noshot 11.0.0__py3-none-any.whl → 13.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/1. DNN (Image Classification).ipynb +389 -0
- noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/2. DNN vs CNN.ipynb +516 -0
- noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/3. CNN (Object Detecrion).ipynb +259 -0
- noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/4. FCN (Image Segmentaion).ipynb +274 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.1 DNN (Pytorch).ipynb +164 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.2 DNN (Tensorflow).ipynb +94 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.3 DNN (Image Classification).ipynb +134 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/2.1 DNN vs CNN.ipynb +127 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/2.2 DNN vs CNN.ipynb +123 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/4. FCNN (Image Segmentation).ipynb +108 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/Lab Excercise (Training DNN).ipynb +646 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/Load-Images.ipynb +553 -0
- noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex1.ipynb +216 -0
- noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex2.ipynb +195 -0
- noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex3.ipynb +427 -0
- noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex4.ipynb +186 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/DNN Ex No 1.ipynb +398 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Ex No 1 Build in dataset.ipynb +171 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Exp1-Short-DL_ANN_ImageClassification.ipynb +401 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/OR GATE .ipynb +8511 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp02/Exp2-Short-DL_CNN_ImageClassification.ipynb +737 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp03/DL-Ex3-RNN.ipynb +591 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp04/Ex no 4.ipynb +551 -0
- noshot/main.py +3 -3
- {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/METADATA +1 -1
- noshot-13.0.0.dist-info/RECORD +32 -0
- noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb +0 -201
- noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb +0 -201
- noshot/data/ML TS XAI/ML/Json Codes/ML LAB CIA 2.ipynb +0 -409
- noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Balance Scale Dataset).ipynb +0 -147
- noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Rice Dataset).ipynb +0 -181
- noshot/data/ML TS XAI/ML/ML 1/10. HMM Veterbi.ipynb +0 -152
- noshot/data/ML TS XAI/ML/ML 1/2. KNN (Balance Scale Dataset).ipynb +0 -117
- noshot/data/ML TS XAI/ML/ML 1/2. KNN (Iris Dataset).ipynb +0 -156
- noshot/data/ML TS XAI/ML/ML 1/2. KNN (Sobar-72 Dataset).ipynb +0 -215
- noshot/data/ML TS XAI/ML/ML 1/3. LDA (Balance Scale Dataset).ipynb +0 -78
- noshot/data/ML TS XAI/ML/ML 1/3. LDA (NPHA Doctor Visits Dataset).ipynb +0 -114
- noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Machine Dataset).ipynb +0 -115
- noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Real Estate Dataset).ipynb +0 -146
- noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Magic04 Dataset).ipynb +0 -130
- noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Wine Dataset).ipynb +0 -112
- noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +0 -118
- noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Wine Dataset).ipynb +0 -89
- noshot/data/ML TS XAI/ML/ML 1/7. SVM (Rice Dataset).ipynb +0 -120
- noshot/data/ML TS XAI/ML/ML 1/8. FeedForward NN (Sobar72 Dataset).ipynb +0 -262
- noshot/data/ML TS XAI/ML/ML 1/9. CNN (Cifar10 Dataset).ipynb +0 -156
