noshot 11.0.0__py3-none-any.whl → 13.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (93) hide show
  1. noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/1. DNN (Image Classification).ipynb +389 -0
  2. noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/2. DNN vs CNN.ipynb +516 -0
  3. noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/3. CNN (Object Detecrion).ipynb +259 -0
  4. noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/4. FCN (Image Segmentaion).ipynb +274 -0
  5. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.1 DNN (Pytorch).ipynb +164 -0
  6. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.2 DNN (Tensorflow).ipynb +94 -0
  7. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.3 DNN (Image Classification).ipynb +134 -0
  8. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/2.1 DNN vs CNN.ipynb +127 -0
  9. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/2.2 DNN vs CNN.ipynb +123 -0
  10. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/4. FCNN (Image Segmentation).ipynb +108 -0
  11. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/Lab Excercise (Training DNN).ipynb +646 -0
  12. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/Load-Images.ipynb +553 -0
  13. noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex1.ipynb +216 -0
  14. noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex2.ipynb +195 -0
  15. noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex3.ipynb +427 -0
  16. noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex4.ipynb +186 -0
  17. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/DNN Ex No 1.ipynb +398 -0
  18. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Ex No 1 Build in dataset.ipynb +171 -0
  19. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Exp1-Short-DL_ANN_ImageClassification.ipynb +401 -0
  20. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/OR GATE .ipynb +8511 -0
  21. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp02/Exp2-Short-DL_CNN_ImageClassification.ipynb +737 -0
  22. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp03/DL-Ex3-RNN.ipynb +591 -0
  23. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp04/Ex no 4.ipynb +551 -0
  24. noshot/main.py +3 -3
  25. {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/METADATA +1 -1
  26. noshot-13.0.0.dist-info/RECORD +32 -0
  27. noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb +0 -201
  28. noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb +0 -201
  29. noshot/data/ML TS XAI/ML/Json Codes/ML LAB CIA 2.ipynb +0 -409
  30. noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Balance Scale Dataset).ipynb +0 -147
  31. noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Rice Dataset).ipynb +0 -181
  32. noshot/data/ML TS XAI/ML/ML 1/10. HMM Veterbi.ipynb +0 -152
  33. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Balance Scale Dataset).ipynb +0 -117
  34. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Iris Dataset).ipynb +0 -156
  35. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Sobar-72 Dataset).ipynb +0 -215
  36. noshot/data/ML TS XAI/ML/ML 1/3. LDA (Balance Scale Dataset).ipynb +0 -78
  37. noshot/data/ML TS XAI/ML/ML 1/3. LDA (NPHA Doctor Visits Dataset).ipynb +0 -114
  38. noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Machine Dataset).ipynb +0 -115
  39. noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Real Estate Dataset).ipynb +0 -146
  40. noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Magic04 Dataset).ipynb +0 -130
