numpy 2.4.1__pp311-pypy311_pp73-macosx_14_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1039) hide show
  1. numpy/__config__.py +170 -0
  2. numpy/__config__.pyi +108 -0
  3. numpy/__init__.cython-30.pxd +1242 -0
  4. numpy/__init__.pxd +1155 -0
  5. numpy/__init__.py +942 -0
  6. numpy/__init__.pyi +6202 -0
  7. numpy/_array_api_info.py +346 -0
  8. numpy/_array_api_info.pyi +206 -0
  9. numpy/_configtool.py +39 -0
  10. numpy/_configtool.pyi +1 -0
  11. numpy/_core/__init__.py +201 -0
  12. numpy/_core/__init__.pyi +666 -0
  13. numpy/_core/_add_newdocs.py +7151 -0
  14. numpy/_core/_add_newdocs.pyi +2 -0
  15. numpy/_core/_add_newdocs_scalars.py +381 -0
  16. numpy/_core/_add_newdocs_scalars.pyi +16 -0
  17. numpy/_core/_asarray.py +130 -0
  18. numpy/_core/_asarray.pyi +43 -0
  19. numpy/_core/_dtype.py +366 -0
  20. numpy/_core/_dtype.pyi +56 -0
  21. numpy/_core/_dtype_ctypes.py +120 -0
  22. numpy/_core/_dtype_ctypes.pyi +83 -0
  23. numpy/_core/_exceptions.py +162 -0
  24. numpy/_core/_exceptions.pyi +54 -0
  25. numpy/_core/_internal.py +968 -0
  26. numpy/_core/_internal.pyi +61 -0
  27. numpy/_core/_methods.py +252 -0
  28. numpy/_core/_methods.pyi +22 -0
  29. numpy/_core/_multiarray_tests.pypy311-pp73-darwin.so +0 -0
  30. numpy/_core/_multiarray_umath.pypy311-pp73-darwin.so +0 -0
  31. numpy/_core/_operand_flag_tests.pypy311-pp73-darwin.so +0 -0
  32. numpy/_core/_rational_tests.pypy311-pp73-darwin.so +0 -0
  33. numpy/_core/_simd.pyi +35 -0
  34. numpy/_core/_simd.pypy311-pp73-darwin.so +0 -0
  35. numpy/_core/_string_helpers.py +100 -0
  36. numpy/_core/_string_helpers.pyi +12 -0
  37. numpy/_core/_struct_ufunc_tests.pypy311-pp73-darwin.so +0 -0
  38. numpy/_core/_type_aliases.py +131 -0
  39. numpy/_core/_type_aliases.pyi +86 -0
  40. numpy/_core/_ufunc_config.py +515 -0
  41. numpy/_core/_ufunc_config.pyi +69 -0
  42. numpy/_core/_umath_tests.pyi +47 -0
  43. numpy/_core/_umath_tests.pypy311-pp73-darwin.so +0 -0
  44. numpy/_core/arrayprint.py +1779 -0
  45. numpy/_core/arrayprint.pyi +158 -0
  46. numpy/_core/cversions.py +13 -0
  47. numpy/_core/defchararray.py +1414 -0
  48. numpy/_core/defchararray.pyi +1150 -0
  49. numpy/_core/einsumfunc.py +1650 -0
  50. numpy/_core/einsumfunc.pyi +184 -0
  51. numpy/_core/fromnumeric.py +4233 -0
  52. numpy/_core/fromnumeric.pyi +1735 -0
  53. numpy/_core/function_base.py +547 -0
  54. numpy/_core/function_base.pyi +276 -0
  55. numpy/_core/getlimits.py +462 -0
  56. numpy/_core/getlimits.pyi +124 -0
  57. numpy/_core/include/numpy/__multiarray_api.c +376 -0
  58. numpy/_core/include/numpy/__multiarray_api.h +1628 -0
  59. numpy/_core/include/numpy/__ufunc_api.c +55 -0
  60. numpy/_core/include/numpy/__ufunc_api.h +349 -0
  61. numpy/_core/include/numpy/_neighborhood_iterator_imp.h +90 -0
  62. numpy/_core/include/numpy/_numpyconfig.h +33 -0
  63. numpy/_core/include/numpy/_public_dtype_api_table.h +86 -0
  64. numpy/_core/include/numpy/arrayobject.h +7 -0
  65. numpy/_core/include/numpy/arrayscalars.h +198 -0
  66. numpy/_core/include/numpy/dtype_api.h +547 -0
  67. numpy/_core/include/numpy/halffloat.h +70 -0
  68. numpy/_core/include/numpy/ndarrayobject.h +304 -0
  69. numpy/_core/include/numpy/ndarraytypes.h +1982 -0
  70. numpy/_core/include/numpy/npy_2_compat.h +249 -0
  71. numpy/_core/include/numpy/npy_2_complexcompat.h +28 -0
  72. numpy/_core/include/numpy/npy_3kcompat.h +374 -0
  73. numpy/_core/include/numpy/npy_common.h +989 -0
  74. numpy/_core/include/numpy/npy_cpu.h +126 -0
  75. numpy/_core/include/numpy/npy_endian.h +79 -0
  76. numpy/_core/include/numpy/npy_math.h +602 -0
  77. numpy/_core/include/numpy/npy_no_deprecated_api.h +20 -0
  78. numpy/_core/include/numpy/npy_os.h +42 -0
  79. numpy/_core/include/numpy/numpyconfig.h +185 -0
  80. numpy/_core/include/numpy/random/LICENSE.txt +21 -0
  81. numpy/_core/include/numpy/random/bitgen.h +20 -0
  82. numpy/_core/include/numpy/random/distributions.h +209 -0
  83. numpy/_core/include/numpy/random/libdivide.h +2079 -0
  84. numpy/_core/include/numpy/ufuncobject.h +343 -0
  85. numpy/_core/include/numpy/utils.h +37 -0
  86. numpy/_core/lib/libnpymath.a +0 -0
  87. numpy/_core/lib/npy-pkg-config/mlib.ini +12 -0
  88. numpy/_core/lib/npy-pkg-config/npymath.ini +20 -0
  89. numpy/_core/lib/pkgconfig/numpy.pc +7 -0
  90. numpy/_core/memmap.py +363 -0
  91. numpy/_core/memmap.pyi +3 -0
  92. numpy/_core/multiarray.py +1740 -0
  93. numpy/_core/multiarray.pyi +1316 -0
  94. numpy/_core/numeric.py +2758 -0
  95. numpy/_core/numeric.pyi +1276 -0
  96. numpy/_core/numerictypes.py +633 -0
  97. numpy/_core/numerictypes.pyi +196 -0
  98. numpy/_core/overrides.py +188 -0
  99. numpy/_core/overrides.pyi +47 -0
  100. numpy/_core/printoptions.py +32 -0
  101. numpy/_core/printoptions.pyi +28 -0
  102. numpy/_core/records.py +1088 -0
  103. numpy/_core/records.pyi +340 -0
  104. numpy/_core/shape_base.py +996 -0
  105. numpy/_core/shape_base.pyi +182 -0
  106. numpy/_core/strings.py +1813 -0
  107. numpy/_core/strings.pyi +536 -0
  108. numpy/_core/tests/_locales.py +72 -0
  109. numpy/_core/tests/_natype.py +144 -0
  110. numpy/_core/tests/data/astype_copy.pkl +0 -0
  111. numpy/_core/tests/data/generate_umath_validation_data.cpp +170 -0
  112. numpy/_core/tests/data/recarray_from_file.fits +0 -0
  113. numpy/_core/tests/data/umath-validation-set-README.txt +15 -0
  114. numpy/_core/tests/data/umath-validation-set-arccos.csv +1429 -0
  115. numpy/_core/tests/data/umath-validation-set-arccosh.csv +1429 -0
  116. numpy/_core/tests/data/umath-validation-set-arcsin.csv +1429 -0
  117. numpy/_core/tests/data/umath-validation-set-arcsinh.csv +1429 -0
  118. numpy/_core/tests/data/umath-validation-set-arctan.csv +1429 -0
  119. numpy/_core/tests/data/umath-validation-set-arctanh.csv +1429 -0
  120. numpy/_core/tests/data/umath-validation-set-cbrt.csv +1429 -0
  121. numpy/_core/tests/data/umath-validation-set-cos.csv +1375 -0
  122. numpy/_core/tests/data/umath-validation-set-cosh.csv +1429 -0
  123. numpy/_core/tests/data/umath-validation-set-exp.csv +412 -0
  124. numpy/_core/tests/data/umath-validation-set-exp2.csv +1429 -0
  125. numpy/_core/tests/data/umath-validation-set-expm1.csv +1429 -0
  126. numpy/_core/tests/data/umath-validation-set-log.csv +271 -0
  127. numpy/_core/tests/data/umath-validation-set-log10.csv +1629 -0
  128. numpy/_core/tests/data/umath-validation-set-log1p.csv +1429 -0
  129. numpy/_core/tests/data/umath-validation-set-log2.csv +1629 -0
  130. numpy/_core/tests/data/umath-validation-set-sin.csv +1370 -0
  131. numpy/_core/tests/data/umath-validation-set-sinh.csv +1429 -0
  132. numpy/_core/tests/data/umath-validation-set-tan.csv +1429 -0
  133. numpy/_core/tests/data/umath-validation-set-tanh.csv +1429 -0
  134. numpy/_core/tests/examples/cython/checks.pyx +373 -0
  135. numpy/_core/tests/examples/cython/meson.build +43 -0
  136. numpy/_core/tests/examples/cython/setup.py +39 -0
  137. numpy/_core/tests/examples/limited_api/limited_api1.c +17 -0
  138. numpy/_core/tests/examples/limited_api/limited_api2.pyx +11 -0
  139. numpy/_core/tests/examples/limited_api/limited_api_latest.c +19 -0
  140. numpy/_core/tests/examples/limited_api/meson.build +59 -0
  141. numpy/_core/tests/examples/limited_api/setup.py +24 -0
  142. numpy/_core/tests/test__exceptions.py +90 -0
  143. numpy/_core/tests/test_abc.py +54 -0
  144. numpy/_core/tests/test_api.py +655 -0
  145. numpy/_core/tests/test_argparse.py +90 -0
  146. numpy/_core/tests/test_array_api_info.py +113 -0
  147. numpy/_core/tests/test_array_coercion.py +928 -0
  148. numpy/_core/tests/test_array_interface.py +222 -0
  149. numpy/_core/tests/test_arraymethod.py +84 -0
  150. numpy/_core/tests/test_arrayobject.py +75 -0
  151. numpy/_core/tests/test_arrayprint.py +1324 -0
  152. numpy/_core/tests/test_casting_floatingpoint_errors.py +154 -0
  153. numpy/_core/tests/test_casting_unittests.py +955 -0
  154. numpy/_core/tests/test_conversion_utils.py +209 -0
  155. numpy/_core/tests/test_cpu_dispatcher.py +48 -0
  156. numpy/_core/tests/test_cpu_features.py +450 -0
  157. numpy/_core/tests/test_custom_dtypes.py +393 -0
  158. numpy/_core/tests/test_cython.py +352 -0
  159. numpy/_core/tests/test_datetime.py +2792 -0
  160. numpy/_core/tests/test_defchararray.py +858 -0
  161. numpy/_core/tests/test_deprecations.py +460 -0
  162. numpy/_core/tests/test_dlpack.py +190 -0
  163. numpy/_core/tests/test_dtype.py +2110 -0
  164. numpy/_core/tests/test_einsum.py +1351 -0
  165. numpy/_core/tests/test_errstate.py +131 -0
  166. numpy/_core/tests/test_extint128.py +217 -0
  167. numpy/_core/tests/test_finfo.py +86 -0
  168. numpy/_core/tests/test_function_base.py +504 -0
  169. numpy/_core/tests/test_getlimits.py +171 -0
  170. numpy/_core/tests/test_half.py +593 -0
  171. numpy/_core/tests/test_hashtable.py +36 -0
  172. numpy/_core/tests/test_indexerrors.py +122 -0
  173. numpy/_core/tests/test_indexing.py +1692 -0
  174. numpy/_core/tests/test_item_selection.py +167 -0
  175. numpy/_core/tests/test_limited_api.py +102 -0
  176. numpy/_core/tests/test_longdouble.py +370 -0
  177. numpy/_core/tests/test_mem_overlap.py +933 -0
  178. numpy/_core/tests/test_mem_policy.py +453 -0
  179. numpy/_core/tests/test_memmap.py +248 -0
  180. numpy/_core/tests/test_multiarray.py +11008 -0
  181. numpy/_core/tests/test_multiprocessing.py +55 -0
  182. numpy/_core/tests/test_multithreading.py +377 -0
  183. numpy/_core/tests/test_nditer.py +3533 -0
  184. numpy/_core/tests/test_nep50_promotions.py +287 -0
  185. numpy/_core/tests/test_numeric.py +4295 -0
  186. numpy/_core/tests/test_numerictypes.py +650 -0
  187. numpy/_core/tests/test_overrides.py +800 -0
  188. numpy/_core/tests/test_print.py +202 -0
  189. numpy/_core/tests/test_protocols.py +46 -0
  190. numpy/_core/tests/test_records.py +544 -0
  191. numpy/_core/tests/test_regression.py +2677 -0
  192. numpy/_core/tests/test_scalar_ctors.py +203 -0
  193. numpy/_core/tests/test_scalar_methods.py +328 -0
  194. numpy/_core/tests/test_scalarbuffer.py +153 -0
  195. numpy/_core/tests/test_scalarinherit.py +105 -0
  196. numpy/_core/tests/test_scalarmath.py +1168 -0
  197. numpy/_core/tests/test_scalarprint.py +403 -0
  198. numpy/_core/tests/test_shape_base.py +904 -0
  199. numpy/_core/tests/test_simd.py +1345 -0
  200. numpy/_core/tests/test_simd_module.py +105 -0
  201. numpy/_core/tests/test_stringdtype.py +1855 -0
  202. numpy/_core/tests/test_strings.py +1523 -0
  203. numpy/_core/tests/test_ufunc.py +3405 -0
  204. numpy/_core/tests/test_umath.py +4962 -0
  205. numpy/_core/tests/test_umath_accuracy.py +132 -0
  206. numpy/_core/tests/test_umath_complex.py +631 -0
  207. numpy/_core/tests/test_unicode.py +369 -0
  208. numpy/_core/umath.py +60 -0
  209. numpy/_core/umath.pyi +232 -0
  210. numpy/_distributor_init.py +15 -0
  211. numpy/_distributor_init.pyi +1 -0
  212. numpy/_expired_attrs_2_0.py +78 -0
  213. numpy/_expired_attrs_2_0.pyi +61 -0
  214. numpy/_globals.py +121 -0
  215. numpy/_globals.pyi +17 -0
  216. numpy/_pyinstaller/__init__.py +0 -0
  217. numpy/_pyinstaller/__init__.pyi +0 -0
  218. numpy/_pyinstaller/hook-numpy.py +36 -0
  219. numpy/_pyinstaller/hook-numpy.pyi +6 -0
  220. numpy/_pyinstaller/tests/__init__.py +16 -0
  221. numpy/_pyinstaller/tests/pyinstaller-smoke.py +32 -0
  222. numpy/_pyinstaller/tests/test_pyinstaller.py +35 -0
  223. numpy/_pytesttester.py +201 -0
  224. numpy/_pytesttester.pyi +18 -0
  225. numpy/_typing/__init__.py +173 -0
  226. numpy/_typing/_add_docstring.py +153 -0
  227. numpy/_typing/_array_like.py +106 -0
  228. numpy/_typing/_char_codes.py +213 -0
  229. numpy/_typing/_dtype_like.py +114 -0
  230. numpy/_typing/_extended_precision.py +15 -0
  231. numpy/_typing/_nbit.py +19 -0
  232. numpy/_typing/_nbit_base.py +94 -0
  233. numpy/_typing/_nbit_base.pyi +39 -0
  234. numpy/_typing/_nested_sequence.py +79 -0
  235. numpy/_typing/_scalars.py +20 -0
  236. numpy/_typing/_shape.py +8 -0
  237. numpy/_typing/_ufunc.py +7 -0
  238. numpy/_typing/_ufunc.pyi +975 -0
  239. numpy/_utils/__init__.py +95 -0
  240. numpy/_utils/__init__.pyi +28 -0
  241. numpy/_utils/_convertions.py +18 -0
  242. numpy/_utils/_convertions.pyi +4 -0
  243. numpy/_utils/_inspect.py +192 -0
  244. numpy/_utils/_inspect.pyi +70 -0
  245. numpy/_utils/_pep440.py +486 -0
  246. numpy/_utils/_pep440.pyi +118 -0
  247. numpy/char/__init__.py +2 -0
  248. numpy/char/__init__.pyi +111 -0
  249. numpy/conftest.py +248 -0
  250. numpy/core/__init__.py +33 -0
  251. numpy/core/__init__.pyi +0 -0
  252. numpy/core/_dtype.py +10 -0
  253. numpy/core/_dtype.pyi +0 -0
  254. numpy/core/_dtype_ctypes.py +10 -0
  255. numpy/core/_dtype_ctypes.pyi +0 -0
  256. numpy/core/_internal.py +27 -0
  257. numpy/core/_multiarray_umath.py +57 -0
  258. numpy/core/_utils.py +21 -0
  259. numpy/core/arrayprint.py +10 -0
  260. numpy/core/defchararray.py +10 -0
  261. numpy/core/einsumfunc.py +10 -0
  262. numpy/core/fromnumeric.py +10 -0
  263. numpy/core/function_base.py +10 -0
  264. numpy/core/getlimits.py +10 -0
  265. numpy/core/multiarray.py +25 -0
  266. numpy/core/numeric.py +12 -0
  267. numpy/core/numerictypes.py +10 -0
  268. numpy/core/overrides.py +10 -0
  269. numpy/core/overrides.pyi +7 -0
  270. numpy/core/records.py +10 -0
  271. numpy/core/shape_base.py +10 -0
  272. numpy/core/umath.py +10 -0
  273. numpy/ctypeslib/__init__.py +13 -0
  274. numpy/ctypeslib/__init__.pyi +15 -0
  275. numpy/ctypeslib/_ctypeslib.py +603 -0
  276. numpy/ctypeslib/_ctypeslib.pyi +236 -0
  277. numpy/distutils/__init__.py +64 -0
  278. numpy/distutils/__init__.pyi +4 -0
  279. numpy/distutils/__pycache__/conv_template.pypy311.pyc +0 -0
  280. numpy/distutils/_shell_utils.py +87 -0
  281. numpy/distutils/armccompiler.py +26 -0
  282. numpy/distutils/ccompiler.py +826 -0
  283. numpy/distutils/ccompiler_opt.py +2668 -0
  284. numpy/distutils/checks/cpu_asimd.c +27 -0
  285. numpy/distutils/checks/cpu_asimddp.c +16 -0
  286. numpy/distutils/checks/cpu_asimdfhm.c +19 -0
  287. numpy/distutils/checks/cpu_asimdhp.c +15 -0
  288. numpy/distutils/checks/cpu_avx.c +20 -0
  289. numpy/distutils/checks/cpu_avx2.c +20 -0
  290. numpy/distutils/checks/cpu_avx512_clx.c +22 -0
  291. numpy/distutils/checks/cpu_avx512_cnl.c +24 -0
  292. numpy/distutils/checks/cpu_avx512_icl.c +26 -0
  293. numpy/distutils/checks/cpu_avx512_knl.c +25 -0
  294. numpy/distutils/checks/cpu_avx512_knm.c +30 -0
  295. numpy/distutils/checks/cpu_avx512_skx.c +26 -0
  296. numpy/distutils/checks/cpu_avx512_spr.c +26 -0
