797. numpy/random/_philox.pyi +36 -0
  798. numpy/random/_philox.pypy311-pp73-darwin.so +0 -0
  799. numpy/random/_pickle.py +88 -0
  800. numpy/random/_pickle.pyi +43 -0
  801. numpy/random/_sfc64.pyi +25 -0
  802. numpy/random/_sfc64.pypy311-pp73-darwin.so +0 -0
  803. numpy/random/bit_generator.pxd +40 -0
  804. numpy/random/bit_generator.pyi +123 -0
  805. numpy/random/bit_generator.pypy311-pp73-darwin.so +0 -0
  806. numpy/random/c_distributions.pxd +119 -0
  807. numpy/random/lib/libnpyrandom.a +0 -0
  808. numpy/random/mtrand.pyi +759 -0
  809. numpy/random/mtrand.pypy311-pp73-darwin.so +0 -0
  810. numpy/random/tests/__init__.py +0 -0
  811. numpy/random/tests/data/__init__.py +0 -0
  812. numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
  813. numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
  814. numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
  815. numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
  816. numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
  817. numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
  818. numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
  819. numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
  820. numpy/random/tests/data/philox-testset-1.csv +1001 -0
  821. numpy/random/tests/data/philox-testset-2.csv +1001 -0
  822. numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
  823. numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
  824. numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
  825. numpy/random/tests/test_direct.py +595 -0
  826. numpy/random/tests/test_extending.py +131 -0
  827. numpy/random/tests/test_generator_mt19937.py +2825 -0
  828. numpy/random/tests/test_generator_mt19937_regressions.py +221 -0
  829. numpy/random/tests/test_random.py +1724 -0
  830. numpy/random/tests/test_randomstate.py +2099 -0
  831. numpy/random/tests/test_randomstate_regression.py +213 -0
  832. numpy/random/tests/test_regression.py +175 -0
  833. numpy/random/tests/test_seed_sequence.py +79 -0
  834. numpy/random/tests/test_smoke.py +882 -0
  835. numpy/rec/__init__.py +2 -0
  836. numpy/rec/__init__.pyi +23 -0
  837. numpy/strings/__init__.py +2 -0
  838. numpy/strings/__init__.pyi +97 -0
  839. numpy/testing/__init__.py +22 -0
  840. numpy/testing/__init__.pyi +107 -0
  841. numpy/testing/_private/__init__.py +0 -0
  842. numpy/testing/_private/__init__.pyi +0 -0
  843. numpy/testing/_private/extbuild.py +250 -0
  844. numpy/testing/_private/extbuild.pyi +25 -0
  845. numpy/testing/_private/utils.py +2830 -0
  846. numpy/testing/_private/utils.pyi +505 -0
  847. numpy/testing/overrides.py +84 -0
  848. numpy/testing/overrides.pyi +10 -0
  849. numpy/testing/print_coercion_tables.py +207 -0
  850. numpy/testing/print_coercion_tables.pyi +26 -0
  851. numpy/testing/tests/__init__.py +0 -0
  852. numpy/testing/tests/test_utils.py +2123 -0
  853. numpy/tests/__init__.py +0 -0
  854. numpy/tests/test__all__.py +10 -0
  855. numpy/tests/test_configtool.py +51 -0
  856. numpy/tests/test_ctypeslib.py +383 -0
  857. numpy/tests/test_lazyloading.py +42 -0
  858. numpy/tests/test_matlib.py +59 -0
  859. numpy/tests/test_numpy_config.py +47 -0
  860. numpy/tests/test_numpy_version.py +54 -0
  861. numpy/tests/test_public_api.py +807 -0
  862. numpy/tests/test_reloading.py +76 -0
  863. numpy/tests/test_scripts.py +48 -0
  864. numpy/tests/test_warnings.py +79 -0
  865. numpy/typing/__init__.py +233 -0
  866. numpy/typing/__init__.pyi +3 -0
  867. numpy/typing/mypy_plugin.py +200 -0
  868. numpy/typing/tests/__init__.py +0 -0
  869. numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
  870. numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
  871. numpy/typing/tests/data/fail/array_like.pyi +15 -0
  872. numpy/typing/tests/data/fail/array_pad.pyi +6 -0
  873. numpy/typing/tests/data/fail/arrayprint.pyi +15 -0
  874. numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
  875. numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
  876. numpy/typing/tests/data/fail/char.pyi +63 -0
  877. numpy/typing/tests/data/fail/chararray.pyi +61 -0
  878. numpy/typing/tests/data/fail/comparisons.pyi +27 -0
  879. numpy/typing/tests/data/fail/constants.pyi +3 -0
  880. numpy/typing/tests/data/fail/datasource.pyi +16 -0
  881. numpy/typing/tests/data/fail/dtype.pyi +17 -0
  882. numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
  883. numpy/typing/tests/data/fail/flatiter.pyi +38 -0
  884. numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
  885. numpy/typing/tests/data/fail/histograms.pyi +12 -0
  886. numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
  887. numpy/typing/tests/data/fail/lib_function_base.pyi +60 -0
  888. numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
  889. numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
  890. numpy/typing/tests/data/fail/lib_version.pyi +6 -0
  891. numpy/typing/tests/data/fail/linalg.pyi +52 -0
  892. numpy/typing/tests/data/fail/ma.pyi +155 -0
  893. numpy/typing/tests/data/fail/memmap.pyi +5 -0
  894. numpy/typing/tests/data/fail/modules.pyi +17 -0
  895. numpy/typing/tests/data/fail/multiarray.pyi +52 -0
  896. numpy/typing/tests/data/fail/ndarray.pyi +11 -0
  897. numpy/typing/tests/data/fail/ndarray_misc.pyi +49 -0
  898. numpy/typing/tests/data/fail/nditer.pyi +8 -0
  899. numpy/typing/tests/data/fail/nested_sequence.pyi +17 -0
  900. numpy/typing/tests/data/fail/npyio.pyi +24 -0
  901. numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
  902. numpy/typing/tests/data/fail/random.pyi +62 -0
  903. numpy/typing/tests/data/fail/rec.pyi +17 -0
  904. numpy/typing/tests/data/fail/scalars.pyi +86 -0
  905. numpy/typing/tests/data/fail/shape.pyi +7 -0
  906. numpy/typing/tests/data/fail/shape_base.pyi +8 -0
  907. numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
  908. numpy/typing/tests/data/fail/strings.pyi +52 -0
  909. numpy/typing/tests/data/fail/testing.pyi +28 -0
  910. numpy/typing/tests/data/fail/twodim_base.pyi +39 -0
  911. numpy/typing/tests/data/fail/type_check.pyi +12 -0
  912. numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
  913. numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
  914. numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
  915. numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
  916. numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
  917. numpy/typing/tests/data/mypy.ini +8 -0
  918. numpy/typing/tests/data/pass/arithmetic.py +614 -0
  919. numpy/typing/tests/data/pass/array_constructors.py +138 -0
  920. numpy/typing/tests/data/pass/array_like.py +43 -0
  921. numpy/typing/tests/data/pass/arrayprint.py +37 -0
  922. numpy/typing/tests/data/pass/arrayterator.py +28 -0
  923. numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
  924. numpy/typing/tests/data/pass/comparisons.py +316 -0
  925. numpy/typing/tests/data/pass/dtype.py +57 -0
  926. numpy/typing/tests/data/pass/einsumfunc.py +36 -0
  927. numpy/typing/tests/data/pass/flatiter.py +26 -0
  928. numpy/typing/tests/data/pass/fromnumeric.py +272 -0
  929. numpy/typing/tests/data/pass/index_tricks.py +62 -0
  930. numpy/typing/tests/data/pass/lib_user_array.py +22 -0
  931. numpy/typing/tests/data/pass/lib_utils.py +19 -0
  932. numpy/typing/tests/data/pass/lib_version.py +18 -0
  933. numpy/typing/tests/data/pass/literal.py +52 -0
  934. numpy/typing/tests/data/pass/ma.py +199 -0
  935. numpy/typing/tests/data/pass/mod.py +149 -0
  936. numpy/typing/tests/data/pass/modules.py +45 -0
  937. numpy/typing/tests/data/pass/multiarray.py +77 -0
  938. numpy/typing/tests/data/pass/ndarray_conversion.py +81 -0
  939. numpy/typing/tests/data/pass/ndarray_misc.py +199 -0
  940. numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
  941. numpy/typing/tests/data/pass/nditer.py +4 -0
  942. numpy/typing/tests/data/pass/numeric.py +90 -0
  943. numpy/typing/tests/data/pass/numerictypes.py +17 -0
  944. numpy/typing/tests/data/pass/random.py +1498 -0
  945. numpy/typing/tests/data/pass/recfunctions.py +164 -0
  946. numpy/typing/tests/data/pass/scalars.py +249 -0
  947. numpy/typing/tests/data/pass/shape.py +19 -0
  948. numpy/typing/tests/data/pass/simple.py +170 -0
  949. numpy/typing/tests/data/pass/ufunc_config.py +64 -0
  950. numpy/typing/tests/data/pass/ufunclike.py +52 -0
  951. numpy/typing/tests/data/pass/ufuncs.py +16 -0
  952. numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
  953. numpy/typing/tests/data/reveal/arithmetic.pyi +719 -0
  954. numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
  955. numpy/typing/tests/data/reveal/array_constructors.pyi +277 -0
  956. numpy/typing/tests/data/reveal/arraypad.pyi +27 -0
  957. numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
  958. numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
  959. numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
  960. numpy/typing/tests/data/reveal/bitwise_ops.pyi +166 -0
  961. numpy/typing/tests/data/reveal/char.pyi +225 -0
  962. numpy/typing/tests/data/reveal/chararray.pyi +138 -0
  963. numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
  964. numpy/typing/tests/data/reveal/constants.pyi +14 -0
  965. numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
  966. numpy/typing/tests/data/reveal/datasource.pyi +23 -0
  967. numpy/typing/tests/data/reveal/dtype.pyi +132 -0
  968. numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
  969. numpy/typing/tests/data/reveal/emath.pyi +54 -0
  970. numpy/typing/tests/data/reveal/fft.pyi +37 -0
  971. numpy/typing/tests/data/reveal/flatiter.pyi +86 -0
  972. numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
  973. numpy/typing/tests/data/reveal/getlimits.pyi +53 -0
  974. numpy/typing/tests/data/reveal/histograms.pyi +25 -0
  975. numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
  976. numpy/typing/tests/data/reveal/lib_function_base.pyi +409 -0
  977. numpy/typing/tests/data/reveal/lib_polynomial.pyi +147 -0
  978. numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
  979. numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
  980. numpy/typing/tests/data/reveal/linalg.pyi +154 -0
  981. numpy/typing/tests/data/reveal/ma.pyi +1098 -0
  982. numpy/typing/tests/data/reveal/matrix.pyi +73 -0
  983. numpy/typing/tests/data/reveal/memmap.pyi +19 -0
  984. numpy/typing/tests/data/reveal/mod.pyi +178 -0
  985. numpy/typing/tests/data/reveal/modules.pyi +51 -0
  986. numpy/typing/tests/data/reveal/multiarray.pyi +197 -0
  987. numpy/typing/tests/data/reveal/nbit_base_example.pyi +20 -0
  988. numpy/typing/tests/data/reveal/ndarray_assignability.pyi +82 -0
  989. numpy/typing/tests/data/reveal/ndarray_conversion.pyi +83 -0
  990. numpy/typing/tests/data/reveal/ndarray_misc.pyi +246 -0
  991. numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +47 -0
  992. numpy/typing/tests/data/reveal/nditer.pyi +49 -0
  993. numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
  994. numpy/typing/tests/data/reveal/npyio.pyi +83 -0
  995. numpy/typing/tests/data/reveal/numeric.pyi +170 -0
  996. numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
  997. numpy/typing/tests/data/reveal/polynomial_polybase.pyi +217 -0
  998. numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +218 -0
  999. numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
  1000. numpy/typing/tests/data/reveal/random.pyi +1546 -0
  1001. numpy/typing/tests/data/reveal/rec.pyi +171 -0
  1002. numpy/typing/tests/data/reveal/scalars.pyi +191 -0
  1003. numpy/typing/tests/data/reveal/shape.pyi +13 -0
  1004. numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
  1005. numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
  1006. numpy/typing/tests/data/reveal/strings.pyi +196 -0
  1007. numpy/typing/tests/data/reveal/testing.pyi +198 -0
  1008. numpy/typing/tests/data/reveal/twodim_base.pyi +225 -0
  1009. numpy/typing/tests/data/reveal/type_check.pyi +67 -0
  1010. numpy/typing/tests/data/reveal/ufunc_config.pyi +29 -0
  1011. numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
  1012. numpy/typing/tests/data/reveal/ufuncs.pyi +142 -0
  1013. numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
  1014. numpy/typing/tests/test_isfile.py +38 -0
  1015. numpy/typing/tests/test_runtime.py +110 -0
  1016. numpy/typing/tests/test_typing.py +205 -0
  1017. numpy/version.py +11 -0
  1018. numpy/version.pyi +9 -0
  1019. numpy-2.4.1.dist-info/METADATA +139 -0
  1020. numpy-2.4.1.dist-info/RECORD +1039 -0
  1021. numpy-2.4.1.dist-info/WHEEL +6 -0
  1022. numpy-2.4.1.dist-info/entry_points.txt +13 -0
  1023. numpy-2.4.1.dist-info/licenses/LICENSE.txt +935 -0
  1024. numpy-2.4.1.dist-info/licenses/numpy/_core/include/numpy/libdivide/LICENSE.txt +21 -0
  1025. numpy-2.4.1.dist-info/licenses/numpy/_core/src/common/pythoncapi-compat/COPYING +14 -0
  1026. numpy-2.4.1.dist-info/licenses/numpy/_core/src/highway/LICENSE +371 -0
  1027. numpy-2.4.1.dist-info/licenses/numpy/_core/src/multiarray/dragon4_LICENSE.txt +27 -0
  1028. numpy-2.4.1.dist-info/licenses/numpy/_core/src/npysort/x86-simd-sort/LICENSE.md +28 -0
  1029. numpy-2.4.1.dist-info/licenses/numpy/_core/src/umath/svml/LICENSE +30 -0
  1030. numpy-2.4.1.dist-info/licenses/numpy/fft/pocketfft/LICENSE.md +25 -0
  1031. numpy-2.4.1.dist-info/licenses/numpy/linalg/lapack_lite/LICENSE.txt +48 -0
  1032. numpy-2.4.1.dist-info/licenses/numpy/ma/LICENSE +24 -0
  1033. numpy-2.4.1.dist-info/licenses/numpy/random/LICENSE.md +71 -0
  1034. numpy-2.4.1.dist-info/licenses/numpy/random/src/distributions/LICENSE.md +61 -0
  1035. numpy-2.4.1.dist-info/licenses/numpy/random/src/mt19937/LICENSE.md +61 -0
  1036. numpy-2.4.1.dist-info/licenses/numpy/random/src/pcg64/LICENSE.md +22 -0
  1037. numpy-2.4.1.dist-info/licenses/numpy/random/src/philox/LICENSE.md +31 -0
  1038. numpy-2.4.1.dist-info/licenses/numpy/random/src/sfc64/LICENSE.md +27 -0
  1039. numpy-2.4.1.dist-info/licenses/numpy/random/src/splitmix64/LICENSE.md +9 -0
@@ -0,0 +1,2825 @@
1
+ import hashlib
2
+ import os.path
3
+ import sys
4
+ import warnings
5
+
6
+ import pytest
7
+
8
+ import numpy as np
9
+ from numpy.exceptions import AxisError
10
+ from numpy.linalg import LinAlgError
11
+ from numpy.random import MT19937, Generator, RandomState, SeedSequence
12
+ from numpy.testing import (
13
+ IS_WASM,
14
+ assert_,
15
+ assert_allclose,
16
+ assert_array_almost_equal,
17
+ assert_array_equal,
18
+ assert_equal,
19
+ assert_no_warnings,
20
+ assert_raises,
21
+ )
22
+
23
+ random = Generator(MT19937())
24
+
25
+ JUMP_TEST_DATA = [
26
+ {
27
+ "seed": 0,
28
+ "steps": 10,
29
+ "initial": {"key_sha256": "bb1636883c2707b51c5b7fc26c6927af4430f2e0785a8c7bc886337f919f9edf", "pos": 9}, # noqa: E501
30
+ "jumped": {"key_sha256": "ff682ac12bb140f2d72fba8d3506cf4e46817a0db27aae1683867629031d8d55", "pos": 598}, # noqa: E501
31
+ },
32
+ {
33
+ "seed": 384908324,
34
+ "steps": 312,
35
+ "initial": {"key_sha256": "16b791a1e04886ccbbb4d448d6ff791267dc458ae599475d08d5cced29d11614", "pos": 311}, # noqa: E501
36
+ "jumped": {"key_sha256": "a0110a2cf23b56be0feaed8f787a7fc84bef0cb5623003d75b26bdfa1c18002c", "pos": 276}, # noqa: E501
37
+ },
38
+ {
39
+ "seed": [839438204, 980239840, 859048019, 821],
40
+ "steps": 511,
41
+ "initial": {"key_sha256": "d306cf01314d51bd37892d874308200951a35265ede54d200f1e065004c3e9ea", "pos": 510}, # noqa: E501
42
+ "jumped": {"key_sha256": "0e00ab449f01a5195a83b4aee0dfbc2ce8d46466a640b92e33977d2e42f777f8", "pos": 475}, # noqa: E501
43
+ },
44
+ ]
45
+
46
+
47
+ @pytest.fixture(scope='module', params=[True, False])
48
+ def endpoint(request):
49
+ return request.param
50
+
51
+
52
+ class TestSeed:
53
+ def test_scalar(self):
54
+ s = Generator(MT19937(0))
55
+ assert_equal(s.integers(1000), 479)
56
+ s = Generator(MT19937(4294967295))
57
+ assert_equal(s.integers(1000), 324)
58
+
59
+ def test_array(self):
60
+ s = Generator(MT19937(range(10)))
61
+ assert_equal(s.integers(1000), 465)
62
+ s = Generator(MT19937(np.arange(10)))
63
+ assert_equal(s.integers(1000), 465)
64
+ s = Generator(MT19937([0]))
65
+ assert_equal(s.integers(1000), 479)
66
+ s = Generator(MT19937([4294967295]))
67
+ assert_equal(s.integers(1000), 324)
68
+
69
+ def test_seedsequence(self):
70
+ s = MT19937(SeedSequence(0))
71
+ assert_equal(s.random_raw(1), 2058676884)
72
+
73
+ def test_invalid_scalar(self):
74
+ # seed must be an unsigned 32 bit integer
75
+ assert_raises(TypeError, MT19937, -0.5)
76
+ assert_raises(ValueError, MT19937, -1)
77
+
78
+ def test_invalid_array(self):
79
+ # seed must be an unsigned integer
80
+ assert_raises(TypeError, MT19937, [-0.5])
81
+ assert_raises(ValueError, MT19937, [-1])
82
+ assert_raises(ValueError, MT19937, [1, -2, 4294967296])
83
+
84
+ def test_noninstantized_bitgen(self):
85
+ assert_raises(ValueError, Generator, MT19937)
86
+
87
+
88
+ class TestBinomial:
89
+ def test_n_zero(self):
90
+ # Tests the corner case of n == 0 for the binomial distribution.
91
+ # binomial(0, p) should be zero for any p in [0, 1].
92
+ # This test addresses issue #3480.
93
+ zeros = np.zeros(2, dtype='int')
94
+ for p in [0, .5, 1]:
95
+ assert_(random.binomial(0, p) == 0)
96
+ assert_array_equal(random.binomial(zeros, p), zeros)
97
+
98
+ def test_p_is_nan(self):
99
+ # Issue #4571.