  41. noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Wine Dataset).ipynb +0 -112
  42. noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +0 -118
  43. noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Wine Dataset).ipynb +0 -89
  44. noshot/data/ML TS XAI/ML/ML 1/7. SVM (Rice Dataset).ipynb +0 -120
  45. noshot/data/ML TS XAI/ML/ML 1/8. FeedForward NN (Sobar72 Dataset).ipynb +0 -262
  46. noshot/data/ML TS XAI/ML/ML 1/9. CNN (Cifar10 Dataset).ipynb +0 -156
  47. noshot/data/ML TS XAI/ML/ML 2/1. PCA.ipynb +0 -162
  48. noshot/data/ML TS XAI/ML/ML 2/10. CNN.ipynb +0 -100
  49. noshot/data/ML TS XAI/ML/ML 2/11. HMM.ipynb +0 -336
  50. noshot/data/ML TS XAI/ML/ML 2/2. KNN.ipynb +0 -149
  51. noshot/data/ML TS XAI/ML/ML 2/3. LDA.ipynb +0 -132
  52. noshot/data/ML TS XAI/ML/ML 2/4. Linear Regression.ipynb +0 -86
  53. noshot/data/ML TS XAI/ML/ML 2/5. Logistic Regression.ipynb +0 -115
  54. noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Titanic).ipynb +0 -196
  55. noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Wine).ipynb +0 -98
  56. noshot/data/ML TS XAI/ML/ML 2/7. SVM Linear.ipynb +0 -109
  57. noshot/data/ML TS XAI/ML/ML 2/8. SVM Non-Linear.ipynb +0 -195
  58. noshot/data/ML TS XAI/ML/ML 2/9. FNN With Regularization.ipynb +0 -189
  59. noshot/data/ML TS XAI/ML/ML 2/9. FNN Without Regularization.ipynb +0 -197
  60. noshot/data/ML TS XAI/ML/ML 2/All in One Lab CIA 1 Q.ipynb +0 -1087
  61. noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb +0 -274
  62. noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb +0 -170
  63. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb +0 -1087
  64. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb +0 -178
  65. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb +0 -185
  66. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb +0 -106
  67. noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb +0 -177
  68. noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb +0 -195
  69. noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb +0 -267
  70. noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb +0 -104
  71. noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb +0 -109
  72. noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb +0 -220
  73. noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb +0 -99
  74. noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb +0 -211
  75. noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb +0 -99
  76. noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb +0 -118
  77. noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb +0 -603
  78. noshot/data/ML TS XAI/ML/ML Lab AllinOne.ipynb +0 -961
  79. noshot/data/ML TS XAI/ML/ML Lab H Sec/1. Iris Dataset (Softmax vs Sigmoid).ipynb +0 -231
  80. noshot/data/ML TS XAI/ML/ML Lab H Sec/2. Student Dataset (Overfit vs Regularized).ipynb +0 -269
  81. noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Categorical (Overfit vs Regularized).ipynb +0 -274
  82. noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Numerical (Overfit vs Regularized).ipynb +0 -263
  83. noshot/data/ML TS XAI/ML/ML Lab H Sec/4. Smart House System HMM.ipynb +0 -198
  84. noshot/data/ML TS XAI/ML/ML Lab H Sec/5. Fraud Detection System HMM.ipynb +0 -201
  85. noshot/data/ML TS XAI/ML/ML Lab H Sec/insurance.csv +0 -1339
  86. noshot/data/ML TS XAI/ML/ML Lab H Sec/iris1.data +0 -151
  87. noshot/data/ML TS XAI/ML/ML Lab H Sec/student-mat.csv +0 -396
  88. noshot/data/ML TS XAI/ML/ML Lab H Sec/student-por.csv +0 -650