- noshot/data/ML TS XAI/ML/ML 2/1. PCA.ipynb +0 -162
- noshot/data/ML TS XAI/ML/ML 2/10. CNN.ipynb +0 -100
- noshot/data/ML TS XAI/ML/ML 2/11. HMM.ipynb +0 -336
- noshot/data/ML TS XAI/ML/ML 2/2. KNN.ipynb +0 -149
- noshot/data/ML TS XAI/ML/ML 2/3. LDA.ipynb +0 -132
- noshot/data/ML TS XAI/ML/ML 2/4. Linear Regression.ipynb +0 -86
- noshot/data/ML TS XAI/ML/ML 2/5. Logistic Regression.ipynb +0 -115
- noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Titanic).ipynb +0 -196
- noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Wine).ipynb +0 -98
- noshot/data/ML TS XAI/ML/ML 2/7. SVM Linear.ipynb +0 -109
- noshot/data/ML TS XAI/ML/ML 2/8. SVM Non-Linear.ipynb +0 -195
- noshot/data/ML TS XAI/ML/ML 2/9. FNN With Regularization.ipynb +0 -189
- noshot/data/ML TS XAI/ML/ML 2/9. FNN Without Regularization.ipynb +0 -197
- noshot/data/ML TS XAI/ML/ML 2/All in One Lab CIA 1 Q.ipynb +0 -1087
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb +0 -274
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb +0 -170
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb +0 -1087
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb +0 -178
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb +0 -185
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb +0 -106
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb +0 -177
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb +0 -195
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb +0 -267
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb +0 -104
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb +0 -109
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb +0 -220
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb +0 -99
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb +0 -211
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb +0 -99
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb +0 -118
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb +0 -603
- noshot/data/ML TS XAI/ML/ML Lab AllinOne.ipynb +0 -961
- noshot/data/ML TS XAI/ML/ML Lab H Sec/1. Iris Dataset (Softmax vs Sigmoid).ipynb +0 -231
- noshot/data/ML TS XAI/ML/ML Lab H Sec/2. Student Dataset (Overfit vs Regularized).ipynb +0 -269
- noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Categorical (Overfit vs Regularized).ipynb +0 -274
- noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Numerical (Overfit vs Regularized).ipynb +0 -263
- noshot/data/ML TS XAI/ML/ML Lab H Sec/4. Smart House System HMM.ipynb +0 -198
- noshot/data/ML TS XAI/ML/ML Lab H Sec/5. Fraud Detection System HMM.ipynb +0 -201
- noshot/data/ML TS XAI/ML/ML Lab H Sec/insurance.csv +0 -1339
- noshot/data/ML TS XAI/ML/ML Lab H Sec/iris1.data +0 -151
- noshot/data/ML TS XAI/ML/ML Lab H Sec/student-mat.csv +0 -396
- noshot/data/ML TS XAI/ML/ML Lab H Sec/student-por.csv +0 -650
- noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +0 -691
- noshot-11.0.0.dist-info/RECORD +0 -72
- {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/WHEEL +0 -0
- {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/licenses/LICENSE.txt +0 -0
- {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/top_level.txt +0 -0
@@ -1,178 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "919144b8-e0cf-4047-8e7a-1ee69bc40be3",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import numpy as np\n",
|
11
|
-
"import pandas as pd\n",
|
12
|
-
"import networkx as nx\n",
|
13
|
-
"import matplotlib.pyplot as plt\n",
|
14
|
-
"from pprint import pprint\n",
|
15
|
-
"\n",
|
16
|
-
"states = ['O1', 'O2', 'O3']\n",
|
17
|
-
"pi_obs = [0.25, 0.4, 0.35]\n",
|
18
|
-
"\n",
|
19
|
-
