noshot 11.0.0__py3-none-any.whl → 13.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/1. DNN (Image Classification).ipynb +389 -0
- noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/2. DNN vs CNN.ipynb +516 -0
- noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/3. CNN (Object Detecrion).ipynb +259 -0
- noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/4. FCN (Image Segmentaion).ipynb +274 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.1 DNN (Pytorch).ipynb +164 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.2 DNN (Tensorflow).ipynb +94 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.3 DNN (Image Classification).ipynb +134 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/2.1 DNN vs CNN.ipynb +127 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/2.2 DNN vs CNN.ipynb +123 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/4. FCNN (Image Segmentation).ipynb +108 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/Lab Excercise (Training DNN).ipynb +646 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/Load-Images.ipynb +553 -0
- noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex1.ipynb +216 -0
- noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex2.ipynb +195 -0
- noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex3.ipynb +427 -0
- noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex4.ipynb +186 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/DNN Ex No 1.ipynb +398 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Ex No 1 Build in dataset.ipynb +171 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Exp1-Short-DL_ANN_ImageClassification.ipynb +401 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/OR GATE .ipynb +8511 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp02/Exp2-Short-DL_CNN_ImageClassification.ipynb +737 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp03/DL-Ex3-RNN.ipynb +591 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp04/Ex no 4.ipynb +551 -0
- noshot/main.py +3 -3
- {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/METADATA +1 -1
- noshot-13.0.0.dist-info/RECORD +32 -0
- noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb +0 -201
- noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb +0 -201
- noshot/data/ML TS XAI/ML/Json Codes/ML LAB CIA 2.ipynb +0 -409
- noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Balance Scale Dataset).ipynb +0 -147
- noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Rice Dataset).ipynb +0 -181
- noshot/data/ML TS XAI/ML/ML 1/10. HMM Veterbi.ipynb +0 -152
- noshot/data/ML TS XAI/ML/ML 1/2. KNN (Balance Scale Dataset).ipynb +0 -117
- noshot/data/ML TS XAI/ML/ML 1/2. KNN (Iris Dataset).ipynb +0 -156
- noshot/data/ML TS XAI/ML/ML 1/2. KNN (Sobar-72 Dataset).ipynb +0 -215
- noshot/data/ML TS XAI/ML/ML 1/3. LDA (Balance Scale Dataset).ipynb +0 -78
- noshot/data/ML TS XAI/ML/ML 1/3. LDA (NPHA Doctor Visits Dataset).ipynb +0 -114
- noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Machine Dataset).ipynb +0 -115
- noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Real Estate Dataset).ipynb +0 -146
- noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Magic04 Dataset).ipynb +0 -130
- noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Wine Dataset).ipynb +0 -112
- noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +0 -118
- noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Wine Dataset).ipynb +0 -89
- noshot/data/ML TS XAI/ML/ML 1/7. SVM (Rice Dataset).ipynb +0 -120
- noshot/data/ML TS XAI/ML/ML 1/8. FeedForward NN (Sobar72 Dataset).ipynb +0 -262
- noshot/data/ML TS XAI/ML/ML 1/9. CNN (Cifar10 Dataset).ipynb +0 -156
- noshot/data/ML TS XAI/ML/ML 2/1. PCA.ipynb +0 -162
- noshot/data/ML TS XAI/ML/ML 2/10. CNN.ipynb +0 -100
- noshot/data/ML TS XAI/ML/ML 2/11. HMM.ipynb +0 -336
- noshot/data/ML TS XAI/ML/ML 2/2. KNN.ipynb +0 -149
- noshot/data/ML TS XAI/ML/ML 2/3. LDA.ipynb +0 -132
- noshot/data/ML TS XAI/ML/ML 2/4. Linear Regression.ipynb +0 -86
- noshot/data/ML TS XAI/ML/ML 2/5. Logistic Regression.ipynb +0 -115
- noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Titanic).ipynb +0 -196
- noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Wine).ipynb +0 -98
- noshot/data/ML TS XAI/ML/ML 2/7. SVM Linear.ipynb +0 -109
- noshot/data/ML TS XAI/ML/ML 2/8. SVM Non-Linear.ipynb +0 -195
- noshot/data/ML TS XAI/ML/ML 2/9. FNN With Regularization.ipynb +0 -189
- noshot/data/ML TS XAI/ML/ML 2/9. FNN Without Regularization.ipynb +0 -197
- noshot/data/ML TS XAI/ML/ML 2/All in One Lab CIA 1 Q.ipynb +0 -1087
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb +0 -274
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb +0 -170
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb +0 -1087
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb +0 -178
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb +0 -185
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb +0 -106
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb +0 -177
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb +0 -195
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb +0 -267
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb +0 -104
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb +0 -109
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb +0 -220
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb +0 -99
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb +0 -211
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb +0 -99
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb +0 -118
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb +0 -603
- noshot/data/ML TS XAI/ML/ML Lab AllinOne.ipynb +0 -961
- noshot/data/ML TS XAI/ML/ML Lab H Sec/1. Iris Dataset (Softmax vs Sigmoid).ipynb +0 -231
- noshot/data/ML TS XAI/ML/ML Lab H Sec/2. Student Dataset (Overfit vs Regularized).ipynb +0 -269
- noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Categorical (Overfit vs Regularized).ipynb +0 -274
- noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Numerical (Overfit vs Regularized).ipynb +0 -263
- noshot/data/ML TS XAI/ML/ML Lab H Sec/4. Smart House System HMM.ipynb +0 -198
- noshot/data/ML TS XAI/ML/ML Lab H Sec/5. Fraud Detection System HMM.ipynb +0 -201
- noshot/data/ML TS XAI/ML/ML Lab H Sec/insurance.csv +0 -1339
- noshot/data/ML TS XAI/ML/ML Lab H Sec/iris1.data +0 -151
- noshot/data/ML TS XAI/ML/ML Lab H Sec/student-mat.csv +0 -396
- noshot/data/ML TS XAI/ML/ML Lab H Sec/student-por.csv +0 -650
- noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +0 -691
- noshot-11.0.0.dist-info/RECORD +0 -72
- {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/WHEEL +0 -0
- {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/licenses/LICENSE.txt +0 -0