  297. numpy/distutils/checks/cpu_avx512cd.c +20 -0
  298. numpy/distutils/checks/cpu_avx512f.c +20 -0
  299. numpy/distutils/checks/cpu_f16c.c +22 -0
  300. numpy/distutils/checks/cpu_fma3.c +22 -0
  301. numpy/distutils/checks/cpu_fma4.c +13 -0
  302. numpy/distutils/checks/cpu_lsx.c +11 -0
  303. numpy/distutils/checks/cpu_neon.c +19 -0
  304. numpy/distutils/checks/cpu_neon_fp16.c +11 -0
  305. numpy/distutils/checks/cpu_neon_vfpv4.c +21 -0
  306. numpy/distutils/checks/cpu_popcnt.c +32 -0
  307. numpy/distutils/checks/cpu_rvv.c +13 -0
  308. numpy/distutils/checks/cpu_sse.c +20 -0
  309. numpy/distutils/checks/cpu_sse2.c +20 -0
  310. numpy/distutils/checks/cpu_sse3.c +20 -0
  311. numpy/distutils/checks/cpu_sse41.c +20 -0
  312. numpy/distutils/checks/cpu_sse42.c +20 -0
  313. numpy/distutils/checks/cpu_ssse3.c +20 -0
  314. numpy/distutils/checks/cpu_sve.c +14 -0
  315. numpy/distutils/checks/cpu_vsx.c +21 -0
  316. numpy/distutils/checks/cpu_vsx2.c +13 -0
  317. numpy/distutils/checks/cpu_vsx3.c +13 -0
  318. numpy/distutils/checks/cpu_vsx4.c +14 -0
  319. numpy/distutils/checks/cpu_vx.c +16 -0
  320. numpy/distutils/checks/cpu_vxe.c +25 -0
  321. numpy/distutils/checks/cpu_vxe2.c +21 -0
  322. numpy/distutils/checks/cpu_xop.c +12 -0
  323. numpy/distutils/checks/extra_avx512bw_mask.c +18 -0
  324. numpy/distutils/checks/extra_avx512dq_mask.c +16 -0
  325. numpy/distutils/checks/extra_avx512f_reduce.c +41 -0
  326. numpy/distutils/checks/extra_vsx3_half_double.c +12 -0
  327. numpy/distutils/checks/extra_vsx4_mma.c +21 -0
  328. numpy/distutils/checks/extra_vsx_asm.c +36 -0
  329. numpy/distutils/checks/test_flags.c +1 -0
  330. numpy/distutils/command/__init__.py +41 -0
  331. numpy/distutils/command/autodist.py +148 -0
  332. numpy/distutils/command/bdist_rpm.py +22 -0
  333. numpy/distutils/command/build.py +62 -0
  334. numpy/distutils/command/build_clib.py +469 -0
  335. numpy/distutils/command/build_ext.py +752 -0
  336. numpy/distutils/command/build_py.py +31 -0
  337. numpy/distutils/command/build_scripts.py +49 -0
  338. numpy/distutils/command/build_src.py +773 -0
  339. numpy/distutils/command/config.py +516 -0
  340. numpy/distutils/command/config_compiler.py +126 -0
  341. numpy/distutils/command/develop.py +15 -0
  342. numpy/distutils/command/egg_info.py +25 -0
  343. numpy/distutils/command/install.py +79 -0
  344. numpy/distutils/command/install_clib.py +40 -0
  345. numpy/distutils/command/install_data.py +24 -0
  346. numpy/distutils/command/install_headers.py +25 -0
  347. numpy/distutils/command/sdist.py +27 -0
  348. numpy/distutils/conv_template.py +329 -0
  349. numpy/distutils/core.py +215 -0
  350. numpy/distutils/cpuinfo.py +683 -0
  351. numpy/distutils/exec_command.py +315 -0
  352. numpy/distutils/extension.py +101 -0
  353. numpy/distutils/fcompiler/__init__.py +1035 -0
  354. numpy/distutils/fcompiler/absoft.py +158 -0
  355. numpy/distutils/fcompiler/arm.py +71 -0
  356. numpy/distutils/fcompiler/compaq.py +120 -0
  357. numpy/distutils/fcompiler/environment.py +88 -0
  358. numpy/distutils/fcompiler/fujitsu.py +46 -0
  359. numpy/distutils/fcompiler/g95.py +42 -0
  360. numpy/distutils/fcompiler/gnu.py +555 -0
  361. numpy/distutils/fcompiler/hpux.py +41 -0
  362. numpy/distutils/fcompiler/ibm.py +97 -0
  363. numpy/distutils/fcompiler/intel.py +211 -0
  364. numpy/distutils/fcompiler/lahey.py +45 -0
  365. numpy/distutils/fcompiler/mips.py +54 -0
  366. numpy/distutils/fcompiler/nag.py +87 -0
  367. numpy/distutils/fcompiler/none.py +28 -0
  368. numpy/distutils/fcompiler/nv.py +53 -0
  369. numpy/distutils/fcompiler/pathf95.py +33 -0
  370. numpy/distutils/fcompiler/pg.py +128 -0
  371. numpy/distutils/fcompiler/sun.py +51 -0
  372. numpy/distutils/fcompiler/vast.py +52 -0
  373. numpy/distutils/from_template.py +261 -0
  374. numpy/distutils/fujitsuccompiler.py +28 -0
  375. numpy/distutils/intelccompiler.py +106 -0
  376. numpy/distutils/lib2def.py +116 -0
  377. numpy/distutils/line_endings.py +77 -0
  378. numpy/distutils/log.py +111 -0
  379. numpy/distutils/mingw/gfortran_vs2003_hack.c +6 -0
  380. numpy/distutils/mingw32ccompiler.py +620 -0
  381. numpy/distutils/misc_util.py +2484 -0
  382. numpy/distutils/msvc9compiler.py +63 -0
  383. numpy/distutils/msvccompiler.py +76 -0
  384. numpy/distutils/npy_pkg_config.py +441 -0
  385. numpy/distutils/numpy_distribution.py +17 -0
  386. numpy/distutils/pathccompiler.py +21 -0
  387. numpy/distutils/system_info.py +3267 -0
  388. numpy/distutils/tests/__init__.py +0 -0
  389. numpy/distutils/tests/test_build_ext.py +74 -0
  390. numpy/distutils/tests/test_ccompiler_opt.py +808 -0
  391. numpy/distutils/tests/test_ccompiler_opt_conf.py +176 -0
  392. numpy/distutils/tests/test_exec_command.py +217 -0
  393. numpy/distutils/tests/test_fcompiler.py +43 -0
  394. numpy/distutils/tests/test_fcompiler_gnu.py +55 -0
  395. numpy/distutils/tests/test_fcompiler_intel.py +30 -0
  396. numpy/distutils/tests/test_fcompiler_nagfor.py +22 -0
  397. numpy/distutils/tests/test_from_template.py +44 -0
  398. numpy/distutils/tests/test_log.py +34 -0
  399. numpy/distutils/tests/test_mingw32ccompiler.py +47 -0
  400. numpy/distutils/tests/test_misc_util.py +88 -0
  401. numpy/distutils/tests/test_npy_pkg_config.py +84 -0
  402. numpy/distutils/tests/test_shell_utils.py +79 -0
  403. numpy/distutils/tests/test_system_info.py +334 -0
  404. numpy/distutils/tests/utilities.py +90 -0
  405. numpy/distutils/unixccompiler.py +141 -0
  406. numpy/doc/ufuncs.py +138 -0
  407. numpy/dtypes.py +41 -0
  408. numpy/dtypes.pyi +630 -0
  409. numpy/exceptions.py +246 -0
  410. numpy/exceptions.pyi +27 -0
  411. numpy/f2py/__init__.py +86 -0
  412. numpy/f2py/__init__.pyi +5 -0
  413. numpy/f2py/__main__.py +5 -0
  414. numpy/f2py/__version__.py +1 -0
  415. numpy/f2py/__version__.pyi +1 -0
  416. numpy/f2py/_backends/__init__.py +9 -0
  417. numpy/f2py/_backends/__init__.pyi +5 -0
  418. numpy/f2py/_backends/_backend.py +44 -0
  419. numpy/f2py/_backends/_backend.pyi +46 -0
  420. numpy/f2py/_backends/_distutils.py +76 -0
  421. numpy/f2py/_backends/_distutils.pyi +13 -0
  422. numpy/f2py/_backends/_meson.py +244 -0
  423. numpy/f2py/_backends/_meson.pyi +62 -0
  424. numpy/f2py/_backends/meson.build.template +58 -0
  425. numpy/f2py/_isocbind.py +62 -0
  426. numpy/f2py/_isocbind.pyi +13 -0
  427. numpy/f2py/_src_pyf.py +247 -0
  428. numpy/f2py/_src_pyf.pyi +28 -0
  429. numpy/f2py/auxfuncs.py +1004 -0
  430. numpy/f2py/auxfuncs.pyi +262 -0
  431. numpy/f2py/capi_maps.py +811 -0
  432. numpy/f2py/capi_maps.pyi +33 -0
  433. numpy/f2py/cb_rules.py +665 -0
  434. numpy/f2py/cb_rules.pyi +17 -0
  435. numpy/f2py/cfuncs.py +1563 -0
  436. numpy/f2py/cfuncs.pyi +31 -0
  437. numpy/f2py/common_rules.py +143 -0
  438. numpy/f2py/common_rules.pyi +9 -0
  439. numpy/f2py/crackfortran.py +3725 -0
  440. numpy/f2py/crackfortran.pyi +266 -0
  441. numpy/f2py/diagnose.py +149 -0
  442. numpy/f2py/diagnose.pyi +1 -0
  443. numpy/f2py/f2py2e.py +788 -0
  444. numpy/f2py/f2py2e.pyi +74 -0
  445. numpy/f2py/f90mod_rules.py +269 -0
  446. numpy/f2py/f90mod_rules.pyi +16 -0
  447. numpy/f2py/func2subr.py +329 -0
  448. numpy/f2py/func2subr.pyi +7 -0
  449. numpy/f2py/rules.py +1629 -0
  450. numpy/f2py/rules.pyi +41 -0
  451. numpy/f2py/setup.cfg +3 -0
  452. numpy/f2py/src/fortranobject.c +1436 -0
  453. numpy/f2py/src/fortranobject.h +173 -0
  454. numpy/f2py/symbolic.py +1518 -0
  455. numpy/f2py/symbolic.pyi +219 -0
  456. numpy/f2py/tests/__init__.py +16 -0
  457. numpy/f2py/tests/src/abstract_interface/foo.f90 +34 -0
  458. numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 +6 -0
  459. numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c +235 -0
  460. numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap +1 -0
  461. numpy/f2py/tests/src/assumed_shape/foo_free.f90 +34 -0
  462. numpy/f2py/tests/src/assumed_shape/foo_mod.f90 +41 -0
  463. numpy/f2py/tests/src/assumed_shape/foo_use.f90 +19 -0
  464. numpy/f2py/tests/src/assumed_shape/precision.f90 +4 -0
  465. numpy/f2py/tests/src/block_docstring/foo.f +6 -0
  466. numpy/f2py/tests/src/callback/foo.f +62 -0
  467. numpy/f2py/tests/src/callback/gh17797.f90 +7 -0
  468. numpy/f2py/tests/src/callback/gh18335.f90 +17 -0
  469. numpy/f2py/tests/src/callback/gh25211.f +10 -0
  470. numpy/f2py/tests/src/callback/gh25211.pyf +18 -0
  471. numpy/f2py/tests/src/callback/gh26681.f90 +18 -0
  472. numpy/f2py/tests/src/cli/gh_22819.pyf +6 -0
  473. numpy/f2py/tests/src/cli/hi77.f +3 -0
  474. numpy/f2py/tests/src/cli/hiworld.f90 +3 -0
  475. numpy/f2py/tests/src/common/block.f +11 -0
  476. numpy/f2py/tests/src/common/gh19161.f90 +10 -0
  477. numpy/f2py/tests/src/crackfortran/accesstype.f90 +13 -0
  478. numpy/f2py/tests/src/crackfortran/common_with_division.f +17 -0
  479. numpy/f2py/tests/src/crackfortran/data_common.f +8 -0
  480. numpy/f2py/tests/src/crackfortran/data_multiplier.f +5 -0
  481. numpy/f2py/tests/src/crackfortran/data_stmts.f90 +20 -0
  482. numpy/f2py/tests/src/crackfortran/data_with_comments.f +8 -0
  483. numpy/f2py/tests/src/crackfortran/foo_deps.f90 +6 -0
  484. numpy/f2py/tests/src/crackfortran/gh15035.f +16 -0
  485. numpy/f2py/tests/src/crackfortran/gh17859.f +12 -0
  486. numpy/f2py/tests/src/crackfortran/gh22648.pyf +7 -0
  487. numpy/f2py/tests/src/crackfortran/gh23533.f +5 -0
  488. numpy/f2py/tests/src/crackfortran/gh23598.f90 +4 -0
  489. numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 +11 -0
  490. numpy/f2py/tests/src/crackfortran/gh23879.f90 +20 -0
  491. numpy/f2py/tests/src/crackfortran/gh27697.f90 +12 -0
  492. numpy/f2py/tests/src/crackfortran/gh2848.f90 +13 -0
  493. numpy/f2py/tests/src/crackfortran/operators.f90 +49 -0
  494. numpy/f2py/tests/src/crackfortran/privatemod.f90 +11 -0
  495. numpy/f2py/tests/src/crackfortran/publicmod.f90 +10 -0
  496. numpy/f2py/tests/src/crackfortran/pubprivmod.f90 +10 -0
  497. numpy/f2py/tests/src/crackfortran/unicode_comment.f90 +4 -0
  498. numpy/f2py/tests/src/f2cmap/.f2py_f2cmap +1 -0
  499. numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 +9 -0
  500. numpy/f2py/tests/src/isocintrin/isoCtests.f90 +34 -0
  501. numpy/f2py/tests/src/kind/foo.f90 +20 -0
  502. numpy/f2py/tests/src/mixed/foo.f +5 -0
  503. numpy/f2py/tests/src/mixed/foo_fixed.f90 +8 -0
  504. numpy/f2py/tests/src/mixed/foo_free.f90 +8 -0
  505. numpy/f2py/tests/src/modules/gh25337/data.f90 +8 -0
  506. numpy/f2py/tests/src/modules/gh25337/use_data.f90 +6 -0
  507. numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 +21 -0
  508. numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 +21 -0
  509. numpy/f2py/tests/src/modules/module_data_docstring.f90 +12 -0
  510. numpy/f2py/tests/src/modules/use_modules.f90 +20 -0
  511. numpy/f2py/tests/src/negative_bounds/issue_20853.f90 +7 -0
  512. numpy/f2py/tests/src/parameter/constant_array.f90 +45 -0
  513. numpy/f2py/tests/src/parameter/constant_both.f90 +57 -0
  514. numpy/f2py/tests/src/parameter/constant_compound.f90 +15 -0
  515. numpy/f2py/tests/src/parameter/constant_integer.f90 +22 -0
  516. numpy/f2py/tests/src/parameter/constant_non_compound.f90 +23 -0
  517. numpy/f2py/tests/src/parameter/constant_real.f90 +23 -0
  518. numpy/f2py/tests/src/quoted_character/foo.f +14 -0
  519. numpy/f2py/tests/src/regression/AB.inc +1 -0
  520. numpy/f2py/tests/src/regression/assignOnlyModule.f90 +25 -0
  521. numpy/f2py/tests/src/regression/datonly.f90 +17 -0
  522. numpy/f2py/tests/src/regression/f77comments.f +26 -0
  523. numpy/f2py/tests/src/regression/f77fixedform.f95 +5 -0
  524. numpy/f2py/tests/src/regression/f90continuation.f90 +9 -0
  525. numpy/f2py/tests/src/regression/incfile.f90 +5 -0
  526. numpy/f2py/tests/src/regression/inout.f90 +9 -0
  527. numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 +5 -0
  528. numpy/f2py/tests/src/regression/mod_derived_types.f90 +23 -0
  529. numpy/f2py/tests/src/return_character/foo77.f +45 -0
  530. numpy/f2py/tests/src/return_character/foo90.f90 +48 -0
  531. numpy/f2py/tests/src/return_complex/foo77.f +45 -0
  532. numpy/f2py/tests/src/return_complex/foo90.f90 +48 -0
  533. numpy/f2py/tests/src/return_integer/foo77.f +56 -0
  534. numpy/f2py/tests/src/return_integer/foo90.f90 +59 -0
  535. numpy/f2py/tests/src/return_logical/foo77.f +56 -0
  536. numpy/f2py/tests/src/return_logical/foo90.f90 +59 -0
  537. numpy/f2py/tests/src/return_real/foo77.f +45 -0
  538. numpy/f2py/tests/src/return_real/foo90.f90 +48 -0
  539. numpy/f2py/tests/src/routines/funcfortranname.f +5 -0
  540. numpy/f2py/tests/src/routines/funcfortranname.pyf +11 -0
  541. numpy/f2py/tests/src/routines/subrout.f +4 -0
  542. numpy/f2py/tests/src/routines/subrout.pyf +10 -0
  543. numpy/f2py/tests/src/size/foo.f90 +44 -0
  544. numpy/f2py/tests/src/string/char.f90 +29 -0
  545. numpy/f2py/tests/src/string/fixed_string.f90 +34 -0
  546. numpy/f2py/tests/src/string/gh24008.f +8 -0
  547. numpy/f2py/tests/src/string/gh24662.f90 +7 -0
  548. numpy/f2py/tests/src/string/gh25286.f90 +14 -0
  549. numpy/f2py/tests/src/string/gh25286.pyf +12 -0
  550. numpy/f2py/tests/src/string/gh25286_bc.pyf +12 -0
  551. numpy/f2py/tests/src/string/scalar_string.f90 +9 -0
  552. numpy/f2py/tests/src/string/string.f +12 -0
  553. numpy/f2py/tests/src/value_attrspec/gh21665.f90 +9 -0
  554. numpy/f2py/tests/test_abstract_interface.py +26 -0
  555. numpy/f2py/tests/test_array_from_pyobj.py +678 -0
  556. numpy/f2py/tests/test_assumed_shape.py +50 -0
  557. numpy/f2py/tests/test_block_docstring.py +20 -0
  558. numpy/f2py/tests/test_callback.py +263 -0
  559. numpy/f2py/tests/test_character.py +641 -0
  560. numpy/f2py/tests/test_common.py +23 -0
  561. numpy/f2py/tests/test_crackfortran.py +421 -0
  562. numpy/f2py/tests/test_data.py +71 -0
  563. numpy/f2py/tests/test_docs.py +66 -0
  564. numpy/f2py/tests/test_f2cmap.py +17 -0
  565. numpy/f2py/tests/test_f2py2e.py +983 -0
  566. numpy/f2py/tests/test_isoc.py +56 -0
  567. numpy/f2py/tests/test_kind.py +52 -0
  568. numpy/f2py/tests/test_mixed.py +35 -0
  569. numpy/f2py/tests/test_modules.py +83 -0
  570. numpy/f2py/tests/test_parameter.py +129 -0
  571. numpy/f2py/tests/test_pyf_src.py +43 -0
  572. numpy/f2py/tests/test_quoted_character.py +18 -0
  573. numpy/f2py/tests/test_regression.py +187 -0
  574. numpy/f2py/tests/test_return_character.py +48 -0
  575. numpy/f2py/tests/test_return_complex.py +67 -0
  576. numpy/f2py/tests/test_return_integer.py +55 -0
  577. numpy/f2py/tests/test_return_logical.py +65 -0
  578. numpy/f2py/tests/test_return_real.py +109 -0