"state_space = pd.Series(pi_obs, index=states, name='states')\n",
|
20
|
-
"print(state_space)\n",
|
21
|
-
"print(\"Sum of initial state probabilities:\", state_space.sum())\n",
|
22
|
-
"\n",
|
23
|
-
"q_df = pd.DataFrame(columns=states, index=states)\n",
|
24
|
-
"q_df.loc[states[0]] = [0.4, 0.2, 0.4]\n",
|
25
|
-
"q_df.loc[states[1]] = [0.45, 0.45, 0.1]\n",
|
26
|
-
"q_df.loc[states[2]] = [0.45, 0.25, 0.3]\n",
|
27
|
-
"print(\"\\nTransition Matrix:\\n\", q_df)\n",
|
28
|
-
"\n",
|
29
|
-
"q = q_df.values\n",
|
30
|
-
"print(\"\\nMatrix Values:\\n\", q, q.shape)\n",
|
31
|
-
"print(\"\\nRow Sums (should be 1):\\n\", q_df.sum(axis=1))\n",
|
32
|
-
"\n",
|
33
|
-
"def _get_markov_edges(Q):\n",
|
34
|
-
" edges = {}\n",
|
35
|
-
" for col in Q.columns:\n",
|
36
|
-
" for idx in Q.index:\n",
|
37
|
-
" edges[(idx, col)] = Q.loc[idx, col]\n",
|
38
|
-
" return edges\n",
|
39
|
-
"\n",
|
40
|
-
"edges_wts = _get_markov_edges(q_df)\n",
|
41
|
-
"pprint(edges_wts)\n",
|
42
|
-
"\n",
|
43
|
-
"G = nx.MultiDiGraph()\n",
|
44
|
-
"G.add_nodes_from(states)\n",
|
45
|
-
"for (src, dst), weight in edges_wts.items():\n",
|
46
|
-
" G.add_edge(src, dst, weight=weight, label=f\"{weight:.2f}\")\n",
|
47
|
-
"\n",
|
48
|
-
"pos = nx.spring_layout(G, seed=42)\n",
|
49
|
-
"nx.draw_networkx(G, pos, with_labels=True, arrows=True)\n",
|
50
|
-
"edge_labels = nx.get_edge_attributes(G, 'label')\n",
|
51
|
-
"nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels)\n",
|
52
|
-
"plt.title(\"Observable States Transition Graph\")\n",
|
53
|
-
"plt.show()\n",
|
54
|
-
"\n",
|
55
|
-
"hidden_states = ['S1', 'S2']\n",
|
56
|
-
"pi = [0.5, 0.5]\n",
|
57
|
-
"\n",
|
58
|
-
"state_space = pd.Series(pi, index=hidden_states, name='states')\n",
|
59
|
-
"print(\"\\nInitial Probabilities:\\n\", state_space)\n",
|
60
|
-
"print(\"Sum:\", state_space.sum())\n",
|
61
|
-
"\n",
|
62
|
-
"a_df = pd.DataFrame(columns=hidden_states, index=hidden_states)\n",
|
63
|
-
"a_df.loc[hidden_states[0]] = [0.7, 0.3]\n",
|
64
|
-
"a_df.loc[hidden_states[1]] = [0.4, 0.6]\n",
|
65
|
-
"print(\"\\nHidden Transition Matrix:\\n\", a_df)\n",
|
66
|
-
"\n",
|
67
|
-
"a = a_df.values\n",
|
68
|
-
"print(\"\\nMatrix Values:\\n\", a)\n",
|
69
|
-
"print(\"Shape:\", a.shape)\n",
|
70
|
-
"print(\"Row Sums:\", a_df.sum(axis=1))\n",
|
71
|
-
"\n",
|
72
|
-
"observable_states = states\n",
|
73
|
-
"b_df = pd.DataFrame(columns=observable_states, index=hidden_states)\n",
|
74
|
-
"b_df.loc[hidden_states[0]] = [0.2, 0.6, 0.2]\n",
|
75
|
-
"b_df.loc[hidden_states[1]] = [0.4, 0.1, 0.5]\n",
|
76
|
-
"print(\"\\nEmission Matrix:\\n\", b_df)\n",
|
77
|
-
"\n",
|
78
|
-
"b = b_df.values\n",
|
79
|
-
"print(\"\\nMatrix Values:\\n\", b)\n",
|
80
|
-
"print(\"Shape:\", b.shape)\n",
|
81
|
-
"print(\"Row Sums:\", b_df.sum(axis=1))\n",
|
82
|
-
"\n",
|
83
|
-
"hide_edges_wts = _get_markov_edges(a_df)\n",
|
84
|
-
"emit_edges_wts = _get_markov_edges(b_df)\n",
|
85
|
-
"\n",
|
86
|
-
"pprint(hide_edges_wts)\n",
|
87
|
-
"pprint(emit_edges_wts)\n",
|
88
|
-
"\n",
|
89
|
-
"G = nx.MultiDiGraph()\n",
|
90
|
-
"G.add_nodes_from(hidden_states)\n",
|
91
|
-
"for (src, dst), weight in hide_edges_wts.items():\n",
|
92
|
-
" G.add_edge(src, dst, weight=weight, label=f\"{weight:.2f}\")\n",
|
93
|
-
"\n",
|
94
|
-
"pos = nx.spring_layout(G, seed=24)\n",
|
95
|
-
"nx.draw_networkx(G, pos, with_labels=True, arrows=True)\n",
|
96
|
-
"edge_labels = nx.get_edge_attributes(G, 'label')\n",
|
97
|
-
"nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels)\n",
|
98
|
-
"plt.title(\"Hidden States Transition Graph\")\n",
|
99
|
-
"plt.show()\n",
|
100
|
-
"\n",
|
101
|
-
"obs_seq = ['O2', 'O1', 'O3']\n",
|
102
|
-
