noshot 11.0.0__py3-none-any.whl → 13.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/1. DNN (Image Classification).ipynb +389 -0
- noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/2. DNN vs CNN.ipynb +516 -0
- noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/3. CNN (Object Detecrion).ipynb +259 -0
- noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/4. FCN (Image Segmentaion).ipynb +274 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.1 DNN (Pytorch).ipynb +164 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.2 DNN (Tensorflow).ipynb +94 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.3 DNN (Image Classification).ipynb +134 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/2.1 DNN vs CNN.ipynb +127 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/2.2 DNN vs CNN.ipynb +123 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/4. FCNN (Image Segmentation).ipynb +108 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/Lab Excercise (Training DNN).ipynb +646 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/Load-Images.ipynb +553 -0
- noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex1.ipynb +216 -0
- noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex2.ipynb +195 -0
- noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex3.ipynb +427 -0
- noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex4.ipynb +186 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/DNN Ex No 1.ipynb +398 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Ex No 1 Build in dataset.ipynb +171 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Exp1-Short-DL_ANN_ImageClassification.ipynb +401 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/OR GATE .ipynb +8511 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp02/Exp2-Short-DL_CNN_ImageClassification.ipynb +737 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp03/DL-Ex3-RNN.ipynb +591 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp04/Ex no 4.ipynb +551 -0
- noshot/main.py +3 -3
- {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/METADATA +1 -1
- noshot-13.0.0.dist-info/RECORD +32 -0
- noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb +0 -201
- noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb +0 -201
- noshot/data/ML TS XAI/ML/Json Codes/ML LAB CIA 2.ipynb +0 -409
- noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Balance Scale Dataset).ipynb +0 -147
- noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Rice Dataset).ipynb +0 -181
- noshot/data/ML TS XAI/ML/ML 1/10. HMM Veterbi.ipynb +0 -152
- noshot/data/ML TS XAI/ML/ML 1/2. KNN (Balance Scale Dataset).ipynb +0 -117
- noshot/data/ML TS XAI/ML/ML 1/2. KNN (Iris Dataset).ipynb +0 -156
- noshot/data/ML TS XAI/ML/ML 1/2. KNN (Sobar-72 Dataset).ipynb +0 -215
- noshot/data/ML TS XAI/ML/ML 1/3. LDA (Balance Scale Dataset).ipynb +0 -78
- noshot/data/ML TS XAI/ML/ML 1/3. LDA (NPHA Doctor Visits Dataset).ipynb +0 -114
- noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Machine Dataset).ipynb +0 -115
- noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Real Estate Dataset).ipynb +0 -146
- noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Magic04 Dataset).ipynb +0 -130
- noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Wine Dataset).ipynb +0 -112
- noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +0 -118
- noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Wine Dataset).ipynb +0 -89
- noshot/data/ML TS XAI/ML/ML 1/7. SVM (Rice Dataset).ipynb +0 -120
- noshot/data/ML TS XAI/ML/ML 1/8. FeedForward NN (Sobar72 Dataset).ipynb +0 -262
- noshot/data/ML TS XAI/ML/ML 1/9. CNN (Cifar10 Dataset).ipynb +0 -156
- noshot/data/ML TS XAI/ML/ML 2/1. PCA.ipynb +0 -162
- noshot/data/ML TS XAI/ML/ML 2/10. CNN.ipynb +0 -100
- noshot/data/ML TS XAI/ML/ML 2/11. HMM.ipynb +0 -336
- noshot/data/ML TS XAI/ML/ML 2/2. KNN.ipynb +0 -149
- noshot/data/ML TS XAI/ML/ML 2/3. LDA.ipynb +0 -132
- noshot/data/ML TS XAI/ML/ML 2/4. Linear Regression.ipynb +0 -86
- noshot/data/ML TS XAI/ML/ML 2/5. Logistic Regression.ipynb +0 -115
- noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Titanic).ipynb +0 -196
- noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Wine).ipynb +0 -98
- noshot/data/ML TS XAI/ML/ML 2/7. SVM Linear.ipynb +0 -109
- noshot/data/ML TS XAI/ML/ML 2/8. SVM Non-Linear.ipynb +0 -195
- noshot/data/ML TS XAI/ML/ML 2/9. FNN With Regularization.ipynb +0 -189
- noshot/data/ML TS XAI/ML/ML 2/9. FNN Without Regularization.ipynb +0 -197
- noshot/data/ML TS XAI/ML/ML 2/All in One Lab CIA 1 Q.ipynb +0 -1087
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb +0 -274
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb +0 -170
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb +0 -1087
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb +0 -178
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb +0 -185
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb +0 -106
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb +0 -177
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb +0 -195
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb +0 -267
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb +0 -104
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb +0 -109
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb +0 -220
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb +0 -99
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb +0 -211
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb +0 -99
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb +0 -118
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb +0 -603
- noshot/data/ML TS XAI/ML/ML Lab AllinOne.ipynb +0 -961
- noshot/data/ML TS XAI/ML/ML Lab H Sec/1. Iris Dataset (Softmax vs Sigmoid).ipynb +0 -231
- noshot/data/ML TS XAI/ML/ML Lab H Sec/2. Student Dataset (Overfit vs Regularized).ipynb +0 -269
- noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Categorical (Overfit vs Regularized).ipynb +0 -274
- noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Numerical (Overfit vs Regularized).ipynb +0 -263
- noshot/data/ML TS XAI/ML/ML Lab H Sec/4. Smart House System HMM.ipynb +0 -198
- noshot/data/ML TS XAI/ML/ML Lab H Sec/5. Fraud Detection System HMM.ipynb +0 -201
- noshot/data/ML TS XAI/ML/ML Lab H Sec/insurance.csv +0 -1339
- noshot/data/ML TS XAI/ML/ML Lab H Sec/iris1.data +0 -151
- noshot/data/ML TS XAI/ML/ML Lab H Sec/student-mat.csv +0 -396
- noshot/data/ML TS XAI/ML/ML Lab H Sec/student-por.csv +0 -650
- noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +0 -691
- noshot-11.0.0.dist-info/RECORD +0 -72