  89. noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +0 -691
  90. noshot-11.0.0.dist-info/RECORD +0 -72
  91. {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/WHEEL +0 -0
  92. {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/licenses/LICENSE.txt +0 -0
  93. {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,186 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "6a60369e-1161-4281-b04d-f0168bf5ef7f",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import tensorflow as tf\n",
11
+ "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n",
12
+ "from tensorflow.keras.layers import Conv2D, MaxPooling2D, Conv2DTranspose, Input\n",
13
+ "from tensorflow.keras.models import Model\n",
14
+ "import matplotlib.pyplot as plt\n",
15
+ "import numpy as np"
16
+ ]
17
+ },
18
+ {
19
+ "cell_type": "code",
20
+ "execution_count": null,
21
+ "id": "b1c3acba-dff0-4bbb-9b35-16f18d36f84f",
22
+ "metadata": {},
23
+ "outputs": [],
24
+ "source": [
25
+ "# Paths to images and masks directories\n",
26
+ "image_dir = r\"D:\\Neeraj\\SEM 7\\DLE LAB\\Banana FCN\\Banana FCN\\Images\"\n",
27
+ "mask_dir = r\"D:\\Neeraj\\SEM 7\\DLE LAB\\Banana FCN\\Banana FCN\\Mask\"\n",
28
+ "\n",
29
+ "# Image and mask data generators\n",
30
+ "image_datagen = ImageDataGenerator(rescale=1./255)\n",
31
+ "mask_datagen = ImageDataGenerator(rescale=1./255)"
32
+ ]
33
+ },
34
+ {
35
+ "cell_type": "code",
36
+ "execution_count": null,
37
+ "id": "a25255b3-ad4f-4037-8ca7-e66572ac6352",
38
+ "metadata": {},
39
+ "outputs": [],
40
+ "source": [
41
+ "image_generator = image_datagen.flow_from_directory(\n",
42
+ " image_dir,\n",
43
+ " class_mode=None,\n",
44
+ " color_mode='rgb',\n",
45
+ " target_size=(128, 128),\n",
46
+ " batch_size=8,\n",
47
+ " seed=42\n",
48
+ ")"
49
+ ]
50
+ },
51
+ {
52
+ "cell_type": "code",
53
+ "execution_count": null,
54
+ "id": "f06864c7-8962-44f8-a51f-89e29335eab8",
55
+ "metadata": {},
56
+ "outputs": [],
57
+ "source": [
58
+ "mask_generator = mask_datagen.flow_from_directory(\n",
59
+ " mask_dir,\n",
60
+ " class_mode=None,\n",
61
+ " color_mode='grayscale',\n",
62
+ " target_size=(128, 128),\n",
63
+ " batch_size=8,\n",
64
+ " seed=42\n",
65
+ ")"
66
+ ]
67
+ },
68
+ {
69
+ "cell_type": "code",
70
+ "execution_count": null,
71
+ "id": "2ab0717a-efb1-4178-b1a3-da50bff63147",
72
+ "metadata": {},
73
+ "outputs": [],
74
+ "source": [
75
+ "# Combine generators into one which yields image and mask\n",
76
+ "train_generator = zip(image_generator, mask_generator)"
77
+ ]
78
+ },
79
+ {
80
+ "cell_type": "code",
81
+ "execution_count": null,
82
+ "id": "c07463ee-7151-49b9-b62f-b7cd750fbae9",
83
+ "metadata": {},
84
+ "outputs": [],
85
+ "source": [
86
+ "def build_fcnn():\n",
87
+ " inputs = Input((128, 128, 3))\n",
88
+ "\n",
89
+ " # Encoder\n",
90
+ " conv1 = Conv2D(128, (3, 3), activation='relu', padding='same')(inputs)\n",
91
+ " pool1 = MaxPooling2D((2, 2))(conv1)\n",
92
+ "\n",
93
+ " conv2 = Conv2D(256, (3, 3), activation='relu', padding='same')(pool1)\n",
94
+ " pool2 = MaxPooling2D((2, 2))(conv2)\n",
95
+ "\n",
96
+ " # Decoder\n",
97
+ " conv3 = Conv2D(256, (3, 3), activation='relu', padding='same')(pool2)\n",
98
+ " up1 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(conv3)\n",
99
+ "\n",
100
+ " conv4 = Conv2D(128, (3, 3), activation='relu', padding='same')(up1)\n",
101
+ " up2 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(conv4)\n",
102
+ "\n",
103
+ " outputs = Conv2D(1, (1, 1), activation='sigmoid', padding='same')(up2)\n",