- {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/top_level.txt +0 -0
@@ -1,195 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "4cb19356",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import matplotlib.pyplot as plt\n",
|
11
|
-
"from sklearn import datasets\n",
|
12
|
-
"from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA\n",
|
13
|
-
"import pandas as pd\n",
|
14
|
-
"import matplotlib.pyplot as plt\n",
|
15
|
-
"from sklearn.preprocessing import StandardScaler\n",
|
16
|
-
"import seaborn as sns\n",
|
17
|
-
"from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay"
|
18
|
-
]
|
19
|
-
},
|
20
|
-
{
|
21
|
-
"cell_type": "code",
|
22
|
-
"execution_count": null,
|
23
|
-
"id": "4bfb20c1",
|
24
|
-
"metadata": {},
|
25
|
-
"outputs": [],
|
26
|
-
"source": [
|
27
|
-
"url = \"https://archive.ics.uci.edu/ml/machine-learning-databases/balance-scale/balance-scale.data\"\n",
|
28
|
-
"df = pd.read_csv(url, names=['class name','left-weight','left-distance','right-weight','right-distance'])"
|
29
|
-
]
|
30
|
-
},
|
31
|
-
{
|
32
|
-
"cell_type": "code",
|
33
|
-
"execution_count": null,
|
34
|
-
"id": "c52d5405-9da9-40a9-9116-afe433e93046",
|
35
|
-
"metadata": {},
|
36
|
-
"outputs": [],
|
37
|
-
"source": [
|
38
|
-
"df"
|
39
|
-
]
|
40
|
-
},
|
41
|
-
{
|
42
|
-
"cell_type": "code",
|
43
|
-
"execution_count": null,
|
44
|
-
"id": "1eaf20bd",
|
45
|
-
"metadata": {},
|
46
|
-
"outputs": [],
|
47
|
-
"source": [
|
48
|
-
"feature = ['left-weight','left-distance','right-weight','right-distance']\n",
|
49
|
-
"x = df.loc[:,feature]\n",
|
50
|
-
"y = df.loc[:,'class name']"
|
51
|
-
]
|
52
|
-
},
|
53
|
-
{
|
54
|
-
"cell_type": "code",
|
55
|
-
"execution_count": null,
|
56
|
-
"id": "73208c45",
|
57
|
-
"metadata": {},
|
58
|
-
"outputs": [],
|
59
|
-
"source": [
|
60
|
-
"x = StandardScaler().fit_transform(x)"
|
61
|
-
]
|
62
|
-
},
|
63
|
-
{
|
64
|
-
"cell_type": "code",
|
65
|
-
"execution_count": null,
|
66
|
-
"id": "0d5df04c",
|
67
|
-
"metadata": {},
|
68
|
-
"outputs": [],
|
69
|
-
"source": [
|
70
|
-
"lda = LDA(n_components=2)\n",
|
71
|
-
"x_lda = lda.fit_transform(x, y)"
|
72
|
-
]
|
73
|
-
},
|
74
|
-
{
|
75
|
-
"cell_type": "code",
|
76
|
-
"execution_count": null,
|
77
|
-
"id": "e262379f",
|
78
|
-
"metadata": {},
|
79
|
-
"outputs": [],
|
80
|
-
"source": [
|
81
|
-
"df_lda = pd.DataFrame(data = x_lda, columns = ['LDA1', 'LDA2'])\n",
|
82
|
-
"df_lda['class name'] = y"
|
83
|
-
]
|
84
|
-
},
|
85
|
-
{
|
86
|
-
"cell_type": "code",
|
87
|
-
"execution_count": null,
|
88
|
-
"id": "7e14b628",
|
89
|
-
"metadata": {},
|
90
|
-
"outputs": [],
|
91
|
-
"source": [
|
92
|
-
"plt.figure(figsize=(12, 6))\n",
|
93
|
-
"plt.subplot(1, 2, 1)\n",
|
94
|
-
"\n",
|
95
|
-
"for target, color, marker in zip(df['class name'].unique(), ['r', 'g', 'b'], ['o', 's', '^']):\n",
|
96
|
-
" plt.scatter(x[y == target, 0], x[y == target, 1], c=color, marker=marker, label=target)\n",
|
97
|
-
"\n",
|
98
|
-
"plt.xlabel('Feature 1')\n",
|
99
|
-
"plt.ylabel('Feature 2')\n",
|
100
|
-
"plt.title('Before LDA')\n",
|
101
|
-
"plt.legend()\n",
|
102
|
-
"\n",
|
103
|
-
"plt.subplot(1, 2, 2)\n",
|
104
|
-
"\n",
|
105
|
-
"for target, color, marker in zip(df_lda['class name'].unique(), ['r', 'g', 'b'], ['o', 's', '^']):\n",
|
106
|
-
" plt.scatter(df_lda[df_lda['class name'] == target]['LDA1'], \n",
|
107
|
-
" df_lda[df_lda['class name'] == target]['LDA2'], \n",