- {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/WHEEL +0 -0
- {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/licenses/LICENSE.txt +0 -0
- {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/top_level.txt +0 -0
@@ -1,198 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "2d6993c0-6499-43e5-bb2e-66de7de4c05c",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import numpy as np\n",
|
11
|
-
"import pandas as pd\n",
|
12
|
-
"import networkx as nx\n",
|
13
|
-
"from pprint import pprint\n",
|
14
|
-
"import matplotlib.pyplot as plt\n",
|
15
|
-
"from hmmlearn.hmm import CategoricalHMM"
|
16
|
-
]
|
17
|
-
},
|
18
|
-
{
|
19
|
-
"cell_type": "code",
|
20
|
-
"execution_count": null,
|
21
|
-
"id": "8809eb33-e876-4f7b-b61e-9eb9c93be95e",
|
22
|
-
"metadata": {},
|
23
|
-
"outputs": [],
|
24
|
-
"source": [
|
25
|
-
"states = ['Kitchen', 'Bedroom', 'Living Room']\n",
|
26
|
-
"hidden_states = ['Cooking', 'Sleeping', 'Watching TV']"
|
27
|
-
]
|
28
|
-
},
|
29
|
-
{
|
30
|
-
"cell_type": "code",
|
31
|
-
"execution_count": null,
|
32
|
-
"id": "d6570caa-6d4a-436b-802f-24d39e83b79f",
|
33
|
-
"metadata": {},
|
34
|
-
"outputs": [],
|
35
|
-
"source": [
|
36
|
-
"pi_states = [0.4, 0.3, 0.3]\n",
|
37
|
-
"pi_hidden = [0.1, 0.2, 0.7]"
|
38
|
-
]
|
39
|
-
},
|
40
|
-
{
|
41
|
-
"cell_type": "code",
|
42
|
-
"execution_count": null,
|
43
|
-
"id": "5f265573-be69-4218-b7af-dea81b1b80b6",
|
44
|
-
"metadata": {},
|
45
|
-
"outputs": [],
|
46
|
-
"source": [
|
47
|
-
"state_space = pd.Series(pi_states, index=states)\n",
|
48
|
-
"hidden_state_space = pd.Series(pi_hidden, index=hidden_states)"
|
49
|
-
]
|
50
|
-
},
|
51
|
-
{
|
52
|
-
"cell_type": "code",
|
53
|
-
"execution_count": null,
|
54
|
-
"id": "1e72ab96-f199-40c8-a074-1d7cced28bd3",
|
55
|
-
"metadata": {},
|
56
|
-
"outputs": [],
|
57
|
-
"source": [
|
58
|
-
"q_df = pd.DataFrame([[0.4, 0.2, 0.4], [0.45, 0.45, 0.1], [0.45, 0.25, 0.3]], \n",
|
59
|
-
" columns=states, index=states)\n",
|
60
|
-
"a_df = pd.DataFrame([[0.3, 0.5, 0.2], [0.1, 0.7, 0.2], [0.2, 0.3, 0.5]], \n",
|
61
|
-
" columns=hidden_states, index=hidden_states)\n",
|
62
|
-
"b_df = pd.DataFrame([[0.8, 0.1, 0.1], [0.1, 0.8, 0.1], [0.2, 0.1, 0.7]], \n",
|
63
|
-
" columns=states, index=hidden_states)"
|
64
|
-
]
|
65
|
-
},
|
66
|
-
{
|
67
|
-
"cell_type": "code",
|
68
|
-
"execution_count": null,
|
69
|
-
"id": "5cc63a43-7265-4804-b9ec-fe5c41712778",
|
70
|
-
"metadata": {},
|
71
|
-
"outputs": [],
|
72
|
-
"source": [
|
73
|
-
"q_df"
|
74
|
-
]
|
75
|
-
},
|
76
|
-
{
|
77
|
-
"cell_type": "code",
|
78
|
-
"execution_count": null,
|
79
|
-
"id": "d5fb306d-957d-4fcb-a0bb-9f92791e4f6f",
|
80
|
-
"metadata": {},
|
81
|
-
"outputs": [],
|
82
|
-
"source": [
|
83
|
-
"a_df"
|
84
|
-
]
|
85
|
-
},
|
86
|
-
{
|
87
|
-
"cell_type": "code",
|
88
|
-
"execution_count": null,
|
89
|
-
"id": "e33cb732-da75-4a7e-ba03-d15ba0b9b157",
|
90
|
-
"metadata": {},
|
91
|
-
"outputs": [],
|
92
|
-
"source": [
|
93
|
-
"b_df"
|
94
|
-
]
|
95
|
-
},
|
96
|
-
{
|
97
|
-
"cell_type": "code",
|
98
|
-
"execution_count": null,
|
99
|
-
"id": "a30892b0-f44b-4c2e-b3d9-93997a3884ed",
|
100
|
-
"metadata": {},
|
101
|
-
"outputs": [],
|
102
|
-
"source": [
|
103
|
-
"q = q_df.values\n",
|
104
|
-
"a = a_df.values\n",
|
105
|
-
"b = b_df.values"
|
106
|
-
]
|
107
|
-
},
|
108
|
-
{
|