104
+ "\n",
105
+ " model = Model(inputs, outputs)\n",
106
+ " return model\n",
107
+ "\n",
108
+ "model = build_fcnn()\n",
109
+ "model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])\n",
110
+ "model.summary()"
111
+ ]
112
+ },
113
+ {
114
+ "cell_type": "code",
115
+ "execution_count": null,
116
+ "id": "6fd59bd5-ef68-4245-8f38-6d07f0d1168e",
117
+ "metadata": {},
118
+ "outputs": [],
119
+ "source": [
120
+ "# Train the FCNN model\n",
121
+ "def combined_generator(image_gen, mask_gen):\n",
122
+ " while True: # Keep yielding data indefinitely\n",
123
+ " img_batch = next(image_gen)\n",
124
+ " mask_batch = next(mask_gen)\n",
125
+ " yield img_batch, mask_batch # Keras expects (input, target)\n",
126
+ "# Fit the model with the custom generator\n",
127
+ "train_generator = combined_generator(image_generator, mask_generator)\n",
128
+ "model.fit(train_generator, steps_per_epoch=len(image_generator), epochs=5)"
129
+ ]
130
+ },
131
+ {
132
+ "cell_type": "code",
133
+ "execution_count": null,
134
+ "id": "77a2606d-0d22-4c8c-95cf-df9c4ddec7ae",
135
+ "metadata": {},
136
+ "outputs": [],
137
+ "source": [
138
+ "# Sample image for prediction\n",
139
+ "sample_image = image_generator[0][0]\n",
140
+ "predicted_mask = model.predict(np.expand_dims(sample_image, axis=0))[0]\n",
141
+ "\n",
142
+ "# Display the original image and predicted mask\n",
143
+ "plt.figure(figsize=(10, 5))\n",
144
+ "\n",
145
+ "plt.subplot(1, 2, 1)\n",
146
+ "plt.title(\"Original Image\")\n",
147
+ "plt.imshow(sample_image)\n",
148
+ "\n",
149
+ "plt.subplot(1, 2, 2)\n",
150
+ "plt.title(\"Predicted Mask\")\n",
151
+ "plt.imshow(predicted_mask.squeeze(), cmap='gray')\n",
152
+ "\n",
153
+ "plt.show()"
154
+ ]
155
+ },
156
+ {
157
+ "cell_type": "code",
158
+ "execution_count": null,
159
+ "id": "87630680-a078-42f4-92bd-cce91efe2d0f",
160
+ "metadata": {},
161
+ "outputs": [],
162
+ "source": []
163
+ }
164
+ ],
165
+ "metadata": {
166
+ "kernelspec": {
167
+ "display_name": "Python 3 (ipykernel)",
168
+ "language": "python",
169
+ "name": "python3"
170
+ },
171
+ "language_info": {
172
+ "codemirror_mode": {
173
+ "name": "ipython",
174
+ "version": 3
175
+ },
176
+ "file_extension": ".py",
177
+ "mimetype": "text/x-python",
178
+ "name": "python",
179
+ "nbconvert_exporter": "python",
180
+ "pygments_lexer": "ipython3",
181
+ "version": "3.12.4"
182
+ }
183
+ },
184
+ "nbformat": 4,
185
+ "nbformat_minor": 5
186
+ }
@@ -0,0 +1,398 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Train a deep neural network for an Image classification task using Bean leaf dataset\n",
8
+ "\n",
9
+ "**Dataset**: <https://www.kaggle.com/datasets/prakharrastogi534/bean-leaf-dataset>"
10
+ ]
11
+ },
12
+ {
13
+ "cell_type": "code",
14
+ "execution_count": null,
15
+ "metadata": {},
16
+ "outputs": [],
17
+ "source": [
18
+ "# Import necessary packages\n",
19
+ "import pandas as pd\n",
20
+ "import numpy as np\n",
21
+ "import matplotlib.pyplot as plt\n",
22
+ "import seaborn as sns\n",
23
+ "import tensorflow as tf\n",
24
+ "\n",
25
+ "from tensorflow import keras\n",
26
+ "from sklearn.metrics import confusion_matrix\n",
27
+ "\n",
28
+ "import warnings\n",
29
+ "warnings.filterwarnings('ignore')\n",
30
+ "%matplotlib inline"
31
+ ]
32
+ },
33
+ {
34
+ "cell_type": "code",
35
+ "execution_count": null,
36
+ "metadata": {},
37
+ "outputs": [],
38
+ "source": [
39
+ "import cv2\n",
40
+ "import random as rn\n",
41
+ "from os import listdir\n",
42
+ "from sklearn.preprocessing import LabelBinarizer\n",