  579. numpy/f2py/tests/test_routines.py +29 -0
  580. numpy/f2py/tests/test_semicolon_split.py +75 -0
  581. numpy/f2py/tests/test_size.py +45 -0
  582. numpy/f2py/tests/test_string.py +100 -0
  583. numpy/f2py/tests/test_symbolic.py +500 -0
  584. numpy/f2py/tests/test_value_attrspec.py +15 -0
  585. numpy/f2py/tests/util.py +442 -0
  586. numpy/f2py/use_rules.py +99 -0
  587. numpy/f2py/use_rules.pyi +9 -0
  588. numpy/fft/__init__.py +213 -0
  589. numpy/fft/__init__.pyi +38 -0
  590. numpy/fft/_helper.py +235 -0
  591. numpy/fft/_helper.pyi +44 -0
  592. numpy/fft/_pocketfft.py +1693 -0
  593. numpy/fft/_pocketfft.pyi +137 -0
  594. numpy/fft/_pocketfft_umath.pypy311-pp73-darwin.so +0 -0
  595. numpy/fft/tests/__init__.py +0 -0
  596. numpy/fft/tests/test_helper.py +167 -0
  597. numpy/fft/tests/test_pocketfft.py +589 -0
  598. numpy/lib/__init__.py +97 -0
  599. numpy/lib/__init__.pyi +52 -0
  600. numpy/lib/_array_utils_impl.py +62 -0
  601. numpy/lib/_array_utils_impl.pyi +10 -0
  602. numpy/lib/_arraypad_impl.py +926 -0
  603. numpy/lib/_arraypad_impl.pyi +88 -0
  604. numpy/lib/_arraysetops_impl.py +1158 -0
  605. numpy/lib/_arraysetops_impl.pyi +462 -0
  606. numpy/lib/_arrayterator_impl.py +224 -0
  607. numpy/lib/_arrayterator_impl.pyi +45 -0
  608. numpy/lib/_datasource.py +700 -0
  609. numpy/lib/_datasource.pyi +30 -0
  610. numpy/lib/_format_impl.py +1036 -0
  611. numpy/lib/_format_impl.pyi +56 -0
  612. numpy/lib/_function_base_impl.py +5760 -0
  613. numpy/lib/_function_base_impl.pyi +2324 -0
  614. numpy/lib/_histograms_impl.py +1085 -0
  615. numpy/lib/_histograms_impl.pyi +40 -0
  616. numpy/lib/_index_tricks_impl.py +1048 -0
  617. numpy/lib/_index_tricks_impl.pyi +267 -0
  618. numpy/lib/_iotools.py +900 -0
  619. numpy/lib/_iotools.pyi +116 -0
  620. numpy/lib/_nanfunctions_impl.py +2006 -0
  621. numpy/lib/_nanfunctions_impl.pyi +48 -0
  622. numpy/lib/_npyio_impl.py +2583 -0
  623. numpy/lib/_npyio_impl.pyi +299 -0
  624. numpy/lib/_polynomial_impl.py +1465 -0
  625. numpy/lib/_polynomial_impl.pyi +338 -0
  626. numpy/lib/_scimath_impl.py +642 -0
  627. numpy/lib/_scimath_impl.pyi +93 -0
  628. numpy/lib/_shape_base_impl.py +1289 -0
  629. numpy/lib/_shape_base_impl.pyi +236 -0
  630. numpy/lib/_stride_tricks_impl.py +582 -0
  631. numpy/lib/_stride_tricks_impl.pyi +73 -0
  632. numpy/lib/_twodim_base_impl.py +1201 -0
  633. numpy/lib/_twodim_base_impl.pyi +408 -0
  634. numpy/lib/_type_check_impl.py +710 -0
  635. numpy/lib/_type_check_impl.pyi +348 -0
  636. numpy/lib/_ufunclike_impl.py +199 -0
  637. numpy/lib/_ufunclike_impl.pyi +60 -0
  638. numpy/lib/_user_array_impl.py +310 -0
  639. numpy/lib/_user_array_impl.pyi +226 -0
  640. numpy/lib/_utils_impl.py +784 -0
  641. numpy/lib/_utils_impl.pyi +22 -0
  642. numpy/lib/_version.py +153 -0
  643. numpy/lib/_version.pyi +17 -0
  644. numpy/lib/array_utils.py +7 -0
  645. numpy/lib/array_utils.pyi +6 -0
  646. numpy/lib/format.py +24 -0
  647. numpy/lib/format.pyi +24 -0
  648. numpy/lib/introspect.py +94 -0
  649. numpy/lib/introspect.pyi +3 -0
  650. numpy/lib/mixins.py +180 -0
  651. numpy/lib/mixins.pyi +78 -0
  652. numpy/lib/npyio.py +1 -0
  653. numpy/lib/npyio.pyi +5 -0
  654. numpy/lib/recfunctions.py +1681 -0
  655. numpy/lib/recfunctions.pyi +444 -0
  656. numpy/lib/scimath.py +13 -0
  657. numpy/lib/scimath.pyi +12 -0
  658. numpy/lib/stride_tricks.py +1 -0
  659. numpy/lib/stride_tricks.pyi +4 -0
  660. numpy/lib/tests/__init__.py +0 -0
  661. numpy/lib/tests/data/py2-np0-objarr.npy +0 -0
  662. numpy/lib/tests/data/py2-objarr.npy +0 -0
  663. numpy/lib/tests/data/py2-objarr.npz +0 -0
  664. numpy/lib/tests/data/py3-objarr.npy +0 -0
  665. numpy/lib/tests/data/py3-objarr.npz +0 -0
  666. numpy/lib/tests/data/python3.npy +0 -0
  667. numpy/lib/tests/data/win64python2.npy +0 -0
  668. numpy/lib/tests/test__datasource.py +328 -0
  669. numpy/lib/tests/test__iotools.py +358 -0
  670. numpy/lib/tests/test__version.py +64 -0
  671. numpy/lib/tests/test_array_utils.py +32 -0
  672. numpy/lib/tests/test_arraypad.py +1427 -0
  673. numpy/lib/tests/test_arraysetops.py +1302 -0
  674. numpy/lib/tests/test_arrayterator.py +45 -0
  675. numpy/lib/tests/test_format.py +1054 -0
  676. numpy/lib/tests/test_function_base.py +4750 -0
  677. numpy/lib/tests/test_histograms.py +855 -0
  678. numpy/lib/tests/test_index_tricks.py +693 -0
  679. numpy/lib/tests/test_io.py +2857 -0
  680. numpy/lib/tests/test_loadtxt.py +1099 -0
  681. numpy/lib/tests/test_mixins.py +215 -0
  682. numpy/lib/tests/test_nanfunctions.py +1438 -0
  683. numpy/lib/tests/test_packbits.py +376 -0
  684. numpy/lib/tests/test_polynomial.py +325 -0
  685. numpy/lib/tests/test_recfunctions.py +1042 -0
  686. numpy/lib/tests/test_regression.py +231 -0
  687. numpy/lib/tests/test_shape_base.py +813 -0
  688. numpy/lib/tests/test_stride_tricks.py +655 -0
  689. numpy/lib/tests/test_twodim_base.py +559 -0
  690. numpy/lib/tests/test_type_check.py +473 -0
  691. numpy/lib/tests/test_ufunclike.py +97 -0
  692. numpy/lib/tests/test_utils.py +80 -0
  693. numpy/lib/user_array.py +1 -0
  694. numpy/lib/user_array.pyi +1 -0
  695. numpy/linalg/__init__.py +95 -0
  696. numpy/linalg/__init__.pyi +71 -0
  697. numpy/linalg/_linalg.py +3657 -0
  698. numpy/linalg/_linalg.pyi +548 -0
  699. numpy/linalg/_umath_linalg.pyi +60 -0
  700. numpy/linalg/_umath_linalg.pypy311-pp73-darwin.so +0 -0
  701. numpy/linalg/lapack_lite.pyi +143 -0
  702. numpy/linalg/lapack_lite.pypy311-pp73-darwin.so +0 -0
  703. numpy/linalg/tests/__init__.py +0 -0
  704. numpy/linalg/tests/test_deprecations.py +21 -0
  705. numpy/linalg/tests/test_linalg.py +2442 -0
  706. numpy/linalg/tests/test_regression.py +182 -0
  707. numpy/ma/API_CHANGES.txt +135 -0
  708. numpy/ma/LICENSE +24 -0
  709. numpy/ma/README.rst +236 -0
  710. numpy/ma/__init__.py +53 -0
  711. numpy/ma/__init__.pyi +458 -0
  712. numpy/ma/core.py +8929 -0
  713. numpy/ma/core.pyi +3720 -0
  714. numpy/ma/extras.py +2266 -0
  715. numpy/ma/extras.pyi +297 -0
  716. numpy/ma/mrecords.py +762 -0
  717. numpy/ma/mrecords.pyi +96 -0
  718. numpy/ma/tests/__init__.py +0 -0
  719. numpy/ma/tests/test_arrayobject.py +40 -0
  720. numpy/ma/tests/test_core.py +6008 -0
  721. numpy/ma/tests/test_deprecations.py +65 -0
  722. numpy/ma/tests/test_extras.py +1945 -0
  723. numpy/ma/tests/test_mrecords.py +495 -0
  724. numpy/ma/tests/test_old_ma.py +939 -0
  725. numpy/ma/tests/test_regression.py +83 -0
  726. numpy/ma/tests/test_subclassing.py +469 -0
  727. numpy/ma/testutils.py +294 -0
  728. numpy/ma/testutils.pyi +69 -0
  729. numpy/matlib.py +380 -0
  730. numpy/matlib.pyi +580 -0
  731. numpy/matrixlib/__init__.py +12 -0
  732. numpy/matrixlib/__init__.pyi +3 -0
  733. numpy/matrixlib/defmatrix.py +1119 -0
  734. numpy/matrixlib/defmatrix.pyi +218 -0
  735. numpy/matrixlib/tests/__init__.py +0 -0
  736. numpy/matrixlib/tests/test_defmatrix.py +455 -0
  737. numpy/matrixlib/tests/test_interaction.py +360 -0
  738. numpy/matrixlib/tests/test_masked_matrix.py +240 -0
  739. numpy/matrixlib/tests/test_matrix_linalg.py +110 -0
  740. numpy/matrixlib/tests/test_multiarray.py +17 -0
  741. numpy/matrixlib/tests/test_numeric.py +18 -0
  742. numpy/matrixlib/tests/test_regression.py +31 -0
  743. numpy/polynomial/__init__.py +187 -0
  744. numpy/polynomial/__init__.pyi +31 -0
  745. numpy/polynomial/_polybase.py +1191 -0
  746. numpy/polynomial/_polybase.pyi +262 -0
  747. numpy/polynomial/_polytypes.pyi +501 -0
  748. numpy/polynomial/chebyshev.py +2001 -0
  749. numpy/polynomial/chebyshev.pyi +180 -0
  750. numpy/polynomial/hermite.py +1738 -0
  751. numpy/polynomial/hermite.pyi +106 -0
  752. numpy/polynomial/hermite_e.py +1640 -0
  753. numpy/polynomial/hermite_e.pyi +106 -0
  754. numpy/polynomial/laguerre.py +1673 -0
  755. numpy/polynomial/laguerre.pyi +100 -0
  756. numpy/polynomial/legendre.py +1603 -0
  757. numpy/polynomial/legendre.pyi +100 -0
  758. numpy/polynomial/polynomial.py +1625 -0
  759. numpy/polynomial/polynomial.pyi +109 -0
  760. numpy/polynomial/polyutils.py +759 -0
  761. numpy/polynomial/polyutils.pyi +307 -0
  762. numpy/polynomial/tests/__init__.py +0 -0
  763. numpy/polynomial/tests/test_chebyshev.py +618 -0
  764. numpy/polynomial/tests/test_classes.py +613 -0
  765. numpy/polynomial/tests/test_hermite.py +553 -0
  766. numpy/polynomial/tests/test_hermite_e.py +554 -0
  767. numpy/polynomial/tests/test_laguerre.py +535 -0
  768. numpy/polynomial/tests/test_legendre.py +566 -0
  769. numpy/polynomial/tests/test_polynomial.py +691 -0
  770. numpy/polynomial/tests/test_polyutils.py +123 -0
  771. numpy/polynomial/tests/test_printing.py +557 -0
  772. numpy/polynomial/tests/test_symbol.py +217 -0
  773. numpy/py.typed +0 -0
  774. numpy/random/LICENSE.md +71 -0
  775. numpy/random/__init__.pxd +14 -0
  776. numpy/random/__init__.py +213 -0
  777. numpy/random/__init__.pyi +124 -0
  778. numpy/random/_bounded_integers.pxd +29 -0
  779. numpy/random/_bounded_integers.pyi +1 -0
  780. numpy/random/_bounded_integers.pypy311-pp73-darwin.so +0 -0
  781. numpy/random/_common.pxd +110 -0
  782. numpy/random/_common.pyi +16 -0
  783. numpy/random/_common.pypy311-pp73-darwin.so +0 -0
  784. numpy/random/_examples/cffi/extending.py +44 -0
  785. numpy/random/_examples/cffi/parse.py +53 -0
  786. numpy/random/_examples/cython/extending.pyx +77 -0
  787. numpy/random/_examples/cython/extending_distributions.pyx +117 -0
  788. numpy/random/_examples/cython/meson.build +53 -0
  789. numpy/random/_examples/numba/extending.py +86 -0
  790. numpy/random/_examples/numba/extending_distributions.py +67 -0
  791. numpy/random/_generator.pyi +862 -0
  792. numpy/random/_generator.pypy311-pp73-darwin.so +0 -0
  793. numpy/random/_mt19937.pyi +27 -0
  794. numpy/random/_mt19937.pypy311-pp73-darwin.so +0 -0
  795. numpy/random/_pcg64.pyi +41 -0
  796. numpy/random/_pcg64.pypy311-pp73-darwin.so +0 -0
  797. numpy/random/_philox.pyi +36 -0
  798. numpy/random/_philox.pypy311-pp73-darwin.so +0 -0
  799. numpy/random/_pickle.py +88 -0
  800. numpy/random/_pickle.pyi +43 -0
  801. numpy/random/_sfc64.pyi +25 -0
  802. numpy/random/_sfc64.pypy311-pp73-darwin.so +0 -0
  803. numpy/random/bit_generator.pxd +40 -0
  804. numpy/random/bit_generator.pyi +123 -0
  805. numpy/random/bit_generator.pypy311-pp73-darwin.so +0 -0
  806. numpy/random/c_distributions.pxd +119 -0
  807. numpy/random/lib/libnpyrandom.a +0 -0
  808. numpy/random/mtrand.pyi +759 -0
  809. numpy/random/mtrand.pypy311-pp73-darwin.so +0 -0
  810. numpy/random/tests/__init__.py +0 -0
  811. numpy/random/tests/data/__init__.py +0 -0
  812. numpy/random/tests/data/generator_pcg64_np121.pkl.gz +0 -0
  813. numpy/random/tests/data/generator_pcg64_np126.pkl.gz +0 -0
  814. numpy/random/tests/data/mt19937-testset-1.csv +1001 -0
  815. numpy/random/tests/data/mt19937-testset-2.csv +1001 -0
  816. numpy/random/tests/data/pcg64-testset-1.csv +1001 -0
  817. numpy/random/tests/data/pcg64-testset-2.csv +1001 -0
  818. numpy/random/tests/data/pcg64dxsm-testset-1.csv +1001 -0
  819. numpy/random/tests/data/pcg64dxsm-testset-2.csv +1001 -0
  820. numpy/random/tests/data/philox-testset-1.csv +1001 -0
  821. numpy/random/tests/data/philox-testset-2.csv +1001 -0
  822. numpy/random/tests/data/sfc64-testset-1.csv +1001 -0
  823. numpy/random/tests/data/sfc64-testset-2.csv +1001 -0
  824. numpy/random/tests/data/sfc64_np126.pkl.gz +0 -0
  825. numpy/random/tests/test_direct.py +595 -0
  826. numpy/random/tests/test_extending.py +131 -0
  827. numpy/random/tests/test_generator_mt19937.py +2825 -0
  828. numpy/random/tests/test_generator_mt19937_regressions.py +221 -0
  829. numpy/random/tests/test_random.py +1724 -0
  830. numpy/random/tests/test_randomstate.py +2099 -0
  831. numpy/random/tests/test_randomstate_regression.py +213 -0
  832. numpy/random/tests/test_regression.py +175 -0
  833. numpy/random/tests/test_seed_sequence.py +79 -0
  834. numpy/random/tests/test_smoke.py +882 -0
  835. numpy/rec/__init__.py +2 -0
  836. numpy/rec/__init__.pyi +23 -0
  837. numpy/strings/__init__.py +2 -0
  838. numpy/strings/__init__.pyi +97 -0
  839. numpy/testing/__init__.py +22 -0
  840. numpy/testing/__init__.pyi +107 -0
  841. numpy/testing/_private/__init__.py +0 -0
  842. numpy/testing/_private/__init__.pyi +0 -0
  843. numpy/testing/_private/extbuild.py +250 -0
  844. numpy/testing/_private/extbuild.pyi +25 -0
  845. numpy/testing/_private/utils.py +2830 -0
  846. numpy/testing/_private/utils.pyi +505 -0
  847. numpy/testing/overrides.py +84 -0
  848. numpy/testing/overrides.pyi +10 -0
  849. numpy/testing/print_coercion_tables.py +207 -0
  850. numpy/testing/print_coercion_tables.pyi +26 -0
  851. numpy/testing/tests/__init__.py +0 -0
  852. numpy/testing/tests/test_utils.py +2123 -0
  853. numpy/tests/__init__.py +0 -0
  854. numpy/tests/test__all__.py +10 -0
  855. numpy/tests/test_configtool.py +51 -0
  856. numpy/tests/test_ctypeslib.py +383 -0
  857. numpy/tests/test_lazyloading.py +42 -0
  858. numpy/tests/test_matlib.py +59 -0
  859. numpy/tests/test_numpy_config.py +47 -0
  860. numpy/tests/test_numpy_version.py +54 -0
  861. numpy/tests/test_public_api.py +807 -0
  862. numpy/tests/test_reloading.py +76 -0
  863. numpy/tests/test_scripts.py +48 -0
  864. numpy/tests/test_warnings.py +79 -0
  865. numpy/typing/__init__.py +233 -0
  866. numpy/typing/__init__.pyi +3 -0
  867. numpy/typing/mypy_plugin.py +200 -0
  868. numpy/typing/tests/__init__.py +0 -0
  869. numpy/typing/tests/data/fail/arithmetic.pyi +126 -0
  870. numpy/typing/tests/data/fail/array_constructors.pyi +34 -0
  871. numpy/typing/tests/data/fail/array_like.pyi +15 -0
  872. numpy/typing/tests/data/fail/array_pad.pyi +6 -0
  873. numpy/typing/tests/data/fail/arrayprint.pyi +15 -0
  874. numpy/typing/tests/data/fail/arrayterator.pyi +14 -0
  875. numpy/typing/tests/data/fail/bitwise_ops.pyi +17 -0
  876. numpy/typing/tests/data/fail/char.pyi +63 -0
  877. numpy/typing/tests/data/fail/chararray.pyi +61 -0
  878. numpy/typing/tests/data/fail/comparisons.pyi +27 -0
  879. numpy/typing/tests/data/fail/constants.pyi +3 -0
  880. numpy/typing/tests/data/fail/datasource.pyi +16 -0
  881. numpy/typing/tests/data/fail/dtype.pyi +17 -0
  882. numpy/typing/tests/data/fail/einsumfunc.pyi +12 -0
  883. numpy/typing/tests/data/fail/flatiter.pyi +38 -0
  884. numpy/typing/tests/data/fail/fromnumeric.pyi +148 -0
  885. numpy/typing/tests/data/fail/histograms.pyi +12 -0
  886. numpy/typing/tests/data/fail/index_tricks.pyi +14 -0
  887. numpy/typing/tests/data/fail/lib_function_base.pyi +60 -0