109
|
-
"cell_type": "code",
|
110
|
-
"execution_count": null,
|
111
|
-
"id": "7f65fbf1-9b59-400b-8fe2-eedcc3153268",
|
112
|
-
"metadata": {},
|
113
|
-
"outputs": [],
|
114
|
-
"source": [
|
115
|
-
"def add_edges(df):\n",
|
116
|
-
" return {(idx, col): df.loc[idx, col] for idx in df.index for col in df.columns}"
|
117
|
-
]
|
118
|
-
},
|
119
|
-
{
|
120
|
-
"cell_type": "code",
|
121
|
-
"execution_count": null,
|
122
|
-
"id": "67b48793-859b-4628-9f12-b3345040e788",
|
123
|
-
"metadata": {},
|
124
|
-
"outputs": [],
|
125
|
-
"source": [
|
126
|
-
"edge_wts = add_edges(q_df)\n",
|
127
|
-
"hidden_edge_wts = add_edges(a_df)\n",
|
128
|
-
"emit_edge_wts = add_edges(b_df)"
|
129
|
-
]
|
130
|
-
},
|
131
|
-
{
|
132
|
-
"cell_type": "code",
|
133
|
-
"execution_count": null,
|
134
|
-
"id": "d9dd66a3-a331-43c6-8699-2bf81a03e600",
|
135
|
-
"metadata": {},
|
136
|
-
"outputs": [],
|
137
|
-
"source": [
|
138
|
-
"G = nx.DiGraph()\n",
|
139
|
-
"G.add_nodes_from(states + hidden_states)\n",
|
140
|
-
"\n",
|
141
|
-
"for k, v in {**hidden_edge_wts, **emit_edge_wts}.items():\n",
|
142
|
-
" G.add_edge(k[0], k[1], weight=v, label=f\"{v:.2f}\")\n",
|
143
|
-
"\n",
|
144
|
-
"pos = nx.circular_layout(G)\n",
|
145
|
-
"node_colors = ['skyblue' if node in hidden_states else 'lightgreen' for node in G]\n",
|
146
|
-
"nx.draw(G, pos, with_labels=True, arrows=True, node_color=node_colors, node_size=1000, font_size=5, font_weight='bold')\n",
|
147
|
-
"nx.draw_networkx_edge_labels(G, pos, edge_labels=nx.get_edge_attributes(G, 'label'), font_size=8)\n",
|
148
|
-
"plt.show()"
|
149
|
-
]
|
150
|
-
},
|
151
|
-
{
|
152
|
-
"cell_type": "code",
|
153
|
-
"execution_count": null,
|
154
|
-
"id": "01ba9e94-fc32-4a71-aab7-35ec817dcd62",
|
155
|
-
"metadata": {},
|
156
|
-
"outputs": [],
|
157
|
-
"source": [
|
158
|
-
"obs_seq = ['kitchen', 'bedroom', 'living room', 'kitchen', 'bedroom']\n",
|
159
|
-
"obs_map = {'kitchen': 0, 'bedroom': 1, 'living room': 2}\n",
|
160
|
-
"obs_idx = np.array([obs_map[o.lower()] for o in obs_seq]).reshape(-1, 1)\n",
|
161
|
-
"\n",
|
162
|
-
"model = CategoricalHMM(n_components=len(hidden_states))\n",
|
163
|
-
"model.startprob_ = pi_hidden\n",
|
164
|
-
"model.transmat_ = a\n",
|
165
|
-
"model.emissionprob_ = b\n",
|
166
|
-
"\n",
|
167
|
-
"logprob, path = model.decode(obs_idx, algorithm=\"viterbi\")\n",
|
168
|
-
"state_map = {0: 'Cooking', 1: 'Sleeping', 2: 'Watching TV'}\n",
|
169
|
-
"state_path = [state_map[v] for v in path]\n",
|
170
|
-
"\n",
|
171
|
-
"# Display result\n",
|
172
|
-
"result = pd.DataFrame({'Observation': obs_seq, 'Best_path': state_path})\n",
|
173
|
-
"print(result)"
|
174
|
-
]
|
175
|
-
}
|
176
|
-
],
|
177
|
-
"metadata": {
|
178
|
-
"kernelspec": {
|
179
|
-
"display_name": "NEW-VENV-1",
|
180
|
-
"language": "python",
|
181
|
-
"name": "new-venv-1"
|
182
|
-
},
|
183
|
-
"language_info": {
|
184
|
-
"codemirror_mode": {
|
185
|
-
"name": "ipython",
|
186
|
-
"version": 3
|
187
|
-
},
|
188
|
-
"file_extension": ".py",
|
189
|
-
"mimetype": "text/x-python",
|
190
|
-
"name": "python",
|
191
|
-
"nbconvert_exporter": "python",
|
192
|
-
"pygments_lexer": "ipython3",
|
193
|
-
"version": "3.11.5"
|
194
|
-
}
|
195
|
-
},
|
196
|
-
"nbformat": 4,
|
197
|
-
"nbformat_minor": 5
|
198
|
-
}
|