"obs_map = {state: idx for idx, state in enumerate(observable_states)}\n",
|
103
|
-
"obs_idx_seq = [obs_map[obs] for obs in obs_seq]\n",
|
104
|
-
"\n",
|
105
|
-
"n_states = len(hidden_states)\n",
|
106
|
-
"T = len(obs_seq)\n",
|
107
|
-
"\n",
|
108
|
-
"delta = np.zeros((T, n_states))\n",
|
109
|
-
"psi = np.zeros((T, n_states), dtype=int)\n",
|
110
|
-
"\n",
|
111
|
-
"for i in range(n_states):\n",
|
112
|
-
" delta[0, i] = pi[i] * b[i, obs_idx_seq[0]]\n",
|
113
|
-
"\n",
|
114
|
-
"for t in range(1, T):\n",
|
115
|
-
" for j in range(n_states):\n",
|
116
|
-
" max_prob = -1\n",
|
117
|
-
" for i in range(n_states):\n",
|
118
|
-
" prob = delta[t-1, i] * a[i, j] * b[j, obs_idx_seq[t]]\n",
|
119
|
-
" if prob > max_prob:\n",
|
120
|
-
" max_prob = prob\n",
|
121
|
-
" psi[t, j] = i\n",
|
122
|
-
" delta[t, j] = max_prob\n",
|
123
|
-
"\n",
|
124
|
-
"path = np.zeros(T, dtype=int)\n",
|
125
|
-
"path[T-1] = np.argmax(delta[T-1])\n",
|
126
|
-
"for t in range(T-2, -1, -1):\n",
|
127
|
-
" path[t] = psi[t+1, path[t+1]]\n",
|
128
|
-
"\n",
|
129
|
-
"state_map = {0: 'S1', 1: 'S2'}\n",
|
130
|
-
"state_path = [state_map[v] for v in path]\n",
|
131
|
-
"\n",
|
132
|
-
"result = pd.DataFrame({\n",
|
133
|
-
" 'Observation': obs_seq,\n",
|
134
|
-
" 'Best_Path': state_path\n",
|
135
|
-
"})\n"
|
136
|
-
]
|
137
|
-
},
|
138
|
-
{
|
139
|
-
"cell_type": "code",
|
140
|
-
"execution_count": null,
|
141
|
-
"id": "c5d97c8f-ad1b-4bf8-837d-d962f6a8c491",
|
142
|
-
"metadata": {},
|
143
|
-
"outputs": [],
|
144
|
-
"source": [
|
145
|
-
"result"
|
146
|
-
]
|
147
|
-
},
|
148
|
-
{
|
149
|
-
"cell_type": "code",
|
150
|
-
"execution_count": null,
|
151
|
-
"id": "8d568585-7e84-4cf8-9015-ec7015dcaf57",
|
152
|
-
"metadata": {},
|
153
|
-
"outputs": [],
|
154
|
-
"source": []
|
155
|
-
}
|
156
|
-
],
|
157
|
-
"metadata": {
|
158
|
-
"kernelspec": {
|
159
|
-
"display_name": "Python 3 (ipykernel)",
|
160
|
-
"language": "python",
|
161
|
-
"name": "python3"
|
162
|
-
},
|
163
|
-
"language_info": {
|
164
|
-
"codemirror_mode": {
|
165
|
-
"name": "ipython",
|
166
|
-
"version": 3
|
167
|
-
},
|
168
|
-
"file_extension": ".py",
|
169
|
-
"mimetype": "text/x-python",
|
170
|
-
"name": "python",
|
171
|
-
"nbconvert_exporter": "python",
|
172
|
-
"pygments_lexer": "ipython3",
|
173
|
-
"version": "3.12.4"
|
174
|
-
}
|
175
|
-
},
|
176
|
-
"nbformat": 4,
|
177
|
-
"nbformat_minor": 5
|
178
|
-
}
|
@@ -1,185 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "63225994-29d4-429c-af2b-e6c3a1cebda9",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import numpy as np\n",
|
11
|
-
"import pandas as pd\n",
|
12
|
-
"import networkx.drawing.nx_pydot as gl\n",
|
13
|
-
"import networkx as nx\n",
|
14
|
-
"import matplotlib.pyplot as plt\n",
|
15
|
-
"from pprint import pprint\n",
|
16
|
-
"\n",
|
17
|
-
"states = ['O1', 'O2', 'O3']\n",
|
18
|
-
"pi_obs = [0.25, 0.4, 0.35]\n",
|
19
|
-
"\n",
|
20
|
-
"state_space = pd.Series(pi_obs, index=states, name='states')\n",
|
21
|
-
"print(state_space)\n",
|
22
|
-
"print(state_space.sum())\n",
|
23
|
-
"\n",
|
24
|
-
"q_df = pd.DataFrame(columns=states, index=states)\n",
|
25
|
-
"q_df.loc[states[0]] = [0.4, 0.2, 0.4]\n",
|
26
|
-
"q_df.loc[states[1]] = [0.45, 0.45, 0.1]\n",
|
27
|
-
"q_df.loc[states[2]] = [0.45, 0.25, 0.3]\n",
|
28
|
-
"print(q_df)\n",
|
29
|
-
"\n",
|
30
|
-
"q = q_df.values\n",
|
31
|
-
"print(q, q.shape)\n",
|
32
|
-
"print('\\n')\n",
|
33
|
-
"print(q_df.sum(axis=1))\n",
|
34
|
-
"\n",
|
35
|
-
"def _get_markov_edges(Q):\n",
|
36
|
-
" edges = {}\n",
|
37
|
-
" for col in Q.columns:\n",
|
38
|
-
" for idx in Q.index:\n",
|
39
|
-
" edges[(idx, col)] = Q.loc[idx, col]\n",