100
+ assert_raises(ValueError, random.binomial, 1, np.nan)
101
+
102
+ def test_p_extremely_small(self):
103
+ n = 50000000000
104
+ p = 5e-17
105
+ sample_size = 20000000
106
+ x = random.binomial(n, p, size=sample_size)
107
+ sample_mean = x.mean()
108
+ expected_mean = n * p
109
+ sigma = np.sqrt(n * p * (1 - p) / sample_size)
110
+ # Note: the parameters were chosen so that expected_mean - 6*sigma
111
+ # is a positive value. The first `assert` below validates that
112
+ # assumption (in case someone edits the parameters in the future).
113
+ # The second `assert` is the actual test.
114
+ low_bound = expected_mean - 6 * sigma
115
+ assert low_bound > 0, "bad test params: 6-sigma lower bound is negative"
116
+ test_msg = (f"sample mean {sample_mean} deviates from the expected mean "
117
+ f"{expected_mean} by more than 6*sigma")
118
+ assert abs(expected_mean - sample_mean) < 6 * sigma, test_msg
119
+
120
+
121
+ class TestMultinomial:
122
+ def test_basic(self):
123
+ random.multinomial(100, [0.2, 0.8])
124
+
125
+ def test_zero_probability(self):
126
+ random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0])
127
+
128
+ def test_int_negative_interval(self):
129
+ assert_(-5 <= random.integers(-5, -1) < -1)
130
+ x = random.integers(-5, -1, 5)
131
+ assert_(np.all(-5 <= x))
132
+ assert_(np.all(x < -1))
133
+
134
+ def test_size(self):
135
+ # gh-3173
136
+ p = [0.5, 0.5]
137
+ assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
138
+ assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
139
+ assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
140
+ assert_equal(random.multinomial(1, p, [2, 2]).shape, (2, 2, 2))
141
+ assert_equal(random.multinomial(1, p, (2, 2)).shape, (2, 2, 2))
142
+ assert_equal(random.multinomial(1, p, np.array((2, 2))).shape,
143
+ (2, 2, 2))
144
+
145
+ assert_raises(TypeError, random.multinomial, 1, p,
146
+ float(1))
147
+
148
+ def test_invalid_prob(self):
149
+ assert_raises(ValueError, random.multinomial, 100, [1.1, 0.2])
150
+ assert_raises(ValueError, random.multinomial, 100, [-.1, 0.9])
151
+
152
+ def test_invalid_n(self):
153
+ assert_raises(ValueError, random.multinomial, -1, [0.8, 0.2])
154
+ assert_raises(ValueError, random.multinomial, [-1] * 10, [0.8, 0.2])
155
+
156
+ def test_p_non_contiguous(self):
157
+ p = np.arange(15.)
158
+ p /= np.sum(p[1::3])
159
+ pvals = p[1::3]
160
+ random = Generator(MT19937(1432985819))
161
+ non_contig = random.multinomial(100, pvals=pvals)
162
+ random = Generator(MT19937(1432985819))
163
+ contig = random.multinomial(100, pvals=np.ascontiguousarray(pvals))
164
+ assert_array_equal(non_contig, contig)
165
+
166
+ def test_multinomial_pvals_float32(self):
167
+ x = np.array([9.9e-01, 9.9e-01, 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09,
168
+ 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09], dtype=np.float32)
169
+ pvals = x / x.sum()
170
+ random = Generator(MT19937(1432985819))
171
+ match = r"[\w\s]*pvals array is cast to 64-bit floating"
172
+ with pytest.raises(ValueError, match=match):
173
+ random.multinomial(1, pvals)
174
+
175
+
176
+ class TestMultivariateHypergeometric:
177
+
178
+ seed = 8675309
179
+
180
+ def test_argument_validation(self):
181
+ # Error cases...
182
+
183
+ # `colors` must be a 1-d sequence
184
+ assert_raises(ValueError, random.multivariate_hypergeometric,
185
+ 10, 4)
186
+
187
+ # Negative nsample
188
+ assert_raises(ValueError, random.multivariate_hypergeometric,
189
+ [2, 3, 4], -1)
190
+
191
+ # Negative color
192
+ assert_raises(ValueError, random.multivariate_hypergeometric,
193
+ [-1, 2, 3], 2)
194
+
195
+ # nsample exceeds sum(colors)
196
+ assert_raises(ValueError, random.multivariate_hypergeometric,
197
+ [2, 3, 4], 10)
198
+
199
+ # nsample exceeds sum(colors) (edge case of empty colors)
200
+ assert_raises(ValueError, random.multivariate_hypergeometric,
201
+ [], 1)
202
+
203
+ # Validation errors associated with very large values in colors.
204
+ assert_raises(ValueError, random.multivariate_hypergeometric,
205
+ [999999999, 101], 5, 1, 'marginals')
206
+
207
+ int64_info = np.iinfo(np.int64)
208
+ max_int64 = int64_info.max
209
+ max_int64_index = max_int64 // int64_info.dtype.itemsize
210
+ assert_raises(ValueError, random.multivariate_hypergeometric,
211
+ [max_int64_index - 100, 101], 5, 1, 'count')
212
+
213
+ @pytest.mark.parametrize('method', ['count', 'marginals'])
214
+ def test_edge_cases(self, method):
215
+ # Set the seed, but in fact, all the results in this test are
216
+ # deterministic, so we don't really need this.
217
+ random = Generator(MT19937(self.seed))
218
+
219
+ x = random.multivariate_hypergeometric([0, 0, 0], 0, method=method)
220
+ assert_array_equal(x, [0, 0, 0])
221
+
222
+ x = random.multivariate_hypergeometric([], 0, method=method)
223
+ assert_array_equal(x, [])
224
+
225
+ x = random.multivariate_hypergeometric([], 0, size=1, method=method)
226
+ assert_array_equal(x, np.empty((1, 0), dtype=np.int64))
227
+
228
+ x = random.multivariate_hypergeometric([1, 2, 3], 0, method=method)
229
+ assert_array_equal(x, [0, 0, 0])
230
+
231
+ x = random.multivariate_hypergeometric([9, 0, 0], 3, method=method)
232
+ assert_array_equal(x, [3, 0, 0])
233
+
234
+ colors = [1, 1, 0, 1, 1]
235
+ x = random.multivariate_hypergeometric(colors, sum(colors),
236
+ method=method)
237
+ assert_array_equal(x, colors)
238
+
239
+ x = random.multivariate_hypergeometric([3, 4, 5], 12, size=3,
240
+ method=method)
241
+ assert_array_equal(x, [[3, 4, 5]] * 3)
242
+
243
+ # Cases for nsample:
244
+ # nsample < 10
245
+ # 10 <= nsample < colors.sum()/2
246
+ # colors.sum()/2 < nsample < colors.sum() - 10
247
+ # colors.sum() - 10 < nsample < colors.sum()
248
+ @pytest.mark.parametrize('nsample', [8, 25, 45, 55])
249
+ @pytest.mark.parametrize('method', ['count', 'marginals'])
250
+ @pytest.mark.parametrize('size', [5, (2, 3), 150000])
251
+ def test_typical_cases(self, nsample, method, size):
252
+ random = Generator(MT19937(self.seed))
253
+
254
+ colors = np.array([10, 5, 20, 25])
255
+ sample = random.multivariate_hypergeometric(colors, nsample, size,
256
+ method=method)
257
+ if isinstance(size, int):
258
+ expected_shape = (size,) + colors.shape
259
+ else:
260
+ expected_shape = size + colors.shape
261
+ assert_equal(sample.shape, expected_shape)
262
+ assert_((sample >= 0).all())
263
+ assert_((sample <= colors).all())
264
+ assert_array_equal(sample.sum(axis=-1),
265
+ np.full(size, fill_value=nsample, dtype=int))
266
+ if isinstance(size, int) and size >= 100000:
267
+ # This sample is large enough to compare its mean to
268
+ # the expected values.
269
+ assert_allclose(sample.mean(axis=0),
270
+ nsample * colors / colors.sum(),
271
+ rtol=1e-3, atol=0.005)
272
+
273
+ def test_repeatability1(self):
274
+ random = Generator(MT19937(self.seed))
275
+ sample = random.multivariate_hypergeometric([3, 4, 5], 5, size=5,
276
+ method='count')
277
+ expected = np.array([[2, 1, 2],
278
+ [2, 1, 2],
279
+ [1, 1, 3],
280
+ [2, 0, 3],
281
+ [2, 1, 2]])
282
+ assert_array_equal(sample, expected)
283
+
284
+ def test_repeatability2(self):
285
+ random = Generator(MT19937(self.seed))
286
+ sample = random.multivariate_hypergeometric([20, 30, 50], 50,
287
+ size=5,
288
+ method='marginals')
289
+ expected = np.array([[ 9, 17, 24],
290
+ [ 7, 13, 30],
291
+ [ 9, 15, 26],
292
+ [ 9, 17, 24],
293
+ [12, 14, 24]])
294
+ assert_array_equal(sample, expected)
295
+
296
+ def test_repeatability3(self):
297
+ random = Generator(MT19937(self.seed))
298
+ sample = random.multivariate_hypergeometric([20, 30, 50], 12,
299
+ size=5,
300
+ method='marginals')
301
+ expected = np.array([[2, 3, 7],
302
+ [5, 3, 4],
303
+ [2, 5, 5],
304
+ [5, 3, 4],
305
+ [1, 5, 6]])
306
+ assert_array_equal(sample, expected)
307
+
308
+
309
+ class TestSetState:
310
+ def _create_rng(self):
311
+ seed = 1234567890
312
+ rg = Generator(MT19937(seed))
313
+ bit_generator = rg.bit_generator
314
+ state = bit_generator.state
315
+ legacy_state = (state['bit_generator'],
316
+ state['state']['key'],
317
+ state['state']['pos'])
318
+ return rg, bit_generator, state
319
+
320
+ def test_gaussian_reset(self):
321
+ # Make sure the cached every-other-Gaussian is reset.
322
+ rg, bit_generator, state = self._create_rng()
323
+ old = rg.standard_normal(size=3)
324
+ bit_generator.state = state
325
+ new = rg.standard_normal(size=3)
326
+ assert_(np.all(old == new))
327
+
328
+ def test_gaussian_reset_in_media_res(self):
329
+ # When the state is saved with a cached Gaussian, make sure the
330
+ # cached Gaussian is restored.
331
+ rg, bit_generator, state = self._create_rng()
332
+ rg.standard_normal()
333
+ state = bit_generator.state
334
+ old = rg.standard_normal(size=3)
335
+ bit_generator.state = state
336
+ new = rg.standard_normal(size=3)
337
+ assert_(np.all(old == new))
338
+
339
+ def test_negative_binomial(self):
340
+ # Ensure that the negative binomial results take floating point
341
+ # arguments without truncation.
342
+ rg, _, _ = self._create_rng()
343
+ rg.negative_binomial(0.5, 0.5)
344
+
345
+
346
+ class TestIntegers:
347
+ rfunc = random.integers
348
+
349
+ # valid integer/boolean types
350
+ itype = [bool, np.int8, np.uint8, np.int16, np.uint16,
351
+ np.int32, np.uint32, np.int64, np.uint64]
352
+
353
+ def test_unsupported_type(self, endpoint):
354
+ assert_raises(TypeError, self.rfunc, 1, endpoint=endpoint, dtype=float)
355
+
356
+ def test_bounds_checking(self, endpoint):
357
+ for dt in self.itype:
358
+ lbnd = 0 if dt is bool else np.iinfo(dt).min
359
+ ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
360
+ ubnd = ubnd - 1 if endpoint else ubnd
361
+ assert_raises(ValueError, self.rfunc, lbnd - 1, ubnd,
362
+ endpoint=endpoint, dtype=dt)
363
+ assert_raises(ValueError, self.rfunc, lbnd, ubnd + 1,
364
+ endpoint=endpoint, dtype=dt)
365
+ assert_raises(ValueError, self.rfunc, ubnd, lbnd,
366
+ endpoint=endpoint, dtype=dt)
367
+ assert_raises(ValueError, self.rfunc, 1, 0, endpoint=endpoint,
368
+ dtype=dt)
369
+
370
+ assert_raises(ValueError, self.rfunc, [lbnd - 1], ubnd,
371
+ endpoint=endpoint, dtype=dt)
372
+ assert_raises(ValueError, self.rfunc, [lbnd], [ubnd + 1],
373
+ endpoint=endpoint, dtype=dt)
374
+ assert_raises(ValueError, self.rfunc, [ubnd], [lbnd],
375
+ endpoint=endpoint, dtype=dt)
376
+ assert_raises(ValueError, self.rfunc, 1, [0],
377
+ endpoint=endpoint, dtype=dt)
378
+ assert_raises(ValueError, self.rfunc, [ubnd + 1], [ubnd],
379
+ endpoint=endpoint, dtype=dt)
380
+
381
+ def test_bounds_checking_array(self, endpoint):
382
+ for dt in self.itype:
383
+ lbnd = 0 if dt is bool else np.iinfo(dt).min
384
+ ubnd = 2 if dt is bool else np.iinfo(dt).max + (not endpoint)
385
+
386
+ assert_raises(ValueError, self.rfunc, [lbnd - 1] * 2, [ubnd] * 2,
387
+ endpoint=endpoint, dtype=dt)
388
+ assert_raises(ValueError, self.rfunc, [lbnd] * 2,
389
+ [ubnd + 1] * 2, endpoint=endpoint, dtype=dt)
390
+ assert_raises(ValueError, self.rfunc, ubnd, [lbnd] * 2,
391
+ endpoint=endpoint, dtype=dt)
392
+ assert_raises(ValueError, self.rfunc, [1] * 2, 0,
393
+ endpoint=endpoint, dtype=dt)
394
+
395
+ def test_rng_zero_and_extremes(self, endpoint):
396
+ for dt in self.itype:
397
+ lbnd = 0 if dt is bool else np.iinfo(dt).min
398
+ ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
399
+ ubnd = ubnd - 1 if endpoint else ubnd
400
+ is_open = not endpoint
401
+
402
+ tgt = ubnd - 1
403
+ assert_equal(self.rfunc(tgt, tgt + is_open, size=1000,
404
+ endpoint=endpoint, dtype=dt), tgt)
405
+ assert_equal(self.rfunc([tgt], tgt + is_open, size=1000,
406
+ endpoint=endpoint, dtype=dt), tgt)
407
+
408
+ tgt = lbnd
409
+ assert_equal(self.rfunc(tgt, tgt + is_open, size=1000,
410
+ endpoint=endpoint, dtype=dt), tgt)
411
+ assert_equal(self.rfunc(tgt, [tgt + is_open], size=1000,
412
+ endpoint=endpoint, dtype=dt), tgt)
413
+
414
+ tgt = (lbnd + ubnd) // 2
415
+ assert_equal(self.rfunc(tgt, tgt + is_open, size=1000,
416
+ endpoint=endpoint, dtype=dt), tgt)
417
+ assert_equal(self.rfunc([tgt], [tgt + is_open],
418
+ size=1000, endpoint=endpoint, dtype=dt),
419
+ tgt)
420
+
421
+ def test_rng_zero_and_extremes_array(self, endpoint):
422
+ size = 1000
423
+ for dt in self.itype:
424
+ lbnd = 0 if dt is bool else np.iinfo(dt).min
425
+ ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
426
+ ubnd = ubnd - 1 if endpoint else ubnd
427
+
428
+ tgt = ubnd - 1
429
+ assert_equal(self.rfunc([tgt], [tgt + 1],
430
+ size=size, dtype=dt), tgt)
431
+ assert_equal(self.rfunc(
432
+ [tgt] * size, [tgt + 1] * size, dtype=dt), tgt)
433
+ assert_equal(self.rfunc(
434
+ [tgt] * size, [tgt + 1] * size, size=size, dtype=dt), tgt)
435
+
436
+ tgt = lbnd
437
+ assert_equal(self.rfunc([tgt], [tgt + 1],
438
+ size=size, dtype=dt), tgt)
439
+ assert_equal(self.rfunc(
440
+ [tgt] * size, [tgt + 1] * size, dtype=dt), tgt)
441
+ assert_equal(self.rfunc(
442
+ [tgt] * size, [tgt + 1] * size, size=size, dtype=dt), tgt)
443
+
444
+ tgt = (lbnd + ubnd) // 2
445
+ assert_equal(self.rfunc([tgt], [tgt + 1],
446
+ size=size, dtype=dt), tgt)
447
+ assert_equal(self.rfunc(
448
+ [tgt] * size, [tgt + 1] * size, dtype=dt), tgt)
449
+ assert_equal(self.rfunc(
450
+ [tgt] * size, [tgt + 1] * size, size=size, dtype=dt), tgt)
451
+
452
+ def test_full_range(self, endpoint):
453
+ # Test for ticket #1690
454
+
455
+ for dt in self.itype:
456
+ lbnd = 0 if dt is bool else np.iinfo(dt).min
457
+ ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
458
+ ubnd = ubnd - 1 if endpoint else ubnd
459
+
460
+ try:
461
+ self.rfunc(lbnd, ubnd, endpoint=endpoint, dtype=dt)
462
+ except Exception as e:
463
+ raise AssertionError("No error should have been raised, "
464
+ "but one was with the following "
465
+ "message:\n\n%s" % str(e))
466
+
467
+ def test_full_range_array(self, endpoint):
468
+ # Test for ticket #1690
469
+
470
+ for dt in self.itype:
471
+ lbnd = 0 if dt is bool else np.iinfo(dt).min
472
+ ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
473
+ ubnd = ubnd - 1 if endpoint else ubnd
474
+
475
+ try:
476
+ self.rfunc([lbnd] * 2, [ubnd], endpoint=endpoint, dtype=dt)
477
+ except Exception as e:
478
+ raise AssertionError("No error should have been raised, "
479
+ "but one was with the following "
480
+ "message:\n\n%s" % str(e))
481
+
482
+ def test_in_bounds_fuzz(self, endpoint):
483
+ # Don't use fixed seed
484
+ random = Generator(MT19937())
485
+
486
+ for dt in self.itype[1:]:
487
+ for ubnd in [4, 8, 16]:
488
+ vals = self.rfunc(2, ubnd - endpoint, size=2 ** 16,
489
+ endpoint=endpoint, dtype=dt)
490
+ assert_(vals.max() < ubnd)
491
+ assert_(vals.min() >= 2)
492
+
493
+ vals = self.rfunc(0, 2 - endpoint, size=2 ** 16, endpoint=endpoint,
494
+ dtype=bool)
495
+ assert_(vals.max() < 2)
496
+ assert_(vals.min() >= 0)
497
+
498
+ def test_scalar_array_equiv(self, endpoint):
499
+ for dt in self.itype:
500
+ lbnd = 0 if dt is bool else np.iinfo(dt).min
501
+ ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
502
+ ubnd = ubnd - 1 if endpoint else ubnd
503
+
504
+ size = 1000
505
+ random = Generator(MT19937(1234))
506
+ scalar = random.integers(lbnd, ubnd, size=size, endpoint=endpoint,
507
+ dtype=dt)
508
+
509
+ random = Generator(MT19937(1234))
510
+ scalar_array = random.integers([lbnd], [ubnd], size=size,
511
+ endpoint=endpoint, dtype=dt)
512
+
513
+ random = Generator(MT19937(1234))
514
+ array = random.integers([lbnd] * size, [ubnd] *
515
+ size, size=size, endpoint=endpoint, dtype=dt)
516
+ assert_array_equal(scalar, scalar_array)
517
+ assert_array_equal(scalar, array)
518
+
519
+ def test_repeatability(self, endpoint):
520
+ # We use a sha256 hash of generated sequences of 1000 samples
521
+ # in the range [0, 6) for all but bool, where the range
522
+ # is [0, 2). Hashes are for little endian numbers.