43
+ "from keras.models import Sequential\n",
44
+ "from keras.layers import Activation, Flatten, Dropout, Dense\n",
45
+ "from keras import backend as K\n",
46
+ "from keras.preprocessing.image import ImageDataGenerator\n",
47
+ "from keras.preprocessing import image\n",
48
+ "from tensorflow.keras.preprocessing.image import img_to_array\n",
49
+ "from sklearn.preprocessing import MultiLabelBinarizer\n",
50
+ "from sklearn.model_selection import train_test_split\n",
51
+ "import matplotlib.pyplot as plt\n",
52
+ "from numpy.random import seed"
53
+ ]
54
+ },
55
+ {
56
+ "cell_type": "code",
57
+ "execution_count": null,
58
+ "metadata": {},
59
+ "outputs": [],
60
+ "source": [
61
+ "import math\n",
62
+ "import skimage.io\n",
63
+ "import skimage.transform\n",
64
+ "import skimage.filters\n",
65
+ "import keras\n",
66
+ "from skimage import data, exposure, img_as_float"
67
+ ]
68
+ },
69
+ {
70
+ "cell_type": "code",
71
+ "execution_count": null,
72
+ "metadata": {},
73
+ "outputs": [],
74
+ "source": [
75
+ "EPOCHS = 25\n",
76
+ "INIT_LR = 1e-3\n",
77
+ "BS = 32\n",
78
+ "default_image_size = tuple((128, 128))\n",
79
+ "image_size = 0\n",
80
+ "directory_root = r\"C://Users/admin/Downloads/Bean//train\" # Change this to your directory"
81
+ ]
82
+ },
83
+ {
84
+ "cell_type": "code",
85
+ "execution_count": null,
86
+ "metadata": {},
87
+ "outputs": [],
88
+ "source": [
89
+ "def convert_image_to_array(image_dir):\n",
90
+ " try:\n",
91
+ " image = cv2.imread(image_dir)\n",
92
+ " if image is not None :\n",
93
+ " image = cv2.resize(image, default_image_size)\n",
94
+ " return img_to_array(image)\n",
95
+ " else :\n",
96
+ " return np.array([])\n",
97
+ " except Exception as e:\n",
98
+ " print(f\"Error : {e}\")\n",
99
+ " return None"
100
+ ]
101
+ },
102
+ {
103
+ "cell_type": "code",
104
+ "execution_count": null,
105
+ "metadata": {},
106
+ "outputs": [],
107
+ "source": [
108
+ "image_list, label_list = [], []\n",
109
+ "try:\n",
110
+ " print(\"[INFO] Loading images ...\")\n",
111
+ " root_dir = listdir(directory_root)\n",
112
+ " for directory in root_dir :\n",
113
+ " # remove .DS_Store from list\n",
114
+ " if directory == \".DS_Store\" :\n",
115
+ " root_dir.remove(directory)\n",
116
+ "\n",
117
+ " for plant_folder in root_dir :\n",
118
+ " plant_disease_folder_list = listdir(f\"{directory_root}/{plant_folder}\")\n",
119
+ "\n",
120
+ "\n",
121
+ " for plant_disease_folder in plant_disease_folder_list:\n",
122
+ " print(f\"[INFO] Processing {plant_disease_folder} ...\")\n",
123
+ "\n",
124
+ " plant_disease_image_list = listdir(f\"{directory_root}/{plant_folder}/{plant_disease_folder}/\")\n",
125
+ " print(plant_disease_folder)\n",
126
+ " i=len(plant_disease_image_list)\n",
127
+ " print (i)\n",
128
+ " for image in plant_disease_image_list[:10000]:\n",
129
+ " image_directory = f\"{directory_root}/{plant_folder}/{plant_disease_folder}/{image}\"\n",
130
+ " if image_directory.endswith(\".jpg\") == True or image_directory.endswith(\".JPG\") == True:\n",
131
+ " image_list.append(convert_image_to_array(image_directory))\n",
132
+ " label_list.append(plant_disease_folder)\n",
133
+ " elif image_directory.endswith(\".png\") == True or image_directory.endswith(\".PNG\") == True:\n",
134
+ " image_list.append(convert_image_to_array(image_directory))\n",
135
+ " label_list.append(plant_disease_folder)\n",
136
+ " \n",
137
+ " print(\"[INFO] Image loading completed\")\n",
138
+ "except Exception as e:\n",
139
+ " print(f\"Error : {e}\")"
140
+ ]
141
+ },
142
+ {
143