|
40
|
-
" return edges\n",
|
41
|
-
"\n",
|
42
|
-
"edges_wts = _get_markov_edges(q_df)\n",
|
43
|
-
"pprint(edges_wts)\n",
|
44
|
-
"\n",
|
45
|
-
"G = nx.MultiDiGraph()\n",
|
46
|
-
"G.add_nodes_from(states)\n",
|
47
|
-
"print('Nodes:\\n')\n",
|
48
|
-
"print(G.nodes())\n",
|
49
|
-
"print('\\n')\n",
|
50
|
-
"\n",
|
51
|
-
"for k, v in edges_wts.items():\n",
|
52
|
-
" tmp_origin, tmp_destination = k[0], k[1]\n",
|
53
|
-
" G.add_edge(tmp_origin, tmp_destination, weight=v, label=v)\n",
|
54
|
-
"\n",
|
55
|
-
"print('Edges:')\n",
|
56
|
-
"pprint(G.edges(data=True))\n",
|
57
|
-
"\n",
|
58
|
-
"pos = nx.drawing.nx_pydot.graphviz_layout(G, prog='dot')\n",
|
59
|
-
"nx.draw_networkx(G, pos)\n",
|
60
|
-
"plt.show()\n",
|
61
|
-
"\n",
|
62
|
-
"hidden_states = ['S1', 'S2']\n",
|
63
|
-
"pi = [0.5, 0.5]\n",
|
64
|
-
"print('\\n')\n",
|
65
|
-
"state_space = pd.Series(pi, index=hidden_states, name='states')\n",
|
66
|
-
"print(state_space)\n",
|
67
|
-
"print('\\n')\n",
|
68
|
-
"print(state_space.sum())\n",
|
69
|
-
"\n",
|
70
|
-
"a_df = pd.DataFrame(columns=hidden_states, index=hidden_states)\n",
|
71
|
-
"a_df.loc[hidden_states[0]] = [0.7, 0.3]\n",
|
72
|
-
"a_df.loc[hidden_states[1]] = [0.4, 0.6]\n",
|
73
|
-
"print(a_df)\n",
|
74
|
-
"\n",
|
75
|
-
"a = a_df.values\n",
|
76
|
-
"print('\\n')\n",
|
77
|
-
"print(a)\n",
|
78
|
-
"print(a.shape)\n",
|
79
|
-
"print('\\n')\n",
|
80
|
-
"print(a_df.sum(axis=1))\n",
|
81
|
-
"\n",
|
82
|
-
"observable_states = states\n",
|
83
|
-
"b_df = pd.DataFrame(columns=observable_states, index=hidden_states)\n",
|
84
|
-
"b_df.loc[hidden_states[0]] = [0.2, 0.6, 0.2]\n",
|
85
|
-
"b_df.loc[hidden_states[1]] = [0.4, 0.1, 0.5]\n",
|
86
|
-
"print(b_df)\n",
|
87
|
-
"\n",
|
88
|
-
"b = b_df.values\n",
|
89
|
-
"print('\\n')\n",
|
90
|
-
"print(b)\n",
|
91
|
-
"print(b.shape)\n",
|
92
|
-
"print('\\n')\n",
|
93
|
-
"print(b_df.sum(axis=1))\n",
|
94
|
-
"\n",
|
95
|
-
"hide_edges_wts = _get_markov_edges(a_df)\n",
|
96
|
-
"pprint(hide_edges_wts)\n",
|
97
|
-
"\n",
|
98
|
-
"emit_edges_wts = _get_markov_edges(b_df)\n",
|
99
|
-
"pprint(emit_edges_wts)\n",
|
100
|
-
"\n",
|
101
|
-
"G = nx.MultiDiGraph()\n",
|
102
|
-
"G.add_nodes_from(hidden_states)\n",
|
103
|
-
"print('Nodes:\\n')\n",
|
104
|
-
"print(G.nodes())\n",
|
105
|
-
"print('\\n')\n",
|
106
|
-
"\n",
|
107
|
-
"for (origin, destination), weight in hide_edges_wts.items():\n",
|
108
|
-
" G.add_edge(origin, destination, weight=weight, label=weight)\n",
|
109
|
-
"\n",
|
110
|
-
"pos = nx.drawing.nx_pydot.graphviz_layout(G, prog='neato')\n",
|
111
|
-
"nx.draw_networkx(G, pos, with_labels=True, arrows=True)\n",
|
112
|
-
"edge_labels = nx.get_edge_attributes(G, 'label')\n",
|
113
|
-
"nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels)\n",
|
114
|
-
"plt.show()\n",
|
115
|
-
"\n",
|
116
|
-
"obs_seq = ['O2', 'O1', 'O3']\n",
|
117
|
-
"\n",
|
118
|
-
"obs_map = {state: idx for idx, state in enumerate(observable_states)}\n",
|
119
|
-
"obs_idx_seq = [obs_map[obs] for obs in obs_seq]\n",
|
120
|
-
"\n",
|
121
|
-
"n_states = len(hidden_states)\n",
|
122
|
-
"T = len(obs_seq)\n",
|
123
|
-
"\n",
|
124
|
-
"delta = np.zeros((T, n_states))\n",
|
125
|
-
"psi = np.zeros((T, n_states), dtype=int)\n",
|
126
|
-
"\n",
|
127
|
-
"for i in range(n_states):\n",
|
128
|
-
" delta[0, i] = pi[i] * b[i, obs_idx_seq[0]]\n",
|
129
|
-
"\n",
|
130
|
-
"for t in range(1, T):\n",
|
131
|
-
" for j in range(n_states):\n",
|
132
|
-
" max_prob = -1\n",
|
133
|
-
" for i in range(n_states):\n",
|
134
|
-
" prob = delta[t-1, i] * a[i, j] * b[j, obs_idx_seq[t]]\n",
|
135
|
-
" if prob > max_prob:\n",
|
136
|
-
" max_prob = prob\n",