  888. numpy/typing/tests/data/fail/lib_polynomial.pyi +29 -0
  889. numpy/typing/tests/data/fail/lib_utils.pyi +3 -0
  890. numpy/typing/tests/data/fail/lib_version.pyi +6 -0
  891. numpy/typing/tests/data/fail/linalg.pyi +52 -0
  892. numpy/typing/tests/data/fail/ma.pyi +155 -0
  893. numpy/typing/tests/data/fail/memmap.pyi +5 -0
  894. numpy/typing/tests/data/fail/modules.pyi +17 -0
  895. numpy/typing/tests/data/fail/multiarray.pyi +52 -0
  896. numpy/typing/tests/data/fail/ndarray.pyi +11 -0
  897. numpy/typing/tests/data/fail/ndarray_misc.pyi +49 -0
  898. numpy/typing/tests/data/fail/nditer.pyi +8 -0
  899. numpy/typing/tests/data/fail/nested_sequence.pyi +17 -0
  900. numpy/typing/tests/data/fail/npyio.pyi +24 -0
  901. numpy/typing/tests/data/fail/numerictypes.pyi +5 -0
  902. numpy/typing/tests/data/fail/random.pyi +62 -0
  903. numpy/typing/tests/data/fail/rec.pyi +17 -0
  904. numpy/typing/tests/data/fail/scalars.pyi +86 -0
  905. numpy/typing/tests/data/fail/shape.pyi +7 -0
  906. numpy/typing/tests/data/fail/shape_base.pyi +8 -0
  907. numpy/typing/tests/data/fail/stride_tricks.pyi +9 -0
  908. numpy/typing/tests/data/fail/strings.pyi +52 -0
  909. numpy/typing/tests/data/fail/testing.pyi +28 -0
  910. numpy/typing/tests/data/fail/twodim_base.pyi +39 -0
  911. numpy/typing/tests/data/fail/type_check.pyi +12 -0
  912. numpy/typing/tests/data/fail/ufunc_config.pyi +21 -0
  913. numpy/typing/tests/data/fail/ufunclike.pyi +21 -0
  914. numpy/typing/tests/data/fail/ufuncs.pyi +17 -0
  915. numpy/typing/tests/data/fail/warnings_and_errors.pyi +5 -0
  916. numpy/typing/tests/data/misc/extended_precision.pyi +9 -0
  917. numpy/typing/tests/data/mypy.ini +8 -0
  918. numpy/typing/tests/data/pass/arithmetic.py +614 -0
  919. numpy/typing/tests/data/pass/array_constructors.py +138 -0
  920. numpy/typing/tests/data/pass/array_like.py +43 -0
  921. numpy/typing/tests/data/pass/arrayprint.py +37 -0
  922. numpy/typing/tests/data/pass/arrayterator.py +28 -0
  923. numpy/typing/tests/data/pass/bitwise_ops.py +131 -0
  924. numpy/typing/tests/data/pass/comparisons.py +316 -0
  925. numpy/typing/tests/data/pass/dtype.py +57 -0
  926. numpy/typing/tests/data/pass/einsumfunc.py +36 -0
  927. numpy/typing/tests/data/pass/flatiter.py +26 -0
  928. numpy/typing/tests/data/pass/fromnumeric.py +272 -0
  929. numpy/typing/tests/data/pass/index_tricks.py +62 -0
  930. numpy/typing/tests/data/pass/lib_user_array.py +22 -0
  931. numpy/typing/tests/data/pass/lib_utils.py +19 -0
  932. numpy/typing/tests/data/pass/lib_version.py +18 -0
  933. numpy/typing/tests/data/pass/literal.py +52 -0
  934. numpy/typing/tests/data/pass/ma.py +199 -0
  935. numpy/typing/tests/data/pass/mod.py +149 -0
  936. numpy/typing/tests/data/pass/modules.py +45 -0
  937. numpy/typing/tests/data/pass/multiarray.py +77 -0
  938. numpy/typing/tests/data/pass/ndarray_conversion.py +81 -0
  939. numpy/typing/tests/data/pass/ndarray_misc.py +199 -0
  940. numpy/typing/tests/data/pass/ndarray_shape_manipulation.py +47 -0
  941. numpy/typing/tests/data/pass/nditer.py +4 -0
  942. numpy/typing/tests/data/pass/numeric.py +90 -0
  943. numpy/typing/tests/data/pass/numerictypes.py +17 -0
  944. numpy/typing/tests/data/pass/random.py +1498 -0
  945. numpy/typing/tests/data/pass/recfunctions.py +164 -0
  946. numpy/typing/tests/data/pass/scalars.py +249 -0
  947. numpy/typing/tests/data/pass/shape.py +19 -0
  948. numpy/typing/tests/data/pass/simple.py +170 -0
  949. numpy/typing/tests/data/pass/ufunc_config.py +64 -0
  950. numpy/typing/tests/data/pass/ufunclike.py +52 -0
  951. numpy/typing/tests/data/pass/ufuncs.py +16 -0
  952. numpy/typing/tests/data/pass/warnings_and_errors.py +6 -0
  953. numpy/typing/tests/data/reveal/arithmetic.pyi +719 -0
  954. numpy/typing/tests/data/reveal/array_api_info.pyi +70 -0
  955. numpy/typing/tests/data/reveal/array_constructors.pyi +277 -0
  956. numpy/typing/tests/data/reveal/arraypad.pyi +27 -0
  957. numpy/typing/tests/data/reveal/arrayprint.pyi +25 -0
  958. numpy/typing/tests/data/reveal/arraysetops.pyi +74 -0
  959. numpy/typing/tests/data/reveal/arrayterator.pyi +27 -0
  960. numpy/typing/tests/data/reveal/bitwise_ops.pyi +166 -0
  961. numpy/typing/tests/data/reveal/char.pyi +225 -0
  962. numpy/typing/tests/data/reveal/chararray.pyi +138 -0
  963. numpy/typing/tests/data/reveal/comparisons.pyi +264 -0
  964. numpy/typing/tests/data/reveal/constants.pyi +14 -0
  965. numpy/typing/tests/data/reveal/ctypeslib.pyi +81 -0
  966. numpy/typing/tests/data/reveal/datasource.pyi +23 -0
  967. numpy/typing/tests/data/reveal/dtype.pyi +132 -0
  968. numpy/typing/tests/data/reveal/einsumfunc.pyi +39 -0
  969. numpy/typing/tests/data/reveal/emath.pyi +54 -0
  970. numpy/typing/tests/data/reveal/fft.pyi +37 -0
  971. numpy/typing/tests/data/reveal/flatiter.pyi +86 -0
  972. numpy/typing/tests/data/reveal/fromnumeric.pyi +347 -0
  973. numpy/typing/tests/data/reveal/getlimits.pyi +53 -0
  974. numpy/typing/tests/data/reveal/histograms.pyi +25 -0
  975. numpy/typing/tests/data/reveal/index_tricks.pyi +70 -0
  976. numpy/typing/tests/data/reveal/lib_function_base.pyi +409 -0
  977. numpy/typing/tests/data/reveal/lib_polynomial.pyi +147 -0
  978. numpy/typing/tests/data/reveal/lib_utils.pyi +17 -0
  979. numpy/typing/tests/data/reveal/lib_version.pyi +20 -0
  980. numpy/typing/tests/data/reveal/linalg.pyi +154 -0
  981. numpy/typing/tests/data/reveal/ma.pyi +1098 -0
  982. numpy/typing/tests/data/reveal/matrix.pyi +73 -0
  983. numpy/typing/tests/data/reveal/memmap.pyi +19 -0
  984. numpy/typing/tests/data/reveal/mod.pyi +178 -0
  985. numpy/typing/tests/data/reveal/modules.pyi +51 -0
  986. numpy/typing/tests/data/reveal/multiarray.pyi +197 -0
  987. numpy/typing/tests/data/reveal/nbit_base_example.pyi +20 -0
  988. numpy/typing/tests/data/reveal/ndarray_assignability.pyi +82 -0
  989. numpy/typing/tests/data/reveal/ndarray_conversion.pyi +83 -0
  990. numpy/typing/tests/data/reveal/ndarray_misc.pyi +246 -0
  991. numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi +47 -0
  992. numpy/typing/tests/data/reveal/nditer.pyi +49 -0
  993. numpy/typing/tests/data/reveal/nested_sequence.pyi +25 -0
  994. numpy/typing/tests/data/reveal/npyio.pyi +83 -0
  995. numpy/typing/tests/data/reveal/numeric.pyi +170 -0
  996. numpy/typing/tests/data/reveal/numerictypes.pyi +16 -0
  997. numpy/typing/tests/data/reveal/polynomial_polybase.pyi +217 -0
  998. numpy/typing/tests/data/reveal/polynomial_polyutils.pyi +218 -0
  999. numpy/typing/tests/data/reveal/polynomial_series.pyi +138 -0
  1000. numpy/typing/tests/data/reveal/random.pyi +1546 -0
  1001. numpy/typing/tests/data/reveal/rec.pyi +171 -0
  1002. numpy/typing/tests/data/reveal/scalars.pyi +191 -0
  1003. numpy/typing/tests/data/reveal/shape.pyi +13 -0
  1004. numpy/typing/tests/data/reveal/shape_base.pyi +52 -0
  1005. numpy/typing/tests/data/reveal/stride_tricks.pyi +27 -0
  1006. numpy/typing/tests/data/reveal/strings.pyi +196 -0
  1007. numpy/typing/tests/data/reveal/testing.pyi +198 -0
  1008. numpy/typing/tests/data/reveal/twodim_base.pyi +225 -0
  1009. numpy/typing/tests/data/reveal/type_check.pyi +67 -0
  1010. numpy/typing/tests/data/reveal/ufunc_config.pyi +29 -0
  1011. numpy/typing/tests/data/reveal/ufunclike.pyi +31 -0
  1012. numpy/typing/tests/data/reveal/ufuncs.pyi +142 -0
  1013. numpy/typing/tests/data/reveal/warnings_and_errors.pyi +11 -0
  1014. numpy/typing/tests/test_isfile.py +38 -0
  1015. numpy/typing/tests/test_runtime.py +110 -0
  1016. numpy/typing/tests/test_typing.py +205 -0
  1017. numpy/version.py +11 -0
  1018. numpy/version.pyi +9 -0
  1019. numpy-2.4.1.dist-info/METADATA +139 -0
  1020. numpy-2.4.1.dist-info/RECORD +1039 -0
  1021. numpy-2.4.1.dist-info/WHEEL +6 -0
  1022. numpy-2.4.1.dist-info/entry_points.txt +13 -0
  1023. numpy-2.4.1.dist-info/licenses/LICENSE.txt +935 -0
  1024. numpy-2.4.1.dist-info/licenses/numpy/_core/include/numpy/libdivide/LICENSE.txt +21 -0
  1025. numpy-2.4.1.dist-info/licenses/numpy/_core/src/common/pythoncapi-compat/COPYING +14 -0
  1026. numpy-2.4.1.dist-info/licenses/numpy/_core/src/highway/LICENSE +371 -0
  1027. numpy-2.4.1.dist-info/licenses/numpy/_core/src/multiarray/dragon4_LICENSE.txt +27 -0
  1028. numpy-2.4.1.dist-info/licenses/numpy/_core/src/npysort/x86-simd-sort/LICENSE.md +28 -0
  1029. numpy-2.4.1.dist-info/licenses/numpy/_core/src/umath/svml/LICENSE +30 -0
  1030. numpy-2.4.1.dist-info/licenses/numpy/fft/pocketfft/LICENSE.md +25 -0
  1031. numpy-2.4.1.dist-info/licenses/numpy/linalg/lapack_lite/LICENSE.txt +48 -0
  1032. numpy-2.4.1.dist-info/licenses/numpy/ma/LICENSE +24 -0
  1033. numpy-2.4.1.dist-info/licenses/numpy/random/LICENSE.md +71 -0
  1034. numpy-2.4.1.dist-info/licenses/numpy/random/src/distributions/LICENSE.md +61 -0
  1035. numpy-2.4.1.dist-info/licenses/numpy/random/src/mt19937/LICENSE.md +61 -0
  1036. numpy-2.4.1.dist-info/licenses/numpy/random/src/pcg64/LICENSE.md +22 -0
  1037. numpy-2.4.1.dist-info/licenses/numpy/random/src/philox/LICENSE.md +31 -0
  1038. numpy-2.4.1.dist-info/licenses/numpy/random/src/sfc64/LICENSE.md +27 -0
  1039. numpy-2.4.1.dist-info/licenses/numpy/random/src/splitmix64/LICENSE.md +9 -0
@@ -0,0 +1,1724 @@
1
+ import sys
2
+ import warnings
3
+
4
+ import pytest
5
+
6
+ import numpy as np
7
+ from numpy import random
8
+ from numpy.testing import (
9
+ IS_WASM,
10
+ assert_,
11
+ assert_array_almost_equal,
12
+ assert_array_equal,
13
+ assert_equal,
14
+ assert_no_warnings,
15
+ assert_raises,
16
+ )
17
+
18
+
19
+ class TestSeed:
20
+ def test_scalar(self):
21
+ s = np.random.RandomState(0)
22
+ assert_equal(s.randint(1000), 684)
23
+ s = np.random.RandomState(4294967295)
24
+ assert_equal(s.randint(1000), 419)
25
+
26
+ def test_array(self):
27
+ s = np.random.RandomState(range(10))
28
+ assert_equal(s.randint(1000), 468)
29
+ s = np.random.RandomState(np.arange(10))
30
+ assert_equal(s.randint(1000), 468)
31
+ s = np.random.RandomState([0])
32
+ assert_equal(s.randint(1000), 973)
33
+ s = np.random.RandomState([4294967295])
34
+ assert_equal(s.randint(1000), 265)
35
+
36
+ def test_invalid_scalar(self):
37
+ # seed must be an unsigned 32 bit integer
38
+ assert_raises(TypeError, np.random.RandomState, -0.5)
39
+ assert_raises(ValueError, np.random.RandomState, -1)
40
+
41
+ def test_invalid_array(self):
42
+ # seed must be an unsigned 32 bit integer
43
+ assert_raises(TypeError, np.random.RandomState, [-0.5])
44
+ assert_raises(ValueError, np.random.RandomState, [-1])
45
+ assert_raises(ValueError, np.random.RandomState, [4294967296])
46
+ assert_raises(ValueError, np.random.RandomState, [1, 2, 4294967296])
47
+ assert_raises(ValueError, np.random.RandomState, [1, -2, 4294967296])
48
+
49
+ def test_invalid_array_shape(self):
50
+ # gh-9832
51
+ assert_raises(ValueError, np.random.RandomState,
52
+ np.array([], dtype=np.int64))
53
+ assert_raises(ValueError, np.random.RandomState, [[1, 2, 3]])
54
+ assert_raises(ValueError, np.random.RandomState, [[1, 2, 3],
55
+ [4, 5, 6]])
56
+
57
+
58
+ class TestBinomial:
59
+ def test_n_zero(self):
60
+ # Tests the corner case of n == 0 for the binomial distribution.
61
+ # binomial(0, p) should be zero for any p in [0, 1].
62
+ # This test addresses issue #3480.
63
+ zeros = np.zeros(2, dtype='int')
64
+ for p in [0, .5, 1]:
65
+ assert_(random.binomial(0, p) == 0)
66
+ assert_array_equal(random.binomial(zeros, p), zeros)
67
+
68
+ def test_p_is_nan(self):
69
+ # Issue #4571.
70
+ assert_raises(ValueError, random.binomial, 1, np.nan)
71
+
72
+
73
+ class TestMultinomial:
74
+ def test_basic(self):
75
+ random.multinomial(100, [0.2, 0.8])
76
+
77
+ def test_zero_probability(self):
78
+ random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0])
79
+
80
+ def test_int_negative_interval(self):
81
+ assert_(-5 <= random.randint(-5, -1) < -1)
82
+ x = random.randint(-5, -1, 5)
83
+ assert_(np.all(-5 <= x))
84
+ assert_(np.all(x < -1))
85
+
86
+ def test_size(self):
87
+ # gh-3173
88
+ p = [0.5, 0.5]
89
+ assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
90
+ assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
91
+ assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
92
+ assert_equal(np.random.multinomial(1, p, [2, 2]).shape, (2, 2, 2))
93
+ assert_equal(np.random.multinomial(1, p, (2, 2)).shape, (2, 2, 2))
94
+ assert_equal(np.random.multinomial(1, p, np.array((2, 2))).shape,
95
+ (2, 2, 2))
96
+
97
+ assert_raises(TypeError, np.random.multinomial, 1, p,
98
+ float(1))
99
+
100
+ def test_multidimensional_pvals(self):
101
+ assert_raises(ValueError, np.random.multinomial, 10, [[0, 1]])
102
+ assert_raises(ValueError, np.random.multinomial, 10, [[0], [1]])
103
+ assert_raises(ValueError, np.random.multinomial, 10, [[[0], [1]], [[1], [0]]])
104
+ assert_raises(ValueError, np.random.multinomial, 10, np.array([[0, 1], [1, 0]]))
105
+
106
+
107
+ class TestSetState:
108
+ def _create_rng(self):
109
+ seed = 1234567890
110
+ prng = random.RandomState(seed)
111
+ state = prng.get_state()
112
+ return prng, state
113
+
114
+ def test_basic(self):
115
+ prng, state = self._create_rng()
116
+ old = prng.tomaxint(16)
117
+ prng.set_state(state)
118
+ new = prng.tomaxint(16)
119
+ assert_(np.all(old == new))
120
+
121
+ def test_gaussian_reset(self):
122
+ # Make sure the cached every-other-Gaussian is reset.
123
+ prng, state = self._create_rng()
124
+ old = prng.standard_normal(size=3)
125
+ prng.set_state(state)
126
+ new = prng.standard_normal(size=3)
127
+ assert_(np.all(old == new))
128
+
129
+ def test_gaussian_reset_in_media_res(self):
130
+ # When the state is saved with a cached Gaussian, make sure the
131
+ # cached Gaussian is restored.
132
+ prng, state = self._create_rng()
133
+ prng.standard_normal()
134
+ state = prng.get_state()
135
+ old = prng.standard_normal(size=3)
136
+ prng.set_state(state)
137
+ new = prng.standard_normal(size=3)
138
+ assert_(np.all(old == new))
139
+
140
+ def test_backwards_compatibility(self):
141
+ # Make sure we can accept old state tuples that do not have the
142
+ # cached Gaussian value.
143
+ prng, state = self._create_rng()
144
+ old_state = state[:-2]
145
+ x1 = prng.standard_normal(size=16)
146
+ prng.set_state(old_state)
147
+ x2 = prng.standard_normal(size=16)
148
+ prng.set_state(state)
149
+ x3 = prng.standard_normal(size=16)
150
+ assert_(np.all(x1 == x2))
151
+ assert_(np.all(x1 == x3))
152
+
153
+ def test_negative_binomial(self):
154
+ # Ensure that the negative binomial results take floating point
155
+ # arguments without truncation.