@@ -1,201 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "4be5c15a-adaa-4a0a-b378-c416ee136765",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import numpy as np\n",
|
11
|
-
"import pandas as pd\n",
|
12
|
-
"import networkx as network\n",
|
13
|
-
"import matplotlib.pyplot as plot\n",
|
14
|
-
"from hmmlearn.hmm import CategoricalHMM"
|
15
|
-
]
|
16
|
-
},
|
17
|
-
{
|
18
|
-
"cell_type": "code",
|
19
|
-
"execution_count": null,
|
20
|
-
"id": "eebd9858-a356-448d-bc92-646a1871dd5a",
|
21
|
-
"metadata": {},
|
22
|
-
"outputs": [],
|
23
|
-
"source": [
|
24
|
-
"visibleStates = ['early', 'mid', 'late']\n",
|
25
|
-
"hiddenStates = ['Genuine User', 'Intruder']\n",
|
26
|
-
"\n",
|
27
|
-
"hiddenInitial = [0.9, 0.1]\n",
|
28
|
-
"visibleInitial = [0.33, 0.33, 0.33]\n",
|
29
|
-
"\n",
|
30
|
-
"hiddenTransition = pd.DataFrame([\n",
|
31
|
-
" [0.7, 0.3],\n",
|
32
|
-
" [0.4, 0.6]\n",
|
33
|
-
"], columns=hiddenStates, index=hiddenStates)\n",
|
34
|
-
"\n",
|
35
|
-
"emissionMatrix = pd.DataFrame([\n",
|
36
|
-
" [0.8, 0.1, 0.1],\n",
|
37
|
-
" [0.1, 0.3, 0.6]\n",
|
38
|
-
"], columns=visibleStates, index=hiddenStates)"
|
39
|
-
]
|
40
|
-
},
|
41
|
-
{
|
42
|
-
"cell_type": "code",
|
43
|
-
"execution_count": null,
|
44
|
-
"id": "d2f7f001-0f8a-4c26-a457-4319606b41d6",
|
45
|
-
"metadata": {},
|
46
|
-
"outputs": [],
|
47
|
-
"source": [
|
48
|
-
"hiddenTransition"
|
49
|
-
]
|
50
|
-
},
|
51
|
-
{
|
52
|
-
"cell_type": "code",
|
53
|
-
"execution_count": null,
|
54
|
-
"id": "a58b0543-e154-42e5-819f-dfd70be0916b",
|
55
|
-
"metadata": {},
|
56
|
-
"outputs": [],
|
57
|
-
"source": [
|
58
|
-
"emissionMatrix"
|
59
|
-
]
|
60
|
-
},
|
61
|
-
{
|
62
|
-
"cell_type": "code",
|
63
|
-
"execution_count": null,
|
64
|
-
"id": "c1cad5e7-a61e-4c04-98cc-920fdf763a1c",
|
65
|
-
"metadata": {},
|
66
|
-
"outputs": [],
|
67
|
-
"source": [
|
68
|
-
"transitionArray = hiddenTransition.values\n",
|
69
|
-
"emissionArray = emissionMatrix.values"
|
70
|
-
]
|
71
|
-
},
|
72
|
-
{
|
73
|
-
"cell_type": "code",
|
74
|
-
"execution_count": null,
|
75
|
-
"id": "06f63c03-c3af-4183-8be6-d04e8614976c",
|
76
|
-
"metadata": {},
|
77
|
-
"outputs": [],
|
78
|
-
"source": [
|
79
|
-
"def edgeDictionary(dataframe):\n",
|
80
|
-
" return {(row, column): dataframe.loc[row, column] \n",
|
81
|
-
" for row in dataframe.index \n",
|
82
|
-
" for column in dataframe.columns}"
|
83
|
-
]
|
84
|
-
},
|
85
|
-
{
|
86
|
-
"cell_type": "code",
|
87
|
-
"execution_count": null,
|
88
|
-
"id": "fb957ff2-a6ad-4900-b7a3-0f87bb845d1a",
|
89
|
-
"metadata": {},
|
90
|
-
"outputs": [],
|
91
|
-
"source": [
|
92
|
-
"hiddenEdges = edgeDictionary(hiddenTransition)\n",
|
93
|
-
"emissionEdges = edgeDictionary(emissionMatrix)"
|
94
|
-
]
|
95
|
-
},
|
96
|
-
{
|
97
|
-
"cell_type": "code",
|
98
|
-
"execution_count": null,
|
99
|
-
"id": "80df443e-cf00-4030-8e46-de748aeb461d",
|
100
|
-
"metadata": {},
|
101
|
-
"outputs": [],
|
102
|
-
"source": [
|
103
|
-
"graph = network.DiGraph()\n",
|
104
|
-
"graph.add_nodes_from(visibleStates + hiddenStates)\n",
|
105
|
-
"\n",
|
106
|
-
"for key, value in {**hiddenEdges, **emissionEdges}.items():\n",
|
107
|
-
" graph.add_edge(key[0], key[1], weight=value, label=f\"{value:.2f}\")\n",
|
108
|
-
"\n",
|
109
|
-
"position = network.circular_layout(graph)"
|
110
|
-
]
|
111
|
-
},
|
112