|
108
|
-
" c=color, marker=marker, label=target)\n",
|
109
|
-
"\n",
|
110
|
-
"plt.xlabel('LDA1')\n",
|
111
|
-
"plt.ylabel('LDA2')\n",
|
112
|
-
"plt.title('After LDA')\n",
|
113
|
-
"plt.legend()\n",
|
114
|
-
"\n",
|
115
|
-
"plt.show()"
|
116
|
-
]
|
117
|
-
},
|
118
|
-
{
|
119
|
-
"cell_type": "code",
|
120
|
-
"execution_count": null,
|
121
|
-
"id": "79b009f7",
|
122
|
-
"metadata": {},
|
123
|
-
"outputs": [],
|
124
|
-
"source": [
|
125
|
-
"plt.figure(figsize=(12, 6))\n",
|
126
|
-
"plt.subplot(1, 2, 1)\n",
|
127
|
-
"sns.heatmap(df.corr(numeric_only=True), annot=True, cmap='viridis')\n",
|
128
|
-
"plt.title('Before LDA')\n",
|
129
|
-
"\n",
|
130
|
-
"df_lda = pd.DataFrame(data=x_lda, columns=['LDA1', 'LDA2'])\n",
|
131
|
-
"#df_lda['class name'] = y\n",
|
132
|
-
"plt.subplot(1, 2, 2)\n",
|
133
|
-
"sns.heatmap(df_lda.corr(numeric_only=True), annot=True, cmap='viridis')\n",
|
134
|
-
"plt.title('After LDA')\n",
|
135
|
-
"\n",
|
136
|
-
"plt.show()"
|
137
|
-
]
|
138
|
-
},
|
139
|
-
{
|
140
|
-
"cell_type": "code",
|
141
|
-
"execution_count": null,
|
142
|
-
"id": "82622933",
|
143
|
-
"metadata": {},
|
144
|
-
"outputs": [],
|
145
|
-
"source": [
|
146
|
-
"y_pred = lda.predict(x) \n",
|
147
|
-
"\n",
|
148
|
-
"cm = confusion_matrix(y, y_pred)\n",
|
149
|
-
"\n",
|
150
|
-
"disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=lda.classes_)\n",
|
151
|
-
"disp.plot()\n",
|
152
|
-
"plt.show()"
|
153
|
-
]
|
154
|
-
},
|
155
|
-
{
|
156
|
-
"cell_type": "code",
|
157
|
-
"execution_count": null,
|
158
|
-
"id": "c5bbcdd2-9bbd-4bb2-91c8-62ed34f225cc",
|
159
|
-
"metadata": {},
|
160
|
-
"outputs": [],
|
161
|
-
"source": [
|
162
|
-
"sns.heatmap(cm,annot=True)"
|
163
|
-
]
|
164
|
-
},
|
165
|
-
{
|
166
|
-
"cell_type": "code",
|
167
|
-
"execution_count": null,
|
168
|
-
"id": "a0135321-d81c-48bc-9c83-8430a3662a0a",
|
169
|
-
"metadata": {},
|
170
|
-
"outputs": [],
|
171
|
-
"source": []
|
172
|
-
}
|
173
|
-
],
|
174
|
-
"metadata": {
|
175
|
-
"kernelspec": {
|
176
|
-
"display_name": "Python 3 (ipykernel)",
|
177
|
-
"language": "python",
|
178
|
-
"name": "python3"
|
179
|
-
},
|
180
|
-
"language_info": {
|
181
|
-
"codemirror_mode": {
|
182
|
-
"name": "ipython",
|
183
|
-
"version": 3
|
184
|
-
},
|
185
|
-
"file_extension": ".py",
|
186
|
-
"mimetype": "text/x-python",
|
187
|
-
"name": "python",
|
188
|
-
"nbconvert_exporter": "python",
|
189
|
-
"pygments_lexer": "ipython3",
|
190
|
-
"version": "3.12.4"
|
191
|
-
}
|
192
|
-
},
|
193
|
-
"nbformat": 4,
|
194
|
-
"nbformat_minor": 5
|
195
|
-
}
|
@@ -1,267 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "markdown",
|
5
|
-
"id": "db8a58e5",
|
6
|
-
"metadata": {},
|
7
|
-
"source": [
|
8
|
-
"<h1>Linear Regression</h1>"
|
9
|
-
]
|
10
|
-
},
|
11
|
-
{
|
12
|
-
"cell_type": "code",
|
13
|
-
"execution_count": null,
|
14
|
-
"id": "de374599",
|
15
|
-
"metadata": {},
|
16
|
-
"outputs": [],
|
17
|
-
"source": [
|
18
|
-
"import pandas as pd\n",
|
19
|
-
"import matplotlib.pyplot as plt\n",
|
20
|
-
"import seaborn as sns\n",
|
21
|
-
"from sklearn.linear_model import LinearRegression\n",
|
22
|
-
"from sklearn.model_selection import train_test_split\n",
|
23
|
-
"import numpy as np"
|
24
|
-
]
|
25
|
-
},
|
26
|
-
{
|
27
|
-
"cell_type": "code",
|
28
|
-
"execution_count": null,
|
29
|
-
"id": "4dc9e310",
|
30
|
-
"metadata": {},