523
+ tgt = {'bool': '053594a9b82d656f967c54869bc6970aa0358cf94ad469c81478459c6a90eee3', # noqa: E501
524
+ 'int16': '54de9072b6ee9ff7f20b58329556a46a447a8a29d67db51201bf88baa6e4e5d4', # noqa: E501
525
+ 'int32': 'd3a0d5efb04542b25ac712e50d21f39ac30f312a5052e9bbb1ad3baa791ac84b', # noqa: E501
526
+ 'int64': '14e224389ac4580bfbdccb5697d6190b496f91227cf67df60989de3d546389b1', # noqa: E501
527
+ 'int8': '0e203226ff3fbbd1580f15da4621e5f7164d0d8d6b51696dd42d004ece2cbec1', # noqa: E501
528
+ 'uint16': '54de9072b6ee9ff7f20b58329556a46a447a8a29d67db51201bf88baa6e4e5d4', # noqa: E501
529
+ 'uint32': 'd3a0d5efb04542b25ac712e50d21f39ac30f312a5052e9bbb1ad3baa791ac84b', # noqa: E501
530
+ 'uint64': '14e224389ac4580bfbdccb5697d6190b496f91227cf67df60989de3d546389b1', # noqa: E501
531
+ 'uint8': '0e203226ff3fbbd1580f15da4621e5f7164d0d8d6b51696dd42d004ece2cbec1'} # noqa: E501
532
+
533
+ for dt in self.itype[1:]:
534
+ random = Generator(MT19937(1234))
535
+
536
+ # view as little endian for hash
537
+ if sys.byteorder == 'little':
538
+ val = random.integers(0, 6 - endpoint, size=1000, endpoint=endpoint,
539
+ dtype=dt)
540
+ else:
541
+ val = random.integers(0, 6 - endpoint, size=1000, endpoint=endpoint,
542
+ dtype=dt).byteswap()
543
+
544
+ res = hashlib.sha256(val).hexdigest()
545
+ assert_(tgt[np.dtype(dt).name] == res)
546
+
547
+ # bools do not depend on endianness
548
+ random = Generator(MT19937(1234))
549
+ val = random.integers(0, 2 - endpoint, size=1000, endpoint=endpoint,
550
+ dtype=bool).view(np.int8)
551
+ res = hashlib.sha256(val).hexdigest()
552
+ assert_(tgt[np.dtype(bool).name] == res)
553
+
554
+ def test_repeatability_broadcasting(self, endpoint):
555
+ for dt in self.itype:
556
+ lbnd = 0 if dt in (bool, np.bool) else np.iinfo(dt).min
557
+ ubnd = 2 if dt in (bool, np.bool) else np.iinfo(dt).max + 1
558
+ ubnd = ubnd - 1 if endpoint else ubnd
559
+
560
+ # view as little endian for hash
561
+ random = Generator(MT19937(1234))
562
+ val = random.integers(lbnd, ubnd, size=1000, endpoint=endpoint,
563
+ dtype=dt)
564
+
565
+ random = Generator(MT19937(1234))
566
+ val_bc = random.integers([lbnd] * 1000, ubnd, endpoint=endpoint,
567
+ dtype=dt)
568
+
569
+ assert_array_equal(val, val_bc)
570
+
571
+ random = Generator(MT19937(1234))
572
+ val_bc = random.integers([lbnd] * 1000, [ubnd] * 1000,
573
+ endpoint=endpoint, dtype=dt)
574
+
575
+ assert_array_equal(val, val_bc)
576
+
577
+ @pytest.mark.parametrize(
578
+ 'bound, expected',
579
+ [(2**32 - 1, np.array([517043486, 1364798665, 1733884389, 1353720612,
580
+ 3769704066, 1170797179, 4108474671])),
581
+ (2**32, np.array([517043487, 1364798666, 1733884390, 1353720613,
582
+ 3769704067, 1170797180, 4108474672])),
583
+ (2**32 + 1, np.array([517043487, 1733884390, 3769704068, 4108474673,
584
+ 1831631863, 1215661561, 3869512430]))]
585
+ )
586
+ def test_repeatability_32bit_boundary(self, bound, expected):
587
+ for size in [None, len(expected)]:
588
+ random = Generator(MT19937(1234))
589
+ x = random.integers(bound, size=size)
590
+ assert_equal(x, expected if size is not None else expected[0])
591
+
592
+ def test_repeatability_32bit_boundary_broadcasting(self):
593
+ desired = np.array([[[1622936284, 3620788691, 1659384060],
594
+ [1417365545, 760222891, 1909653332],
595
+ [3788118662, 660249498, 4092002593]],
596
+ [[3625610153, 2979601262, 3844162757],
597
+ [ 685800658, 120261497, 2694012896],
598
+ [1207779440, 1586594375, 3854335050]],
599
+ [[3004074748, 2310761796, 3012642217],
600
+ [2067714190, 2786677879, 1363865881],
601
+ [ 791663441, 1867303284, 2169727960]],
602
+ [[1939603804, 1250951100, 298950036],
603
+ [1040128489, 3791912209, 3317053765],
604
+ [3155528714, 61360675, 2305155588]],
605
+ [[ 817688762, 1335621943, 3288952434],
606
+ [1770890872, 1102951817, 1957607470],
607
+ [3099996017, 798043451, 48334215]]])
608
+ for size in [None, (5, 3, 3)]:
609
+ random = Generator(MT19937(12345))
610
+ x = random.integers([[-1], [0], [1]],
611
+ [2**32 - 1, 2**32, 2**32 + 1],
612
+ size=size)
613
+ assert_array_equal(x, desired if size is not None else desired[0])
614
+
615
+ def test_int64_uint64_broadcast_exceptions(self, endpoint):
616
+ configs = {np.uint64: ((0, 2**65), (-1, 2**62), (10, 9), (0, 0)),
617
+ np.int64: ((0, 2**64), (-(2**64), 2**62), (10, 9), (0, 0),
618
+ (-2**63 - 1, -2**63 - 1))}
619
+ for dtype in configs:
620
+ for config in configs[dtype]:
621
+ low, high = config
622
+ high = high - endpoint
623
+ low_a = np.array([[low] * 10])
624
+ high_a = np.array([high] * 10)
625
+ assert_raises(ValueError, random.integers, low, high,
626
+ endpoint=endpoint, dtype=dtype)
627
+ assert_raises(ValueError, random.integers, low_a, high,
628
+ endpoint=endpoint, dtype=dtype)
629
+ assert_raises(ValueError, random.integers, low, high_a,
630
+ endpoint=endpoint, dtype=dtype)
631
+ assert_raises(ValueError, random.integers, low_a, high_a,
632
+ endpoint=endpoint, dtype=dtype)
633
+
634
+ low_o = np.array([[low] * 10], dtype=object)
635
+ high_o = np.array([high] * 10, dtype=object)
636
+ assert_raises(ValueError, random.integers, low_o, high,
637
+ endpoint=endpoint, dtype=dtype)
638
+ assert_raises(ValueError, random.integers, low, high_o,
639
+ endpoint=endpoint, dtype=dtype)
640
+ assert_raises(ValueError, random.integers, low_o, high_o,
641
+ endpoint=endpoint, dtype=dtype)
642
+
643
+ def test_int64_uint64_corner_case(self, endpoint):
644
+ # When stored in Numpy arrays, `lbnd` is casted
645
+ # as np.int64, and `ubnd` is casted as np.uint64.
646
+ # Checking whether `lbnd` >= `ubnd` used to be
647
+ # done solely via direct comparison, which is incorrect
648
+ # because when Numpy tries to compare both numbers,
649
+ # it casts both to np.float64 because there is
650
+ # no integer superset of np.int64 and np.uint64. However,
651
+ # `ubnd` is too large to be represented in np.float64,
652
+ # causing it be round down to np.iinfo(np.int64).max,
653
+ # leading to a ValueError because `lbnd` now equals
654
+ # the new `ubnd`.
655
+
656
+ dt = np.int64
657
+ tgt = np.iinfo(np.int64).max
658
+ lbnd = np.int64(np.iinfo(np.int64).max)
659
+ ubnd = np.uint64(np.iinfo(np.int64).max + 1 - endpoint)
660
+
661
+ # None of these function calls should
662
+ # generate a ValueError now.
663
+ actual = random.integers(lbnd, ubnd, endpoint=endpoint, dtype=dt)
664
+ assert_equal(actual, tgt)
665
+
666
+ def test_respect_dtype_singleton(self, endpoint):
667
+ # See gh-7203
668
+ for dt in self.itype:
669
+ lbnd = 0 if dt is bool else np.iinfo(dt).min
670
+ ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
671
+ ubnd = ubnd - 1 if endpoint else ubnd
672
+ dt = np.bool if dt is bool else dt
673
+
674
+ sample = self.rfunc(lbnd, ubnd, endpoint=endpoint, dtype=dt)
675
+ assert_equal(sample.dtype, dt)
676
+
677
+ for dt in (bool, int):
678
+ lbnd = 0 if dt is bool else np.iinfo(dt).min
679
+ ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
680
+ ubnd = ubnd - 1 if endpoint else ubnd
681
+
682
+ # gh-7284: Ensure that we get Python data types
683
+ sample = self.rfunc(lbnd, ubnd, endpoint=endpoint, dtype=dt)
684
+ assert not hasattr(sample, 'dtype')
685
+ assert_equal(type(sample), dt)
686
+
687
+ def test_respect_dtype_array(self, endpoint):
688
+ # See gh-7203
689
+ for dt in self.itype:
690
+ lbnd = 0 if dt is bool else np.iinfo(dt).min
691
+ ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
692
+ ubnd = ubnd - 1 if endpoint else ubnd
693
+ dt = np.bool if dt is bool else dt
694
+
695
+ sample = self.rfunc([lbnd], [ubnd], endpoint=endpoint, dtype=dt)
696
+ assert_equal(sample.dtype, dt)
697
+ sample = self.rfunc([lbnd] * 2, [ubnd] * 2, endpoint=endpoint,
698
+ dtype=dt)
699
+ assert_equal(sample.dtype, dt)
700
+
701
+ def test_zero_size(self, endpoint):
702
+ # See gh-7203
703
+ for dt in self.itype:
704
+ sample = self.rfunc(0, 0, (3, 0, 4), endpoint=endpoint, dtype=dt)
705
+ assert sample.shape == (3, 0, 4)
706
+ assert sample.dtype == dt
707
+ assert self.rfunc(0, -10, 0, endpoint=endpoint,
708
+ dtype=dt).shape == (0,)
709
+ assert_equal(random.integers(0, 0, size=(3, 0, 4)).shape,
710
+ (3, 0, 4))
711
+ assert_equal(random.integers(0, -10, size=0).shape, (0,))
712
+ assert_equal(random.integers(10, 10, size=0).shape, (0,))
713
+
714
+ def test_error_byteorder(self):
715
+ other_byteord_dt = '<i4' if sys.byteorder == 'big' else '>i4'
716
+ with pytest.raises(ValueError):
717
+ random.integers(0, 200, size=10, dtype=other_byteord_dt)
718
+
719
+ # chi2max is the maximum acceptable chi-squared value.
720
+ @pytest.mark.slow
721
+ @pytest.mark.parametrize('sample_size,high,dtype,chi2max',
722
+ [(5000000, 5, np.int8, 125.0), # p-value ~4.6e-25
723
+ (5000000, 7, np.uint8, 150.0), # p-value ~7.7e-30
724
+ (10000000, 2500, np.int16, 3300.0), # p-value ~3.0e-25
725
+ (50000000, 5000, np.uint16, 6500.0), # p-value ~3.5e-25
726
+ ])
727
+ def test_integers_small_dtype_chisquared(self, sample_size, high,
728
+ dtype, chi2max):
729
+ # Regression test for gh-14774.
730
+ samples = random.integers(high, size=sample_size, dtype=dtype)
731
+
732
+ values, counts = np.unique(samples, return_counts=True)
733
+ expected = sample_size / high
734
+ chi2 = ((counts - expected)**2 / expected).sum()
735
+ assert chi2 < chi2max
736
+
737
+
738
+ class TestRandomDist:
739
+ # Make sure the random distribution returns the correct value for a
740
+ # given seed
741
+ seed = 1234567890
742
+
743
+ def test_integers(self):
744
+ random = Generator(MT19937(self.seed))
745
+ actual = random.integers(-99, 99, size=(3, 2))
746
+ desired = np.array([[-80, -56], [41, 37], [-83, -16]])
747
+ assert_array_equal(actual, desired)
748
+
749
+ def test_integers_masked(self):
750
+ # Test masked rejection sampling algorithm to generate array of
751
+ # uint32 in an interval.
752
+ random = Generator(MT19937(self.seed))
753
+ actual = random.integers(0, 99, size=(3, 2), dtype=np.uint32)
754
+ desired = np.array([[9, 21], [70, 68], [8, 41]], dtype=np.uint32)
755
+ assert_array_equal(actual, desired)
756
+
757
+ def test_integers_closed(self):
758
+ random = Generator(MT19937(self.seed))
759
+ actual = random.integers(-99, 99, size=(3, 2), endpoint=True)
760
+ desired = np.array([[-80, -56], [41, 38], [-83, -15]])
761
+ assert_array_equal(actual, desired)
762
+
763
+ def test_integers_max_int(self):
764
+ # Tests whether integers with closed=True can generate the
765
+ # maximum allowed Python int that can be converted
766
+ # into a C long. Previous implementations of this
767
+ # method have thrown an OverflowError when attempting
768
+ # to generate this integer.
769
+ actual = random.integers(np.iinfo('l').max, np.iinfo('l').max,
770
+ endpoint=True)
771
+
772
+ desired = np.iinfo('l').max
773
+ assert_equal(actual, desired)
774
+
775
+ def test_random(self):
776
+ random = Generator(MT19937(self.seed))
777
+ actual = random.random((3, 2))
778
+ desired = np.array([[0.096999199829214, 0.707517457682192],
779
+ [0.084364834598269, 0.767731206553125],
780
+ [0.665069021359413, 0.715487190596693]])
781
+ assert_array_almost_equal(actual, desired, decimal=15)
782
+
783
+ random = Generator(MT19937(self.seed))
784
+ actual = random.random()
785
+ assert_array_almost_equal(actual, desired[0, 0], decimal=15)
786
+
787
+ def test_random_float(self):
788
+ random = Generator(MT19937(self.seed))
789
+ actual = random.random((3, 2))
790
+ desired = np.array([[0.0969992 , 0.70751746], # noqa: E203
791
+ [0.08436483, 0.76773121],
792
+ [0.66506902, 0.71548719]])
793
+ assert_array_almost_equal(actual, desired, decimal=7)
794
+
795
+ def test_random_float_scalar(self):
796
+ random = Generator(MT19937(self.seed))
797
+ actual = random.random(dtype=np.float32)
798
+ desired = 0.0969992
799
+ assert_array_almost_equal(actual, desired, decimal=7)
800
+
801
+ @pytest.mark.parametrize('dtype, uint_view_type',
802
+ [(np.float32, np.uint32),
803
+ (np.float64, np.uint64)])
804
+ def test_random_distribution_of_lsb(self, dtype, uint_view_type):
805
+ random = Generator(MT19937(self.seed))
806
+ sample = random.random(100000, dtype=dtype)
807
+ num_ones_in_lsb = np.count_nonzero(sample.view(uint_view_type) & 1)
808
+ # The probability of a 1 in the least significant bit is 0.25.
809
+ # With a sample size of 100000, the probability that num_ones_in_lsb
810
+ # is outside the following range is less than 5e-11.
811
+ assert 24100 < num_ones_in_lsb < 25900
812
+
813
+ def test_random_unsupported_type(self):
814
+ assert_raises(TypeError, random.random, dtype='int32')
815
+
816
+ def test_choice_uniform_replace(self):
817
+ random = Generator(MT19937(self.seed))
818
+ actual = random.choice(4, 4)
819
+ desired = np.array([0, 0, 2, 2], dtype=np.int64)
820
+ assert_array_equal(actual, desired)
821
+
822
+ def test_choice_nonuniform_replace(self):
823
+ random = Generator(MT19937(self.seed))
824
+ actual = random.choice(4, 4, p=[0.4, 0.4, 0.1, 0.1])
825
+ desired = np.array([0, 1, 0, 1], dtype=np.int64)
826
+ assert_array_equal(actual, desired)
827
+
828
+ def test_choice_uniform_noreplace(self):
829
+ random = Generator(MT19937(self.seed))
830
+ actual = random.choice(4, 3, replace=False)
831
+ desired = np.array([2, 0, 3], dtype=np.int64)
832
+ assert_array_equal(actual, desired)
833
+ actual = random.choice(4, 4, replace=False, shuffle=False)
834
+ desired = np.arange(4, dtype=np.int64)
835
+ assert_array_equal(actual, desired)
836
+
837
+ def test_choice_nonuniform_noreplace(self):
838
+ random = Generator(MT19937(self.seed))
839
+ actual = random.choice(4, 3, replace=False, p=[0.1, 0.3, 0.5, 0.1])
840
+ desired = np.array([0, 2, 3], dtype=np.int64)
841
+ assert_array_equal(actual, desired)
842
+
843
+ def test_choice_noninteger(self):
844
+ random = Generator(MT19937(self.seed))
845
+ actual = random.choice(['a', 'b', 'c', 'd'], 4)
846
+ desired = np.array(['a', 'a', 'c', 'c'])
847
+ assert_array_equal(actual, desired)
848
+
849
+ def test_choice_multidimensional_default_axis(self):
850
+ random = Generator(MT19937(self.seed))
851
+ actual = random.choice([[0, 1], [2, 3], [4, 5], [6, 7]], 3)
852
+ desired = np.array([[0, 1], [0, 1], [4, 5]])
853
+ assert_array_equal(actual, desired)
854
+
855
+ def test_choice_multidimensional_custom_axis(self):
856
+ random = Generator(MT19937(self.seed))
857
+ actual = random.choice([[0, 1], [2, 3], [4, 5], [6, 7]], 1, axis=1)
858
+ desired = np.array([[0], [2], [4], [6]])
859
+ assert_array_equal(actual, desired)
860
+
861
+ def test_choice_exceptions(self):
862
+ sample = random.choice
863
+ assert_raises(ValueError, sample, -1, 3)
864
+ assert_raises(ValueError, sample, 3., 3)
865
+ assert_raises(ValueError, sample, [], 3)
866
+ assert_raises(ValueError, sample, [1, 2, 3, 4], 3,
867
+ p=[[0.25, 0.25], [0.25, 0.25]])
868
+ assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4, 0.2])
869
+ assert_raises(ValueError, sample, [1, 2], 3, p=[1.1, -0.1])
870
+ assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4])
871
+ assert_raises(ValueError, sample, [1, 2, 3], 4, replace=False)
872
+ # gh-13087
873
+ assert_raises(ValueError, sample, [1, 2, 3], -2, replace=False)
874
+ assert_raises(ValueError, sample, [1, 2, 3], (-1,), replace=False)
875
+ assert_raises(ValueError, sample, [1, 2, 3], (-1, 1), replace=False)
876
+ assert_raises(ValueError, sample, [1, 2, 3], 2,
877
+ replace=False, p=[1, 0, 0])
878
+
879
+ def test_choice_return_shape(self):
880
+ p = [0.1, 0.9]
881
+ # Check scalar
882
+ assert_(np.isscalar(random.choice(2, replace=True)))
883
+ assert_(np.isscalar(random.choice(2, replace=False)))
884
+ assert_(np.isscalar(random.choice(2, replace=True, p=p)))
885
+ assert_(np.isscalar(random.choice(2, replace=False, p=p)))
886
+ assert_(np.isscalar(random.choice([1, 2], replace=True)))
887
+ assert_(random.choice([None], replace=True) is None)
888
+ a = np.array([1, 2])
889
+ arr = np.empty(1, dtype=object)
890
+ arr[0] = a
891
+ assert_(random.choice(arr, replace=True) is a)
892
+
893
+ # Check 0-d array
894
+ s = ()
895
+ assert_(not np.isscalar(random.choice(2, s, replace=True)))
896
+ assert_(not np.isscalar(random.choice(2, s, replace=False)))
897
+ assert_(not np.isscalar(random.choice(2, s, replace=True, p=p)))
898
+ assert_(not np.isscalar(random.choice(2, s, replace=False, p=p)))
899
+ assert_(not np.isscalar(random.choice([1, 2], s, replace=True)))
900
+ assert_(random.choice([None], s, replace=True).ndim == 0)
901
+ a = np.array([1, 2])
902
+ arr = np.empty(1, dtype=object)
903
+ arr[0] = a
904
+ assert_(random.choice(arr, s, replace=True).item() is a)
905
+
906
+ # Check multi dimensional array
907
+ s = (2, 3)
908
+ p = [0.1, 0.1, 0.1, 0.1, 0.4, 0.2]
909
+ assert_equal(random.choice(6, s, replace=True).shape, s)
910
+ assert_equal(random.choice(6, s, replace=False).shape, s)
911
+ assert_equal(random.choice(6, s, replace=True, p=p).shape, s)
912
+ assert_equal(random.choice(6, s, replace=False, p=p).shape, s)
913
+ assert_equal(random.choice(np.arange(6), s, replace=True).shape, s)
914
+
915
+ # Check zero-size
916
+ assert_equal(random.integers(0, 0, size=(3, 0, 4)).shape, (3, 0, 4))
917
+ assert_equal(random.integers(0, -10, size=0).shape, (0,))
918
+ assert_equal(random.integers(10, 10, size=0).shape, (0,))
919
+ assert_equal(random.choice(0, size=0).shape, (0,))
920
+ assert_equal(random.choice([], size=(0,)).shape, (0,))
921
+ assert_equal(random.choice(['a', 'b'], size=(3, 0, 4)).shape,
922
+ (3, 0, 4))
923
+ assert_raises(ValueError, random.choice, [], 10)
924
+
925
+ def test_choice_nan_probabilities(self):
926
+ a = np.array([42, 1, 2])
927
+ p = [None, None, None]
928
+ assert_raises(ValueError, random.choice, a, p=p)
929
+
930
+ def test_choice_p_non_contiguous(self):
931
+ p = np.ones(10) / 5
932
+ p[1::2] = 3.0
933
+ random = Generator(MT19937(self.seed))
934
+ non_contig = random.choice(5, 3, p=p[::2])
935
+ random = Generator(MT19937(self.seed))
936
+ contig = random.choice(5, 3, p=np.ascontiguousarray(p[::2]))
937
+ assert_array_equal(non_contig, contig)
938
+
939
+ def test_choice_return_type(self):
940
+ # gh 9867
941
+ p = np.ones(4) / 4.