|
-
{
|
113
|
-
"cell_type": "code",
|
114
|
-
"execution_count": null,
|
115
|
-
"id": "7dfcedd7-4298-4526-8b45-638237720b35",
|
116
|
-
"metadata": {},
|
117
|
-
"outputs": [],
|
118
|
-
"source": [
|
119
|
-
"nodeColors = ['skyblue' if node in hiddenStates else 'lightgreen' for node in graph]\n",
|
120
|
-
"network.draw(graph, position, with_labels=True, arrows=True, node_color=nodeColors, node_size=1000, font_size=7, font_weight='bold')\n",
|
121
|
-
"network.draw_networkx_edge_labels(graph, position, edge_labels=network.get_edge_attributes(graph, 'label'), font_size=8)\n",
|
122
|
-
"plot.title(\"HMM State and Emission Graph\")\n",
|
123
|
-
"plot.show()"
|
124
|
-
]
|
125
|
-
},
|
126
|
-
{
|
127
|
-
"cell_type": "code",
|
128
|
-
"execution_count": null,
|
129
|
-
"id": "5bb756d0-c0d8-4509-b95b-182f30dd4a13",
|
130
|
-
"metadata": {},
|
131
|
-
"outputs": [],
|
132
|
-
"source": [
|
133
|
-
"observations = ['early', 'early', 'late', 'mid', 'early', 'late']\n",
|
134
|
-
"observationMap = {'early': 0, 'mid': 1, 'late': 2}\n",
|
135
|
-
"mappedSequence = np.array([observationMap[value.lower()] for value in observations]).reshape(-1, 1)"
|
136
|
-
]
|
137
|
-
},
|
138
|
-
{
|
139
|
-
"cell_type": "code",
|
140
|
-
"execution_count": null,
|
141
|
-
"id": "307fdcc3-aa78-4125-a37c-67f69fa5d6ea",
|
142
|
-
"metadata": {},
|
143
|
-
"outputs": [],
|
144
|
-
"source": [
|
145
|
-
"model = CategoricalHMM(n_components=len(hiddenStates), init_params=\"\")\n",
|
146
|
-
"model.startprob_ = np.array(hiddenInitial)\n",
|
147
|
-
"model.transmat_ = transitionArray\n",
|
148
|
-
"model.emissionprob_ = emissionArray\n",
|
149
|
-
"model.n_features = len(visibleStates)"
|
150
|
-
]
|
151
|
-
},
|
152
|
-
{
|
153
|
-
"cell_type": "code",
|
154
|
-
"execution_count": null,
|
155
|
-
"id": "4779218b-a7f8-4832-b5ba-b5979ba13389",
|
156
|
-
"metadata": {},
|
157
|
-
"outputs": [],
|
158
|
-
"source": [
|
159
|
-
"logValue, bestPath = model.decode(mappedSequence, algorithm=\"viterbi\")\n",
|
160
|
-
"\n",
|
161
|
-
"stateMap = {index: state for index, state in enumerate(hiddenStates)}\n",
|
162
|
-
"decodedPath = [stateMap[state] for state in bestPath]"
|
163
|
-
]
|
164
|
-
},
|
165
|
-
{
|
166
|
-
"cell_type": "code",
|
167
|
-
"execution_count": null,
|
168
|
-
"id": "b89319aa-b567-443c-98a9-60198caf1882",
|
169
|
-
"metadata": {},
|
170
|
-
"outputs": [],
|
171
|
-
"source": [
|
172
|
-
"resultFrame = pd.DataFrame({'Observation': observations, 'Predicted State': decodedPath})\n",
|
173
|
-
"print(\"\\nDecoded Path with Observations:\")\n",
|
174
|
-
"print(resultFrame)\n",
|
175
|
-
"\n",
|
176
|
-
"print(\"\\nLog Probability of Best Path:\", logValue)"
|
177
|
-
]
|
178
|
-
}
|
179
|
-
],
|
180
|
-
"metadata": {
|
181
|
-
"kernelspec": {
|
182
|
-
"display_name": "NEW-VENV-1",
|
183
|
-
"language": "python",
|
184
|
-
"name": "new-venv-1"
|
185
|
-
},
|
186
|
-
"language_info": {
|
187
|
-
"codemirror_mode": {
|
188
|
-
"name": "ipython",
|
189
|
-
"version": 3
|
190
|
-
},
|
191
|
-
"file_extension": ".py",
|
192
|
-
"mimetype": "text/x-python",
|
193
|
-
"name": "python",
|
194
|
-
"nbconvert_exporter": "python",
|
195
|
-
"pygments_lexer": "ipython3",
|
196
|
-
"version": "3.11.5"
|
197
|
-
}
|
198
|
-
},
|
199
|
-
"nbformat": 4,
|
200
|
-
"nbformat_minor": 5
|
201
|
-
}
|