|
31
|
-
"outputs": [],
|
32
|
-
"source": [
|
33
|
-
"df = pd.read_csv('insurance.csv')\n",
|
34
|
-
"df = df[df['charges'] <= 12000]"
|
35
|
-
]
|
36
|
-
},
|
37
|
-
{
|
38
|
-
"cell_type": "code",
|
39
|
-
"execution_count": null,
|
40
|
-
"id": "7a7f33cd",
|
41
|
-
"metadata": {},
|
42
|
-
"outputs": [],
|
43
|
-
"source": [
|
44
|
-
"df"
|
45
|
-
]
|
46
|
-
},
|
47
|
-
{
|
48
|
-
"cell_type": "markdown",
|
49
|
-
"id": "a19e236b",
|
50
|
-
"metadata": {},
|
51
|
-
"source": [
|
52
|
-
"<h2>Linear Data</h2>"
|
53
|
-
]
|
54
|
-
},
|
55
|
-
{
|
56
|
-
"cell_type": "code",
|
57
|
-
"execution_count": null,
|
58
|
-
"id": "aef9d295",
|
59
|
-
"metadata": {},
|
60
|
-
"outputs": [],
|
61
|
-
"source": [
|
62
|
-
"X = np.array(df['age'].iloc[:200])\n",
|
63
|
-
"y = np.array(df['charges'].iloc[:200])"
|
64
|
-
]
|
65
|
-
},
|
66
|
-
{
|
67
|
-
"cell_type": "code",
|
68
|
-
"execution_count": null,
|
69
|
-
"id": "65c46210",
|
70
|
-
"metadata": {},
|
71
|
-
"outputs": [],
|
72
|
-
"source": [
|
73
|
-
"plt.figure(figsize = (12,6))\n",
|
74
|
-
"plt.title(\"Age vs Charges Scatterplot\")\n",
|
75
|
-
"plt.xlabel(\"Age\")\n",
|
76
|
-
"plt.ylabel(\"Charges\")\n",
|
77
|
-
"sns.scatterplot(x=X,y=y)"
|
78
|
-
]
|
79
|
-
},
|
80
|
-
{
|
81
|
-
"cell_type": "code",
|
82
|
-
"execution_count": null,
|
83
|
-
"id": "5be82cb7",
|
84
|
-
"metadata": {},
|
85
|
-
"outputs": [],
|
86
|
-
"source": [
|
87
|
-
"X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.2, random_state = 0)"
|
88
|
-
]
|
89
|
-
},
|
90
|
-
{
|
91
|
-
"cell_type": "code",
|
92
|
-
"execution_count": null,
|
93
|
-
"id": "5d670ad4",
|
94
|
-
"metadata": {},
|
95
|
-
"outputs": [],
|
96
|
-
"source": [
|
97
|
-
"model = LinearRegression()"
|
98
|
-
]
|
99
|
-
},
|
100
|
-
{
|
101
|
-
"cell_type": "code",
|
102
|
-
"execution_count": null,
|
103
|
-
"id": "82ece089",
|
104
|
-
"metadata": {},
|
105
|
-
"outputs": [],
|
106
|
-
"source": [
|
107
|
-
"model.fit(X_train.reshape(-1,1),y_train)"
|
108
|
-
]
|
109
|
-
},
|
110
|
-
{
|
111
|
-
"cell_type": "code",
|
112
|
-
"execution_count": null,
|
113
|
-
"id": "ca34672b",
|
114
|
-
"metadata": {},
|
115
|
-
"outputs": [],
|
116
|
-
"source": [
|
117
|
-
"y_pred_train = model.predict(X_train.reshape(-1,1))\n",
|
118
|
-
"plt.figure(figsize=(12,6))\n",
|
119
|
-
"plt.title(\"Train Set\")\n",
|
120
|
-
"plt.xlabel(\"Age\")\n",
|
121
|
-
"plt.ylabel(\"Charges\")\n",
|
122
|
-
"sns.scatterplot(x=X_train,y=y_train)\n",
|
123
|
-
"sns.lineplot(x=X_train,y=y_pred_train)"
|
124
|
-
]
|
125
|
-
},
|
126
|
-
{
|
127
|
-
"cell_type": "code",
|
128
|
-
"execution_count": null,
|
129
|
-
"id": "b86971e5",
|
130
|
-
"metadata": {},
|
131
|
-
"outputs": [],
|
132
|
-
"source": [
|
133
|
-
"y_pred = model.predict(X_test.reshape(-1,1))\n",
|
134
|
-
"plt.figure(figsize=(12,6))\n",
|
135
|
-
"plt.title(\"Test Set\")\n",
|
136
|
-
"plt.xlabel(\"Age\")\n",
|
137
|
-
"plt.ylabel(\"Charges\")\n",
|
138
|
-
"sns.scatterplot(x=X_test,y=y_test)\n",
|
139
|
-
"sns.lineplot(x=X_test,y=y_pred)"
|
140
|
-
]
|
141
|
-
},
|
142
|
-
{
|
143
|
-
"cell_type": "markdown",
|
144
|
-
"id": "07b0706a",
|
145
|
-
"metadata": {},
|
146
|
-
"source": [
|
147
|
-
"<h2>Non Linear Data</h2>"
|
148
|
-
]
|
149
|
-
},
|
150
|
-
{
|
151
|
-
"cell_type": "code",
|
152
|
-
"execution_count": null,
|
153
|
-
"id": "ea4698f7",
|
154
|
-
"metadata": {},
|
155
|
-
"outputs": [],
|
156