942
+ actual = random.choice(4, 2)
943
+ assert actual.dtype == np.int64
944
+ actual = random.choice(4, 2, replace=False)
945
+ assert actual.dtype == np.int64
946
+ actual = random.choice(4, 2, p=p)
947
+ assert actual.dtype == np.int64
948
+ actual = random.choice(4, 2, p=p, replace=False)
949
+ assert actual.dtype == np.int64
950
+
951
+ def test_choice_large_sample(self):
952
+ choice_hash = '4266599d12bfcfb815213303432341c06b4349f5455890446578877bb322e222'
953
+ random = Generator(MT19937(self.seed))
954
+ actual = random.choice(10000, 5000, replace=False)
955
+ if sys.byteorder != 'little':
956
+ actual = actual.byteswap()
957
+ res = hashlib.sha256(actual.view(np.int8)).hexdigest()
958
+ assert_(choice_hash == res)
959
+
960
+ def test_choice_array_size_empty_tuple(self):
961
+ random = Generator(MT19937(self.seed))
962
+ assert_array_equal(random.choice([1, 2, 3], size=()), np.array(1),
963
+ strict=True)
964
+ assert_array_equal(random.choice([[1, 2, 3]], size=()), [1, 2, 3])
965
+ assert_array_equal(random.choice([[1]], size=()), [1], strict=True)
966
+ assert_array_equal(random.choice([[1]], size=(), axis=1), [1],
967
+ strict=True)
968
+
969
+ def test_bytes(self):
970
+ random = Generator(MT19937(self.seed))
971
+ actual = random.bytes(10)
972
+ desired = b'\x86\xf0\xd4\x18\xe1\x81\t8%\xdd'
973
+ assert_equal(actual, desired)
974
+
975
+ def test_shuffle(self):
976
+ # Test lists, arrays (of various dtypes), and multidimensional versions
977
+ # of both, c-contiguous or not:
978
+ for conv in [lambda x: np.array([]),
979
+ lambda x: x,
980
+ lambda x: np.asarray(x).astype(np.int8),
981
+ lambda x: np.asarray(x).astype(np.float32),
982
+ lambda x: np.asarray(x).astype(np.complex64),
983
+ lambda x: np.asarray(x).astype(object),
984
+ lambda x: [(i, i) for i in x],
985
+ lambda x: np.asarray([[i, i] for i in x]),
986
+ lambda x: np.vstack([x, x]).T,
987
+ # gh-11442
988
+ lambda x: (np.asarray([(i, i) for i in x],
989
+ [("a", int), ("b", int)])
990
+ .view(np.recarray)),
991
+ # gh-4270
992
+ lambda x: np.asarray([(i, i) for i in x],
993
+ [("a", object, (1,)),
994
+ ("b", np.int32, (1,))])]:
995
+ random = Generator(MT19937(self.seed))
996
+ alist = conv([1, 2, 3, 4, 5, 6, 7, 8, 9, 0])
997
+ random.shuffle(alist)
998
+ actual = alist
999
+ desired = conv([4, 1, 9, 8, 0, 5, 3, 6, 2, 7])
1000
+ assert_array_equal(actual, desired)
1001
+
1002
+ def test_shuffle_custom_axis(self):
1003
+ random = Generator(MT19937(self.seed))
1004
+ actual = np.arange(16).reshape((4, 4))
1005
+ random.shuffle(actual, axis=1)
1006
+ desired = np.array([[ 0, 3, 1, 2],
1007
+ [ 4, 7, 5, 6],
1008
+ [ 8, 11, 9, 10],
1009
+ [12, 15, 13, 14]])
1010
+ assert_array_equal(actual, desired)
1011
+ random = Generator(MT19937(self.seed))
1012
+ actual = np.arange(16).reshape((4, 4))
1013
+ random.shuffle(actual, axis=-1)
1014
+ assert_array_equal(actual, desired)
1015
+
1016
+ def test_shuffle_custom_axis_empty(self):
1017
+ random = Generator(MT19937(self.seed))
1018
+ desired = np.array([]).reshape((0, 6))
1019
+ for axis in (0, 1):
1020
+ actual = np.array([]).reshape((0, 6))
1021
+ random.shuffle(actual, axis=axis)
1022
+ assert_array_equal(actual, desired)
1023
+
1024
+ def test_shuffle_axis_nonsquare(self):
1025
+ y1 = np.arange(20).reshape(2, 10)
1026
+ y2 = y1.copy()
1027
+ random = Generator(MT19937(self.seed))
1028
+ random.shuffle(y1, axis=1)
1029
+ random = Generator(MT19937(self.seed))
1030
+ random.shuffle(y2.T)
1031
+ assert_array_equal(y1, y2)
1032
+
1033
+ def test_shuffle_masked(self):
1034
+ # gh-3263
1035
+ a = np.ma.masked_values(np.reshape(range(20), (5, 4)) % 3 - 1, -1)
1036
+ b = np.ma.masked_values(np.arange(20) % 3 - 1, -1)
1037
+ a_orig = a.copy()
1038
+ b_orig = b.copy()
1039
+ for i in range(50):
1040
+ random.shuffle(a)
1041
+ assert_equal(
1042
+ sorted(a.data[~a.mask]), sorted(a_orig.data[~a_orig.mask]))
1043
+ random.shuffle(b)
1044
+ assert_equal(
1045
+ sorted(b.data[~b.mask]), sorted(b_orig.data[~b_orig.mask]))
1046
+
1047
+ def test_shuffle_exceptions(self):
1048
+ random = Generator(MT19937(self.seed))
1049
+ arr = np.arange(10)
1050
+ assert_raises(AxisError, random.shuffle, arr, 1)
1051
+ arr = np.arange(9).reshape((3, 3))
1052
+ assert_raises(AxisError, random.shuffle, arr, 3)
1053
+ assert_raises(TypeError, random.shuffle, arr, slice(1, 2, None))
1054
+ arr = [[1, 2, 3], [4, 5, 6]]
1055
+ assert_raises(NotImplementedError, random.shuffle, arr, 1)
1056
+
1057
+ arr = np.array(3)
1058
+ assert_raises(TypeError, random.shuffle, arr)
1059
+ arr = np.ones((3, 2))
1060
+ assert_raises(AxisError, random.shuffle, arr, 2)
1061
+
1062
+ def test_shuffle_not_writeable(self):
1063
+ random = Generator(MT19937(self.seed))
1064
+ a = np.zeros(5)
1065
+ a.flags.writeable = False
1066
+ with pytest.raises(ValueError, match='read-only'):
1067
+ random.shuffle(a)
1068
+
1069
+ def test_permutation(self):
1070
+ random = Generator(MT19937(self.seed))
1071
+ alist = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]
1072
+ actual = random.permutation(alist)
1073
+ desired = [4, 1, 9, 8, 0, 5, 3, 6, 2, 7]
1074
+ assert_array_equal(actual, desired)
1075
+
1076
+ random = Generator(MT19937(self.seed))
1077
+ arr_2d = np.atleast_2d([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]).T
1078
+ actual = random.permutation(arr_2d)
1079
+ assert_array_equal(actual, np.atleast_2d(desired).T)
1080
+
1081
+ bad_x_str = "abcd"
1082
+ assert_raises(AxisError, random.permutation, bad_x_str)
1083
+
1084
+ bad_x_float = 1.2
1085
+ assert_raises(AxisError, random.permutation, bad_x_float)
1086
+
1087
+ random = Generator(MT19937(self.seed))
1088
+ integer_val = 10
1089
+ desired = [3, 0, 8, 7, 9, 4, 2, 5, 1, 6]
1090
+
1091
+ actual = random.permutation(integer_val)
1092
+ assert_array_equal(actual, desired)
1093
+
1094
+ def test_permutation_custom_axis(self):
1095
+ a = np.arange(16).reshape((4, 4))
1096
+ desired = np.array([[ 0, 3, 1, 2],
1097
+ [ 4, 7, 5, 6],
1098
+ [ 8, 11, 9, 10],
1099
+ [12, 15, 13, 14]])
1100
+ random = Generator(MT19937(self.seed))
1101
+ actual = random.permutation(a, axis=1)
1102
+ assert_array_equal(actual, desired)
1103
+ random = Generator(MT19937(self.seed))
1104
+ actual = random.permutation(a, axis=-1)
1105
+ assert_array_equal(actual, desired)
1106
+
1107
+ def test_permutation_exceptions(self):
1108
+ random = Generator(MT19937(self.seed))
1109
+ arr = np.arange(10)
1110
+ assert_raises(AxisError, random.permutation, arr, 1)
1111
+ arr = np.arange(9).reshape((3, 3))
1112
+ assert_raises(AxisError, random.permutation, arr, 3)
1113
+ assert_raises(TypeError, random.permutation, arr, slice(1, 2, None))
1114
+
1115
+ @pytest.mark.parametrize("dtype", [int, object])
1116
+ @pytest.mark.parametrize("axis, expected",
1117
+ [(None, np.array([[3, 7, 0, 9, 10, 11],
1118
+ [8, 4, 2, 5, 1, 6]])),
1119
+ (0, np.array([[6, 1, 2, 9, 10, 11],
1120
+ [0, 7, 8, 3, 4, 5]])),
1121
+ (1, np.array([[ 5, 3, 4, 0, 2, 1],
1122
+ [11, 9, 10, 6, 8, 7]]))])
1123
+ def test_permuted(self, dtype, axis, expected):
1124
+ random = Generator(MT19937(self.seed))
1125
+ x = np.arange(12).reshape(2, 6).astype(dtype)
1126
+ random.permuted(x, axis=axis, out=x)
1127
+ assert_array_equal(x, expected)
1128
+
1129
+ random = Generator(MT19937(self.seed))
1130
+ x = np.arange(12).reshape(2, 6).astype(dtype)
1131
+ y = random.permuted(x, axis=axis)
1132
+ assert y.dtype == dtype
1133
+ assert_array_equal(y, expected)
1134
+
1135
+ def test_permuted_with_strides(self):
1136
+ random = Generator(MT19937(self.seed))
1137
+ x0 = np.arange(22).reshape(2, 11)
1138
+ x1 = x0.copy()
1139
+ x = x0[:, ::3]
1140
+ y = random.permuted(x, axis=1, out=x)
1141
+ expected = np.array([[0, 9, 3, 6],
1142
+ [14, 20, 11, 17]])
1143
+ assert_array_equal(y, expected)
1144
+ x1[:, ::3] = expected
1145
+ # Verify that the original x0 was modified in-place as expected.
1146
+ assert_array_equal(x1, x0)
1147
+
1148
+ def test_permuted_empty(self):
1149
+ y = random.permuted([])
1150
+ assert_array_equal(y, [])
1151
+
1152
+ @pytest.mark.parametrize('outshape', [(2, 3), 5])
1153
+ def test_permuted_out_with_wrong_shape(self, outshape):
1154
+ a = np.array([1, 2, 3])
1155
+ out = np.zeros(outshape, dtype=a.dtype)
1156
+ with pytest.raises(ValueError, match='same shape'):
1157
+ random.permuted(a, out=out)
1158
+
1159
+ def test_permuted_out_with_wrong_type(self):
1160
+ out = np.zeros((3, 5), dtype=np.int32)
1161
+ x = np.ones((3, 5))
1162
+ with pytest.raises(TypeError, match='Cannot cast'):
1163
+ random.permuted(x, axis=1, out=out)
1164
+
1165
+ def test_permuted_not_writeable(self):
1166
+ x = np.zeros((2, 5))
1167
+ x.flags.writeable = False
1168
+ with pytest.raises(ValueError, match='read-only'):
1169
+ random.permuted(x, axis=1, out=x)
1170
+
1171
+ def test_beta(self):
1172
+ random = Generator(MT19937(self.seed))
1173
+ actual = random.beta(.1, .9, size=(3, 2))
1174
+ desired = np.array(
1175
+ [[1.083029353267698e-10, 2.449965303168024e-11],
1176
+ [2.397085162969853e-02, 3.590779671820755e-08],
1177
+ [2.830254190078299e-04, 1.744709918330393e-01]])
1178
+ assert_array_almost_equal(actual, desired, decimal=15)
1179
+
1180
+ def test_binomial(self):
1181
+ random = Generator(MT19937(self.seed))
1182
+ actual = random.binomial(100.123, .456, size=(3, 2))
1183
+ desired = np.array([[42, 41],
1184
+ [42, 48],
1185
+ [44, 50]])
1186
+ assert_array_equal(actual, desired)
1187
+
1188
+ random = Generator(MT19937(self.seed))
1189
+ actual = random.binomial(100.123, .456)
1190
+ desired = 42
1191
+ assert_array_equal(actual, desired)
1192
+
1193
+ def test_chisquare(self):
1194
+ random = Generator(MT19937(self.seed))
1195
+ actual = random.chisquare(50, size=(3, 2))
1196
+ desired = np.array([[32.9850547060149, 39.0219480493301],
1197
+ [56.2006134779419, 57.3474165711485],
1198
+ [55.4243733880198, 55.4209797925213]])
1199
+ assert_array_almost_equal(actual, desired, decimal=13)
1200
+
1201
+ def test_dirichlet(self):
1202
+ random = Generator(MT19937(self.seed))
1203
+ alpha = np.array([51.72840233779265162, 39.74494232180943953])
1204
+ actual = random.dirichlet(alpha, size=(3, 2))
1205
+ desired = np.array([[[0.5439892869558927, 0.45601071304410745],
1206
+ [0.5588917345860708, 0.4411082654139292 ]], # noqa: E202
1207
+ [[0.5632074165063435, 0.43679258349365657],
1208
+ [0.54862581112627, 0.45137418887373015]],
1209
+ [[0.49961831357047226, 0.5003816864295278 ], # noqa: E202
1210
+ [0.52374806183482, 0.47625193816517997]]])
1211
+ assert_array_almost_equal(actual, desired, decimal=15)
1212
+ bad_alpha = np.array([5.4e-01, -1.0e-16])
1213
+ assert_raises(ValueError, random.dirichlet, bad_alpha)
1214
+
1215
+ random = Generator(MT19937(self.seed))
1216
+ alpha = np.array([51.72840233779265162, 39.74494232180943953])
1217
+ actual = random.dirichlet(alpha)
1218
+ assert_array_almost_equal(actual, desired[0, 0], decimal=15)
1219
+
1220
+ def test_dirichlet_size(self):
1221
+ # gh-3173
1222
+ p = np.array([51.72840233779265162, 39.74494232180943953])
1223
+ assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2))
1224
+ assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2))
1225
+ assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2))
1226
+ assert_equal(random.dirichlet(p, [2, 2]).shape, (2, 2, 2))
1227
+ assert_equal(random.dirichlet(p, (2, 2)).shape, (2, 2, 2))
1228
+ assert_equal(random.dirichlet(p, np.array((2, 2))).shape, (2, 2, 2))
1229
+
1230
+ assert_raises(TypeError, random.dirichlet, p, float(1))
1231
+
1232
+ def test_dirichlet_bad_alpha(self):
1233
+ # gh-2089
1234
+ alpha = np.array([5.4e-01, -1.0e-16])
1235
+ assert_raises(ValueError, random.dirichlet, alpha)
1236
+
1237
+ # gh-15876
1238
+ assert_raises(ValueError, random.dirichlet, [[5, 1]])
1239
+ assert_raises(ValueError, random.dirichlet, [[5], [1]])
1240
+ assert_raises(ValueError, random.dirichlet, [[[5], [1]], [[1], [5]]])
1241
+ assert_raises(ValueError, random.dirichlet, np.array([[5, 1], [1, 5]]))
1242
+
1243
+ def test_dirichlet_alpha_non_contiguous(self):
1244
+ a = np.array([51.72840233779265162, -1.0, 39.74494232180943953])
1245
+ alpha = a[::2]
1246
+ random = Generator(MT19937(self.seed))
1247
+ non_contig = random.dirichlet(alpha, size=(3, 2))
1248
+ random = Generator(MT19937(self.seed))
1249
+ contig = random.dirichlet(np.ascontiguousarray(alpha),
1250
+ size=(3, 2))
1251
+ assert_array_almost_equal(non_contig, contig)
1252
+
1253
+ def test_dirichlet_small_alpha(self):
1254
+ eps = 1.0e-9 # 1.0e-10 -> runtime x 10; 1e-11 -> runtime x 200, etc.
1255
+ alpha = eps * np.array([1., 1.0e-3])
1256
+ random = Generator(MT19937(self.seed))
1257
+ actual = random.dirichlet(alpha, size=(3, 2))
1258
+ expected = np.array([
1259
+ [[1., 0.],
1260
+ [1., 0.]],
1261
+ [[1., 0.],
1262
+ [1., 0.]],
1263
+ [[1., 0.],
1264
+ [1., 0.]]
1265
+ ])
1266
+ assert_array_almost_equal(actual, expected, decimal=15)
1267
+
1268
+ @pytest.mark.slow
1269
+ @pytest.mark.thread_unsafe(reason="crashes with low memory")
1270
+ def test_dirichlet_moderately_small_alpha(self):
1271
+ # Use alpha.max() < 0.1 to trigger stick breaking code path
1272
+ alpha = np.array([0.02, 0.04, 0.03])
1273
+ exact_mean = alpha / alpha.sum()
1274
+ random = Generator(MT19937(self.seed))
1275
+ sample = random.dirichlet(alpha, size=20000000)
1276
+ sample_mean = sample.mean(axis=0)
1277
+ assert_allclose(sample_mean, exact_mean, rtol=1e-3)
1278
+
1279
+ # This set of parameters includes inputs with alpha.max() >= 0.1 and
1280
+ # alpha.max() < 0.1 to exercise both generation methods within the
1281
+ # dirichlet code.