|
137
|
-
" psi[t, j] = i\n",
|
138
|
-
" delta[t, j] = max_prob\n",
|
139
|
-
"\n",
|
140
|
-
"path = np.zeros(T, dtype=int)\n",
|
141
|
-
"path[T-1] = np.argmax(delta[T-1])\n",
|
142
|
-
"for t in range(T-2, -1, -1):\n",
|
143
|
-
" path[t] = psi[t+1, path[t+1]]\n",
|
144
|
-
"\n",
|
145
|
-
"state_map = {0: 'S1', 1: 'S2'}\n",
|
146
|
-
"state_path = [state_map[v] for v in path]\n",
|
147
|
-
"\n",
|
148
|
-
"result = pd.DataFrame({\n",
|
149
|
-
" 'Observation': obs_seq,\n",
|
150
|
-
" 'Best_Path': state_path\n",
|
151
|
-
"})\n",
|
152
|
-
"print(result)\n"
|
153
|
-
]
|
154
|
-
},
|
155
|
-
{
|
156
|
-
"cell_type": "code",
|
157
|
-
"execution_count": null,
|
158
|
-
"id": "0eaf88b8-dac1-4441-8416-7fecffacdb37",
|
159
|
-
"metadata": {},
|
160
|
-
"outputs": [],
|
161
|
-
"source": []
|
162
|
-
}
|
163
|
-
],
|
164
|
-
"metadata": {
|
165
|
-
"kernelspec": {
|
166
|
-
"display_name": "Python 3 (ipykernel)",
|
167
|
-
"language": "python",
|
168
|
-
"name": "python3"
|
169
|
-
},
|
170
|
-
"language_info": {
|
171
|
-
"codemirror_mode": {
|
172
|
-
"name": "ipython",
|
173
|
-
"version": 3
|
174
|
-
},
|
175
|
-
"file_extension": ".py",
|
176
|
-
"mimetype": "text/x-python",
|
177
|
-
"name": "python",
|
178
|
-
"nbconvert_exporter": "python",
|
179
|
-
"pygments_lexer": "ipython3",
|
180
|
-
"version": "3.12.4"
|
181
|
-
}
|
182
|
-
},
|
183
|
-
"nbformat": 4,
|
184
|
-
"nbformat_minor": 5
|
185
|
-
}
|
@@ -1,106 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "46edf90f-3dee-4f88-965d-2502f38e2cf6",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"from hmmlearn import hmm\n",
|
11
|
-
"import numpy as np\n",
|
12
|
-
"\n",
|
13
|
-
"# Observations\n",
|
14
|
-
"observations = ['Walk', 'Shop', 'Clean']\n",
|
15
|
-
"\n",
|
16
|
-
"# Define model\n",
|
17
|
-
"model = hmm.MultinomialHMM(n_components=2, n_trials=1, random_state=42)\n",
|
18
|
-
"\n",
|
19
|
-
"# Set start probabilities\n",
|
20
|
-
"model.startprob_ = np.array([0.6, 0.4])\n",
|
21
|
-
"\n",
|
22
|
-
"# Set transition matrix\n",
|
23
|
-
"model.transmat_ = np.array([\n",
|
24
|
-
" [0.7, 0.3],\n",
|
25
|
-
" \n",
|
26
|
-
" [0.4, 0.6]\n",
|
27
|
-
"])\n",
|
28
|
-
"\n",
|
29
|
-
"# Set emission probabilities\n",
|
30
|
-
"model.emissionprob_ = np.array([\n",
|
31
|
-
" [0.1, 0.4, 0.5], # State 0 (Rainy)\n",
|
32
|
-
" [0.6, 0.3, 0.1], # State 1 (Sunny)\n",
|
33
|
-
"])\n",
|
34
|
-
"\n",
|
35
|
-
"# Define observation sequence (ONE-HOT encoded now)\n",
|
36
|
-
"obs_seq = np.array([\n",
|
37
|
-
" [1, 0, 0], # Walk\n",
|
38
|
-
" [0, 1, 0], # Shop\n",
|
39
|
-
" [0, 0, 1] # Clean\n",
|
40
|
-
"])\n",
|
41
|
-
"\n",
|
42
|
-
"# Predict hidden states\n",
|
43
|
-
"logprob, hidden_states = model.decode(obs_seq, algorithm=\"viterbi\")\n",
|
44
|
-
"\n",
|
45
|
-
"# Output\n",
|
46
|
-
"print(\"Observation sequence:\", [\"Walk\", \"Shop\", \"Clean\"])\n",
|
47
|
-
"print(\"Predicted hidden states:\", hidden_states)\n"
|
48
|
-
]
|
49
|
-
},
|
50
|
-
{
|
51
|
-
"cell_type": "code",
|
52
|
-
"execution_count": null,
|
53
|
-
"id": "c7dc7b6f-fb55-4f1d-82fc-cdd45c47a433",
|
54
|
-
"metadata": {},
|
55
|
-
"outputs": [],
|
56
|
-
"source": [
|
57
|
-
"import matplotlib.pyplot as plt\n",
|
58
|
-
"\n",
|
59
|
-
"# Observations\n",
|
60
|
-
"observations = ['Walk', 'Shop', 'Clean']\n",
|
61
|
-
"\n",
|
62
|
-
"# (Assuming you already have hidden_states from model.decode)\n",
|
63
|
-
"\n",
|
64
|
-
"# Plotting\n",
|
65
|
-
"plt.figure(figsize=(8, 3))\n",
|
66
|
-
"plt.plot(hidden_states, marker='o', linestyle='-', color='b')\n",
|
67
|
-
"plt.yticks([0, 1], ['Rainy', 'Sunny'])\n",
|
68
|
-
"plt.xticks(range(len(observations)), observations)\n",