|
-
"source": [
|
157
|
-
"X=np.array(df['bmi'].iloc[100:300])\n",
|
158
|
-
"y=np.array(df['charges'].iloc[100:300])"
|
159
|
-
]
|
160
|
-
},
|
161
|
-
{
|
162
|
-
"cell_type": "code",
|
163
|
-
"execution_count": null,
|
164
|
-
"id": "1e8db443",
|
165
|
-
"metadata": {},
|
166
|
-
"outputs": [],
|
167
|
-
"source": [
|
168
|
-
"plt.figure(figsize = (12,6))\n",
|
169
|
-
"plt.title('BMI vs Charges Scatterplot')\n",
|
170
|
-
"plt.xlabel(\"BMI\")\n",
|
171
|
-
"plt.ylabel(\"Charges\")\n",
|
172
|
-
"sns.scatterplot(x=X,y=y)"
|
173
|
-
]
|
174
|
-
},
|
175
|
-
{
|
176
|
-
"cell_type": "code",
|
177
|
-
"execution_count": null,
|
178
|
-
"id": "6b7bf657",
|
179
|
-
"metadata": {},
|
180
|
-
"outputs": [],
|
181
|
-
"source": [
|
182
|
-
"X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.2, random_state = 0)"
|
183
|
-
]
|
184
|
-
},
|
185
|
-
{
|
186
|
-
"cell_type": "code",
|
187
|
-
"execution_count": null,
|
188
|
-
"id": "e2e4f730",
|
189
|
-
"metadata": {},
|
190
|
-
"outputs": [],
|
191
|
-
"source": [
|
192
|
-
"model = LinearRegression()"
|
193
|
-
]
|
194
|
-
},
|
195
|
-
{
|
196
|
-
"cell_type": "code",
|
197
|
-
"execution_count": null,
|
198
|
-
"id": "09b3f252",
|
199
|
-
"metadata": {},
|
200
|
-
"outputs": [],
|
201
|
-
"source": [
|
202
|
-
"model.fit(X_train.reshape(-1,1),y_train)"
|
203
|
-
]
|
204
|
-
},
|
205
|
-
{
|
206
|
-
"cell_type": "code",
|
207
|
-
"execution_count": null,
|
208
|
-
"id": "4d56b6ab",
|
209
|
-
"metadata": {},
|
210
|
-
"outputs": [],
|
211
|
-
"source": [
|
212
|
-
"y_pred_train = model.predict(X_train.reshape(-1,1))\n",
|
213
|
-
"plt.figure(figsize=(12,6))\n",
|
214
|
-
"plt.title(\"Train Set\")\n",
|
215
|
-
"plt.xlabel(\"BMI\")\n",
|
216
|
-
"plt.ylabel(\"Charges\")\n",
|
217
|
-
"sns.scatterplot(x=X_train,y=y_train)\n",
|
218
|
-
"sns.lineplot(x=X_train,y=y_pred_train)"
|
219
|
-
]
|
220
|
-
},
|
221
|
-
{
|
222
|
-
"cell_type": "code",
|
223
|
-
"execution_count": null,
|
224
|
-
"id": "9bff294b",
|
225
|
-
"metadata": {},
|
226
|
-
"outputs": [],
|
227
|
-
"source": [
|
228
|
-
"y_pred = model.predict(X_test.reshape(-1,1))\n",
|
229
|
-
"plt.figure(figsize=(12,6))\n",
|
230
|
-
"plt.title(\"Test Set\")\n",
|
231
|
-
"plt.xlabel(\"BMI\")\n",
|
232
|
-
"plt.ylabel(\"Charges\")\n",
|
233
|
-
"sns.scatterplot(x=X_test,y=y_test)\n",
|
234
|
-
"sns.lineplot(x=X_test,y=y_pred)"
|
235
|
-
]
|
236
|
-
},
|
237
|
-
{
|
238
|
-
"cell_type": "code",
|
239
|
-
"execution_count": null,
|
240
|
-
"id": "235253ca-31cb-4ecd-89a5-2f0d71f50d1f",
|
241
|
-
"metadata": {},
|
242
|
-
"outputs": [],
|
243
|
-
"source": []
|
244
|
-
}
|
245
|
-
],
|
246
|
-
"metadata": {
|
247
|
-
"kernelspec": {
|
248
|
-
"display_name": "Python 3 (ipykernel)",
|
249
|
-
"language": "python",
|
250
|
-
"name": "python3"
|
251
|
-
},
|
252
|
-
"language_info": {
|
253
|
-
"codemirror_mode": {
|
254
|
-
"name": "ipython",
|
255
|
-
"version": 3
|
256
|
-
},
|
257
|
-
"file_extension": ".py",
|
258
|
-
"mimetype": "text/x-python",
|
259
|
-
"name": "python",
|
260
|
-
"nbconvert_exporter": "python",
|
261
|
-
"pygments_lexer": "ipython3",
|
262
|
-
"version": "3.12.4"
|
263
|
-
}
|
264
|
-
},
|
265
|
-
"nbformat": 4,
|
266
|
-
"nbformat_minor": 5
|
267
|
-
}
|
@@ -1,104 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "cef03733-f76d-4c75-9570-43d8b4d946d8",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import numpy as np\n",