+ "cell_type": "code",
144
+ "execution_count": null,
145
+ "metadata": {},
146
+ "outputs": [],
147
+ "source": [
148
+ "image_size = len(image_list)\n",
149
+ "print(image_size)\n",
150
+ "label_binarizer = LabelBinarizer()\n",
151
+ "image_labels = label_binarizer.fit_transform(label_list)\n",
152
+ "print(image_labels)\n",
153
+ "n_classes = len(label_binarizer.classes_)\n",
154
+ "np_image_list = np.array(image_list, dtype=np.float32) / 225.0\n",
155
+ "print(\"[INFO] Spliting data to train, test\")\n",
156
+ "X_train, X_test, y_train, y_test = train_test_split(np_image_list, image_labels,\n",
157
+ " test_size=0.2, random_state = 42,shuffle=True)\n",
158
+ "\n",
159
+ "print(image_labels)"
160
+ ]
161
+ },
162
+ {
163
+ "cell_type": "code",
164
+ "execution_count": null,
165
+ "metadata": {},
166
+ "outputs": [],
167
+ "source": [
168
+ "plt.imshow(X_train[1])"
169
+ ]
170
+ },
171
+ {
172
+ "cell_type": "code",
173
+ "execution_count": null,
174
+ "metadata": {},
175
+ "outputs": [],
176
+ "source": [
177
+ "# Check the shape of the data\n",
178
+ "X_train.shape, X_test.shape, y_train.shape, y_test.shape"
179
+ ]
180
+ },
181
+ {
182
+ "cell_type": "code",
183
+ "execution_count": null,
184
+ "metadata": {},
185
+ "outputs": [],
186
+ "source": [
187
+ "# Check the data type of the dataset\n",
188
+ "X_train.dtype, X_test.dtype, y_train.dtype, y_test.dtype"
189
+ ]
190
+ },
191
+ {
192
+ "cell_type": "code",
193
+ "execution_count": null,
194
+ "metadata": {},
195
+ "outputs": [],
196
+ "source": [
197
+ "type(y_test)"
198
+ ]
199
+ },
200
+ {
201
+ "cell_type": "code",
202
+ "execution_count": null,
203
+ "metadata": {},
204
+ "outputs": [],
205
+ "source": [
206
+ "# Build the sequential model\n",
207
+ "\n",
208
+ "model=tf.keras.Sequential([\n",
209
+ " tf.keras.layers.Flatten(input_shape=(128,128,3)),\n",
210
+ " tf.keras.layers.Dense(128,activation='relu'),\n",
211
+ " tf.keras.layers.Dense(128,activation='relu'),\n",
212
+ " tf.keras.layers.Dense(128,activation='relu'),\n",
213
+ " tf.keras.layers.Dense(256,activation='relu'),\n",
214
+ " tf.keras.layers.Dense(3,activation='softmax')\n",
215
+ "])"
216
+ ]
217
+ },
218
+ {
219
+ "cell_type": "code",
220
+ "execution_count": null,
221
+ "metadata": {},
222
+ "outputs": [],
223
+ "source": [
224
+ "# Check model summary\n",
225
+ "model.summary()"
226
+ ]
227
+ },
228
+ {
229
+ "cell_type": "code",
230
+ "execution_count": null,
231
+ "metadata": {},
232
+ "outputs": [],
233
+ "source": [
234
+ "# Compile the model\n",
235
+ "\n",
236
+ "model.compile(loss = tf.keras.losses.CategoricalCrossentropy(),\n",
237
+ " optimizer = tf.keras.optimizers.Adam(), metrics = ['accuracy'])"
238
+ ]
239
+ },
240
+ {
241
+ "cell_type": "code",
242
+ "execution_count": null,
243
+ "metadata": {},
244
+ "outputs": [],
245
+ "source": [
246
+ "# Fit the model\n",
247
+ "\n",
248
+ "model_history = model.fit(X_train, y_train, validation_data = (X_test, y_test), epochs = 50)"
249
+ ]
250
+ },
251
+ {
252
+ "cell_type": "code",
253
+ "execution_count": null,
254
+ "metadata": {},
255
+ "outputs": [],
256
+ "source": [
257
+ "# Evaluate the model\n",
258
+ "\n",
259
+ "model.evaluate(X_test, y_test)"
260
+ ]
261
+ },
262
+ {
263
+ "cell_type": "code",
264
+ "execution_count": null,
265
+ "metadata": {},
266
+ "outputs": [],
267
+ "source": [
268
+ "from tensorflow.keras.utils import plot_model\n",
269
+ "\n",
270
+ "plot_model(model, show_shapes = True)"
271
+ ]
272
+ },
273
+ {
274
+ "cell_type": "code",
275
+ "execution_count": null,