1282
+ @pytest.mark.parametrize(
1283
+ 'alpha',
1284
+ [[5, 9, 0, 8],
1285
+ [0.5, 0, 0, 0],
1286
+ [1, 5, 0, 0, 1.5, 0, 0, 0],
1287
+ [0.01, 0.03, 0, 0.005],
1288
+ [1e-5, 0, 0, 0],
1289
+ [0.002, 0.015, 0, 0, 0.04, 0, 0, 0],
1290
+ [0.0],
1291
+ [0, 0, 0]],
1292
+ )
1293
+ def test_dirichlet_multiple_zeros_in_alpha(self, alpha):
1294
+ alpha = np.array(alpha)
1295
+ y = random.dirichlet(alpha)
1296
+ assert_equal(y[alpha == 0], 0.0)
1297
+
1298
+ def test_exponential(self):
1299
+ random = Generator(MT19937(self.seed))
1300
+ actual = random.exponential(1.1234, size=(3, 2))
1301
+ desired = np.array([[0.098845481066258, 1.560752510746964],
1302
+ [0.075730916041636, 1.769098974710777],
1303
+ [1.488602544592235, 2.49684815275751 ]]) # noqa: E202
1304
+ assert_array_almost_equal(actual, desired, decimal=15)
1305
+
1306
+ def test_exponential_0(self):
1307
+ assert_equal(random.exponential(scale=0), 0)
1308
+ assert_raises(ValueError, random.exponential, scale=-0.)
1309
+
1310
+ def test_f(self):
1311
+ random = Generator(MT19937(self.seed))
1312
+ actual = random.f(12, 77, size=(3, 2))
1313
+ desired = np.array([[0.461720027077085, 1.100441958872451],
1314
+ [1.100337455217484, 0.91421736740018 ], # noqa: E202
1315
+ [0.500811891303113, 0.826802454552058]])
1316
+ assert_array_almost_equal(actual, desired, decimal=15)
1317
+
1318
+ def test_gamma(self):
1319
+ random = Generator(MT19937(self.seed))
1320
+ actual = random.gamma(5, 3, size=(3, 2))
1321
+ desired = np.array([[ 5.03850858902096, 7.9228656732049 ], # noqa: E202
1322
+ [18.73983605132985, 19.57961681699238],
1323
+ [18.17897755150825, 18.17653912505234]])
1324
+ assert_array_almost_equal(actual, desired, decimal=14)
1325
+
1326
+ def test_gamma_0(self):
1327
+ assert_equal(random.gamma(shape=0, scale=0), 0)
1328
+ assert_raises(ValueError, random.gamma, shape=-0., scale=-0.)
1329
+
1330
+ def test_geometric(self):
1331
+ random = Generator(MT19937(self.seed))
1332
+ actual = random.geometric(.123456789, size=(3, 2))
1333
+ desired = np.array([[1, 11],
1334
+ [1, 12],
1335
+ [11, 17]])
1336
+ assert_array_equal(actual, desired)
1337
+
1338
+ def test_geometric_exceptions(self):
1339
+ assert_raises(ValueError, random.geometric, 1.1)
1340
+ assert_raises(ValueError, random.geometric, [1.1] * 10)
1341
+ assert_raises(ValueError, random.geometric, -0.1)
1342
+ assert_raises(ValueError, random.geometric, [-0.1] * 10)
1343
+ with np.errstate(invalid='ignore'):
1344
+ assert_raises(ValueError, random.geometric, np.nan)
1345
+ assert_raises(ValueError, random.geometric, [np.nan] * 10)
1346
+
1347
+ def test_gumbel(self):
1348
+ random = Generator(MT19937(self.seed))
1349
+ actual = random.gumbel(loc=.123456789, scale=2.0, size=(3, 2))
1350
+ desired = np.array([[ 4.688397515056245, -0.289514845417841],
1351
+ [ 4.981176042584683, -0.633224272589149],
1352
+ [-0.055915275687488, -0.333962478257953]])
1353
+ assert_array_almost_equal(actual, desired, decimal=15)
1354
+
1355
+ def test_gumbel_0(self):
1356
+ assert_equal(random.gumbel(scale=0), 0)
1357
+ assert_raises(ValueError, random.gumbel, scale=-0.)
1358
+
1359
+ def test_hypergeometric(self):
1360
+ random = Generator(MT19937(self.seed))
1361
+ actual = random.hypergeometric(10.1, 5.5, 14, size=(3, 2))
1362
+ desired = np.array([[ 9, 9],
1363
+ [ 9, 9],
1364
+ [10, 9]])
1365
+ assert_array_equal(actual, desired)
1366
+
1367
+ # Test nbad = 0
1368
+ actual = random.hypergeometric(5, 0, 3, size=4)
1369
+ desired = np.array([3, 3, 3, 3])
1370
+ assert_array_equal(actual, desired)
1371
+
1372
+ actual = random.hypergeometric(15, 0, 12, size=4)
1373
+ desired = np.array([12, 12, 12, 12])
1374
+ assert_array_equal(actual, desired)
1375
+
1376
+ # Test ngood = 0
1377
+ actual = random.hypergeometric(0, 5, 3, size=4)
1378
+ desired = np.array([0, 0, 0, 0])
1379
+ assert_array_equal(actual, desired)
1380
+
1381
+ actual = random.hypergeometric(0, 15, 12, size=4)
1382
+ desired = np.array([0, 0, 0, 0])
1383
+ assert_array_equal(actual, desired)
1384
+
1385
+ def test_laplace(self):
1386
+ random = Generator(MT19937(self.seed))
1387
+ actual = random.laplace(loc=.123456789, scale=2.0, size=(3, 2))
1388
+ desired = np.array([[-3.156353949272393, 1.195863024830054],
1389
+ [-3.435458081645966, 1.656882398925444],
1390
+ [ 0.924824032467446, 1.251116432209336]])
1391
+ assert_array_almost_equal(actual, desired, decimal=15)
1392
+
1393
+ def test_laplace_0(self):
1394
+ assert_equal(random.laplace(scale=0), 0)
1395
+ assert_raises(ValueError, random.laplace, scale=-0.)
1396
+
1397
+ def test_logistic(self):
1398
+ random = Generator(MT19937(self.seed))
1399
+ actual = random.logistic(loc=.123456789, scale=2.0, size=(3, 2))
1400
+ desired = np.array([[-4.338584631510999, 1.890171436749954],
1401
+ [-4.64547787337966 , 2.514545562919217], # noqa: E203
1402
+ [ 1.495389489198666, 1.967827627577474]])
1403
+ assert_array_almost_equal(actual, desired, decimal=15)
1404
+
1405
+ def test_lognormal(self):
1406
+ random = Generator(MT19937(self.seed))
1407
+ actual = random.lognormal(mean=.123456789, sigma=2.0, size=(3, 2))
1408
+ desired = np.array([[ 0.0268252166335, 13.9534486483053],
1409
+ [ 0.1204014788936, 2.2422077497792],
1410
+ [ 4.2484199496128, 12.0093343977523]])
1411
+ assert_array_almost_equal(actual, desired, decimal=13)
1412
+
1413
+ def test_lognormal_0(self):
1414
+ assert_equal(random.lognormal(sigma=0), 1)
1415
+ assert_raises(ValueError, random.lognormal, sigma=-0.)
1416
+
1417
+ def test_logseries(self):
1418
+ random = Generator(MT19937(self.seed))
1419
+ actual = random.logseries(p=.923456789, size=(3, 2))
1420
+ desired = np.array([[14, 17],
1421
+ [3, 18],
1422
+ [5, 1]])
1423
+ assert_array_equal(actual, desired)
1424
+
1425
+ def test_logseries_zero(self):
1426
+ random = Generator(MT19937(self.seed))
1427
+ assert random.logseries(0) == 1
1428
+
1429
+ @pytest.mark.parametrize("value", [np.nextafter(0., -1), 1., np.nan, 5.])
1430
+ def test_logseries_exceptions(self, value):
1431
+ random = Generator(MT19937(self.seed))
1432
+ with np.errstate(invalid="ignore"):
1433
+ with pytest.raises(ValueError):
1434
+ random.logseries(value)
1435
+ with pytest.raises(ValueError):
1436
+ # contiguous path:
1437
+ random.logseries(np.array([value] * 10))
1438
+ with pytest.raises(ValueError):
1439
+ # non-contiguous path:
1440
+ random.logseries(np.array([value] * 10)[::2])
1441
+
1442
+ def test_multinomial(self):
1443
+ random = Generator(MT19937(self.seed))
1444
+ actual = random.multinomial(20, [1 / 6.] * 6, size=(3, 2))
1445
+ desired = np.array([[[1, 5, 1, 6, 4, 3],
1446
+ [4, 2, 6, 2, 4, 2]],
1447
+ [[5, 3, 2, 6, 3, 1],
1448
+ [4, 4, 0, 2, 3, 7]],
1449
+ [[6, 3, 1, 5, 3, 2],
1450
+ [5, 5, 3, 1, 2, 4]]])
1451
+ assert_array_equal(actual, desired)
1452
+
1453
+ @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm")
1454
+ @pytest.mark.parametrize("method", ["svd", "eigh", "cholesky"])
1455
+ def test_multivariate_normal(self, method):
1456
+ random = Generator(MT19937(self.seed))
1457
+ mean = (.123456789, 10)
1458
+ cov = [[1, 0], [0, 1]]
1459
+ size = (3, 2)
1460
+ actual = random.multivariate_normal(mean, cov, size, method=method)
1461
+ desired = np.array([[[-1.747478062846581, 11.25613495182354 ], # noqa: E202
1462
+ [-0.9967333370066214, 10.342002097029821]],
1463
+ [[ 0.7850019631242964, 11.181113712443013],
1464
+ [ 0.8901349653255224, 8.873825399642492]],
1465
+ [[ 0.7130260107430003, 9.551628690083056],
1466
+ [ 0.7127098726541128, 11.991709234143173]]])
1467
+
1468
+ assert_array_almost_equal(actual, desired, decimal=15)
1469
+
1470
+ # Check for default size, was raising deprecation warning
1471
+ actual = random.multivariate_normal(mean, cov, method=method)
1472
+ desired = np.array([0.233278563284287, 9.424140804347195])
1473
+ assert_array_almost_equal(actual, desired, decimal=15)
1474
+ # Check that non symmetric covariance input raises exception when
1475
+ # check_valid='raises' if using default svd method.
1476
+ mean = [0, 0]
1477
+ cov = [[1, 2], [1, 2]]
1478
+ assert_raises(ValueError, random.multivariate_normal, mean, cov,
1479
+ check_valid='raise')
1480
+
1481
+ # Check that non positive-semidefinite covariance warns with
1482
+ # RuntimeWarning
1483
+ cov = [[1, 2], [2, 1]]
1484
+ pytest.warns(RuntimeWarning, random.multivariate_normal, mean, cov)
1485
+ pytest.warns(RuntimeWarning, random.multivariate_normal, mean, cov,
1486
+ method='eigh')
1487
+ assert_raises(LinAlgError, random.multivariate_normal, mean, cov,
1488
+ method='cholesky')
1489
+
1490
+ # and that it doesn't warn with RuntimeWarning check_valid='ignore'
1491
+ assert_no_warnings(random.multivariate_normal, mean, cov,
1492
+ check_valid='ignore')
1493
+
1494
+ # and that it raises with RuntimeWarning check_valid='raises'
1495
+ assert_raises(ValueError, random.multivariate_normal, mean, cov,
1496
+ check_valid='raise')
1497
+ assert_raises(ValueError, random.multivariate_normal, mean, cov,
1498
+ check_valid='raise', method='eigh')
1499
+
1500
+ # check degenerate samples from singular covariance matrix
1501
+ cov = [[1, 1], [1, 1]]
1502
+ if method in ('svd', 'eigh'):
1503
+ samples = random.multivariate_normal(mean, cov, size=(3, 2),
1504
+ method=method)
1505
+ assert_array_almost_equal(samples[..., 0], samples[..., 1],
1506
+ decimal=6)
1507
+ else:
1508
+ assert_raises(LinAlgError, random.multivariate_normal, mean, cov,
1509
+ method='cholesky')
1510
+
1511
+ cov = np.array([[1, 0.1], [0.1, 1]], dtype=np.float32)
1512
+ with warnings.catch_warnings():
1513
+ warnings.simplefilter("error")
1514
+ random.multivariate_normal(mean, cov, method=method)
1515
+
1516
+ mu = np.zeros(2)
1517
+ cov = np.eye(2)
1518
+ assert_raises(ValueError, random.multivariate_normal, mean, cov,
1519
+ check_valid='other')
1520
+ assert_raises(ValueError, random.multivariate_normal,
1521
+ np.zeros((2, 1, 1)), cov)
1522
+ assert_raises(ValueError, random.multivariate_normal,
1523
+ mu, np.empty((3, 2)))
1524
+ assert_raises(ValueError, random.multivariate_normal,
1525
+ mu, np.eye(3))
1526
+
1527
+ @pytest.mark.parametrize('mean, cov', [([0], [[1 + 1j]]), ([0j], [[1]])])
1528
+ def test_multivariate_normal_disallow_complex(self, mean, cov):
1529
+ random = Generator(MT19937(self.seed))
1530
+ with pytest.raises(TypeError, match="must not be complex"):
1531
+ random.multivariate_normal(mean, cov)
1532
+
1533
+ @pytest.mark.parametrize("method", ["svd", "eigh", "cholesky"])
1534
+ def test_multivariate_normal_basic_stats(self, method):
1535
+ random = Generator(MT19937(self.seed))
1536
+ n_s = 1000
1537
+ mean = np.array([1, 2])
1538
+ cov = np.array([[2, 1], [1, 2]])
1539
+ s = random.multivariate_normal(mean, cov, size=(n_s,), method=method)
1540
+ s_center = s - mean
1541
+ cov_emp = (s_center.T @ s_center) / (n_s - 1)
1542
+ # these are pretty loose and are only designed to detect major errors
1543
+ assert np.all(np.abs(s_center.mean(-2)) < 0.1)
1544
+ assert np.all(np.abs(cov_emp - cov) < 0.2)
1545
+
1546
+ def test_negative_binomial(self):
1547
+ random = Generator(MT19937(self.seed))
1548
+ actual = random.negative_binomial(n=100, p=.12345, size=(3, 2))
1549
+ desired = np.array([[543, 727],
1550
+ [775, 760],
1551
+ [600, 674]])
1552
+ assert_array_equal(actual, desired)
1553
+
1554
+ def test_negative_binomial_exceptions(self):
1555
+ with np.errstate(invalid='ignore'):
1556
+ assert_raises(ValueError, random.negative_binomial, 100, np.nan)
1557
+ assert_raises(ValueError, random.negative_binomial, 100,
1558
+ [np.nan] * 10)
1559
+
1560
+ def test_negative_binomial_p0_exception(self):
1561
+ # Verify that p=0 raises an exception.
1562
+ with assert_raises(ValueError):
1563
+ x = random.negative_binomial(1, 0)
1564
+
1565
+ def test_negative_binomial_invalid_p_n_combination(self):
1566
+ # Verify that values of p and n that would result in an overflow
1567
+ # or infinite loop raise an exception.
1568
+ with np.errstate(invalid='ignore'):
1569
+ assert_raises(ValueError, random.negative_binomial, 2**62, 0.1)
1570
+ assert_raises(ValueError, random.negative_binomial, [2**62], [0.1])
1571
+
1572
+ def test_noncentral_chisquare(self):
1573
+ random = Generator(MT19937(self.seed))
1574
+ actual = random.noncentral_chisquare(df=5, nonc=5, size=(3, 2))
1575
+ desired = np.array([[ 1.70561552362133, 15.97378184942111],
1576
+ [13.71483425173724, 20.17859633310629],
1577
+ [11.3615477156643 , 3.67891108738029]]) # noqa: E203
1578
+ assert_array_almost_equal(actual, desired, decimal=14)
1579
+
1580
+ actual = random.noncentral_chisquare(df=.5, nonc=.2, size=(3, 2))
1581
+ desired = np.array([[9.41427665607629e-04, 1.70473157518850e-04],
1582
+ [1.14554372041263e+00, 1.38187755933435e-03],
1583
+ [1.90659181905387e+00, 1.21772577941822e+00]])
1584
+ assert_array_almost_equal(actual, desired, decimal=14)
1585
+
1586
+ random = Generator(MT19937(self.seed))
1587
+ actual = random.noncentral_chisquare(df=5, nonc=0, size=(3, 2))
1588
+ desired = np.array([[0.82947954590419, 1.80139670767078],
1589
+ [6.58720057417794, 7.00491463609814],
1590
+ [6.31101879073157, 6.30982307753005]])
1591
+ assert_array_almost_equal(actual, desired, decimal=14)
1592
+
1593
+ def test_noncentral_f(self):
1594
+ random = Generator(MT19937(self.seed))
1595
+ actual = random.noncentral_f(dfnum=5, dfden=2, nonc=1,
1596
+ size=(3, 2))
1597
+ desired = np.array([[0.060310671139 , 0.23866058175939], # noqa: E203
1598
+ [0.86860246709073, 0.2668510459738 ], # noqa: E202
1599
+ [0.23375780078364, 1.88922102885943]])
1600
+ assert_array_almost_equal(actual, desired, decimal=14)
1601
+
1602
+ def test_noncentral_f_nan(self):
1603
+ random = Generator(MT19937(self.seed))
1604
+ actual = random.noncentral_f(dfnum=5, dfden=2, nonc=np.nan)
1605
+ assert np.isnan(actual)
1606
+
1607
+ def test_normal(self):
1608
+ random = Generator(MT19937(self.seed))
1609
+ actual = random.normal(loc=.123456789, scale=2.0, size=(3, 2))
1610
+ desired = np.array([[-3.618412914693162, 2.635726692647081],
1611
+ [-2.116923463013243, 0.807460983059643],
1612
+ [ 1.446547137248593, 2.485684213886024]])
1613
+ assert_array_almost_equal(actual, desired, decimal=15)
1614
+
1615
+ def test_normal_0(self):
1616
+ assert_equal(random.normal(scale=0), 0)
1617
+ assert_raises(ValueError, random.normal, scale=-0.)
1618
+
1619
+ def test_pareto(self):
1620
+ random = Generator(MT19937(self.seed))
1621
+ actual = random.pareto(a=.123456789, size=(3, 2))
1622
+ desired = np.array([[1.0394926776069018e+00, 7.7142534343505773e+04],
1623
+ [7.2640150889064703e-01, 3.4650454783825594e+05],
1624
+ [4.5852344481994740e+04, 6.5851383009539105e+07]])
1625
+ # For some reason on 32-bit x86 Ubuntu 12.10 the [1, 0] entry in this
1626
+ # matrix differs by 24 nulps. Discussion:
1627
+ # https://mail.python.org/pipermail/numpy-discussion/2012-September/063801.html
1628
+ # Consensus is that this is probably some gcc quirk that affects
1629
+ # rounding but not in any important way, so we just use a looser
1630
+ # tolerance on this test:
1631
+ np.testing.assert_array_almost_equal_nulp(actual, desired, nulp=30)
1632
+
1633
+ def test_poisson(self):
1634
+ random = Generator(MT19937(self.seed))
1635
+ actual = random.poisson(lam=.123456789, size=(3, 2))
1636
+ desired = np.array([[0, 0],
1637
+ [0, 0],
1638
+ [0, 0]])
1639
+ assert_array_equal(actual, desired)
1640
+
1641
+ def test_poisson_exceptions(self):
1642
+ lambig = np.iinfo('int64').max
1643
+ lamneg = -1
1644
+ assert_raises(ValueError, random.poisson, lamneg)
1645
+ assert_raises(ValueError, random.poisson, [lamneg] * 10)
1646
+ assert_raises(ValueError, random.poisson, lambig)
1647
+ assert_raises(ValueError, random.poisson, [lambig] * 10)
1648
+ with np.errstate(invalid='ignore'):
1649
+ assert_raises(ValueError, random.poisson, np.nan)
1650
+ assert_raises(ValueError, random.poisson, [np.nan] * 10)
1651
+
1652
+ def test_power(self):
1653
+ random = Generator(MT19937(self.seed))
1654
+ actual = random.power(a=.123456789, size=(3, 2))
1655
+ desired = np.array([[1.977857368842754e-09, 9.806792196620341e-02],
1656
+ [2.482442984543471e-10, 1.527108843266079e-01],
1657
+ [8.188283434244285e-02, 3.950547209346948e-01]])
1658
+ assert_array_almost_equal(actual, desired, decimal=15)
1659
+
1660
+ def test_rayleigh(self):
1661
+ random = Generator(MT19937(self.seed))
1662
+ actual = random.rayleigh(scale=10, size=(3, 2))
1663
+ desired = np.array([[4.19494429102666, 16.66920198906598],
1664
+ [3.67184544902662, 17.74695521962917],
1665
+ [16.27935397855501, 21.08355560691792]])
1666
+ assert_array_almost_equal(actual, desired, decimal=14)
1667
+
1668
+ def test_rayleigh_0(self):
1669
+ assert_equal(random.rayleigh(scale=0), 0)
1670
+ assert_raises(ValueError, random.rayleigh, scale=-0.)