|
11
|
-
"import matplotlib.pyplot as plt\n",
|
12
|
-
"from sklearn import linear_model, datasets\n",
|
13
|
-
"from sklearn.model_selection import train_test_split\n",
|
14
|
-
"from sklearn.metrics import confusion_matrix\n",
|
15
|
-
"\n",
|
16
|
-
"# Load the wine dataset\n",
|
17
|
-
"wine = datasets.load_wine()\n",
|
18
|
-
"\n",
|
19
|
-
"# Features and target\n",
|
20
|
-
"X = wine.data\n",
|
21
|
-
"Y = wine.target\n",
|
22
|
-
"\n",
|
23
|
-
"# Split the dataset\n",
|
24
|
-
"X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.30, random_state=7)\n",
|
25
|
-
"\n",
|
26
|
-
"# Initialize and train Logistic Regression model\n",
|
27
|
-
"log_reg_model = linear_model.LogisticRegression(max_iter=5000) # Increase max_iter to avoid convergence warning\n",
|
28
|
-
"log_reg_model.fit(X_train, y_train)\n",
|
29
|
-
"\n",
|
30
|
-
"# Model evaluation\n",
|
31
|
-
"score = log_reg_model.score(X_test, y_test)\n",
|
32
|
-
"print(\"The score for the Logistic Regression Model is:\", score)\n",
|
33
|
-
"\n",
|
34
|
-
"# Confusion Matrix\n",
|
35
|
-
"cm = confusion_matrix(y_test, log_reg_model.predict(X_test))\n",
|
36
|
-
"print(\"Confusion Matrix:\\n\", cm)\n",
|
37
|
-
"\n",
|
38
|
-
"# ------------------------------\n",
|
39
|
-
"# Visualization with only 2 features\n",
|
40
|
-
"# ------------------------------\n",
|
41
|
-
"\n",
|
42
|
-
"# Use only the first two features for visualization\n",
|
43
|
-
"X_vis = X[:, :2]\n",
|
44
|
-
"\n",
|
45
|
-
"# Train again on 2 features\n",
|
46
|
-
"log_reg_model.fit(X_vis, Y)\n",
|
47
|
-
"\n",
|
48
|
-
"# Set mesh grid limits\n",
|
49
|
-
"x_min, x_max = X_vis[:, 0].min() - 0.5, X_vis[:, 0].max() + 0.5\n",
|
50
|
-
"y_min, y_max = X_vis[:, 1].min() - 0.5, X_vis[:, 1].max() + 0.5\n",
|
51
|
-
"xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.01),\n",
|
52
|
-
" np.arange(y_min, y_max, 0.01))\n",
|
53
|
-
"\n",
|
54
|
-
"# Predict over mesh\n",
|
55
|
-
"Z = log_reg_model.predict(np.c_[xx.ravel(), yy.ravel()])\n",
|
56
|
-
"Z = Z.reshape(xx.shape)\n",
|
57
|
-
"\n",
|
58
|
-
"# Plot\n",
|
59
|
-
"plt.figure(figsize=(8, 6))\n",
|
60
|
-
"plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired, shading='auto')\n",
|
61
|
-
"\n",
|
62
|
-
"# Scatter plot\n",
|
63
|
-
"plt.scatter(X_vis[:, 0], X_vis[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired)\n",
|
64
|
-
"plt.xlabel(wine.feature_names[0])\n",
|
65
|
-
"plt.ylabel(wine.feature_names[1])\n",
|
66
|
-
"plt.title('Logistic Regression Decision Boundary (Wine Dataset)')\n",
|
67
|
-
"plt.xlim(xx.min(), xx.max())\n",
|
68
|
-
"plt.ylim(yy.min(), yy.max())\n",
|
69
|
-
"plt.xticks(())\n",
|
70
|
-
"plt.yticks(())\n",
|
71
|
-
"plt.show()\n"
|
72
|
-
]
|
73
|
-
},
|
74
|
-
{
|
75
|
-
"cell_type": "code",
|
76
|
-
"execution_count": null,
|
77
|
-
"id": "9b026574-d96c-455d-af8f-8fa02e942a85",
|
78
|
-
"metadata": {},
|
79
|
-
"outputs": [],
|
80
|
-
"source": []
|
81
|
-
}
|
82
|
-
],
|
83
|
-
"metadata": {
|
84
|
-
"kernelspec": {
|
85
|
-
"display_name": "Python 3 (ipykernel)",
|
86
|
-
"language": "python",
|
87
|
-
"name": "python3"
|
88
|
-
},
|
89
|
-
"language_info": {
|
90
|
-
"codemirror_mode": {
|
91
|
-
"name": "ipython",
|
92
|
-
"version": 3
|
93
|
-
},
|
94
|
-
"file_extension": ".py",
|
95
|
-
"mimetype": "text/x-python",
|
96
|
-
"name": "python",
|
97
|
-
"nbconvert_exporter": "python",
|
98
|
-