156
+ prng, _ = self._create_rng()
157
+ prng.negative_binomial(0.5, 0.5)
158
+
159
+ def test_set_invalid_state(self):
160
+ # gh-25402
161
+ prng, _ = self._create_rng()
162
+ with pytest.raises(IndexError):
163
+ prng.set_state(())
164
+
165
+
166
+ class TestRandint:
167
+
168
+ # valid integer/boolean types
169
+ itype = [np.bool, np.int8, np.uint8, np.int16, np.uint16,
170
+ np.int32, np.uint32, np.int64, np.uint64]
171
+
172
+ def test_unsupported_type(self):
173
+ rng = random.RandomState()
174
+ assert_raises(TypeError, rng.randint, 1, dtype=float)
175
+
176
+ def test_bounds_checking(self):
177
+ rng = random.RandomState()
178
+ for dt in self.itype:
179
+ lbnd = 0 if dt is np.bool else np.iinfo(dt).min
180
+ ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1
181
+ assert_raises(ValueError, rng.randint, lbnd - 1, ubnd, dtype=dt)
182
+ assert_raises(ValueError, rng.randint, lbnd, ubnd + 1, dtype=dt)
183
+ assert_raises(ValueError, rng.randint, ubnd, lbnd, dtype=dt)
184
+ assert_raises(ValueError, rng.randint, 1, 0, dtype=dt)
185
+
186
+ def test_rng_zero_and_extremes(self):
187
+ rng = random.RandomState()
188
+ for dt in self.itype:
189
+ lbnd = 0 if dt is np.bool else np.iinfo(dt).min
190
+ ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1
191
+
192
+ tgt = ubnd - 1
193
+ assert_equal(rng.randint(tgt, tgt + 1, size=1000, dtype=dt), tgt)
194
+
195
+ tgt = lbnd
196
+ assert_equal(rng.randint(tgt, tgt + 1, size=1000, dtype=dt), tgt)
197
+
198
+ tgt = (lbnd + ubnd) // 2
199
+ assert_equal(rng.randint(tgt, tgt + 1, size=1000, dtype=dt), tgt)
200
+
201
+ def test_full_range(self):
202
+ # Test for ticket #1690
203
+ rng = random.RandomState()
204
+
205
+ for dt in self.itype:
206
+ lbnd = 0 if dt is np.bool else np.iinfo(dt).min
207
+ ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1
208
+
209
+ try:
210
+ rng.randint(lbnd, ubnd, dtype=dt)
211
+ except Exception as e:
212
+ raise AssertionError("No error should have been raised, "
213
+ "but one was with the following "
214
+ "message:\n\n%s" % str(e))
215
+
216
+ def test_in_bounds_fuzz(self):
217
+ # Don't use fixed seed
218
+ rng = random.RandomState()
219
+
220
+ for dt in self.itype[1:]:
221
+ for ubnd in [4, 8, 16]:
222
+ vals = rng.randint(2, ubnd, size=2**16, dtype=dt)
223
+ assert_(vals.max() < ubnd)
224
+ assert_(vals.min() >= 2)
225
+
226
+ vals = rng.randint(0, 2, size=2**16, dtype=np.bool)
227
+
228
+ assert_(vals.max() < 2)
229
+ assert_(vals.min() >= 0)
230
+
231
+ def test_repeatability(self):
232
+ import hashlib
233
+ # We use a sha256 hash of generated sequences of 1000 samples
234
+ # in the range [0, 6) for all but bool, where the range
235
+ # is [0, 2). Hashes are for little endian numbers.
236
+ tgt = {'bool': '509aea74d792fb931784c4b0135392c65aec64beee12b0cc167548a2c3d31e71', # noqa: E501
237
+ 'int16': '7b07f1a920e46f6d0fe02314155a2330bcfd7635e708da50e536c5ebb631a7d4', # noqa: E501
238
+ 'int32': 'e577bfed6c935de944424667e3da285012e741892dcb7051a8f1ce68ab05c92f', # noqa: E501
239
+ 'int64': '0fbead0b06759df2cfb55e43148822d4a1ff953c7eb19a5b08445a63bb64fa9e', # noqa: E501
240
+ 'int8': '001aac3a5acb935a9b186cbe14a1ca064b8bb2dd0b045d48abeacf74d0203404', # noqa: E501
241
+ 'uint16': '7b07f1a920e46f6d0fe02314155a2330bcfd7635e708da50e536c5ebb631a7d4', # noqa: E501
242
+ 'uint32': 'e577bfed6c935de944424667e3da285012e741892dcb7051a8f1ce68ab05c92f', # noqa: E501
243
+ 'uint64': '0fbead0b06759df2cfb55e43148822d4a1ff953c7eb19a5b08445a63bb64fa9e', # noqa: E501
244
+ 'uint8': '001aac3a5acb935a9b186cbe14a1ca064b8bb2dd0b045d48abeacf74d0203404'} # noqa: E501
245
+
246
+ for dt in self.itype[1:]:
247
+ rng = random.RandomState(1234)
248
+
249
+ # view as little endian for hash
250
+ if sys.byteorder == 'little':
251
+ val = rng.randint(0, 6, size=1000, dtype=dt)
252
+ else:
253
+ val = rng.randint(0, 6, size=1000, dtype=dt).byteswap()
254
+
255
+ res = hashlib.sha256(val.view(np.int8)).hexdigest()
256
+ assert_(tgt[np.dtype(dt).name] == res)
257
+
258
+ # bools do not depend on endianness
259
+ rng = random.RandomState(1234)
260
+ val = rng.randint(0, 2, size=1000, dtype=bool).view(np.int8)
261
+ res = hashlib.sha256(val).hexdigest()
262
+ assert_(tgt[np.dtype(bool).name] == res)
263
+
264
+ def test_int64_uint64_corner_case(self):
265
+ # When stored in Numpy arrays, `lbnd` is casted
266
+ # as np.int64, and `ubnd` is casted as np.uint64.
267
+ # Checking whether `lbnd` >= `ubnd` used to be
268
+ # done solely via direct comparison, which is incorrect
269
+ # because when Numpy tries to compare both numbers,
270
+ # it casts both to np.float64 because there is
271
+ # no integer superset of np.int64 and np.uint64. However,
272
+ # `ubnd` is too large to be represented in np.float64,
273
+ # causing it be round down to np.iinfo(np.int64).max,
274
+ # leading to a ValueError because `lbnd` now equals
275
+ # the new `ubnd`.
276
+
277
+ dt = np.int64
278
+ tgt = np.iinfo(np.int64).max
279
+ lbnd = np.int64(np.iinfo(np.int64).max)
280
+ ubnd = np.uint64(np.iinfo(np.int64).max + 1)
281
+
282
+ # None of these function calls should
283
+ # generate a ValueError now.
284
+ actual = np.random.randint(lbnd, ubnd, dtype=dt)
285
+ assert_equal(actual, tgt)
286
+
287
+ def test_respect_dtype_singleton(self):
288
+ # See gh-7203
289
+ rng = random.RandomState()
290
+ for dt in self.itype:
291
+ lbnd = 0 if dt is np.bool else np.iinfo(dt).min
292
+ ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1
293
+
294
+ sample = rng.randint(lbnd, ubnd, dtype=dt)
295
+ assert_equal(sample.dtype, np.dtype(dt))
296
+
297
+ for dt in (bool, int):
298
+ # The legacy rng uses "long" as the default integer:
299
+ lbnd = 0 if dt is bool else np.iinfo("long").min
300
+ ubnd = 2 if dt is bool else np.iinfo("long").max + 1
301
+
302
+ # gh-7284: Ensure that we get Python data types
303
+ sample = rng.randint(lbnd, ubnd, dtype=dt)
304
+ assert_(not hasattr(sample, 'dtype'))
305
+ assert_equal(type(sample), dt)
306
+
307
+
308
+ class TestRandomDist:
309
+ # Make sure the random distribution returns the correct value for a
310
+ # given seed
311
+ seed = 1234567890
312
+
313
+ def test_rand(self):
314
+ rng = random.RandomState(self.seed)
315
+ actual = rng.rand(3, 2)
316
+ desired = np.array([[0.61879477158567997, 0.59162362775974664],
317
+ [0.88868358904449662, 0.89165480011560816],
318
+ [0.4575674820298663, 0.7781880808593471]])
319
+ assert_array_almost_equal(actual, desired, decimal=15)
320
+
321
+ def test_randn(self):
322
+ rng = random.RandomState(self.seed)
323
+ actual = rng.randn(3, 2)
324
+ desired = np.array([[1.34016345771863121, 1.73759122771936081],
325
+ [1.498988344300628, -0.2286433324536169],
326
+ [2.031033998682787, 2.17032494605655257]])
327
+ assert_array_almost_equal(actual, desired, decimal=15)
328
+
329
+ def test_randint(self):
330
+ rng = random.RandomState(self.seed)
331
+ actual = rng.randint(-99, 99, size=(3, 2))
332
+ desired = np.array([[31, 3],
333
+ [-52, 41],
334
+ [-48, -66]])
335
+ assert_array_equal(actual, desired)
336
+
337
+ def test_random_integers(self):
338
+ rng = random.RandomState(self.seed)
339
+ with pytest.warns(DeprecationWarning):
340
+ actual = rng.random_integers(-99, 99, size=(3, 2))
341
+ desired = np.array([[31, 3],
342
+ [-52, 41],
343
+ [-48, -66]])
344
+ assert_array_equal(actual, desired)
345
+
346
+ def test_random_integers_max_int(self):
347
+ # Tests whether random_integers can generate the
348
+ # maximum allowed Python int that can be converted
349
+ # into a C long. Previous implementations of this
350
+ # method have thrown an OverflowError when attempting
351
+ # to generate this integer.
352
+ with pytest.warns(DeprecationWarning):
353
+ actual = np.random.random_integers(np.iinfo('l').max,
354
+ np.iinfo('l').max)
355
+
356
+ desired = np.iinfo('l').max
357
+ assert_equal(actual, desired)
358
+
359
+ def test_random_integers_deprecated(self):
360
+ with warnings.catch_warnings():
361
+ warnings.simplefilter("error", DeprecationWarning)
362
+
363
+ # DeprecationWarning raised with high == None
364
+ assert_raises(DeprecationWarning,
365
+ np.random.random_integers,
366
+ np.iinfo('l').max)
367
+
368
+ # DeprecationWarning raised with high != None
369
+ assert_raises(DeprecationWarning,
370
+ np.random.random_integers,
371
+ np.iinfo('l').max, np.iinfo('l').max)
372
+
373
+ def test_random(self):
374
+ rng = random.RandomState(self.seed)
375
+ actual = rng.random((3, 2))
376
+ desired = np.array([[0.61879477158567997, 0.59162362775974664],
377
+ [0.88868358904449662, 0.89165480011560816],
378
+ [0.4575674820298663, 0.7781880808593471]])
379
+ assert_array_almost_equal(actual, desired, decimal=15)
380
+
381
+ def test_choice_uniform_replace(self):
382
+ rng = random.RandomState(self.seed)
383
+ actual = rng.choice(4, 4)
384
+ desired = np.array([2, 3, 2, 3])
385
+ assert_array_equal(actual, desired)
386
+
387
+ def test_choice_nonuniform_replace(self):
388
+ rng = random.RandomState(self.seed)
389
+ actual = rng.choice(4, 4, p=[0.4, 0.4, 0.1, 0.1])
390
+ desired = np.array([1, 1, 2, 2])
391
+ assert_array_equal(actual, desired)
392
+
393
+ def test_choice_uniform_noreplace(self):
394
+ rng = random.RandomState(self.seed)
395
+ actual = rng.choice(4, 3, replace=False)
396
+ desired = np.array([0, 1, 3])
397
+ assert_array_equal(actual, desired)
398
+
399
+ def test_choice_nonuniform_noreplace(self):
400
+ rng = random.RandomState(self.seed)
401
+ actual = rng.choice(4, 3, replace=False,
402
+ p=[0.1, 0.3, 0.5, 0.1])
403
+ desired = np.array([2, 3, 1])
404
+ assert_array_equal(actual, desired)
405
+
406
+ def test_choice_noninteger(self):
407
+ rng = random.RandomState(self.seed)
408
+ actual = rng.choice(['a', 'b', 'c', 'd'], 4)
409
+ desired = np.array(['c', 'd', 'c', 'd'])
410
+ assert_array_equal(actual, desired)
411
+
412
+ def test_choice_exceptions(self):
413
+ sample = np.random.choice
414
+ assert_raises(ValueError, sample, -1, 3)
415
+ assert_raises(ValueError, sample, 3., 3)
416
+ assert_raises(ValueError, sample, [[1, 2], [3, 4]], 3)
417
+ assert_raises(ValueError, sample, [], 3)
418
+ assert_raises(ValueError, sample, [1, 2, 3, 4], 3,
419
+ p=[[0.25, 0.25], [0.25, 0.25]])
420
+ assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4, 0.2])
421
+ assert_raises(ValueError, sample, [1, 2], 3, p=[1.1, -0.1])
422
+ assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4])
423
+ assert_raises(ValueError, sample, [1, 2, 3], 4, replace=False)
424
+ # gh-13087
425
+ assert_raises(ValueError, sample, [1, 2, 3], -2, replace=False)
426
+ assert_raises(ValueError, sample, [1, 2, 3], (-1,), replace=False)
427
+ assert_raises(ValueError, sample, [1, 2, 3], (-1, 1), replace=False)
428
+ assert_raises(ValueError, sample, [1, 2, 3], 2,
429
+ replace=False, p=[1, 0, 0])
430
+
431
+ def test_choice_return_shape(self):
432
+ p = [0.1, 0.9]
433
+ # Check scalar
434
+ assert_(np.isscalar(np.random.choice(2, replace=True)))
435
+ assert_(np.isscalar(np.random.choice(2, replace=False)))
436
+ assert_(np.isscalar(np.random.choice(2, replace=True, p=p)))
437
+ assert_(np.isscalar(np.random.choice(2, replace=False, p=p)))
438
+ assert_(np.isscalar(np.random.choice([1, 2], replace=True)))
439
+ assert_(np.random.choice([None], replace=True) is None)
440
+ a = np.array([1, 2])
441
+ arr = np.empty(1, dtype=object)
442
+ arr[0] = a
443
+ assert_(np.random.choice(arr, replace=True) is a)
444
+
445
+ # Check 0-d array
446
+ s = ()
447
+ assert_(not np.isscalar(np.random.choice(2, s, replace=True)))
448
+ assert_(not np.isscalar(np.random.choice(2, s, replace=False)))
449
+ assert_(not np.isscalar(np.random.choice(2, s, replace=True, p=p)))
450
+ assert_(not np.isscalar(np.random.choice(2, s, replace=False, p=p)))
451
+ assert_(not np.isscalar(np.random.choice([1, 2], s, replace=True)))
452
+ assert_(np.random.choice([None], s, replace=True).ndim == 0)
453
+ a = np.array([1, 2])
454
+ arr = np.empty(1, dtype=object)
455
+ arr[0] = a
456
+ assert_(np.random.choice(arr, s, replace=True).item() is a)
457
+
458
+ # Check multi dimensional array
459
+ s = (2, 3)
460
+ p = [0.1, 0.1, 0.1, 0.1, 0.4, 0.2]
461
+ assert_equal(np.random.choice(6, s, replace=True).shape, s)
462
+ assert_equal(np.random.choice(6, s, replace=False).shape, s)
463
+ assert_equal(np.random.choice(6, s, replace=True, p=p).shape, s)
464
+ assert_equal(np.random.choice(6, s, replace=False, p=p).shape, s)
465
+ assert_equal(np.random.choice(np.arange(6), s, replace=True).shape, s)
466
+
467
+ # Check zero-size
468
+ assert_equal(np.random.randint(0, 0, size=(3, 0, 4)).shape, (3, 0, 4))
469
+ assert_equal(np.random.randint(0, -10, size=0).shape, (0,))
470
+ assert_equal(np.random.randint(10, 10, size=0).shape, (0,))
471
+ assert_equal(np.random.choice(0, size=0).shape, (0,))
472
+ assert_equal(np.random.choice([], size=(0,)).shape, (0,))
473
+ assert_equal(np.random.choice(['a', 'b'], size=(3, 0, 4)).shape,
474
+ (3, 0, 4))
475
+ assert_raises(ValueError, np.random.choice, [], 10)
476
+
477
+ def test_choice_nan_probabilities(self):
478
+ a = np.array([42, 1, 2])
479
+ p = [None, None, None]
480
+ assert_raises(ValueError, np.random.choice, a, p=p)
481
+
482
+ def test_bytes(self):
483
+ rng = random.RandomState(self.seed)
484
+ actual = rng.bytes(10)
485
+ desired = b'\x82Ui\x9e\xff\x97+Wf\xa5'
486
+ assert_equal(actual, desired)
487
+
488
+ def test_shuffle(self):
489
+ # Test lists, arrays (of various dtypes), and multidimensional versions
490
+ # of both, c-contiguous or not:
491
+ for conv in [lambda x: np.array([]),
492
+ lambda x: x,
493
+ lambda x: np.asarray(x).astype(np.int8),
494
+ lambda x: np.asarray(x).astype(np.float32),
495
+ lambda x: np.asarray(x).astype(np.complex64),
496
+ lambda x: np.asarray(x).astype(object),
497
+ lambda x: [(i, i) for i in x],
498
+ lambda x: np.asarray([[i, i] for i in x]),
499
+ lambda x: np.vstack([x, x]).T,
500
+ # gh-11442
501
+ lambda x: (np.asarray([(i, i) for i in x],
502
+ [("a", int), ("b", int)])
503
+ .view(np.recarray)),
504
+ # gh-4270
505
+ lambda x: np.asarray([(i, i) for i in x],
506
+ [("a", object), ("b", np.int32)])]:
507
+ rng = random.RandomState(self.seed)
508
+ alist = conv([1, 2, 3, 4, 5, 6, 7, 8, 9, 0])
509
+ rng.shuffle(alist)
510
+ actual = alist
511
+ desired = conv([0, 1, 9, 6, 2, 4, 5, 8, 7, 3])
512
+ assert_array_equal(actual, desired)
513
+
514
+ def test_shuffle_masked(self):
515
+ # gh-3263
516
+ a = np.ma.masked_values(np.reshape(range(20), (5, 4)) % 3 - 1, -1)
517
+ b = np.ma.masked_values(np.arange(20) % 3 - 1, -1)
518
+ a_orig = a.copy()
519
+ b_orig = b.copy()
520
+ for i in range(50):
521
+ np.random.shuffle(a)
522
+ assert_equal(
523
+ sorted(a.data[~a.mask]), sorted(a_orig.data[~a_orig.mask]))
524
+ np.random.shuffle(b)
525
+ assert_equal(
526
+ sorted(b.data[~b.mask]), sorted(b_orig.data[~b_orig.mask]))
527
+
528
+ @pytest.mark.parametrize("random",
529
+ [np.random, np.random.RandomState(), np.random.default_rng()])
530
+ def test_shuffle_untyped_warning(self, random):
531
+ # Create a dict works like a sequence but isn't one
532
+ values = {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6}
533
+ with pytest.warns(UserWarning,
534
+ match="you are shuffling a 'dict' object") as rec:
535
+ random.shuffle(values)
536
+ assert "test_random" in rec[0].filename
537
+
538
+ @pytest.mark.parametrize("random",
539
+ [np.random, np.random.RandomState(), np.random.default_rng()])
540
+ @pytest.mark.parametrize("use_array_like", [True, False])
541
+ def test_shuffle_no_object_unpacking(self, random, use_array_like):
542
+ class MyArr(np.ndarray):
543
+ pass
544
+
545
+ items = [
546
+ None, np.array([3]), np.float64(3), np.array(10), np.float64(7)
547
+ ]
548
+ arr = np.array(items, dtype=object)
549
+ item_ids = {id(i) for i in items}
550
+ if use_array_like:
551
+ arr = arr.view(MyArr)
552
+
553
+ # The array was created fine, and did not modify any objects:
554
+ assert all(id(i) in item_ids for i in arr)
555
+
556
+ if use_array_like and not isinstance(random, np.random.Generator):
557
+ # The old API gives incorrect results, but warns about it.