1671
+
1672
+ def test_standard_cauchy(self):
1673
+ random = Generator(MT19937(self.seed))
1674
+ actual = random.standard_cauchy(size=(3, 2))
1675
+ desired = np.array([[-1.489437778266206, -3.275389641569784],
1676
+ [ 0.560102864910406, -0.680780916282552],
1677
+ [-1.314912905226277, 0.295852965660225]])
1678
+ assert_array_almost_equal(actual, desired, decimal=15)
1679
+
1680
+ def test_standard_exponential(self):
1681
+ random = Generator(MT19937(self.seed))
1682
+ actual = random.standard_exponential(size=(3, 2), method='inv')
1683
+ desired = np.array([[0.102031839440643, 1.229350298474972],
1684
+ [0.088137284693098, 1.459859985522667],
1685
+ [1.093830802293668, 1.256977002164613]])
1686
+ assert_array_almost_equal(actual, desired, decimal=15)
1687
+
1688
+ def test_standard_expoential_type_error(self):
1689
+ assert_raises(TypeError, random.standard_exponential, dtype=np.int32)
1690
+
1691
+ def test_standard_gamma(self):
1692
+ random = Generator(MT19937(self.seed))
1693
+ actual = random.standard_gamma(shape=3, size=(3, 2))
1694
+ desired = np.array([[0.62970724056362, 1.22379851271008],
1695
+ [3.899412530884 , 4.12479964250139], # noqa: E203
1696
+ [3.74994102464584, 3.74929307690815]])
1697
+ assert_array_almost_equal(actual, desired, decimal=14)
1698
+
1699
+ def test_standard_gammma_scalar_float(self):
1700
+ random = Generator(MT19937(self.seed))
1701
+ actual = random.standard_gamma(3, dtype=np.float32)
1702
+ desired = 2.9242148399353027
1703
+ assert_array_almost_equal(actual, desired, decimal=6)
1704
+
1705
+ def test_standard_gamma_float(self):
1706
+ random = Generator(MT19937(self.seed))
1707
+ actual = random.standard_gamma(shape=3, size=(3, 2))
1708
+ desired = np.array([[0.62971, 1.2238],
1709
+ [3.89941, 4.1248],
1710
+ [3.74994, 3.74929]])
1711
+ assert_array_almost_equal(actual, desired, decimal=5)
1712
+
1713
+ def test_standard_gammma_float_out(self):
1714
+ actual = np.zeros((3, 2), dtype=np.float32)
1715
+ random = Generator(MT19937(self.seed))
1716
+ random.standard_gamma(10.0, out=actual, dtype=np.float32)
1717
+ desired = np.array([[10.14987, 7.87012],
1718
+ [ 9.46284, 12.56832],
1719
+ [13.82495, 7.81533]], dtype=np.float32)
1720
+ assert_array_almost_equal(actual, desired, decimal=5)
1721
+
1722
+ random = Generator(MT19937(self.seed))
1723
+ random.standard_gamma(10.0, out=actual, size=(3, 2), dtype=np.float32)
1724
+ assert_array_almost_equal(actual, desired, decimal=5)
1725
+
1726
+ def test_standard_gamma_unknown_type(self):
1727
+ assert_raises(TypeError, random.standard_gamma, 1.,
1728
+ dtype='int32')
1729
+
1730
+ def test_out_size_mismatch(self):
1731
+ out = np.zeros(10)
1732
+ assert_raises(ValueError, random.standard_gamma, 10.0, size=20,
1733
+ out=out)
1734
+ assert_raises(ValueError, random.standard_gamma, 10.0, size=(10, 1),
1735
+ out=out)
1736
+
1737
+ def test_standard_gamma_0(self):
1738
+ assert_equal(random.standard_gamma(shape=0), 0)
1739
+ assert_raises(ValueError, random.standard_gamma, shape=-0.)
1740
+
1741
+ def test_standard_normal(self):
1742
+ random = Generator(MT19937(self.seed))
1743
+ actual = random.standard_normal(size=(3, 2))
1744
+ desired = np.array([[-1.870934851846581, 1.25613495182354 ], # noqa: E202
1745
+ [-1.120190126006621, 0.342002097029821],
1746
+ [ 0.661545174124296, 1.181113712443012]])
1747
+ assert_array_almost_equal(actual, desired, decimal=15)
1748
+
1749
+ def test_standard_normal_unsupported_type(self):
1750
+ assert_raises(TypeError, random.standard_normal, dtype=np.int32)
1751
+
1752
+ def test_standard_t(self):
1753
+ random = Generator(MT19937(self.seed))
1754
+ actual = random.standard_t(df=10, size=(3, 2))
1755
+ desired = np.array([[-1.484666193042647, 0.30597891831161],
1756
+ [ 1.056684299648085, -0.407312602088507],
1757
+ [ 0.130704414281157, -2.038053410490321]])
1758
+ assert_array_almost_equal(actual, desired, decimal=15)
1759
+
1760
+ def test_triangular(self):
1761
+ random = Generator(MT19937(self.seed))
1762
+ actual = random.triangular(left=5.12, mode=10.23, right=20.34,
1763
+ size=(3, 2))
1764
+ desired = np.array([[ 7.86664070590917, 13.6313848513185 ], # noqa: E202
1765
+ [ 7.68152445215983, 14.36169131136546],
1766
+ [13.16105603911429, 13.72341621856971]])
1767
+ assert_array_almost_equal(actual, desired, decimal=14)
1768
+
1769
+ def test_uniform(self):
1770
+ random = Generator(MT19937(self.seed))
1771
+ actual = random.uniform(low=1.23, high=10.54, size=(3, 2))
1772
+ desired = np.array([[2.13306255040998 , 7.816987531021207], # noqa: E203
1773
+ [2.015436610109887, 8.377577533009589],
1774
+ [7.421792588856135, 7.891185744455209]])
1775
+ assert_array_almost_equal(actual, desired, decimal=15)
1776
+
1777
+ def test_uniform_range_bounds(self):
1778
+ fmin = np.finfo('float').min
1779
+ fmax = np.finfo('float').max
1780
+
1781
+ func = random.uniform
1782
+ assert_raises(OverflowError, func, -np.inf, 0)
1783
+ assert_raises(OverflowError, func, 0, np.inf)
1784
+ assert_raises(OverflowError, func, fmin, fmax)
1785
+ assert_raises(OverflowError, func, [-np.inf], [0])
1786
+ assert_raises(OverflowError, func, [0], [np.inf])
1787
+
1788
+ # (fmax / 1e17) - fmin is within range, so this should not throw
1789
+ # account for i386 extended precision DBL_MAX / 1e17 + DBL_MAX >
1790
+ # DBL_MAX by increasing fmin a bit
1791
+ random.uniform(low=np.nextafter(fmin, 1), high=fmax / 1e17)
1792
+
1793
+ def test_uniform_zero_range(self):
1794
+ func = random.uniform
1795
+ result = func(1.5, 1.5)
1796
+ assert_allclose(result, 1.5)
1797
+ result = func([0.0, np.pi], [0.0, np.pi])
1798
+ assert_allclose(result, [0.0, np.pi])
1799
+ result = func([[2145.12], [2145.12]], [2145.12, 2145.12])
1800
+ assert_allclose(result, 2145.12 + np.zeros((2, 2)))
1801
+
1802
+ def test_uniform_neg_range(self):
1803
+ func = random.uniform
1804
+ assert_raises(ValueError, func, 2, 1)
1805
+ assert_raises(ValueError, func, [1, 2], [1, 1])
1806
+ assert_raises(ValueError, func, [[0, 1], [2, 3]], 2)
1807
+
1808
+ def test_scalar_exception_propagation(self):
1809
+ # Tests that exceptions are correctly propagated in distributions
1810
+ # when called with objects that throw exceptions when converted to
1811
+ # scalars.
1812
+ #
1813
+ # Regression test for gh: 8865
1814
+
1815
+ class ThrowingFloat(np.ndarray):
1816
+ def __float__(self):
1817
+ raise TypeError
1818
+
1819
+ throwing_float = np.array(1.0).view(ThrowingFloat)
1820
+ assert_raises(TypeError, random.uniform, throwing_float,
1821
+ throwing_float)
1822
+
1823
+ class ThrowingInteger(np.ndarray):
1824
+ def __int__(self):
1825
+ raise TypeError
1826
+
1827
+ throwing_int = np.array(1).view(ThrowingInteger)
1828
+ assert_raises(TypeError, random.hypergeometric, throwing_int, 1, 1)
1829
+
1830
+ def test_vonmises(self):
1831
+ random = Generator(MT19937(self.seed))
1832
+ actual = random.vonmises(mu=1.23, kappa=1.54, size=(3, 2))
1833
+ desired = np.array([[ 1.107972248690106, 2.841536476232361],
1834
+ [ 1.832602376042457, 1.945511926976032],
1835
+ [-0.260147475776542, 2.058047492231698]])
1836
+ assert_array_almost_equal(actual, desired, decimal=15)
1837
+
1838
+ def test_vonmises_small(self):
1839
+ # check infinite loop, gh-4720
1840
+ random = Generator(MT19937(self.seed))
1841
+ r = random.vonmises(mu=0., kappa=1.1e-8, size=10**6)
1842
+ assert_(np.isfinite(r).all())
1843
+
1844
+ def test_vonmises_nan(self):
1845
+ random = Generator(MT19937(self.seed))
1846
+ r = random.vonmises(mu=0., kappa=np.nan)
1847
+ assert_(np.isnan(r))
1848
+
1849
+ @pytest.mark.parametrize("kappa", [1e4, 1e15])
1850
+ def test_vonmises_large_kappa(self, kappa):
1851
+ random = Generator(MT19937(self.seed))
1852
+ rs = RandomState(random.bit_generator)
1853
+ state = random.bit_generator.state
1854
+
1855
+ random_state_vals = rs.vonmises(0, kappa, size=10)
1856
+ random.bit_generator.state = state
1857
+ gen_vals = random.vonmises(0, kappa, size=10)
1858
+ if kappa < 1e6:
1859
+ assert_allclose(random_state_vals, gen_vals)
1860
+ else:
1861
+ assert np.all(random_state_vals != gen_vals)
1862
+
1863
+ @pytest.mark.parametrize("mu", [-7., -np.pi, -3.1, np.pi, 3.2])
1864
+ @pytest.mark.parametrize("kappa", [1e-9, 1e-6, 1, 1e3, 1e15])
1865
+ def test_vonmises_large_kappa_range(self, mu, kappa):
1866
+ random = Generator(MT19937(self.seed))
1867
+ r = random.vonmises(mu, kappa, 50)
1868
+ assert_(np.all(r > -np.pi) and np.all(r <= np.pi))
1869
+
1870
+ def test_wald(self):
1871
+ random = Generator(MT19937(self.seed))
1872
+ actual = random.wald(mean=1.23, scale=1.54, size=(3, 2))
1873
+ desired = np.array([[0.26871721804551, 3.2233942732115 ], # noqa: E202
1874
+ [2.20328374987066, 2.40958405189353],
1875
+ [2.07093587449261, 0.73073890064369]])
1876
+ assert_array_almost_equal(actual, desired, decimal=14)
1877
+
1878
+ def test_wald_nonnegative(self):
1879
+ random = Generator(MT19937(self.seed))
1880
+ samples = random.wald(mean=1e9, scale=2.25, size=1000)
1881
+ assert_(np.all(samples >= 0.0))
1882
+
1883
+ def test_weibull(self):
1884
+ random = Generator(MT19937(self.seed))
1885
+ actual = random.weibull(a=1.23, size=(3, 2))
1886
+ desired = np.array([[0.138613914769468, 1.306463419753191],
1887
+ [0.111623365934763, 1.446570494646721],
1888
+ [1.257145775276011, 1.914247725027957]])
1889
+ assert_array_almost_equal(actual, desired, decimal=15)
1890
+
1891
+ def test_weibull_0(self):
1892
+ random = Generator(MT19937(self.seed))
1893
+ assert_equal(random.weibull(a=0, size=12), np.zeros(12))
1894
+ assert_raises(ValueError, random.weibull, a=-0.)
1895
+
1896
+ def test_zipf(self):
1897
+ random = Generator(MT19937(self.seed))
1898
+ actual = random.zipf(a=1.23, size=(3, 2))
1899
+ desired = np.array([[ 1, 1],
1900
+ [ 10, 867],
1901
+ [354, 2]])
1902
+ assert_array_equal(actual, desired)
1903
+
1904
+
1905
+ class TestBroadcast:
1906
+ # tests that functions that broadcast behave
1907
+ # correctly when presented with non-scalar arguments
1908
+ seed = 123456789
1909
+
1910
+ def test_uniform(self):
1911
+ random = Generator(MT19937(self.seed))
1912
+ low = [0]
1913
+ high = [1]
1914
+ uniform = random.uniform
1915
+ desired = np.array([0.16693771389729, 0.19635129550675, 0.75563050964095])
1916
+
1917
+ random = Generator(MT19937(self.seed))
1918
+ actual = random.uniform(low * 3, high)
1919
+ assert_array_almost_equal(actual, desired, decimal=14)
1920
+
1921
+ random = Generator(MT19937(self.seed))
1922
+ actual = random.uniform(low, high * 3)
1923
+ assert_array_almost_equal(actual, desired, decimal=14)
1924
+
1925
+ def test_normal(self):
1926
+ loc = [0]
1927
+ scale = [1]
1928
+ bad_scale = [-1]
1929
+ random = Generator(MT19937(self.seed))
1930
+ desired = np.array([-0.38736406738527, 0.79594375042255, 0.0197076236097])
1931
+
1932
+ random = Generator(MT19937(self.seed))
1933
+ actual = random.normal(loc * 3, scale)
1934
+ assert_array_almost_equal(actual, desired, decimal=14)
1935
+ assert_raises(ValueError, random.normal, loc * 3, bad_scale)
1936
+
1937
+ random = Generator(MT19937(self.seed))
1938
+ normal = random.normal
1939
+ actual = normal(loc, scale * 3)
1940
+ assert_array_almost_equal(actual, desired, decimal=14)
1941
+ assert_raises(ValueError, normal, loc, bad_scale * 3)
1942
+
1943
+ def test_beta(self):
1944
+ a = [1]
1945
+ b = [2]
1946
+ bad_a = [-1]
1947
+ bad_b = [-2]
1948
+ desired = np.array([0.18719338682602, 0.73234824491364, 0.17928615186455])
1949
+
1950
+ random = Generator(MT19937(self.seed))
1951
+ beta = random.beta
1952
+ actual = beta(a * 3, b)
1953
+ assert_array_almost_equal(actual, desired, decimal=14)
1954
+ assert_raises(ValueError, beta, bad_a * 3, b)
1955
+ assert_raises(ValueError, beta, a * 3, bad_b)
1956
+
1957
+ random = Generator(MT19937(self.seed))
1958
+ actual = random.beta(a, b * 3)
1959
+ assert_array_almost_equal(actual, desired, decimal=14)
1960
+
1961
+ def test_exponential(self):
1962
+ scale = [1]
1963
+ bad_scale = [-1]
1964
+ desired = np.array([0.67245993212806, 0.21380495318094, 0.7177848928629])
1965
+
1966
+ random = Generator(MT19937(self.seed))
1967
+ actual = random.exponential(scale * 3)
1968
+ assert_array_almost_equal(actual, desired, decimal=14)
1969
+ assert_raises(ValueError, random.exponential, bad_scale * 3)
1970
+
1971
+ def test_standard_gamma(self):
1972
+ shape = [1]
1973
+ bad_shape = [-1]
1974
+ desired = np.array([0.67245993212806, 0.21380495318094, 0.7177848928629])
1975
+
1976
+ random = Generator(MT19937(self.seed))
1977
+ std_gamma = random.standard_gamma
1978
+ actual = std_gamma(shape * 3)
1979
+ assert_array_almost_equal(actual, desired, decimal=14)
1980
+ assert_raises(ValueError, std_gamma, bad_shape * 3)
1981
+
1982
+ def test_gamma(self):
1983
+ shape = [1]
1984
+ scale = [2]
1985
+ bad_shape = [-1]
1986
+ bad_scale = [-2]
1987
+ desired = np.array([1.34491986425611, 0.42760990636187, 1.4355697857258])
1988
+
1989
+ random = Generator(MT19937(self.seed))
1990
+ gamma = random.gamma
1991
+ actual = gamma(shape * 3, scale)
1992
+ assert_array_almost_equal(actual, desired, decimal=14)
1993
+ assert_raises(ValueError, gamma, bad_shape * 3, scale)
1994
+ assert_raises(ValueError, gamma, shape * 3, bad_scale)
1995
+
1996
+ random = Generator(MT19937(self.seed))
1997
+ gamma = random.gamma
1998
+ actual = gamma(shape, scale * 3)
1999
+ assert_array_almost_equal(actual, desired, decimal=14)
2000
+ assert_raises(ValueError, gamma, bad_shape, scale * 3)
2001
+ assert_raises(ValueError, gamma, shape, bad_scale * 3)
2002
+
2003
+ def test_f(self):
2004
+ dfnum = [1]
2005
+ dfden = [2]
2006
+ bad_dfnum = [-1]
2007
+ bad_dfden = [-2]
2008
+ desired = np.array([0.07765056244107, 7.72951397913186, 0.05786093891763])
2009
+
2010
+ random = Generator(MT19937(self.seed))
2011
+ f = random.f
2012
+ actual = f(dfnum * 3, dfden)
2013
+ assert_array_almost_equal(actual, desired, decimal=14)
2014
+ assert_raises(ValueError, f, bad_dfnum * 3, dfden)
2015
+ assert_raises(ValueError, f, dfnum * 3, bad_dfden)
2016
+
2017
+ random = Generator(MT19937(self.seed))
2018
+ f = random.f
2019
+ actual = f(dfnum, dfden * 3)
2020
+ assert_array_almost_equal(actual, desired, decimal=14)
2021
+ assert_raises(ValueError, f, bad_dfnum, dfden * 3)
2022
+ assert_raises(ValueError, f, dfnum, bad_dfden * 3)
2023
+
2024
+ def test_noncentral_f(self):
2025
+ dfnum = [2]
2026
+ dfden = [3]
2027
+ nonc = [4]
2028
+ bad_dfnum = [0]
2029
+ bad_dfden = [-1]
2030
+ bad_nonc = [-2]
2031
+ desired = np.array([2.02434240411421, 12.91838601070124, 1.24395160354629])
2032
+
2033
+ random = Generator(MT19937(self.seed))
2034
+ nonc_f = random.noncentral_f
2035
+ actual = nonc_f(dfnum * 3, dfden, nonc)
2036
+ assert_array_almost_equal(actual, desired, decimal=14)
2037
+ assert np.all(np.isnan(nonc_f(dfnum, dfden, [np.nan] * 3)))
2038
+
2039
+ assert_raises(ValueError, nonc_f, bad_dfnum * 3, dfden, nonc)
2040
+ assert_raises(ValueError, nonc_f, dfnum * 3, bad_dfden, nonc)
2041
+ assert_raises(ValueError, nonc_f, dfnum * 3, dfden, bad_nonc)
2042
+
2043
+ random = Generator(MT19937(self.seed))
2044
+ nonc_f = random.noncentral_f
2045
+ actual = nonc_f(dfnum, dfden * 3, nonc)
2046