"pygments_lexer": "ipython3",
|
99
|
-
"version": "3.12.4"
|
100
|
-
}
|
101
|
-
},
|
102
|
-
"nbformat": 4,
|
103
|
-
"nbformat_minor": 5
|
104
|
-
}
|
@@ -1,109 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "f7327c24-ed64-4b50-9eb9-42f1ca544cd6",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import matplotlib.pyplot as plt\n",
|
11
|
-
"import seaborn as sns\n",
|
12
|
-
"from sklearn import datasets\n",
|
13
|
-
"from sklearn.metrics import confusion_matrix\n",
|
14
|
-
"from sklearn.model_selection import train_test_split\n",
|
15
|
-
"from sklearn.naive_bayes import GaussianNB\n",
|
16
|
-
"\n",
|
17
|
-
"# Load dataset\n",
|
18
|
-
"win = datasets.load_wine()\n",
|
19
|
-
"X = win.data\n",
|
20
|
-
"y = win.target\n",
|
21
|
-
"\n",
|
22
|
-
"# Train-test split\n",
|
23
|
-
"X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)\n",
|
24
|
-
"\n",
|
25
|
-
"# Train model\n",
|
26
|
-
"gnb = GaussianNB().fit(X_train, y_train)\n",
|
27
|
-
"gnb_predictions = gnb.predict(X_test)\n",
|
28
|
-
"\n",
|
29
|
-
"# Confusion matrix\n",
|
30
|
-
"cm = confusion_matrix(y_test, gnb_predictions)\n",
|
31
|
-
"#labels = win.target_names\n",
|
32
|
-
"\n",
|
33
|
-
"# Plot\n",
|
34
|
-
"plt.figure(figsize=(8, 6))\n",
|
35
|
-
"sns.heatmap(cm, annot=True, fmt=\"d\", cmap=\"Blues\",\n",
|
36
|
-
" xticklabels=[0,1,2], yticklabels=[0,1,2])\n",
|
37
|
-
"plt.xlabel(\"Predicted Label\")\n",
|
38
|
-
"plt.ylabel(\"True Label\")\n",
|
39
|
-
"plt.title(\"Confusion Matrix for Gaussian Naive Bayes (Wine Dataset)\")\n",
|
40
|
-
"plt.tight_layout()\n",
|
41
|
-
"plt.show()\n"
|
42
|
-
]
|
43
|
-
},
|
44
|
-
{
|
45
|
-
"cell_type": "code",
|
46
|
-
"execution_count": null,
|
47
|
-
"id": "219554ad-622f-4428-aa10-35f5b6bbafcb",
|
48
|
-
"metadata": {
|
49
|
-
"scrolled": true
|
50
|
-
},
|
51
|
-
"outputs": [],
|
52
|
-
"source": [
|
53
|
-
"import sklearn.naive_bayes\n",
|
54
|
-
"help(sklearn.naive_bayes)"
|
55
|
-
]
|
56
|
-
},
|
57
|
-
{
|
58
|
-
"cell_type": "code",
|
59
|
-
"execution_count": null,
|
60
|
-
"id": "abdd3ed0-02f1-4d10-b280-563984c82cab",
|
61
|
-
"metadata": {},
|
62
|
-
"outputs": [],
|
63
|
-
"source": [
|
64
|
-
"import sklearn.naive_bayes\n",
|
65
|
-
"print(dir(sklearn.naive_bayes))\n"
|
66
|
-
]
|
67
|
-
},
|
68
|
-
{
|
69
|
-
"cell_type": "code",
|
70
|
-
"execution_count": null,
|
71
|
-
"id": "f5f672f9-a0f5-4fe0-8a79-c6368858311a",
|
72
|
-
"metadata": {},
|
73
|
-
"outputs": [],
|
74
|
-
"source": [
|
75
|
-
"import inspect\n",
|
76
|
-
"inspect.getmembers(sklearn.naive_bayes, inspect.isclass) "
|
77
|
-
]
|
78
|
-
},
|
79
|
-
{
|
80
|
-
"cell_type": "code",
|
81
|
-
"execution_count": null,
|
82
|
-
"id": "28f73c18-b901-405e-88c7-9a7c606b6633",
|
83
|
-
"metadata": {},
|
84
|
-
"outputs": [],
|
85
|
-
"source": []
|
86
|
-
}
|
87
|
-
],
|
88
|
-
"metadata": {
|
89
|
-
"kernelspec": {
|
90
|
-
"display_name": "Python 3 (ipykernel)",
|
91
|
-
"language": "python",
|
92
|
-
"name": "python3"
|
93
|
-
},
|
94
|
-
"language_info": {
|
95
|
-
"codemirror_mode": {
|
96
|
-
"name": "ipython",
|
97
|
-
"version": 3
|
98
|
-
},
|
99
|
-
"file_extension": ".py",
|
100
|
-
"mimetype": "text/x-python",
|
101
|
-
"name": "python",
|
102
|
-
"nbconvert_exporter": "python",
|
103
|
-
"pygments_lexer": "ipython3",
|
104
|
-
"version": "3.12.4"
|
105
|
-
}
|
106
|
-
},
|
107
|
-
"nbformat": 4,
|
108
|
-
"nbformat_minor": 5
|
109
|
-
}
|