558
+ with pytest.warns(UserWarning,
559
+ match="Shuffling a one dimensional array.*"):
560
+ random.shuffle(arr)
561
+ else:
562
+ random.shuffle(arr)
563
+ assert all(id(i) in item_ids for i in arr)
564
+
565
+ def test_shuffle_memoryview(self):
566
+ # gh-18273
567
+ # allow graceful handling of memoryviews
568
+ # (treat the same as arrays)
569
+ rng = random.RandomState(self.seed)
570
+ a = np.arange(5).data
571
+ rng.shuffle(a)
572
+ assert_equal(np.asarray(a), [0, 1, 4, 3, 2])
573
+ rng = random.RandomState(self.seed)
574
+ rng.shuffle(a)
575
+ assert_equal(np.asarray(a), [0, 1, 2, 3, 4])
576
+ rng = np.random.default_rng(self.seed)
577
+ rng.shuffle(a)
578
+ assert_equal(np.asarray(a), [4, 1, 0, 3, 2])
579
+
580
+ def test_shuffle_not_writeable(self):
581
+ a = np.zeros(3)
582
+ a.flags.writeable = False
583
+ with pytest.raises(ValueError, match='read-only'):
584
+ np.random.shuffle(a)
585
+
586
+ def test_beta(self):
587
+ rng = random.RandomState(self.seed)
588
+ actual = rng.beta(.1, .9, size=(3, 2))
589
+ desired = np.array(
590
+ [[1.45341850513746058e-02, 5.31297615662868145e-04],
591
+ [1.85366619058432324e-06, 4.19214516800110563e-03],
592
+ [1.58405155108498093e-04, 1.26252891949397652e-04]])
593
+ assert_array_almost_equal(actual, desired, decimal=15)
594
+
595
+ def test_binomial(self):
596
+ rng = random.RandomState(self.seed)
597
+ actual = rng.binomial(100, .456, size=(3, 2))
598
+ desired = np.array([[37, 43],
599
+ [42, 48],
600
+ [46, 45]])
601
+ assert_array_equal(actual, desired)
602
+
603
+ def test_chisquare(self):
604
+ rng = random.RandomState(self.seed)
605
+ actual = rng.chisquare(50, size=(3, 2))
606
+ desired = np.array([[63.87858175501090585, 68.68407748911370447],
607
+ [65.77116116901505904, 47.09686762438974483],
608
+ [72.3828403199695174, 74.18408615260374006]])
609
+ assert_array_almost_equal(actual, desired, decimal=13)
610
+
611
+ def test_dirichlet(self):
612
+ rng = random.RandomState(self.seed)
613
+ alpha = np.array([51.72840233779265162, 39.74494232180943953])
614
+ actual = rng.dirichlet(alpha, size=(3, 2))
615
+ desired = np.array([[[0.54539444573611562, 0.45460555426388438],
616
+ [0.62345816822039413, 0.37654183177960598]],
617
+ [[0.55206000085785778, 0.44793999914214233],
618
+ [0.58964023305154301, 0.41035976694845688]],
619
+ [[0.59266909280647828, 0.40733090719352177],
620
+ [0.56974431743975207, 0.43025568256024799]]])
621
+ assert_array_almost_equal(actual, desired, decimal=15)
622
+
623
+ def test_dirichlet_size(self):
624
+ # gh-3173
625
+ p = np.array([51.72840233779265162, 39.74494232180943953])
626
+ assert_equal(np.random.dirichlet(p, np.uint32(1)).shape, (1, 2))
627
+ assert_equal(np.random.dirichlet(p, np.uint32(1)).shape, (1, 2))
628
+ assert_equal(np.random.dirichlet(p, np.uint32(1)).shape, (1, 2))
629
+ assert_equal(np.random.dirichlet(p, [2, 2]).shape, (2, 2, 2))
630
+ assert_equal(np.random.dirichlet(p, (2, 2)).shape, (2, 2, 2))
631
+ assert_equal(np.random.dirichlet(p, np.array((2, 2))).shape, (2, 2, 2))
632
+
633
+ assert_raises(TypeError, np.random.dirichlet, p, float(1))
634
+
635
+ def test_dirichlet_bad_alpha(self):
636
+ # gh-2089
637
+ alpha = np.array([5.4e-01, -1.0e-16])
638
+ assert_raises(ValueError, np.random.mtrand.dirichlet, alpha)
639
+
640
+ # gh-15876
641
+ assert_raises(ValueError, random.dirichlet, [[5, 1]])
642
+ assert_raises(ValueError, random.dirichlet, [[5], [1]])
643
+ assert_raises(ValueError, random.dirichlet, [[[5], [1]], [[1], [5]]])
644
+ assert_raises(ValueError, random.dirichlet, np.array([[5, 1], [1, 5]]))
645
+
646
+ def test_exponential(self):
647
+ rng = random.RandomState(self.seed)
648
+ actual = rng.exponential(1.1234, size=(3, 2))
649
+ desired = np.array([[1.08342649775011624, 1.00607889924557314],
650
+ [2.46628830085216721, 2.49668106809923884],
651
+ [0.68717433461363442, 1.69175666993575979]])
652
+ assert_array_almost_equal(actual, desired, decimal=15)
653
+
654
+ def test_exponential_0(self):
655
+ assert_equal(np.random.exponential(scale=0), 0)
656
+ assert_raises(ValueError, np.random.exponential, scale=-0.)
657
+
658
+ def test_f(self):
659
+ rng = random.RandomState(self.seed)
660
+ actual = rng.f(12, 77, size=(3, 2))
661
+ desired = np.array([[1.21975394418575878, 1.75135759791559775],
662
+ [1.44803115017146489, 1.22108959480396262],
663
+ [1.02176975757740629, 1.34431827623300415]])
664
+ assert_array_almost_equal(actual, desired, decimal=15)
665
+
666
+ def test_gamma(self):
667
+ rng = random.RandomState(self.seed)
668
+ actual = rng.gamma(5, 3, size=(3, 2))
669
+ desired = np.array([[24.60509188649287182, 28.54993563207210627],
670
+ [26.13476110204064184, 12.56988482927716078],
671
+ [31.71863275789960568, 33.30143302795922011]])
672
+ assert_array_almost_equal(actual, desired, decimal=14)
673
+
674
+ def test_gamma_0(self):
675
+ assert_equal(np.random.gamma(shape=0, scale=0), 0)
676
+ assert_raises(ValueError, np.random.gamma, shape=-0., scale=-0.)
677
+
678
+ def test_geometric(self):
679
+ rng = random.RandomState(self.seed)
680
+ actual = rng.geometric(.123456789, size=(3, 2))
681
+ desired = np.array([[8, 7],
682
+ [17, 17],
683
+ [5, 12]])
684
+ assert_array_equal(actual, desired)
685
+
686
+ def test_gumbel(self):
687
+ rng = random.RandomState(self.seed)
688
+ actual = rng.gumbel(loc=.123456789, scale=2.0, size=(3, 2))
689
+ desired = np.array([[0.19591898743416816, 0.34405539668096674],
690
+ [-1.4492522252274278, -1.47374816298446865],
691
+ [1.10651090478803416, -0.69535848626236174]])
692
+ assert_array_almost_equal(actual, desired, decimal=15)
693
+
694
+ def test_gumbel_0(self):
695
+ assert_equal(np.random.gumbel(scale=0), 0)
696
+ assert_raises(ValueError, np.random.gumbel, scale=-0.)
697
+
698
+ def test_hypergeometric(self):
699
+ rng = random.RandomState(self.seed)
700
+ actual = rng.hypergeometric(10, 5, 14, size=(3, 2))
701
+ desired = np.array([[10, 10],
702
+ [10, 10],
703
+ [9, 9]])
704
+ assert_array_equal(actual, desired)
705
+
706
+ # Test nbad = 0
707
+ actual = rng.hypergeometric(5, 0, 3, size=4)
708
+ desired = np.array([3, 3, 3, 3])
709
+ assert_array_equal(actual, desired)
710
+
711
+ actual = rng.hypergeometric(15, 0, 12, size=4)
712
+ desired = np.array([12, 12, 12, 12])
713
+ assert_array_equal(actual, desired)
714
+
715
+ # Test ngood = 0
716
+ actual = rng.hypergeometric(0, 5, 3, size=4)
717
+ desired = np.array([0, 0, 0, 0])
718
+ assert_array_equal(actual, desired)
719
+
720
+ actual = rng.hypergeometric(0, 15, 12, size=4)
721
+ desired = np.array([0, 0, 0, 0])
722
+ assert_array_equal(actual, desired)
723
+
724
+ def test_laplace(self):
725
+ rng = random.RandomState(self.seed)
726
+ actual = rng.laplace(loc=.123456789, scale=2.0, size=(3, 2))
727
+ desired = np.array([[0.66599721112760157, 0.52829452552221945],
728
+ [3.12791959514407125, 3.18202813572992005],
729
+ [-0.05391065675859356, 1.74901336242837324]])
730
+ assert_array_almost_equal(actual, desired, decimal=15)
731
+
732
+ def test_laplace_0(self):
733
+ assert_equal(np.random.laplace(scale=0), 0)
734
+ assert_raises(ValueError, np.random.laplace, scale=-0.)
735
+
736
+ def test_logistic(self):
737
+ rng = random.RandomState(self.seed)
738
+ actual = rng.logistic(loc=.123456789, scale=2.0, size=(3, 2))
739
+ desired = np.array([[1.09232835305011444, 0.8648196662399954],
740
+ [4.27818590694950185, 4.33897006346929714],
741
+ [-0.21682183359214885, 2.63373365386060332]])
742
+ assert_array_almost_equal(actual, desired, decimal=15)
743
+
744
+ def test_lognormal(self):
745
+ rng = random.RandomState(self.seed)
746
+ actual = rng.lognormal(mean=.123456789, sigma=2.0, size=(3, 2))
747
+ desired = np.array([[16.50698631688883822, 36.54846706092654784],
748
+ [22.67886599981281748, 0.71617561058995771],
749
+ [65.72798501792723869, 86.84341601437161273]])
750
+ assert_array_almost_equal(actual, desired, decimal=13)
751
+
752
+ def test_lognormal_0(self):
753
+ assert_equal(np.random.lognormal(sigma=0), 1)
754
+ assert_raises(ValueError, np.random.lognormal, sigma=-0.)
755
+
756
+ def test_logseries(self):
757
+ rng = random.RandomState(self.seed)
758
+ actual = rng.logseries(p=.923456789, size=(3, 2))
759
+ desired = np.array([[2, 2],
760
+ [6, 17],
761
+ [3, 6]])
762
+ assert_array_equal(actual, desired)
763
+
764
+ def test_multinomial(self):
765
+ rng = random.RandomState(self.seed)
766
+ actual = rng.multinomial(20, [1 / 6.] * 6, size=(3, 2))
767
+ desired = np.array([[[4, 3, 5, 4, 2, 2],
768
+ [5, 2, 8, 2, 2, 1]],
769
+ [[3, 4, 3, 6, 0, 4],
770
+ [2, 1, 4, 3, 6, 4]],
771
+ [[4, 4, 2, 5, 2, 3],
772
+ [4, 3, 4, 2, 3, 4]]])
773
+ assert_array_equal(actual, desired)
774
+
775
+ def test_multivariate_normal(self):
776
+ rng = random.RandomState(self.seed)
777
+ mean = (.123456789, 10)
778
+ cov = [[1, 0], [0, 1]]
779
+ size = (3, 2)
780
+ actual = rng.multivariate_normal(mean, cov, size)
781
+ desired = np.array([[[1.463620246718631, 11.73759122771936],
782
+ [1.622445133300628, 9.771356667546383]],
783
+ [[2.154490787682787, 12.170324946056553],
784
+ [1.719909438201865, 9.230548443648306]],
785
+ [[0.689515026297799, 9.880729819607714],
786
+ [-0.023054015651998, 9.201096623542879]]])
787
+
788
+ assert_array_almost_equal(actual, desired, decimal=15)
789
+
790
+ # Check for default size, was raising deprecation warning
791
+ actual = rng.multivariate_normal(mean, cov)
792
+ desired = np.array([0.895289569463708, 9.17180864067987])
793
+ assert_array_almost_equal(actual, desired, decimal=15)
794
+
795
+ # Check that non positive-semidefinite covariance warns with
796
+ # RuntimeWarning
797
+ mean = [0, 0]
798
+ cov = [[1, 2], [2, 1]]
799
+ pytest.warns(RuntimeWarning, rng.multivariate_normal, mean, cov)
800
+
801
+ # and that it doesn't warn with RuntimeWarning check_valid='ignore'
802
+ assert_no_warnings(rng.multivariate_normal, mean, cov,
803
+ check_valid='ignore')
804
+
805
+ # and that it raises with RuntimeWarning check_valid='raises'
806
+ assert_raises(ValueError, rng.multivariate_normal, mean, cov,
807
+ check_valid='raise')
808
+
809
+ cov = np.array([[1, 0.1], [0.1, 1]], dtype=np.float32)
810
+ with warnings.catch_warnings():
811
+ warnings.simplefilter('error')
812
+ rng.multivariate_normal(mean, cov)
813
+
814
+ def test_negative_binomial(self):
815
+ rng = random.RandomState(self.seed)
816
+ actual = rng.negative_binomial(n=100, p=.12345, size=(3, 2))
817
+ desired = np.array([[848, 841],
818
+ [892, 611],
819
+ [779, 647]])
820
+ assert_array_equal(actual, desired)
821
+
822
+ def test_noncentral_chisquare(self):
823
+ rng = random.RandomState(self.seed)
824
+ actual = rng.noncentral_chisquare(df=5, nonc=5, size=(3, 2))
825
+ desired = np.array([[23.91905354498517511, 13.35324692733826346],
826
+ [31.22452661329736401, 16.60047399466177254],
827
+ [5.03461598262724586, 17.94973089023519464]])
828
+ assert_array_almost_equal(actual, desired, decimal=14)
829
+
830
+ actual = rng.noncentral_chisquare(df=.5, nonc=.2, size=(3, 2))
831
+ desired = np.array([[1.47145377828516666, 0.15052899268012659],
832
+ [0.00943803056963588, 1.02647251615666169],
833
+ [0.332334982684171, 0.15451287602753125]])
834
+ assert_array_almost_equal(actual, desired, decimal=14)
835
+
836
+ rng = random.RandomState(self.seed)
837
+ actual = rng.noncentral_chisquare(df=5, nonc=0, size=(3, 2))
838
+ desired = np.array([[9.597154162763948, 11.725484450296079],
839
+ [10.413711048138335, 3.694475922923986],
840
+ [13.484222138963087, 14.377255424602957]])
841
+ assert_array_almost_equal(actual, desired, decimal=14)
842
+
843
+ def test_noncentral_f(self):
844
+ rng = random.RandomState(self.seed)
845
+ actual = rng.noncentral_f(dfnum=5, dfden=2, nonc=1,
846
+ size=(3, 2))
847
+ desired = np.array([[1.40598099674926669, 0.34207973179285761],
848
+ [3.57715069265772545, 7.92632662577829805],
849
+ [0.43741599463544162, 1.1774208752428319]])
850
+ assert_array_almost_equal(actual, desired, decimal=14)
851
+
852
+ def test_normal(self):
853
+ rng = random.RandomState(self.seed)
854
+ actual = rng.normal(loc=.123456789, scale=2.0, size=(3, 2))
855
+ desired = np.array([[2.80378370443726244, 3.59863924443872163],
856
+ [3.121433477601256, -0.33382987590723379],
857
+ [4.18552478636557357, 4.46410668111310471]])
858
+ assert_array_almost_equal(actual, desired, decimal=15)
859
+
860
+ def test_normal_0(self):
861
+ assert_equal(np.random.normal(scale=0), 0)
862
+ assert_raises(ValueError, np.random.normal, scale=-0.)
863
+
864
+ def test_pareto(self):
865
+ rng = random.RandomState(self.seed)
866
+ actual = rng.pareto(a=.123456789, size=(3, 2))
867
+ desired = np.array(
868
+ [[2.46852460439034849e+03, 1.41286880810518346e+03],
869
+ [5.28287797029485181e+07, 6.57720981047328785e+07],
870
+ [1.40840323350391515e+02, 1.98390255135251704e+05]])
871
+ # For some reason on 32-bit x86 Ubuntu 12.10 the [1, 0] entry in this
872
+ # matrix differs by 24 nulps. Discussion:
873
+ # https://mail.python.org/pipermail/numpy-discussion/2012-September/063801.html
874
+ # Consensus is that this is probably some gcc quirk that affects
875
+ # rounding but not in any important way, so we just use a looser
876
+ # tolerance on this test:
877
+ np.testing.assert_array_almost_equal_nulp(actual, desired, nulp=30)
878
+
879
+ def test_poisson(self):
880
+ rng = random.RandomState(self.seed)
881
+ actual = rng.poisson(lam=.123456789, size=(3, 2))
882
+ desired = np.array([[0, 0],
883
+ [1, 0],
884
+ [0, 0]])
885
+ assert_array_equal(actual, desired)
886
+
887
+ def test_poisson_exceptions(self):
888
+ lambig = np.iinfo('l').max
889
+ lamneg = -1
890
+ assert_raises(ValueError, np.random.poisson, lamneg)
891
+ assert_raises(ValueError, np.random.poisson, [lamneg] * 10)
892
+ assert_raises(ValueError, np.random.poisson, lambig)
893
+ assert_raises(ValueError, np.random.poisson, [lambig] * 10)
894
+
895
+ def test_power(self):
896
+ rng = random.RandomState(self.seed)
897
+ actual = rng.power(a=.123456789, size=(3, 2))
898
+ desired = np.array([[0.02048932883240791, 0.01424192241128213],
899
+ [0.38446073748535298, 0.39499689943484395],
900
+ [0.00177699707563439, 0.13115505880863756]])
901
+ assert_array_almost_equal(actual, desired, decimal=15)
902
+
903
+ def test_rayleigh(self):
904
+ rng = random.RandomState(self.seed)
905
+ actual = rng.rayleigh(scale=10, size=(3, 2))
906
+ desired = np.array([[13.8882496494248393, 13.383318339044731],
907
+ [20.95413364294492098, 21.08285015800712614],
908
+ [11.06066537006854311, 17.35468505778271009]])
909
+ assert_array_almost_equal(actual, desired, decimal=14)
910
+
911
+ def test_rayleigh_0(self):
912
+ assert_equal(np.random.rayleigh(scale=0), 0)
913
+ assert_raises(ValueError, np.random.rayleigh, scale=-0.)