|
69
|
-
"plt.xlabel('Observation')\n",
|
70
|
-
"plt.ylabel('Hidden State')\n",
|
71
|
-
"plt.title('Hidden States Prediction')\n",
|
72
|
-
"plt.grid(True)\n",
|
73
|
-
"plt.show()\n"
|
74
|
-
]
|
75
|
-
},
|
76
|
-
{
|
77
|
-
"cell_type": "code",
|
78
|
-
"execution_count": null,
|
79
|
-
"id": "5dc1a86e-05d2-4482-b390-fc135fd9b81a",
|
80
|
-
"metadata": {},
|
81
|
-
"outputs": [],
|
82
|
-
"source": []
|
83
|
-
}
|
84
|
-
],
|
85
|
-
"metadata": {
|
86
|
-
"kernelspec": {
|
87
|
-
"display_name": "Python 3 (ipykernel)",
|
88
|
-
"language": "python",
|
89
|
-
"name": "python3"
|
90
|
-
},
|
91
|
-
"language_info": {
|
92
|
-
"codemirror_mode": {
|
93
|
-
"name": "ipython",
|
94
|
-
"version": 3
|
95
|
-
},
|
96
|
-
"file_extension": ".py",
|
97
|
-
"mimetype": "text/x-python",
|
98
|
-
"name": "python",
|
99
|
-
"nbconvert_exporter": "python",
|
100
|
-
"pygments_lexer": "ipython3",
|
101
|
-
"version": "3.12.4"
|
102
|
-
}
|
103
|
-
},
|
104
|
-
"nbformat": 4,
|
105
|
-
"nbformat_minor": 5
|
106
|
-
}
|
@@ -1,177 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "dbfcfea3",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import numpy as np\n",
|
11
|
-
"import pandas as pd\n",
|
12
|
-
"from sklearn.datasets import load_iris\n",
|
13
|
-
"import matplotlib.pyplot as plt\n",
|
14
|
-
"from sklearn.neighbors import KNeighborsClassifier\n",
|
15
|
-
"from sklearn.datasets import make_classification\n",
|
16
|
-
"from scipy.spatial import Voronoi, voronoi_plot_2d\n",
|
17
|
-
"from sklearn.preprocessing import StandardScaler\n",
|
18
|
-
"from sklearn.decomposition import PCA\n",
|
19
|
-
"from sklearn.model_selection import train_test_split\n",
|
20
|
-
"from sklearn.metrics import accuracy_score,classification_report\n",
|
21
|
-
"from sklearn.cluster import KMeans\n"
|
22
|
-
]
|
23
|
-
},
|
24
|
-
{
|
25
|
-
"cell_type": "code",
|
26
|
-
"execution_count": null,
|
27
|
-
"id": "a294fca6",
|
28
|
-
"metadata": {},
|
29
|
-
"outputs": [],
|
30
|
-
"source": [
|
31
|
-
"iris = load_iris()\n",
|
32
|
-
"df = pd.DataFrame(data=iris.data, columns=iris.feature_names)\n",
|
33
|
-
"df['target'] = iris.target\n",
|
34
|
-
"\n",
|
35
|
-
"X = np.array(df[iris.feature_names].iloc[:,:2])\n",
|
36
|
-
"y = np.array(df['target'])\n",
|
37
|
-
"\n",
|
38
|
-
"y = np.array(df['target'])\n",
|
39
|
-
"X = StandardScaler().fit_transform(X)\n",
|
40
|
-
"pca = PCA(n_components=2)\n",
|
41
|
-
"pct = pca.fit_transform(X)\n",
|
42
|
-
"\n",
|
43
|
-
"X = pct\n",
|
44
|
-
"\n",
|
45
|
-
"knn = KNeighborsClassifier(n_neighbors=3)\n",
|
46
|
-
"knn.fit(X, y)\n",
|
47
|
-
"\n",
|
48
|
-
"x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1\n",
|
49
|
-
"y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1\n",
|
50
|
-
"xx, yy = np.meshgrid(np.linspace(x_min, x_max, 500), np.linspace(y_min, y_max, 500))\n",
|
51
|
-
"grid_points = np.c_[xx.ravel(), yy.ravel()]\n",
|
52
|
-
"\n",
|
53
|
-
"Z = knn.predict(grid_points)\n",
|
54
|
-
"Z = Z.reshape(xx.shape)\n",
|
55
|
-
"\n",
|
56
|
-
"plt.figure(figsize=(10, 7))\n",
|
57
|
-
"plt.contourf(xx, yy, Z, alpha=0.3, cmap=plt.cm.Paired)\n",
|
58
|
-
"plt.scatter(X[:, 0], X[:, 1], c=y, edgecolor='k', cmap=plt.cm.Paired, label='Data Points')\n",
|
59
|
-
"\n",
|
60
|
-
"vor = Voronoi(X)\n",
|
61
|
-
"voronoi_plot_2d(vor, ax=plt.gca(), show_points=False, show_vertices=False, line_colors='black', line_width=0.8)\n",
|
62
|
-
"\n",
|
63
|
-
"plt.title(\"KNN Classification with Voronoi Diagram (k=3)\")\n",
|
64
|
-
"plt.xlabel(\"Feature 1\")\n",
|
65
|
-
"plt.ylabel(\"Feature 2\")\n",
|
66
|
-
"plt.legend(loc=\"upper right\")\n",
|
67
|
-
"plt.grid()\n",
|
68
|
-