276
+ "metadata": {},
277
+ "outputs": [],
278
+ "source": [
279
+ "plt.figure(figsize = (12, 6))\n",
280
+ "plt.style.use('fivethirtyeight')\n",
281
+ "train_loss = model_history.history['loss']\n",
282
+ "val_loss = model_history.history['val_loss'] \n",
283
+ "epoch = range(1, 51)\n",
284
+ "sns.lineplot(epoch, train_loss, label = 'Training Loss')\n",
285
+ "sns.lineplot(epoch, val_loss, label = 'Validation Loss')\n",
286
+ "plt.title('Training and Validation Loss\\n')\n",
287
+ "plt.xlabel('Epochs')\n",
288
+ "plt.ylabel('Loss')\n",
289
+ "plt.legend(loc = 'best')\n",
290
+ "plt.show()"
291
+ ]
292
+ },
293
+ {
294
+ "cell_type": "code",
295
+ "execution_count": null,
296
+ "metadata": {},
297
+ "outputs": [],
298
+ "source": [
299
+ "plt.figure(figsize = (12, 6))\n",
300
+ "\n",
301
+ "train_loss = model_history.history['accuracy']\n",
302
+ "val_loss = model_history.history['val_accuracy'] \n",
303
+ "epoch = range(1, 51)\n",
304
+ "sns.lineplot(epoch, train_loss, label = 'Training accuracy')\n",
305
+ "sns.lineplot(epoch, val_loss, label = 'Validation accuracy')\n",
306
+ "plt.title('Training and Validation Accuracy\\n')\n",
307
+ "plt.xlabel('Epochs')\n",
308
+ "plt.ylabel('Accuracy')\n",
309
+ "plt.legend(loc = 'best')\n",
310
+ "plt.show()"
311
+ ]
312
+ },
313
+ {
314
+ "cell_type": "code",
315
+ "execution_count": null,
316
+ "metadata": {},
317
+ "outputs": [],
318
+ "source": [
319
+ "# Making predictions\n",
320
+ "\n",
321
+ "y_probs = model.predict(X_test)\n",
322
+ "y_preds = y_probs.argmax(axis = 1)\n",
323
+ "\n",
324
+ "y_preds[:100]"
325
+ ]
326
+ },
327
+ {
328
+ "cell_type": "code",
329
+ "execution_count": null,
330
+ "metadata": {},
331
+ "outputs": [],
332
+ "source": [
333
+ "label = ['angular_leaf_spot', \n",
334
+ "'bean_rust' , \n",
335
+ "'healthy' , \n",
336
+ " ]\n",
337
+ "Ypred = model.predict(X_test)\n",
338
+ "\n",
339
+ "Ypred = np.argmax(Ypred, axis=1)\n",
340
+ "Ytrue = np.argmax(y_test, axis=1)\n",
341
+ "\n",
342
+ "cm = confusion_matrix(Ytrue, Ypred)\n",
343
+ "plt.figure(figsize=(12, 12))\n",
344
+ "ax = sns.heatmap(cm, cmap=\"rocket_r\", fmt=\".01f\",annot_kws={'size':24}, annot=True, square=True, xticklabels=label, yticklabels=label)\n",
345
+ "ax.set_ylabel('Actual', fontsize=20)\n",
346
+ "ax.set_xlabel('Predicted', fontsize=20)"
347
+ ]
348
+ },
349
+ {
350
+ "cell_type": "code",
351
+ "execution_count": null,
352
+ "metadata": {},
353
+ "outputs": [],
354
+ "source": [
355
+ "from sklearn.metrics import confusion_matrix, classification_report\n",
356
+ "\n",
357
+ "print('Classification Report:')\n",
358
+ "print(classification_report(Ytrue, Ypred))"
359
+ ]
360
+ }
361
+ ],
362
+ "metadata": {
363
+ "kaggle": {
364
+ "accelerator": "gpu",
365
+ "dataSources": [
366
+ {
367
+ "datasetId": 2243,
368
+ "sourceId": 9243,
369
+ "sourceType": "datasetVersion"
370
+ }
371
+ ],
372
+ "dockerImageVersionId": 30097,
373
+ "isGpuEnabled": true,
374
+ "isInternetEnabled": true,
375
+ "language": "python",
376
+ "sourceType": "notebook"
377
+ },
378
+ "kernelspec": {
379
+ "display_name": "Python 3 (ipykernel)",
380
+ "language": "python",
381
+ "name": "python3"
382
+ },
383
+ "language_info": {
384
+ "codemirror_mode": {
385
+ "name": "ipython",
386
+ "version": 3
387
+ },
388
+ "file_extension": ".py",
389
+ "mimetype": "text/x-python",
390
+ "name": "python",
391
+ "nbconvert_exporter": "python",
392
+ "pygments_lexer": "ipython3",
393
+ "version": "3.12.4"
394
+ }
395
+ },
396
+ "nbformat": 4,
397
+ "nbformat_minor": 4
398
+ }