914
+
915
+ def test_standard_cauchy(self):
916
+ rng = random.RandomState(self.seed)
917
+ actual = rng.standard_cauchy(size=(3, 2))
918
+ desired = np.array([[0.77127660196445336, -6.55601161955910605],
919
+ [0.93582023391158309, -2.07479293013759447],
920
+ [-4.74601644297011926, 0.18338989290760804]])
921
+ assert_array_almost_equal(actual, desired, decimal=15)
922
+
923
+ def test_standard_exponential(self):
924
+ rng = random.RandomState(self.seed)
925
+ actual = rng.standard_exponential(size=(3, 2))
926
+ desired = np.array([[0.96441739162374596, 0.89556604882105506],
927
+ [2.1953785836319808, 2.22243285392490542],
928
+ [0.6116915921431676, 1.50592546727413201]])
929
+ assert_array_almost_equal(actual, desired, decimal=15)
930
+
931
+ def test_standard_gamma(self):
932
+ rng = random.RandomState(self.seed)
933
+ actual = rng.standard_gamma(shape=3, size=(3, 2))
934
+ desired = np.array([[5.50841531318455058, 6.62953470301903103],
935
+ [5.93988484943779227, 2.31044849402133989],
936
+ [7.54838614231317084, 8.012756093271868]])
937
+ assert_array_almost_equal(actual, desired, decimal=14)
938
+
939
+ def test_standard_gamma_0(self):
940
+ assert_equal(np.random.standard_gamma(shape=0), 0)
941
+ assert_raises(ValueError, np.random.standard_gamma, shape=-0.)
942
+
943
+ def test_standard_normal(self):
944
+ rng = random.RandomState(self.seed)
945
+ actual = rng.standard_normal(size=(3, 2))
946
+ desired = np.array([[1.34016345771863121, 1.73759122771936081],
947
+ [1.498988344300628, -0.2286433324536169],
948
+ [2.031033998682787, 2.17032494605655257]])
949
+ assert_array_almost_equal(actual, desired, decimal=15)
950
+
951
+ def test_standard_t(self):
952
+ rng = random.RandomState(self.seed)
953
+ actual = rng.standard_t(df=10, size=(3, 2))
954
+ desired = np.array([[0.97140611862659965, -0.08830486548450577],
955
+ [1.36311143689505321, -0.55317463909867071],
956
+ [-0.18473749069684214, 0.61181537341755321]])
957
+ assert_array_almost_equal(actual, desired, decimal=15)
958
+
959
+ def test_triangular(self):
960
+ rng = random.RandomState(self.seed)
961
+ actual = rng.triangular(left=5.12, mode=10.23, right=20.34,
962
+ size=(3, 2))
963
+ desired = np.array([[12.68117178949215784, 12.4129206149193152],
964
+ [16.20131377335158263, 16.25692138747600524],
965
+ [11.20400690911820263, 14.4978144835829923]])
966
+ assert_array_almost_equal(actual, desired, decimal=14)
967
+
968
+ def test_uniform(self):
969
+ rng = random.RandomState(self.seed)
970
+ actual = rng.uniform(low=1.23, high=10.54, size=(3, 2))
971
+ desired = np.array([[6.99097932346268003, 6.73801597444323974],
972
+ [9.50364421400426274, 9.53130618907631089],
973
+ [5.48995325769805476, 8.47493103280052118]])
974
+ assert_array_almost_equal(actual, desired, decimal=15)
975
+
976
+ def test_uniform_range_bounds(self):
977
+ fmin = np.finfo('float').min
978
+ fmax = np.finfo('float').max
979
+
980
+ func = np.random.uniform
981
+ assert_raises(OverflowError, func, -np.inf, 0)
982
+ assert_raises(OverflowError, func, 0, np.inf)
983
+ assert_raises(OverflowError, func, fmin, fmax)
984
+ assert_raises(OverflowError, func, [-np.inf], [0])
985
+ assert_raises(OverflowError, func, [0], [np.inf])
986
+
987
+ # (fmax / 1e17) - fmin is within range, so this should not throw
988
+ # account for i386 extended precision DBL_MAX / 1e17 + DBL_MAX >
989
+ # DBL_MAX by increasing fmin a bit
990
+ np.random.uniform(low=np.nextafter(fmin, 1), high=fmax / 1e17)
991
+
992
+ def test_scalar_exception_propagation(self):
993
+ # Tests that exceptions are correctly propagated in distributions
994
+ # when called with objects that throw exceptions when converted to
995
+ # scalars.
996
+ #
997
+ # Regression test for gh: 8865
998
+
999
+ class ThrowingFloat(np.ndarray):
1000
+ def __float__(self):
1001
+ raise TypeError
1002
+
1003
+ throwing_float = np.array(1.0).view(ThrowingFloat)
1004
+ assert_raises(TypeError, np.random.uniform, throwing_float,
1005
+ throwing_float)
1006
+
1007
+ class ThrowingInteger(np.ndarray):
1008
+ def __int__(self):
1009
+ raise TypeError
1010
+
1011
+ __index__ = __int__
1012
+
1013
+ throwing_int = np.array(1).view(ThrowingInteger)
1014
+ assert_raises(TypeError, np.random.hypergeometric, throwing_int, 1, 1)
1015
+
1016
+ def test_vonmises(self):
1017
+ rng = random.RandomState(self.seed)
1018
+ actual = rng.vonmises(mu=1.23, kappa=1.54, size=(3, 2))
1019
+ desired = np.array([[2.28567572673902042, 2.89163838442285037],
1020
+ [0.38198375564286025, 2.57638023113890746],
1021
+ [1.19153771588353052, 1.83509849681825354]])
1022
+ assert_array_almost_equal(actual, desired, decimal=15)
1023
+
1024
+ def test_vonmises_small(self):
1025
+ # check infinite loop, gh-4720
1026
+ np.random.seed(self.seed)
1027
+ r = np.random.vonmises(mu=0., kappa=1.1e-8, size=10**6)
1028
+ np.testing.assert_(np.isfinite(r).all())
1029
+
1030
+ def test_wald(self):
1031
+ rng = random.RandomState(self.seed)
1032
+ actual = rng.wald(mean=1.23, scale=1.54, size=(3, 2))
1033
+ desired = np.array([[3.82935265715889983, 5.13125249184285526],
1034
+ [0.35045403618358717, 1.50832396872003538],
1035
+ [0.24124319895843183, 0.22031101461955038]])
1036
+ assert_array_almost_equal(actual, desired, decimal=14)
1037
+
1038
+ def test_weibull(self):
1039
+ rng = random.RandomState(self.seed)
1040
+ actual = rng.weibull(a=1.23, size=(3, 2))
1041
+ desired = np.array([[0.97097342648766727, 0.91422896443565516],
1042
+ [1.89517770034962929, 1.91414357960479564],
1043
+ [0.67057783752390987, 1.39494046635066793]])
1044
+ assert_array_almost_equal(actual, desired, decimal=15)
1045
+
1046
+ def test_weibull_0(self):
1047
+ np.random.seed(self.seed)
1048
+ assert_equal(np.random.weibull(a=0, size=12), np.zeros(12))
1049
+ assert_raises(ValueError, np.random.weibull, a=-0.)
1050
+
1051
+ def test_zipf(self):
1052
+ rng = random.RandomState(self.seed)
1053
+ actual = rng.zipf(a=1.23, size=(3, 2))
1054
+ desired = np.array([[66, 29],
1055
+ [1, 1],
1056
+ [3, 13]])
1057
+ assert_array_equal(actual, desired)
1058
+
1059
+
1060
+ class TestBroadcast:
1061
+ # tests that functions that broadcast behave
1062
+ # correctly when presented with non-scalar arguments
1063
+ seed = 123456789
1064
+
1065
+ # TODO: Include test for randint once it can broadcast
1066
+ # Can steal the test written in PR #6938
1067
+
1068
+ def test_uniform(self):
1069
+ low = [0]
1070
+ high = [1]
1071
+ desired = np.array([0.53283302478975902,
1072
+ 0.53413660089041659,
1073
+ 0.50955303552646702])
1074
+
1075
+ rng = random.RandomState(self.seed)
1076
+ actual = rng.uniform(low * 3, high)
1077
+ assert_array_almost_equal(actual, desired, decimal=14)
1078
+
1079
+ rng = random.RandomState(self.seed)
1080
+ actual = rng.uniform(low, high * 3)
1081
+ assert_array_almost_equal(actual, desired, decimal=14)
1082
+
1083
+ def test_normal(self):
1084
+ loc = [0]
1085
+ scale = [1]
1086
+ bad_scale = [-1]
1087
+ desired = np.array([2.2129019979039612,
1088
+ 2.1283977976520019,
1089
+ 1.8417114045748335])
1090
+
1091
+ rng = random.RandomState(self.seed)
1092
+ actual = rng.normal(loc * 3, scale)
1093
+ assert_array_almost_equal(actual, desired, decimal=14)
1094
+ assert_raises(ValueError, rng.normal, loc * 3, bad_scale)
1095
+
1096
+ rng = random.RandomState(self.seed)
1097
+ actual = rng.normal(loc, scale * 3)
1098
+ assert_array_almost_equal(actual, desired, decimal=14)
1099
+ assert_raises(ValueError, rng.normal, loc, bad_scale * 3)
1100
+
1101
+ def test_beta(self):
1102
+ a = [1]
1103
+ b = [2]
1104
+ bad_a = [-1]
1105
+ bad_b = [-2]
1106
+ desired = np.array([0.19843558305989056,
1107
+ 0.075230336409423643,
1108
+ 0.24976865978980844])
1109
+
1110
+ rng = random.RandomState(self.seed)
1111
+ actual = rng.beta(a * 3, b)
1112
+ assert_array_almost_equal(actual, desired, decimal=14)
1113
+ assert_raises(ValueError, rng.beta, bad_a * 3, b)
1114
+ assert_raises(ValueError, rng.beta, a * 3, bad_b)
1115
+
1116
+ rng = random.RandomState(self.seed)
1117
+ actual = rng.beta(a, b * 3)
1118
+ assert_array_almost_equal(actual, desired, decimal=14)
1119
+ assert_raises(ValueError, rng.beta, bad_a, b * 3)
1120
+ assert_raises(ValueError, rng.beta, a, bad_b * 3)
1121
+
1122
+ def test_exponential(self):
1123
+ scale = [1]
1124
+ bad_scale = [-1]
1125
+ desired = np.array([0.76106853658845242,
1126
+ 0.76386282278691653,
1127
+ 0.71243813125891797])
1128
+
1129
+ rng = random.RandomState(self.seed)
1130
+ actual = rng.exponential(scale * 3)
1131
+ assert_array_almost_equal(actual, desired, decimal=14)
1132
+ assert_raises(ValueError, rng.exponential, bad_scale * 3)
1133
+
1134
+ def test_standard_gamma(self):
1135
+ shape = [1]
1136
+ bad_shape = [-1]
1137
+ desired = np.array([0.76106853658845242,
1138
+ 0.76386282278691653,
1139
+ 0.71243813125891797])
1140
+
1141
+ rng = random.RandomState(self.seed)
1142
+ actual = rng.standard_gamma(shape * 3)
1143
+ assert_array_almost_equal(actual, desired, decimal=14)
1144
+ assert_raises(ValueError, rng.standard_gamma, bad_shape * 3)
1145
+
1146
+ def test_gamma(self):
1147
+ shape = [1]
1148
+ scale = [2]
1149
+ bad_shape = [-1]
1150
+ bad_scale = [-2]
1151
+ desired = np.array([1.5221370731769048,
1152
+ 1.5277256455738331,
1153
+ 1.4248762625178359])
1154
+
1155
+ rng = random.RandomState(self.seed)
1156
+ actual = rng.gamma(shape * 3, scale)
1157
+ assert_array_almost_equal(actual, desired, decimal=14)
1158
+ assert_raises(ValueError, rng.gamma, bad_shape * 3, scale)
1159
+ assert_raises(ValueError, rng.gamma, shape * 3, bad_scale)
1160
+
1161
+ rng = random.RandomState(self.seed)
1162
+ actual = rng.gamma(shape, scale * 3)
1163
+ assert_array_almost_equal(actual, desired, decimal=14)
1164
+ assert_raises(ValueError, rng.gamma, bad_shape, scale * 3)
1165
+ assert_raises(ValueError, rng.gamma, shape, bad_scale * 3)
1166
+
1167
+ def test_f(self):
1168
+ dfnum = [1]
1169
+ dfden = [2]
1170
+ bad_dfnum = [-1]
1171
+ bad_dfden = [-2]
1172
+ desired = np.array([0.80038951638264799,
1173
+ 0.86768719635363512,
1174
+ 2.7251095168386801])
1175
+
1176
+ rng = random.RandomState(self.seed)
1177
+ actual = rng.f(dfnum * 3, dfden)
1178
+ assert_array_almost_equal(actual, desired, decimal=14)
1179
+ assert_raises(ValueError, rng.f, bad_dfnum * 3, dfden)
1180
+ assert_raises(ValueError, rng.f, dfnum * 3, bad_dfden)
1181
+
1182
+ rng = random.RandomState(self.seed)
1183
+ actual = rng.f(dfnum, dfden * 3)
1184
+ assert_array_almost_equal(actual, desired, decimal=14)
1185
+ assert_raises(ValueError, rng.f, bad_dfnum, dfden * 3)
1186
+ assert_raises(ValueError, rng.f, dfnum, bad_dfden * 3)
1187
+
1188
+ def test_noncentral_f(self):
1189
+ dfnum = [2]
1190
+ dfden = [3]
1191
+ nonc = [4]
1192
+ bad_dfnum = [0]
1193
+ bad_dfden = [-1]
1194
+ bad_nonc = [-2]
1195
+ desired = np.array([9.1393943263705211,
1196
+ 13.025456344595602,
1197
+ 8.8018098359100545])
1198
+
1199
+ rng = random.RandomState(self.seed)
1200
+ actual = rng.noncentral_f(dfnum * 3, dfden, nonc)
1201
+ assert_array_almost_equal(actual, desired, decimal=14)
1202
+ assert_raises(ValueError, rng.noncentral_f, bad_dfnum * 3, dfden, nonc)
1203
+ assert_raises(ValueError, rng.noncentral_f, dfnum * 3, bad_dfden, nonc)
1204
+ assert_raises(ValueError, rng.noncentral_f, dfnum * 3, dfden, bad_nonc)
1205
+
1206
+ rng = random.RandomState(self.seed)
1207
+ actual = rng.noncentral_f(dfnum, dfden * 3, nonc)
1208
+ assert_array_almost_equal(actual, desired, decimal=14)
1209
+ assert_raises(ValueError, rng.noncentral_f, bad_dfnum, dfden * 3, nonc)
1210
+ assert_raises(ValueError, rng.noncentral_f, dfnum, bad_dfden * 3, nonc)
1211
+ assert_raises(ValueError, rng.noncentral_f, dfnum, dfden * 3, bad_nonc)
1212
+
1213
+ rng = random.RandomState(self.seed)
1214
+ actual = rng.noncentral_f(dfnum, dfden, nonc * 3)
1215
+ assert_array_almost_equal(actual, desired, decimal=14)
1216
+ assert_raises(ValueError, rng.noncentral_f, bad_dfnum, dfden, nonc * 3)
1217
+ assert_raises(ValueError, rng.noncentral_f, dfnum, bad_dfden, nonc * 3)
1218
+ assert_raises(ValueError, rng.noncentral_f, dfnum, dfden, bad_nonc * 3)
1219
+
1220
+ def test_noncentral_f_small_df(self):
1221
+ rng = random.RandomState(self.seed)
1222
+ desired = np.array([6.869638627492048, 0.785880199263955])
1223
+ actual = rng.noncentral_f(0.9, 0.9, 2, size=2)
1224
+ assert_array_almost_equal(actual, desired, decimal=14)
1225
+
1226
+ def test_chisquare(self):
1227
+ df = [1]
1228
+ bad_df = [-1]
1229
+ desired = np.array([0.57022801133088286,
1230
+ 0.51947702108840776,
1231
+ 0.1320969254923558])
1232
+
1233
+ rng = random.RandomState(self.seed)
1234
+ actual = rng.chisquare(df * 3)
1235
+ assert_array_almost_equal(actual, desired, decimal=14)
1236
+ assert_raises(ValueError, rng.chisquare, bad_df * 3)
1237
+
1238
+ def test_noncentral_chisquare(self):
1239
+ df = [1]
1240
+ nonc = [2]
1241
+ bad_df = [-1]
1242
+ bad_nonc = [-2]
1243
+ desired = np.array([9.0015599467913763,
1244
+ 4.5804135049718742,
1245
+ 6.0872302432834564])
1246
+
1247
+ rng = random.RandomState(self.seed)
1248
+ actual = rng.noncentral_chisquare(df * 3, nonc)
1249
+ assert_array_almost_equal(actual, desired, decimal=14)
1250
+ assert_raises(ValueError, rng.noncentral_chisquare, bad_df * 3, nonc)
1251
+ assert_raises(ValueError, rng.noncentral_chisquare, df * 3, bad_nonc)
1252
+
1253
+ rng = random.RandomState(self.seed)
1254
+ actual = rng.noncentral_chisquare(df, nonc * 3)
1255
+ assert_array_almost_equal(actual, desired, decimal=14)
1256
+ assert_raises(ValueError, rng.noncentral_chisquare, bad_df, nonc * 3)
1257
+ assert_raises(ValueError, rng.noncentral_chisquare, df, bad_nonc * 3)
1258
+
1259
+ def test_standard_t(self):
1260
+ df = [1]
1261
+ bad_df = [-1]
1262
+ desired = np.array([3.0702872575217643,
1263
+ 5.8560725167361607,
1264
+ 1.0274791436474273])
1265
+
1266
+ rng = random.RandomState(self.seed)
1267
+ actual = rng.standard_t(df * 3)
1268
+ assert_array_almost_equal(actual, desired, decimal=14)
1269
+ assert_raises(ValueError, rng.standard_t, bad_df * 3)
1270
+
1271
+ def test_vonmises(self):
1272
+ mu = [2]
1273
+ kappa = [1]
1274
+ bad_kappa = [-1]
1275
+ desired = np.array([2.9883443664201312,
1276
+ -2.7064099483995943,
1277
+ -1.8672476700665914])
1278
+
1279
+ rng = random.RandomState(self.seed)
1280
+ actual = rng.vonmises(mu * 3, kappa)
1281
+ assert_array_almost_equal(actual, desired, decimal=14)
1282
+ assert_raises(ValueError, rng.vonmises, mu * 3, bad_kappa)
1283
+
1284
+ rng = random.RandomState(self.seed)
1285
+ actual = rng.vonmises(mu, kappa * 3)
1286
+ assert_array_almost_equal(actual, desired, decimal=14)
1287
+ assert_raises(ValueError, rng.vonmises, mu, bad_kappa * 3)
1288
+
1289
+ def test_pareto(self):
1290
+ a = [1]
1291
+ bad_a = [-1]
1292
+ desired = np.array([1.1405622680198362,
1293
+ 1.1465519762044529,
1294
+ 1.0389564467453547])
1295
+
1296
+ rng = random.RandomState(self.seed)
1297
+ actual = rng.pareto(a * 3)
1298
+ assert_array_almost_equal(actual, desired, decimal=14)
1299
+ assert_raises(ValueError, rng.pareto, bad_a * 3)
1300
+
1301
+ def test_weibull(self):
1302
+ a = [1]
1303
+ bad_a = [-1]
1304
+ desired = np.array([0.76106853658845242,
1305
+ 0.76386282278691653,
1306
+ 0.71243813125891797])
1307
+
1308
+ rng = random.RandomState(self.seed)
1309
+ actual = rng.weibull(a * 3)
1310
+ assert_array_almost_equal(actual, desired, decimal=14)
1311