"plt.show()"
|
69
|
-
]
|
70
|
-
},
|
71
|
-
{
|
72
|
-
"cell_type": "code",
|
73
|
-
"execution_count": null,
|
74
|
-
"id": "4b3a3076-7bd5-44e1-a0fb-1221821f6857",
|
75
|
-
"metadata": {},
|
76
|
-
"outputs": [],
|
77
|
-
"source": [
|
78
|
-
"df['target']"
|
79
|
-
]
|
80
|
-
},
|
81
|
-
{
|
82
|
-
"cell_type": "code",
|
83
|
-
"execution_count": null,
|
84
|
-
"id": "c2bbe4ff",
|
85
|
-
"metadata": {},
|
86
|
-
"outputs": [],
|
87
|
-
"source": [
|
88
|
-
"import numpy as np\n",
|
89
|
-
"import matplotlib.pyplot as plt\n",
|
90
|
-
"from sklearn.datasets import load_iris\n",
|
91
|
-
"from sklearn.neighbors import KNeighborsClassifier\n",
|
92
|
-
"\n",
|
93
|
-
"iris = load_iris()\n",
|
94
|
-
"X = iris.data[:, :2]\n",
|
95
|
-
"y = iris.target\n",
|
96
|
-
"\n",
|
97
|
-
"knn = KNeighborsClassifier(n_neighbors=5)\n",
|
98
|
-
"knn.fit(X, y)\n",
|
99
|
-
"\n",
|
100
|
-
"x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1\n",
|
101
|
-
"y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1\n",
|
102
|
-
"xx, yy = np.meshgrid(np.linspace(x_min, x_max, 500), np.linspace(y_min, y_max, 500))\n",
|
103
|
-
"\n",
|
104
|
-
"Z = knn.predict(np.c_[xx.ravel(), yy.ravel()])\n",
|
105
|
-
"Z = Z.reshape(xx.shape)\n",
|
106
|
-
"\n",
|
107
|
-
"plt.contourf(xx, yy, Z, alpha=0.8, cmap=plt.cm.RdYlBu)\n",
|
108
|
-
"plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.brg, edgecolors='k')\n",
|
109
|
-
"plt.xlabel(iris.feature_names[0])\n",
|
110
|
-
"plt.ylabel(iris.feature_names[1])\n",
|
111
|
-
"plt.title('KNN Decision Boundaries (k=5)')\n",
|
112
|
-
"plt.show()"
|
113
|
-
]
|
114
|
-
},
|
115
|
-
{
|
116
|
-
"cell_type": "code",
|
117
|
-
"execution_count": null,
|
118
|
-
"id": "65824231",
|
119
|
-
"metadata": {},
|
120
|
-
"outputs": [],
|
121
|
-
"source": [
|
122
|
-
"iris = load_iris()\n",
|
123
|
-
"iris_df = pd.DataFrame(data=iris.data, columns=iris.feature_names)\n",
|
124
|
-
"scaler = StandardScaler()\n",
|
125
|
-
"scaled_features = scaler.fit_transform(iris_df)\n",
|
126
|
-
"kmeans = KMeans(n_clusters=3, random_state=0,n_init=10) # Assuming 3 clusters (as in Iris dataset)\n",
|
127
|
-
"clusters = kmeans.fit_predict(scaled_features)\n",
|
128
|
-
"iris_df['cluster'] = clusters"
|
129
|
-
]
|
130
|
-
},
|
131
|
-
{
|
132
|
-
"cell_type": "code",
|
133
|
-
"execution_count": null,
|
134
|
-
"id": "a2ba0f1c",
|
135
|
-
"metadata": {},
|
136
|
-
"outputs": [],
|
137
|
-
"source": [
|
138
|
-
"import matplotlib.pyplot as plt\n",
|
139
|
-
"\n",
|
140
|
-
"plt.scatter(iris_df['sepal length (cm)'], iris_df['sepal width (cm)'], c=iris_df['cluster'])\n",
|
141
|
-
"plt.xlabel('Sepal Length (cm)')\n",
|
142
|
-
"plt.ylabel('Sepal Width (cm)')\n",
|
143
|
-
"plt.title('Unsupervised KNN (K-means) Clustering on Iris Dataset')\n",
|
144
|
-
"plt.show()"
|
145
|
-
]
|
146
|
-
},
|
147
|
-
{
|
148
|
-
"cell_type": "code",
|
149
|
-
"execution_count": null,
|
150
|
-
"id": "ed32cc12-bd6c-4677-8e01-19a45ae8338d",
|
151
|
-
"metadata": {},
|
152
|
-
"outputs": [],
|
153
|
-
"source": []
|
154
|
-
}
|
155
|
-
],
|
156
|
-
"metadata": {
|
157
|
-
"kernelspec": {
|
158
|
-
"display_name": "Python 3 (ipykernel)",
|
159
|
-
"language": "python",
|
160
|
-
"name": "python3"
|
161
|
-
},
|
162
|
-
"language_info": {
|
163
|
-
"codemirror_mode": {
|
164
|
-
"name": "ipython",
|
165
|
-
"version": 3
|
166
|
-
},
|
167
|
-
"file_extension": ".py",
|
168
|
-
"mimetype": "text/x-python",
|
169
|
-
"name": "python",
|
170
|
-
"nbconvert_exporter": "python",
|
171
|
-
"pygments_lexer": "ipython3",
|
172
|
-
"version": "3.12.4"
|
173
|
-
}
|
174
|
-
},
|
175
|
-
"nbformat": 4,
|
176
|
-
"nbformat_minor": 5
|
177
|
-
}
|