+ assert_array_almost_equal(actual, desired, decimal=14)
2047
+ assert_raises(ValueError, nonc_f, bad_dfnum, dfden * 3, nonc)
2048
+ assert_raises(ValueError, nonc_f, dfnum, bad_dfden * 3, nonc)
2049
+ assert_raises(ValueError, nonc_f, dfnum, dfden * 3, bad_nonc)
2050
+
2051
+ random = Generator(MT19937(self.seed))
2052
+ nonc_f = random.noncentral_f
2053
+ actual = nonc_f(dfnum, dfden, nonc * 3)
2054
+ assert_array_almost_equal(actual, desired, decimal=14)
2055
+ assert_raises(ValueError, nonc_f, bad_dfnum, dfden, nonc * 3)
2056
+ assert_raises(ValueError, nonc_f, dfnum, bad_dfden, nonc * 3)
2057
+ assert_raises(ValueError, nonc_f, dfnum, dfden, bad_nonc * 3)
2058
+
2059
+ def test_noncentral_f_small_df(self):
2060
+ random = Generator(MT19937(self.seed))
2061
+ desired = np.array([0.04714867120827, 0.1239390327694])
2062
+ actual = random.noncentral_f(0.9, 0.9, 2, size=2)
2063
+ assert_array_almost_equal(actual, desired, decimal=14)
2064
+
2065
+ def test_chisquare(self):
2066
+ df = [1]
2067
+ bad_df = [-1]
2068
+ desired = np.array([0.05573640064251, 1.47220224353539, 2.9469379318589])
2069
+
2070
+ random = Generator(MT19937(self.seed))
2071
+ actual = random.chisquare(df * 3)
2072
+ assert_array_almost_equal(actual, desired, decimal=14)
2073
+ assert_raises(ValueError, random.chisquare, bad_df * 3)
2074
+
2075
+ def test_noncentral_chisquare(self):
2076
+ df = [1]
2077
+ nonc = [2]
2078
+ bad_df = [-1]
2079
+ bad_nonc = [-2]
2080
+ desired = np.array([0.07710766249436, 5.27829115110304, 0.630732147399])
2081
+
2082
+ random = Generator(MT19937(self.seed))
2083
+ nonc_chi = random.noncentral_chisquare
2084
+ actual = nonc_chi(df * 3, nonc)
2085
+ assert_array_almost_equal(actual, desired, decimal=14)
2086
+ assert_raises(ValueError, nonc_chi, bad_df * 3, nonc)
2087
+ assert_raises(ValueError, nonc_chi, df * 3, bad_nonc)
2088
+
2089
+ random = Generator(MT19937(self.seed))
2090
+ nonc_chi = random.noncentral_chisquare
2091
+ actual = nonc_chi(df, nonc * 3)
2092
+ assert_array_almost_equal(actual, desired, decimal=14)
2093
+ assert_raises(ValueError, nonc_chi, bad_df, nonc * 3)
2094
+ assert_raises(ValueError, nonc_chi, df, bad_nonc * 3)
2095
+
2096
+ def test_standard_t(self):
2097
+ df = [1]
2098
+ bad_df = [-1]
2099
+ desired = np.array([-1.39498829447098, -1.23058658835223, 0.17207021065983])
2100
+
2101
+ random = Generator(MT19937(self.seed))
2102
+ actual = random.standard_t(df * 3)
2103
+ assert_array_almost_equal(actual, desired, decimal=14)
2104
+ assert_raises(ValueError, random.standard_t, bad_df * 3)
2105
+
2106
+ def test_vonmises(self):
2107
+ mu = [2]
2108
+ kappa = [1]
2109
+ bad_kappa = [-1]
2110
+ desired = np.array([2.25935584988528, 2.23326261461399, -2.84152146503326])
2111
+
2112
+ random = Generator(MT19937(self.seed))
2113
+ actual = random.vonmises(mu * 3, kappa)
2114
+ assert_array_almost_equal(actual, desired, decimal=14)
2115
+ assert_raises(ValueError, random.vonmises, mu * 3, bad_kappa)
2116
+
2117
+ random = Generator(MT19937(self.seed))
2118
+ actual = random.vonmises(mu, kappa * 3)
2119
+ assert_array_almost_equal(actual, desired, decimal=14)
2120
+ assert_raises(ValueError, random.vonmises, mu, bad_kappa * 3)
2121
+
2122
+ def test_pareto(self):
2123
+ a = [1]
2124
+ bad_a = [-1]
2125
+ desired = np.array([0.95905052946317, 0.2383810889437, 1.04988745750013])
2126
+
2127
+ random = Generator(MT19937(self.seed))
2128
+ actual = random.pareto(a * 3)
2129
+ assert_array_almost_equal(actual, desired, decimal=14)
2130
+ assert_raises(ValueError, random.pareto, bad_a * 3)
2131
+
2132
+ def test_weibull(self):
2133
+ a = [1]
2134
+ bad_a = [-1]
2135
+ desired = np.array([0.67245993212806, 0.21380495318094, 0.7177848928629])
2136
+
2137
+ random = Generator(MT19937(self.seed))
2138
+ actual = random.weibull(a * 3)
2139
+ assert_array_almost_equal(actual, desired, decimal=14)
2140
+ assert_raises(ValueError, random.weibull, bad_a * 3)
2141
+
2142
+ def test_power(self):
2143
+ a = [1]
2144
+ bad_a = [-1]
2145
+ desired = np.array([0.48954864361052, 0.19249412888486, 0.51216834058807])
2146
+
2147
+ random = Generator(MT19937(self.seed))
2148
+ actual = random.power(a * 3)
2149
+ assert_array_almost_equal(actual, desired, decimal=14)
2150
+ assert_raises(ValueError, random.power, bad_a * 3)
2151
+
2152
+ def test_laplace(self):
2153
+ loc = [0]
2154
+ scale = [1]
2155
+ bad_scale = [-1]
2156
+ desired = np.array([-1.09698732625119, -0.93470271947368, 0.71592671378202])
2157
+
2158
+ random = Generator(MT19937(self.seed))
2159
+ laplace = random.laplace
2160
+ actual = laplace(loc * 3, scale)
2161
+ assert_array_almost_equal(actual, desired, decimal=14)
2162
+ assert_raises(ValueError, laplace, loc * 3, bad_scale)
2163
+
2164
+ random = Generator(MT19937(self.seed))
2165
+ laplace = random.laplace
2166
+ actual = laplace(loc, scale * 3)
2167
+ assert_array_almost_equal(actual, desired, decimal=14)
2168
+ assert_raises(ValueError, laplace, loc, bad_scale * 3)
2169
+
2170
+ def test_gumbel(self):
2171
+ loc = [0]
2172
+ scale = [1]
2173
+ bad_scale = [-1]
2174
+ desired = np.array([1.70020068231762, 1.52054354273631, -0.34293267607081])
2175
+
2176
+ random = Generator(MT19937(self.seed))
2177
+ gumbel = random.gumbel
2178
+ actual = gumbel(loc * 3, scale)
2179
+ assert_array_almost_equal(actual, desired, decimal=14)
2180
+ assert_raises(ValueError, gumbel, loc * 3, bad_scale)
2181
+
2182
+ random = Generator(MT19937(self.seed))
2183
+ gumbel = random.gumbel
2184
+ actual = gumbel(loc, scale * 3)
2185
+ assert_array_almost_equal(actual, desired, decimal=14)
2186
+ assert_raises(ValueError, gumbel, loc, bad_scale * 3)
2187
+
2188
+ def test_logistic(self):
2189
+ loc = [0]
2190
+ scale = [1]
2191
+ bad_scale = [-1]
2192
+ desired = np.array([-1.607487640433, -1.40925686003678, 1.12887112820397])
2193
+
2194
+ random = Generator(MT19937(self.seed))
2195
+ actual = random.logistic(loc * 3, scale)
2196
+ assert_array_almost_equal(actual, desired, decimal=14)
2197
+ assert_raises(ValueError, random.logistic, loc * 3, bad_scale)
2198
+
2199
+ random = Generator(MT19937(self.seed))
2200
+ actual = random.logistic(loc, scale * 3)
2201
+ assert_array_almost_equal(actual, desired, decimal=14)
2202
+ assert_raises(ValueError, random.logistic, loc, bad_scale * 3)
2203
+ assert_equal(random.logistic(1.0, 0.0), 1.0)
2204
+
2205
+ def test_lognormal(self):
2206
+ mean = [0]
2207
+ sigma = [1]
2208
+ bad_sigma = [-1]
2209
+ desired = np.array([0.67884390500697, 2.21653186290321, 1.01990310084276])
2210
+
2211
+ random = Generator(MT19937(self.seed))
2212
+ lognormal = random.lognormal
2213
+ actual = lognormal(mean * 3, sigma)
2214
+ assert_array_almost_equal(actual, desired, decimal=14)
2215
+ assert_raises(ValueError, lognormal, mean * 3, bad_sigma)
2216
+
2217
+ random = Generator(MT19937(self.seed))
2218
+ actual = random.lognormal(mean, sigma * 3)
2219
+ assert_raises(ValueError, random.lognormal, mean, bad_sigma * 3)
2220
+
2221
+ def test_rayleigh(self):
2222
+ scale = [1]
2223
+ bad_scale = [-1]
2224
+ desired = np.array(
2225
+ [1.1597068009872629,
2226
+ 0.6539188836253857,
2227
+ 1.1981526554349398]
2228
+ )
2229
+
2230
+ random = Generator(MT19937(self.seed))
2231
+ actual = random.rayleigh(scale * 3)
2232
+ assert_array_almost_equal(actual, desired, decimal=14)
2233
+ assert_raises(ValueError, random.rayleigh, bad_scale * 3)
2234
+
2235
+ def test_wald(self):
2236
+ mean = [0.5]
2237
+ scale = [1]
2238
+ bad_mean = [0]
2239
+ bad_scale = [-2]
2240
+ desired = np.array([0.38052407392905, 0.50701641508592, 0.484935249864])
2241
+
2242
+ random = Generator(MT19937(self.seed))
2243
+ actual = random.wald(mean * 3, scale)
2244
+ assert_array_almost_equal(actual, desired, decimal=14)
2245
+ assert_raises(ValueError, random.wald, bad_mean * 3, scale)
2246
+ assert_raises(ValueError, random.wald, mean * 3, bad_scale)
2247
+
2248
+ random = Generator(MT19937(self.seed))
2249
+ actual = random.wald(mean, scale * 3)
2250
+ assert_array_almost_equal(actual, desired, decimal=14)
2251
+ assert_raises(ValueError, random.wald, bad_mean, scale * 3)
2252
+ assert_raises(ValueError, random.wald, mean, bad_scale * 3)
2253
+
2254
+ def test_triangular(self):
2255
+ left = [1]
2256
+ right = [3]
2257
+ mode = [2]
2258
+ bad_left_one = [3]
2259
+ bad_mode_one = [4]
2260
+ bad_left_two, bad_mode_two = right * 2
2261
+ desired = np.array([1.57781954604754, 1.62665986867957, 2.30090130831326])
2262
+
2263
+ random = Generator(MT19937(self.seed))
2264
+ triangular = random.triangular
2265
+ actual = triangular(left * 3, mode, right)
2266
+ assert_array_almost_equal(actual, desired, decimal=14)
2267
+ assert_raises(ValueError, triangular, bad_left_one * 3, mode, right)
2268
+ assert_raises(ValueError, triangular, left * 3, bad_mode_one, right)
2269
+ assert_raises(ValueError, triangular, bad_left_two * 3, bad_mode_two,
2270
+ right)
2271
+
2272
+ random = Generator(MT19937(self.seed))
2273
+ triangular = random.triangular
2274
+ actual = triangular(left, mode * 3, right)
2275
+ assert_array_almost_equal(actual, desired, decimal=14)
2276
+ assert_raises(ValueError, triangular, bad_left_one, mode * 3, right)
2277
+ assert_raises(ValueError, triangular, left, bad_mode_one * 3, right)
2278
+ assert_raises(ValueError, triangular, bad_left_two, bad_mode_two * 3,
2279
+ right)
2280
+
2281
+ random = Generator(MT19937(self.seed))
2282
+ triangular = random.triangular
2283
+ actual = triangular(left, mode, right * 3)
2284
+ assert_array_almost_equal(actual, desired, decimal=14)
2285
+ assert_raises(ValueError, triangular, bad_left_one, mode, right * 3)
2286
+ assert_raises(ValueError, triangular, left, bad_mode_one, right * 3)
2287
+ assert_raises(ValueError, triangular, bad_left_two, bad_mode_two,
2288
+ right * 3)
2289
+
2290
+ assert_raises(ValueError, triangular, 10., 0., 20.)
2291
+ assert_raises(ValueError, triangular, 10., 25., 20.)
2292
+ assert_raises(ValueError, triangular, 10., 10., 10.)
2293
+
2294
+ def test_binomial(self):
2295
+ n = [1]
2296
+ p = [0.5]
2297
+ bad_n = [-1]
2298
+ bad_p_one = [-1]
2299
+ bad_p_two = [1.5]
2300
+ desired = np.array([0, 0, 1])
2301
+
2302
+ random = Generator(MT19937(self.seed))
2303
+ binom = random.binomial
2304
+ actual = binom(n * 3, p)
2305
+ assert_array_equal(actual, desired)
2306
+ assert_raises(ValueError, binom, bad_n * 3, p)
2307
+ assert_raises(ValueError, binom, n * 3, bad_p_one)
2308
+ assert_raises(ValueError, binom, n * 3, bad_p_two)
2309
+
2310
+ random = Generator(MT19937(self.seed))
2311
+ actual = random.binomial(n, p * 3)
2312
+ assert_array_equal(actual, desired)
2313
+ assert_raises(ValueError, binom, bad_n, p * 3)
2314
+ assert_raises(ValueError, binom, n, bad_p_one * 3)
2315
+ assert_raises(ValueError, binom, n, bad_p_two * 3)
2316
+
2317
+ def test_negative_binomial(self):
2318
+ n = [1]
2319
+ p = [0.5]
2320
+ bad_n = [-1]
2321
+ bad_p_one = [-1]
2322
+ bad_p_two = [1.5]
2323
+ desired = np.array([0, 2, 1], dtype=np.int64)
2324
+
2325
+ random = Generator(MT19937(self.seed))
2326
+ neg_binom = random.negative_binomial
2327
+ actual = neg_binom(n * 3, p)
2328
+ assert_array_equal(actual, desired)
2329
+ assert_raises(ValueError, neg_binom, bad_n * 3, p)
2330
+ assert_raises(ValueError, neg_binom, n * 3, bad_p_one)
2331
+ assert_raises(ValueError, neg_binom, n * 3, bad_p_two)
2332
+
2333
+ random = Generator(MT19937(self.seed))
2334
+ neg_binom = random.negative_binomial
2335
+ actual = neg_binom(n, p * 3)
2336
+ assert_array_equal(actual, desired)
2337
+ assert_raises(ValueError, neg_binom, bad_n, p * 3)
2338
+ assert_raises(ValueError, neg_binom, n, bad_p_one * 3)
2339
+ assert_raises(ValueError, neg_binom, n, bad_p_two * 3)
2340
+
2341
+ def test_poisson(self):
2342
+
2343
+ lam = [1]
2344
+ bad_lam_one = [-1]
2345
+ desired = np.array([0, 0, 3])
2346
+
2347
+ random = Generator(MT19937(self.seed))
2348
+ max_lam = random._poisson_lam_max
2349
+ bad_lam_two = [max_lam * 2]
2350
+ poisson = random.poisson
2351
+ actual = poisson(lam * 3)
2352
+ assert_array_equal(actual, desired)
2353
+ assert_raises(ValueError, poisson, bad_lam_one * 3)
2354
+ assert_raises(ValueError, poisson, bad_lam_two * 3)
2355
+
2356
+ def test_zipf(self):
2357
+ a = [2]
2358
+ bad_a = [0]
2359
+ desired = np.array([1, 8, 1])
2360
+
2361
+ random = Generator(MT19937(self.seed))
2362
+ zipf = random.zipf
2363
+ actual = zipf(a * 3)
2364
+ assert_array_equal(actual, desired)
2365
+ assert_raises(ValueError, zipf, bad_a * 3)
2366
+ with np.errstate(invalid='ignore'):
2367
+ assert_raises(ValueError, zipf, np.nan)
2368
+ assert_raises(ValueError, zipf, [0, 0, np.nan])
2369
+
2370
+ def test_geometric(self):
2371
+ p = [0.5]
2372
+ bad_p_one = [-1]
2373
+ bad_p_two = [1.5]
2374
+ desired = np.array([1, 1, 3])
2375
+
2376
+ random = Generator(MT19937(self.seed))
2377
+ geometric = random.geometric
2378
+ actual = geometric(p * 3)
2379
+ assert_array_equal(actual, desired)
2380
+ assert_raises(ValueError, geometric, bad_p_one * 3)
2381
+ assert_raises(ValueError, geometric, bad_p_two * 3)
2382
+
2383
+ def test_hypergeometric(self):
2384
+ ngood = [1]
2385
+ nbad = [2]
2386
+ nsample = [2]
2387
+ bad_ngood = [-1]
2388
+ bad_nbad = [-2]
2389
+ bad_nsample_one = [-1]
2390
+ bad_nsample_two = [4]
2391
+ desired = np.array([0, 0, 1])
2392
+
2393
+ random = Generator(MT19937(self.seed))
2394
+ actual = random.hypergeometric(ngood * 3, nbad, nsample)
2395
+ assert_array_equal(actual, desired)
2396
+ assert_raises(ValueError, random.hypergeometric, bad_ngood * 3, nbad, nsample)
2397
+ assert_raises(ValueError, random.hypergeometric, ngood * 3, bad_nbad, nsample)
2398
+ assert_raises(ValueError, random.hypergeometric, ngood * 3, nbad, bad_nsample_one) # noqa: E501
2399
+ assert_raises(ValueError, random.hypergeometric, ngood * 3, nbad, bad_nsample_two) # noqa: E501
2400
+
2401
+ random = Generator(MT19937(self.seed))
2402
+ actual = random.hypergeometric(ngood, nbad * 3, nsample)
2403
+ assert_array_equal(actual, desired)
2404
+ assert_raises(ValueError, random.hypergeometric, bad_ngood, nbad * 3, nsample)
2405
+ assert_raises(ValueError, random.hypergeometric, ngood, bad_nbad * 3, nsample)
2406
+ assert_raises(ValueError, random.hypergeometric, ngood, nbad * 3, bad_nsample_one) # noqa: E501
2407
+ assert_raises(ValueError, random.hypergeometric, ngood, nbad * 3, bad_nsample_two) # noqa: E501
2408
+
2409
+ random = Generator(MT19937(self.seed))
2410
+ hypergeom = random.hypergeometric
2411
+ actual = hypergeom(ngood, nbad, nsample * 3)
2412
+ assert_array_equal(actual, desired)
2413
+ assert_raises(ValueError, hypergeom, bad_ngood, nbad, nsample * 3)
2414
+ assert_raises(ValueError, hypergeom, ngood, bad_nbad, nsample * 3)
2415
+ assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_one * 3)
2416
+ assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_two * 3)
2417
+
2418
+ assert_raises(ValueError, hypergeom, -1, 10, 20)
2419
+ assert_raises(ValueError, hypergeom, 10, -1, 20)
2420
+ assert_raises(ValueError, hypergeom, 10, 10, -1)
2421
+ assert_raises(ValueError, hypergeom, 10, 10, 25)
2422
+
2423
+ # ValueError for arguments that are too big.