+ assert_raises(ValueError, rng.weibull, bad_a * 3)
1312
+
1313
+ def test_power(self):
1314
+ a = [1]
1315
+ bad_a = [-1]
1316
+ desired = np.array([0.53283302478975902,
1317
+ 0.53413660089041659,
1318
+ 0.50955303552646702])
1319
+
1320
+ rng = random.RandomState(self.seed)
1321
+ actual = rng.power(a * 3)
1322
+ assert_array_almost_equal(actual, desired, decimal=14)
1323
+ assert_raises(ValueError, rng.power, bad_a * 3)
1324
+
1325
+ def test_laplace(self):
1326
+ loc = [0]
1327
+ scale = [1]
1328
+ bad_scale = [-1]
1329
+ desired = np.array([0.067921356028507157,
1330
+ 0.070715642226971326,
1331
+ 0.019290950698972624])
1332
+
1333
+ rng = random.RandomState(self.seed)
1334
+ actual = rng.laplace(loc * 3, scale)
1335
+ assert_array_almost_equal(actual, desired, decimal=14)
1336
+ assert_raises(ValueError, rng.laplace, loc * 3, bad_scale)
1337
+
1338
+ rng = random.RandomState(self.seed)
1339
+ actual = rng.laplace(loc, scale * 3)
1340
+ assert_array_almost_equal(actual, desired, decimal=14)
1341
+ assert_raises(ValueError, rng.laplace, loc, bad_scale * 3)
1342
+
1343
+ def test_gumbel(self):
1344
+ loc = [0]
1345
+ scale = [1]
1346
+ bad_scale = [-1]
1347
+ desired = np.array([0.2730318639556768,
1348
+ 0.26936705726291116,
1349
+ 0.33906220393037939])
1350
+
1351
+ rng = random.RandomState(self.seed)
1352
+ actual = rng.gumbel(loc * 3, scale)
1353
+ assert_array_almost_equal(actual, desired, decimal=14)
1354
+ assert_raises(ValueError, rng.gumbel, loc * 3, bad_scale)
1355
+
1356
+ rng = random.RandomState(self.seed)
1357
+ actual = rng.gumbel(loc, scale * 3)
1358
+ assert_array_almost_equal(actual, desired, decimal=14)
1359
+ assert_raises(ValueError, rng.gumbel, loc, bad_scale * 3)
1360
+
1361
+ def test_logistic(self):
1362
+ loc = [0]
1363
+ scale = [1]
1364
+ bad_scale = [-1]
1365
+ desired = np.array([0.13152135837586171,
1366
+ 0.13675915696285773,
1367
+ 0.038216792802833396])
1368
+
1369
+ rng = random.RandomState(self.seed)
1370
+ actual = rng.logistic(loc * 3, scale)
1371
+ assert_array_almost_equal(actual, desired, decimal=14)
1372
+ assert_raises(ValueError, rng.logistic, loc * 3, bad_scale)
1373
+
1374
+ rng = random.RandomState(self.seed)
1375
+ actual = rng.logistic(loc, scale * 3)
1376
+ assert_array_almost_equal(actual, desired, decimal=14)
1377
+ assert_raises(ValueError, rng.logistic, loc, bad_scale * 3)
1378
+
1379
+ def test_lognormal(self):
1380
+ mean = [0]
1381
+ sigma = [1]
1382
+ bad_sigma = [-1]
1383
+ desired = np.array([9.1422086044848427,
1384
+ 8.4013952870126261,
1385
+ 6.3073234116578671])
1386
+
1387
+ rng = random.RandomState(self.seed)
1388
+ actual = rng.lognormal(mean * 3, sigma)
1389
+ assert_array_almost_equal(actual, desired, decimal=14)
1390
+ assert_raises(ValueError, rng.lognormal, mean * 3, bad_sigma)
1391
+
1392
+ rng = random.RandomState(self.seed)
1393
+ actual = rng.lognormal(mean, sigma * 3)
1394
+ assert_array_almost_equal(actual, desired, decimal=14)
1395
+ assert_raises(ValueError, rng.lognormal, mean, bad_sigma * 3)
1396
+
1397
+ def test_rayleigh(self):
1398
+ scale = [1]
1399
+ bad_scale = [-1]
1400
+ desired = np.array([1.2337491937897689,
1401
+ 1.2360119924878694,
1402
+ 1.1936818095781789])
1403
+
1404
+ rng = random.RandomState(self.seed)
1405
+ actual = rng.rayleigh(scale * 3)
1406
+ assert_array_almost_equal(actual, desired, decimal=14)
1407
+ assert_raises(ValueError, rng.rayleigh, bad_scale * 3)
1408
+
1409
+ def test_wald(self):
1410
+ mean = [0.5]
1411
+ scale = [1]
1412
+ bad_mean = [0]
1413
+ bad_scale = [-2]
1414
+ desired = np.array([0.11873681120271318,
1415
+ 0.12450084820795027,
1416
+ 0.9096122728408238])
1417
+
1418
+ rng = random.RandomState(self.seed)
1419
+ actual = rng.wald(mean * 3, scale)
1420
+ assert_array_almost_equal(actual, desired, decimal=14)
1421
+ assert_raises(ValueError, rng.wald, bad_mean * 3, scale)
1422
+ assert_raises(ValueError, rng.wald, mean * 3, bad_scale)
1423
+
1424
+ rng = random.RandomState(self.seed)
1425
+ actual = rng.wald(mean, scale * 3)
1426
+ assert_array_almost_equal(actual, desired, decimal=14)
1427
+ assert_raises(ValueError, rng.wald, bad_mean, scale * 3)
1428
+ assert_raises(ValueError, rng.wald, mean, bad_scale * 3)
1429
+ assert_raises(ValueError, rng.wald, 0.0, 1)
1430
+ assert_raises(ValueError, rng.wald, 0.5, 0.0)
1431
+
1432
+ def test_triangular(self):
1433
+ left = [1]
1434
+ right = [3]
1435
+ mode = [2]
1436
+ bad_left_one = [3]
1437
+ bad_mode_one = [4]
1438
+ bad_left_two, bad_mode_two = right * 2
1439
+ desired = np.array([2.03339048710429,
1440
+ 2.0347400359389356,
1441
+ 2.0095991069536208])
1442
+
1443
+ rng = random.RandomState(self.seed)
1444
+ actual = rng.triangular(left * 3, mode, right)
1445
+ assert_array_almost_equal(actual, desired, decimal=14)
1446
+ assert_raises(ValueError, rng.triangular, bad_left_one * 3, mode, right)
1447
+ assert_raises(ValueError, rng.triangular, left * 3, bad_mode_one, right)
1448
+ assert_raises(ValueError, rng.triangular, bad_left_two * 3, bad_mode_two,
1449
+ right)
1450
+
1451
+ rng = random.RandomState(self.seed)
1452
+ actual = rng.triangular(left, mode * 3, right)
1453
+ assert_array_almost_equal(actual, desired, decimal=14)
1454
+ assert_raises(ValueError, rng.triangular, bad_left_one, mode * 3, right)
1455
+ assert_raises(ValueError, rng.triangular, left, bad_mode_one * 3, right)
1456
+ assert_raises(ValueError, rng.triangular, bad_left_two, bad_mode_two * 3,
1457
+ right)
1458
+
1459
+ rng = random.RandomState(self.seed)
1460
+ actual = rng.triangular(left, mode, right * 3)
1461
+ assert_array_almost_equal(actual, desired, decimal=14)
1462
+ assert_raises(ValueError, rng.triangular, bad_left_one, mode, right * 3)
1463
+ assert_raises(ValueError, rng.triangular, left, bad_mode_one, right * 3)
1464
+ assert_raises(ValueError, rng.triangular, bad_left_two, bad_mode_two,
1465
+ right * 3)
1466
+
1467
+ def test_binomial(self):
1468
+ n = [1]
1469
+ p = [0.5]
1470
+ bad_n = [-1]
1471
+ bad_p_one = [-1]
1472
+ bad_p_two = [1.5]
1473
+ desired = np.array([1, 1, 1])
1474
+
1475
+ rng = random.RandomState(self.seed)
1476
+ actual = rng.binomial(n * 3, p)
1477
+ assert_array_equal(actual, desired)
1478
+ assert_raises(ValueError, rng.binomial, bad_n * 3, p)
1479
+ assert_raises(ValueError, rng.binomial, n * 3, bad_p_one)
1480
+ assert_raises(ValueError, rng.binomial, n * 3, bad_p_two)
1481
+
1482
+ rng = random.RandomState(self.seed)
1483
+ actual = rng.binomial(n, p * 3)
1484
+ assert_array_equal(actual, desired)
1485
+ assert_raises(ValueError, rng.binomial, bad_n, p * 3)
1486
+ assert_raises(ValueError, rng.binomial, n, bad_p_one * 3)
1487
+ assert_raises(ValueError, rng.binomial, n, bad_p_two * 3)
1488
+
1489
+ def test_negative_binomial(self):
1490
+ n = [1]
1491
+ p = [0.5]
1492
+ bad_n = [-1]
1493
+ bad_p_one = [-1]
1494
+ bad_p_two = [1.5]
1495
+ desired = np.array([1, 0, 1])
1496
+
1497
+ rng = random.RandomState(self.seed)
1498
+ actual = rng.negative_binomial(n * 3, p)
1499
+ assert_array_equal(actual, desired)
1500
+ assert_raises(ValueError, rng.negative_binomial, bad_n * 3, p)
1501
+ assert_raises(ValueError, rng.negative_binomial, n * 3, bad_p_one)
1502
+ assert_raises(ValueError, rng.negative_binomial, n * 3, bad_p_two)
1503
+
1504
+ rng = random.RandomState(self.seed)
1505
+ actual = rng.negative_binomial(n, p * 3)
1506
+ assert_array_equal(actual, desired)
1507
+ assert_raises(ValueError, rng.negative_binomial, bad_n, p * 3)
1508
+ assert_raises(ValueError, rng.negative_binomial, n, bad_p_one * 3)
1509
+ assert_raises(ValueError, rng.negative_binomial, n, bad_p_two * 3)
1510
+
1511
+ def test_poisson(self):
1512
+ max_lam = np.random.RandomState()._poisson_lam_max
1513
+
1514
+ lam = [1]
1515
+ bad_lam_one = [-1]
1516
+ bad_lam_two = [max_lam * 2]
1517
+ desired = np.array([1, 1, 0])
1518
+
1519
+ rng = random.RandomState(self.seed)
1520
+ actual = rng.poisson(lam * 3)
1521
+ assert_array_equal(actual, desired)
1522
+ assert_raises(ValueError, rng.poisson, bad_lam_one * 3)
1523
+ assert_raises(ValueError, rng.poisson, bad_lam_two * 3)
1524
+
1525
+ def test_zipf(self):
1526
+ a = [2]
1527
+ bad_a = [0]
1528
+ desired = np.array([2, 2, 1])
1529
+
1530
+ rng = random.RandomState(self.seed)
1531
+ actual = rng.zipf(a * 3)
1532
+ assert_array_equal(actual, desired)
1533
+ assert_raises(ValueError, rng.zipf, bad_a * 3)
1534
+ with np.errstate(invalid='ignore'):
1535
+ assert_raises(ValueError, rng.zipf, np.nan)
1536
+ assert_raises(ValueError, rng.zipf, [0, 0, np.nan])
1537
+
1538
+ def test_geometric(self):
1539
+ p = [0.5]
1540
+ bad_p_one = [-1]
1541
+ bad_p_two = [1.5]
1542
+ desired = np.array([2, 2, 2])
1543
+
1544
+ rng = random.RandomState(self.seed)
1545
+ actual = rng.geometric(p * 3)
1546
+ assert_array_equal(actual, desired)
1547
+ assert_raises(ValueError, rng.geometric, bad_p_one * 3)
1548
+ assert_raises(ValueError, rng.geometric, bad_p_two * 3)
1549
+
1550
+ def test_hypergeometric(self):
1551
+ ngood = [1]
1552
+ nbad = [2]
1553
+ nsample = [2]
1554
+ bad_ngood = [-1]
1555
+ bad_nbad = [-2]
1556
+ bad_nsample_one = [0]
1557
+ bad_nsample_two = [4]
1558
+ desired = np.array([1, 1, 1])
1559
+
1560
+ rng = random.RandomState(self.seed)
1561
+ actual = rng.hypergeometric(ngood * 3, nbad, nsample)
1562
+ assert_array_equal(actual, desired)
1563
+ assert_raises(ValueError, rng.hypergeometric, bad_ngood * 3, nbad, nsample)
1564
+ assert_raises(ValueError, rng.hypergeometric, ngood * 3, bad_nbad, nsample)
1565
+ assert_raises(ValueError, rng.hypergeometric, ngood * 3, nbad, bad_nsample_one)
1566
+ assert_raises(ValueError, rng.hypergeometric, ngood * 3, nbad, bad_nsample_two)
1567
+
1568
+ rng = random.RandomState(self.seed)
1569
+ actual = rng.hypergeometric(ngood, nbad * 3, nsample)
1570
+ assert_array_equal(actual, desired)
1571
+ assert_raises(ValueError, rng.hypergeometric, bad_ngood, nbad * 3, nsample)
1572
+ assert_raises(ValueError, rng.hypergeometric, ngood, bad_nbad * 3, nsample)
1573
+ assert_raises(ValueError, rng.hypergeometric, ngood, nbad * 3, bad_nsample_one)
1574
+ assert_raises(ValueError, rng.hypergeometric, ngood, nbad * 3, bad_nsample_two)
1575
+
1576
+ rng = random.RandomState(self.seed)
1577
+ actual = rng.hypergeometric(ngood, nbad, nsample * 3)
1578
+ assert_array_equal(actual, desired)
1579
+ assert_raises(ValueError, rng.hypergeometric, bad_ngood, nbad, nsample * 3)
1580
+ assert_raises(ValueError, rng.hypergeometric, ngood, bad_nbad, nsample * 3)
1581
+ assert_raises(ValueError, rng.hypergeometric, ngood, nbad, bad_nsample_one * 3)
1582
+ assert_raises(ValueError, rng.hypergeometric, ngood, nbad, bad_nsample_two * 3)
1583
+
1584
+ def test_logseries(self):
1585
+ p = [0.5]
1586
+ bad_p_one = [2]
1587
+ bad_p_two = [-1]
1588
+ desired = np.array([1, 1, 1])
1589
+
1590
+ rng = random.RandomState(self.seed)
1591
+ actual = rng.logseries(p * 3)
1592
+ assert_array_equal(actual, desired)
1593
+ assert_raises(ValueError, rng.logseries, bad_p_one * 3)
1594
+ assert_raises(ValueError, rng.logseries, bad_p_two * 3)
1595
+
1596
+
1597
+ @pytest.mark.skipif(IS_WASM, reason="can't start thread")
1598
+ class TestThread:
1599
+ # make sure each state produces the same sequence even in threads
1600
+ seeds = range(4)
1601
+
1602
+ def check_function(self, function, sz):
1603
+ from threading import Thread
1604
+
1605
+ out1 = np.empty((len(self.seeds),) + sz)
1606
+ out2 = np.empty((len(self.seeds),) + sz)
1607
+
1608
+ # threaded generation
1609
+ t = [Thread(target=function, args=(np.random.RandomState(s), o))
1610
+ for s, o in zip(self.seeds, out1)]
1611
+ [x.start() for x in t]
1612
+ [x.join() for x in t]
1613
+
1614
+ # the same serial
1615
+ for s, o in zip(self.seeds, out2):
1616
+ function(np.random.RandomState(s), o)
1617
+
1618
+ # these platforms change x87 fpu precision mode in threads
1619
+ if np.intp().dtype.itemsize == 4 and sys.platform == "win32":
1620
+ assert_array_almost_equal(out1, out2)
1621
+ else:
1622
+ assert_array_equal(out1, out2)
1623
+
1624
+ def test_normal(self):
1625
+ def gen_random(state, out):
1626
+ out[...] = state.normal(size=10000)
1627
+ self.check_function(gen_random, sz=(10000,))
1628
+
1629
+ def test_exp(self):
1630
+ def gen_random(state, out):
1631
+ out[...] = state.exponential(scale=np.ones((100, 1000)))
1632
+ self.check_function(gen_random, sz=(100, 1000))
1633
+
1634
+ def test_multinomial(self):
1635
+ def gen_random(state, out):
1636
+ out[...] = state.multinomial(10, [1 / 6.] * 6, size=10000)
1637
+ self.check_function(gen_random, sz=(10000, 6))
1638
+
1639
+
1640
+ # See Issue #4263
1641
+ class TestSingleEltArrayInput:
1642
+ def _create_arrays(self):
1643
+ return np.array([2]), np.array([3]), np.array([4]), (1,)
1644
+
1645
+ def test_one_arg_funcs(self):
1646
+ argOne, _, _, tgtShape = self._create_arrays()
1647
+ funcs = (np.random.exponential, np.random.standard_gamma,
1648
+ np.random.chisquare, np.random.standard_t,
1649
+ np.random.pareto, np.random.weibull,
1650
+ np.random.power, np.random.rayleigh,
1651
+ np.random.poisson, np.random.zipf,
1652
+ np.random.geometric, np.random.logseries)
1653
+
1654
+ probfuncs = (np.random.geometric, np.random.logseries)
1655
+
1656
+ for func in funcs:
1657
+ if func in probfuncs: # p < 1.0
1658
+ out = func(np.array([0.5]))
1659
+
1660
+ else:
1661
+ out = func(argOne)
1662
+
1663
+ assert_equal(out.shape, tgtShape)
1664
+
1665
+ def test_two_arg_funcs(self):
1666
+ argOne, argTwo, _, tgtShape = self._create_arrays()
1667
+ funcs = (np.random.uniform, np.random.normal,
1668
+ np.random.beta, np.random.gamma,
1669
+ np.random.f, np.random.noncentral_chisquare,
1670
+ np.random.vonmises, np.random.laplace,
1671
+ np.random.gumbel, np.random.logistic,
1672
+ np.random.lognormal, np.random.wald,
1673
+ np.random.binomial, np.random.negative_binomial)
1674
+
1675
+ probfuncs = (np.random.binomial, np.random.negative_binomial)
1676
+
1677
+ for func in funcs:
1678
+ if func in probfuncs: # p <= 1
1679
+ argTwo = np.array([0.5])
1680
+
1681
+ else:
1682
+ argTwo = argTwo
1683
+
1684
+ out = func(argOne, argTwo)
1685
+ assert_equal(out.shape, tgtShape)
1686
+
1687
+ out = func(argOne[0], argTwo)
1688
+ assert_equal(out.shape, tgtShape)
1689
+
1690
+ out = func(argOne, argTwo[0])
1691
+ assert_equal(out.shape, tgtShape)
1692
+
1693
+ def test_randint(self):
1694
+ _, _, _, tgtShape = self._create_arrays()
1695
+ itype = [bool, np.int8, np.uint8, np.int16, np.uint16,
1696
+ np.int32, np.uint32, np.int64, np.uint64]
1697
+ func = np.random.randint
1698
+ high = np.array([1])
1699
+ low = np.array([0])
1700
+
1701
+ for dt in itype:
1702
+ out = func(low, high, dtype=dt)
1703
+ assert_equal(out.shape, tgtShape)
1704
+
1705
+ out = func(low[0], high, dtype=dt)
1706
+ assert_equal(out.shape, tgtShape)
1707
+
1708
+ out = func(low, high[0], dtype=dt)
1709
+ assert_equal(out.shape, tgtShape)
1710
+
1711
+ def test_three_arg_funcs(self):
1712
+ argOne, argTwo, argThree, tgtShape = self._create_arrays()
1713
+ funcs = [np.random.noncentral_f, np.random.triangular,
1714
+ np.random.hypergeometric]
1715
+
1716
+ for func in funcs:
1717
+ out = func(argOne, argTwo, argThree)
1718
+ assert_equal(out.shape, tgtShape)
1719
+
1720
+ out = func(argOne[0], argTwo, argThree)
1721
+ assert_equal(out.shape, tgtShape)
1722
+
1723
+ out = func(argOne, argTwo[0], argThree)
1724
+ assert_equal(out.shape, tgtShape)