2424
+ assert_raises(ValueError, hypergeom, 2**30, 10, 20)
2425
+ assert_raises(ValueError, hypergeom, 999, 2**31, 50)
2426
+ assert_raises(ValueError, hypergeom, 999, [2**29, 2**30], 1000)
2427
+
2428
+ def test_logseries(self):
2429
+ p = [0.5]
2430
+ bad_p_one = [2]
2431
+ bad_p_two = [-1]
2432
+ desired = np.array([1, 1, 1])
2433
+
2434
+ random = Generator(MT19937(self.seed))
2435
+ logseries = random.logseries
2436
+ actual = logseries(p * 3)
2437
+ assert_array_equal(actual, desired)
2438
+ assert_raises(ValueError, logseries, bad_p_one * 3)
2439
+ assert_raises(ValueError, logseries, bad_p_two * 3)
2440
+
2441
+ def test_multinomial(self):
2442
+ random = Generator(MT19937(self.seed))
2443
+ actual = random.multinomial([5, 20], [1 / 6.] * 6, size=(3, 2))
2444
+ desired = np.array([[[0, 0, 2, 1, 2, 0],
2445
+ [2, 3, 6, 4, 2, 3]],
2446
+ [[1, 0, 1, 0, 2, 1],
2447
+ [7, 2, 2, 1, 4, 4]],
2448
+ [[0, 2, 0, 1, 2, 0],
2449
+ [3, 2, 3, 3, 4, 5]]], dtype=np.int64)
2450
+ assert_array_equal(actual, desired)
2451
+
2452
+ random = Generator(MT19937(self.seed))
2453
+ actual = random.multinomial([5, 20], [1 / 6.] * 6)
2454
+ desired = np.array([[0, 0, 2, 1, 2, 0],
2455
+ [2, 3, 6, 4, 2, 3]], dtype=np.int64)
2456
+ assert_array_equal(actual, desired)
2457
+
2458
+ random = Generator(MT19937(self.seed))
2459
+ actual = random.multinomial([5, 20], [[1 / 6.] * 6] * 2)
2460
+ desired = np.array([[0, 0, 2, 1, 2, 0],
2461
+ [2, 3, 6, 4, 2, 3]], dtype=np.int64)
2462
+ assert_array_equal(actual, desired)
2463
+
2464
+ random = Generator(MT19937(self.seed))
2465
+ actual = random.multinomial([[5], [20]], [[1 / 6.] * 6] * 2)
2466
+ desired = np.array([[[0, 0, 2, 1, 2, 0],
2467
+ [0, 0, 2, 1, 1, 1]],
2468
+ [[4, 2, 3, 3, 5, 3],
2469
+ [7, 2, 2, 1, 4, 4]]], dtype=np.int64)
2470
+ assert_array_equal(actual, desired)
2471
+
2472
+ @pytest.mark.parametrize("n", [10,
2473
+ np.array([10, 10]),
2474
+ np.array([[[10]], [[10]]])
2475
+ ]
2476
+ )
2477
+ def test_multinomial_pval_broadcast(self, n):
2478
+ random = Generator(MT19937(self.seed))
2479
+ pvals = np.array([1 / 4] * 4)
2480
+ actual = random.multinomial(n, pvals)
2481
+ n_shape = () if isinstance(n, int) else n.shape
2482
+ expected_shape = n_shape + (4,)
2483
+ assert actual.shape == expected_shape
2484
+ pvals = np.vstack([pvals, pvals])
2485
+ actual = random.multinomial(n, pvals)
2486
+ expected_shape = np.broadcast_shapes(n_shape, pvals.shape[:-1]) + (4,)
2487
+ assert actual.shape == expected_shape
2488
+
2489
+ pvals = np.vstack([[pvals], [pvals]])
2490
+ actual = random.multinomial(n, pvals)
2491
+ expected_shape = np.broadcast_shapes(n_shape, pvals.shape[:-1])
2492
+ assert actual.shape == expected_shape + (4,)
2493
+ actual = random.multinomial(n, pvals, size=(3, 2) + expected_shape)
2494
+ assert actual.shape == (3, 2) + expected_shape + (4,)
2495
+
2496
+ with pytest.raises(ValueError):
2497
+ # Ensure that size is not broadcast
2498
+ actual = random.multinomial(n, pvals, size=(1,) * 6)
2499
+
2500
+ def test_invalid_pvals_broadcast(self):
2501
+ random = Generator(MT19937(self.seed))
2502
+ pvals = [[1 / 6] * 6, [1 / 4] * 6]
2503
+ assert_raises(ValueError, random.multinomial, 1, pvals)
2504
+ assert_raises(ValueError, random.multinomial, 6, 0.5)
2505
+
2506
+ def test_empty_outputs(self):
2507
+ random = Generator(MT19937(self.seed))
2508
+ actual = random.multinomial(np.empty((10, 0, 6), "i8"), [1 / 6] * 6)
2509
+ assert actual.shape == (10, 0, 6, 6)
2510
+ actual = random.multinomial(12, np.empty((10, 0, 10)))
2511
+ assert actual.shape == (10, 0, 10)
2512
+ actual = random.multinomial(np.empty((3, 0, 7), "i8"),
2513
+ np.empty((3, 0, 7, 4)))
2514
+ assert actual.shape == (3, 0, 7, 4)
2515
+
2516
+
2517
+ @pytest.mark.skipif(IS_WASM, reason="can't start thread")
2518
+ class TestThread:
2519
+ # make sure each state produces the same sequence even in threads
2520
+ seeds = range(4)
2521
+
2522
+ def check_function(self, function, sz):
2523
+ from threading import Thread
2524
+
2525
+ out1 = np.empty((len(self.seeds),) + sz)
2526
+ out2 = np.empty((len(self.seeds),) + sz)
2527
+
2528
+ # threaded generation
2529
+ t = [Thread(target=function, args=(Generator(MT19937(s)), o))
2530
+ for s, o in zip(self.seeds, out1)]
2531
+ [x.start() for x in t]
2532
+ [x.join() for x in t]
2533
+
2534
+ # the same serial
2535
+ for s, o in zip(self.seeds, out2):
2536
+ function(Generator(MT19937(s)), o)
2537
+
2538
+ # these platforms change x87 fpu precision mode in threads
2539
+ if np.intp().dtype.itemsize == 4 and sys.platform == "win32":
2540
+ assert_array_almost_equal(out1, out2)
2541
+ else:
2542
+ assert_array_equal(out1, out2)
2543
+
2544
+ def test_normal(self):
2545
+ def gen_random(state, out):
2546
+ out[...] = state.normal(size=10000)
2547
+
2548
+ self.check_function(gen_random, sz=(10000,))
2549
+
2550
+ def test_exp(self):
2551
+ def gen_random(state, out):
2552
+ out[...] = state.exponential(scale=np.ones((100, 1000)))
2553
+
2554
+ self.check_function(gen_random, sz=(100, 1000))
2555
+
2556
+ def test_multinomial(self):
2557
+ def gen_random(state, out):
2558
+ out[...] = state.multinomial(10, [1 / 6.] * 6, size=10000)
2559
+
2560
+ self.check_function(gen_random, sz=(10000, 6))
2561
+
2562
+
2563
+ # See Issue #4263
2564
+ class TestSingleEltArrayInput:
2565
+ def _create_arrays(self):
2566
+ return np.array([2]), np.array([3]), np.array([4]), (1,)
2567
+
2568
+ def test_one_arg_funcs(self):
2569
+ argOne, _, _, tgtShape = self._create_arrays()
2570
+ funcs = (random.exponential, random.standard_gamma,
2571
+ random.chisquare, random.standard_t,
2572
+ random.pareto, random.weibull,
2573
+ random.power, random.rayleigh,
2574
+ random.poisson, random.zipf,
2575
+ random.geometric, random.logseries)
2576
+
2577
+ probfuncs = (random.geometric, random.logseries)
2578
+
2579
+ for func in funcs:
2580
+ if func in probfuncs: # p < 1.0
2581
+ out = func(np.array([0.5]))
2582
+
2583
+ else:
2584
+ out = func(argOne)
2585
+
2586
+ assert_equal(out.shape, tgtShape)
2587
+
2588
+ def test_two_arg_funcs(self):
2589
+ argOne, argTwo, _, tgtShape = self._create_arrays()
2590
+ funcs = (random.uniform, random.normal,
2591
+ random.beta, random.gamma,
2592
+ random.f, random.noncentral_chisquare,
2593
+ random.vonmises, random.laplace,
2594
+ random.gumbel, random.logistic,
2595
+ random.lognormal, random.wald,
2596
+ random.binomial, random.negative_binomial)
2597
+
2598
+ probfuncs = (random.binomial, random.negative_binomial)
2599
+
2600
+ for func in funcs:
2601
+ if func in probfuncs: # p <= 1
2602
+ argTwo = np.array([0.5])
2603
+
2604
+ else:
2605
+ argTwo = argTwo
2606
+
2607
+ out = func(argOne, argTwo)
2608
+ assert_equal(out.shape, tgtShape)
2609
+
2610
+ out = func(argOne[0], argTwo)
2611
+ assert_equal(out.shape, tgtShape)
2612
+
2613
+ out = func(argOne, argTwo[0])
2614
+ assert_equal(out.shape, tgtShape)
2615
+
2616
+ def test_integers(self, endpoint):
2617
+ _, _, _, tgtShape = self._create_arrays()
2618
+ itype = [np.bool, np.int8, np.uint8, np.int16, np.uint16,
2619
+ np.int32, np.uint32, np.int64, np.uint64]
2620
+ func = random.integers
2621
+ high = np.array([1])
2622
+ low = np.array([0])
2623
+
2624
+ for dt in itype:
2625
+ out = func(low, high, endpoint=endpoint, dtype=dt)
2626
+ assert_equal(out.shape, tgtShape)
2627
+
2628
+ out = func(low[0], high, endpoint=endpoint, dtype=dt)
2629
+ assert_equal(out.shape, tgtShape)
2630
+
2631
+ out = func(low, high[0], endpoint=endpoint, dtype=dt)
2632
+ assert_equal(out.shape, tgtShape)
2633
+
2634
+ def test_three_arg_funcs(self):
2635
+ argOne, argTwo, argThree, tgtShape = self._create_arrays()
2636
+ funcs = [random.noncentral_f, random.triangular,
2637
+ random.hypergeometric]
2638
+
2639
+ for func in funcs:
2640
+ out = func(argOne, argTwo, argThree)
2641
+ assert_equal(out.shape, tgtShape)
2642
+
2643
+ out = func(argOne[0], argTwo, argThree)
2644
+ assert_equal(out.shape, tgtShape)
2645
+
2646
+ out = func(argOne, argTwo[0], argThree)
2647
+ assert_equal(out.shape, tgtShape)
2648
+
2649
+
2650
+ @pytest.mark.parametrize("config", JUMP_TEST_DATA)
2651
+ def test_jumped(config):
2652
+ # Each config contains the initial seed, a number of raw steps
2653
+ # the sha256 hashes of the initial and the final states' keys and
2654
+ # the position of the initial and the final state.
2655
+ # These were produced using the original C implementation.
2656
+ seed = config["seed"]
2657
+ steps = config["steps"]
2658
+
2659
+ mt19937 = MT19937(seed)
2660
+ # Burn step
2661
+ mt19937.random_raw(steps)
2662
+ key = mt19937.state["state"]["key"]
2663
+ if sys.byteorder == 'big':
2664
+ key = key.byteswap()
2665
+ sha256 = hashlib.sha256(key)
2666
+ assert mt19937.state["state"]["pos"] == config["initial"]["pos"]
2667
+ assert sha256.hexdigest() == config["initial"]["key_sha256"]
2668
+
2669
+ jumped = mt19937.jumped()
2670
+ key = jumped.state["state"]["key"]
2671
+ if sys.byteorder == 'big':
2672
+ key = key.byteswap()
2673
+ sha256 = hashlib.sha256(key)
2674
+ assert jumped.state["state"]["pos"] == config["jumped"]["pos"]
2675
+ assert sha256.hexdigest() == config["jumped"]["key_sha256"]
2676
+
2677
+
2678
+ def test_broadcast_size_error():
2679
+ mu = np.ones(3)
2680
+ sigma = np.ones((4, 3))
2681
+ size = (10, 4, 2)
2682
+ assert random.normal(mu, sigma, size=(5, 4, 3)).shape == (5, 4, 3)
2683
+ with pytest.raises(ValueError):
2684
+ random.normal(mu, sigma, size=size)
2685
+ with pytest.raises(ValueError):
2686
+ random.normal(mu, sigma, size=(1, 3))
2687
+ with pytest.raises(ValueError):
2688
+ random.normal(mu, sigma, size=(4, 1, 1))
2689
+ # 1 arg
2690
+ shape = np.ones((4, 3))
2691
+ with pytest.raises(ValueError):
2692
+ random.standard_gamma(shape, size=size)
2693
+ with pytest.raises(ValueError):
2694
+ random.standard_gamma(shape, size=(3,))
2695
+ with pytest.raises(ValueError):
2696
+ random.standard_gamma(shape, size=3)
2697
+ # Check out
2698
+ out = np.empty(size)
2699
+ with pytest.raises(ValueError):
2700
+ random.standard_gamma(shape, out=out)
2701
+
2702
+ # 2 arg
2703
+ with pytest.raises(ValueError):
2704
+ random.binomial(1, [0.3, 0.7], size=(2, 1))
2705
+ with pytest.raises(ValueError):
2706
+ random.binomial([1, 2], 0.3, size=(2, 1))
2707
+ with pytest.raises(ValueError):
2708
+ random.binomial([1, 2], [0.3, 0.7], size=(2, 1))
2709
+ with pytest.raises(ValueError):
2710
+ random.multinomial([2, 2], [.3, .7], size=(2, 1))
2711
+
2712
+ # 3 arg
2713
+ a = random.chisquare(5, size=3)
2714
+ b = random.chisquare(5, size=(4, 3))
2715
+ c = random.chisquare(5, size=(5, 4, 3))
2716
+ assert random.noncentral_f(a, b, c).shape == (5, 4, 3)
2717
+ with pytest.raises(ValueError, match=r"Output size \(6, 5, 1, 1\) is"):
2718
+ random.noncentral_f(a, b, c, size=(6, 5, 1, 1))
2719
+
2720
+
2721
+ def test_broadcast_size_scalar():
2722
+ mu = np.ones(3)
2723
+ sigma = np.ones(3)
2724
+ random.normal(mu, sigma, size=3)
2725
+ with pytest.raises(ValueError):
2726
+ random.normal(mu, sigma, size=2)
2727
+
2728
+
2729
+ def test_ragged_shuffle():
2730
+ # GH 18142
2731
+ seq = [[], [], 1]
2732
+ gen = Generator(MT19937(0))
2733
+ assert_no_warnings(gen.shuffle, seq)
2734
+ assert seq == [1, [], []]
2735
+
2736
+
2737
+ @pytest.mark.parametrize("high", [-2, [-2]])
2738
+ @pytest.mark.parametrize("endpoint", [True, False])
2739
+ def test_single_arg_integer_exception(high, endpoint):
2740
+ # GH 14333
2741
+ gen = Generator(MT19937(0))
2742
+ msg = 'high < 0' if endpoint else 'high <= 0'
2743
+ with pytest.raises(ValueError, match=msg):
2744
+ gen.integers(high, endpoint=endpoint)
2745
+ msg = 'low > high' if endpoint else 'low >= high'
2746
+ with pytest.raises(ValueError, match=msg):
2747
+ gen.integers(-1, high, endpoint=endpoint)
2748
+ with pytest.raises(ValueError, match=msg):
2749
+ gen.integers([-1], high, endpoint=endpoint)
2750
+
2751
+
2752
+ @pytest.mark.parametrize("dtype", ["f4", "f8"])
2753
+ def test_c_contig_req_out(dtype):
2754
+ # GH 18704
2755
+ out = np.empty((2, 3), order="F", dtype=dtype)
2756
+ shape = [1, 2, 3]
2757
+ with pytest.raises(ValueError, match="Supplied output array"):
2758
+ random.standard_gamma(shape, out=out, dtype=dtype)
2759
+ with pytest.raises(ValueError, match="Supplied output array"):
2760
+ random.standard_gamma(shape, out=out, size=out.shape, dtype=dtype)
2761
+
2762
+
2763
+ @pytest.mark.parametrize("dtype", ["f4", "f8"])
2764
+ @pytest.mark.parametrize("order", ["F", "C"])
2765
+ @pytest.mark.parametrize("dist", [random.standard_normal, random.random])
2766
+ def test_contig_req_out(dist, order, dtype):
2767
+ # GH 18704
2768
+ out = np.empty((2, 3), dtype=dtype, order=order)
2769
+ variates = dist(out=out, dtype=dtype)
2770
+ assert variates is out
2771
+ variates = dist(out=out, dtype=dtype, size=out.shape)
2772
+ assert variates is out
2773
+
2774
+
2775
+ def test_generator_ctor_old_style_pickle():
2776
+ rg = np.random.Generator(np.random.PCG64DXSM(0))
2777
+ rg.standard_normal(1)
2778
+ # Directly call reduce which is used in pickling
2779
+ ctor, (bit_gen, ), _ = rg.__reduce__()
2780
+ # Simulate unpickling an old pickle that only has the name
2781
+ assert bit_gen.__class__.__name__ == "PCG64DXSM"
2782
+ print(ctor)
2783
+ b = ctor(*("PCG64DXSM",))
2784
+ print(b)
2785
+ b.bit_generator.state = bit_gen.state
2786
+ state_b = b.bit_generator.state
2787
+ assert bit_gen.state == state_b
2788
+
2789
+
2790
+ def test_pickle_preserves_seed_sequence():
2791
+ # GH 26234
2792
+ # Add explicit test that bit generators preserve seed sequences
2793
+ import pickle
2794
+
2795
+ rg = np.random.Generator(np.random.PCG64DXSM(20240411))
2796
+ ss = rg.bit_generator.seed_seq
2797
+ rg_plk = pickle.loads(pickle.dumps(rg))
2798
+ ss_plk = rg_plk.bit_generator.seed_seq
2799
+ assert_equal(ss.state, ss_plk.state)
2800
+ assert_equal(ss.pool, ss_plk.pool)
2801
+
2802
+ rg.bit_generator.seed_seq.spawn(10)
2803
+ rg_plk = pickle.loads(pickle.dumps(rg))
2804
+ ss_plk = rg_plk.bit_generator.seed_seq
2805
+ assert_equal(ss.state, ss_plk.state)
2806
+
2807
+
2808
+ @pytest.mark.parametrize("version", [121, 126])
2809
+ def test_legacy_pickle(version):
2810
+ # Pickling format was changes in 1.22.x and in 2.0.x
2811
+ import gzip
2812
+ import pickle
2813
+
2814
+ base_path = os.path.split(os.path.abspath(__file__))[0]
2815
+ pkl_file = os.path.join(
2816
+ base_path, "data", f"generator_pcg64_np{version}.pkl.gz"
2817
+ )
2818
+ with gzip.open(pkl_file) as gz:
2819
+ rg = pickle.load(gz)
2820
+ state = rg.bit_generator.state['state']
2821
+
2822
+ assert isinstance(rg, Generator)
2823
+ assert isinstance(rg.bit_generator, np.random.PCG64)
2824
+ assert state['state'] == 35399562948360463058890781895381311971
2825
+ assert state['inc'] == 87136372517582989555478159403783844777