noshot 11.0.0__py3-none-any.whl → 13.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (93) hide show
  1. noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/1. DNN (Image Classification).ipynb +389 -0
  2. noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/2. DNN vs CNN.ipynb +516 -0
  3. noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/3. CNN (Object Detecrion).ipynb +259 -0
  4. noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/4. FCN (Image Segmentaion).ipynb +274 -0
  5. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.1 DNN (Pytorch).ipynb +164 -0
  6. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.2 DNN (Tensorflow).ipynb +94 -0
  7. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.3 DNN (Image Classification).ipynb +134 -0
  8. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/2.1 DNN vs CNN.ipynb +127 -0
  9. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/2.2 DNN vs CNN.ipynb +123 -0
  10. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/4. FCNN (Image Segmentation).ipynb +108 -0
  11. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/Lab Excercise (Training DNN).ipynb +646 -0
  12. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/Load-Images.ipynb +553 -0
  13. noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex1.ipynb +216 -0
  14. noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex2.ipynb +195 -0
  15. noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex3.ipynb +427 -0
  16. noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex4.ipynb +186 -0
  17. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/DNN Ex No 1.ipynb +398 -0
  18. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Ex No 1 Build in dataset.ipynb +171 -0
  19. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Exp1-Short-DL_ANN_ImageClassification.ipynb +401 -0
  20. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/OR GATE .ipynb +8511 -0
  21. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp02/Exp2-Short-DL_CNN_ImageClassification.ipynb +737 -0
  22. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp03/DL-Ex3-RNN.ipynb +591 -0
  23. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp04/Ex no 4.ipynb +551 -0
  24. noshot/main.py +3 -3
  25. {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/METADATA +1 -1
  26. noshot-13.0.0.dist-info/RECORD +32 -0
  27. noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb +0 -201
  28. noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb +0 -201
  29. noshot/data/ML TS XAI/ML/Json Codes/ML LAB CIA 2.ipynb +0 -409
  30. noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Balance Scale Dataset).ipynb +0 -147
  31. noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Rice Dataset).ipynb +0 -181
  32. noshot/data/ML TS XAI/ML/ML 1/10. HMM Veterbi.ipynb +0 -152
  33. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Balance Scale Dataset).ipynb +0 -117
  34. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Iris Dataset).ipynb +0 -156
  35. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Sobar-72 Dataset).ipynb +0 -215
  36. noshot/data/ML TS XAI/ML/ML 1/3. LDA (Balance Scale Dataset).ipynb +0 -78
  37. noshot/data/ML TS XAI/ML/ML 1/3. LDA (NPHA Doctor Visits Dataset).ipynb +0 -114
  38. noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Machine Dataset).ipynb +0 -115
  39. noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Real Estate Dataset).ipynb +0 -146
  40. noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Magic04 Dataset).ipynb +0 -130
  41. noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Wine Dataset).ipynb +0 -112
  42. noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +0 -118
  43. noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Wine Dataset).ipynb +0 -89
  44. noshot/data/ML TS XAI/ML/ML 1/7. SVM (Rice Dataset).ipynb +0 -120
  45. noshot/data/ML TS XAI/ML/ML 1/8. FeedForward NN (Sobar72 Dataset).ipynb +0 -262
  46. noshot/data/ML TS XAI/ML/ML 1/9. CNN (Cifar10 Dataset).ipynb +0 -156
  47. noshot/data/ML TS XAI/ML/ML 2/1. PCA.ipynb +0 -162
  48. noshot/data/ML TS XAI/ML/ML 2/10. CNN.ipynb +0 -100
  49. noshot/data/ML TS XAI/ML/ML 2/11. HMM.ipynb +0 -336
  50. noshot/data/ML TS XAI/ML/ML 2/2. KNN.ipynb +0 -149
  51. noshot/data/ML TS XAI/ML/ML 2/3. LDA.ipynb +0 -132
  52. noshot/data/ML TS XAI/ML/ML 2/4. Linear Regression.ipynb +0 -86
  53. noshot/data/ML TS XAI/ML/ML 2/5. Logistic Regression.ipynb +0 -115
  54. noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Titanic).ipynb +0 -196
  55. noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Wine).ipynb +0 -98
  56. noshot/data/ML TS XAI/ML/ML 2/7. SVM Linear.ipynb +0 -109
  57. noshot/data/ML TS XAI/ML/ML 2/8. SVM Non-Linear.ipynb +0 -195
  58. noshot/data/ML TS XAI/ML/ML 2/9. FNN With Regularization.ipynb +0 -189
  59. noshot/data/ML TS XAI/ML/ML 2/9. FNN Without Regularization.ipynb +0 -197
  60. noshot/data/ML TS XAI/ML/ML 2/All in One Lab CIA 1 Q.ipynb +0 -1087
  61. noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb +0 -274
  62. noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb +0 -170
  63. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb +0 -1087
  64. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb +0 -178
  65. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb +0 -185
  66. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb +0 -106
  67. noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb +0 -177
  68. noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb +0 -195
  69. noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb +0 -267
  70. noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb +0 -104
  71. noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb +0 -109
  72. noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb +0 -220
  73. noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb +0 -99
  74. noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb +0 -211
  75. noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb +0 -99
  76. noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb +0 -118
  77. noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb +0 -603
  78. noshot/data/ML TS XAI/ML/ML Lab AllinOne.ipynb +0 -961
  79. noshot/data/ML TS XAI/ML/ML Lab H Sec/1. Iris Dataset (Softmax vs Sigmoid).ipynb +0 -231
  80. noshot/data/ML TS XAI/ML/ML Lab H Sec/2. Student Dataset (Overfit vs Regularized).ipynb +0 -269
  81. noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Categorical (Overfit vs Regularized).ipynb +0 -274
  82. noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Numerical (Overfit vs Regularized).ipynb +0 -263
  83. noshot/data/ML TS XAI/ML/ML Lab H Sec/4. Smart House System HMM.ipynb +0 -198
  84. noshot/data/ML TS XAI/ML/ML Lab H Sec/5. Fraud Detection System HMM.ipynb +0 -201
  85. noshot/data/ML TS XAI/ML/ML Lab H Sec/insurance.csv +0 -1339
  86. noshot/data/ML TS XAI/ML/ML Lab H Sec/iris1.data +0 -151
  87. noshot/data/ML TS XAI/ML/ML Lab H Sec/student-mat.csv +0 -396
  88. noshot/data/ML TS XAI/ML/ML Lab H Sec/student-por.csv +0 -650
  89. noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +0 -691
  90. noshot-11.0.0.dist-info/RECORD +0 -72
  91. {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/WHEEL +0 -0
  92. {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/licenses/LICENSE.txt +0 -0
  93. {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,737 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "id": "6b08756f",
6
+ "metadata": {},
7
+ "source": [
8
+ "# Apply convolutional neural network for the same image classification dataset and compare DNN and CNN in terms of parameters and performance"
9
+ ]
10
+ },
11
+ {
12
+ "cell_type": "code",
13
+ "execution_count": null,
14
+ "id": "a0bfab06-b12f-46b6-818f-a9ccddb17f74",
15
+ "metadata": {
16
+ "id": "a0bfab06-b12f-46b6-818f-a9ccddb17f74",
17
+ "outputId": "7fce260d-6542-45ae-9331-ef2fbd3276ed"
18
+ },
19
+ "outputs": [],
20
+ "source": [
21
+ "!pip install Kaggle\n",
22
+ "!pip install opendatasets\n",
23
+ "import opendatasets as od\n",
24
+ "import pandas\n",
25
+ "od.download(\n",
26
+ " \"https://www.kaggle.com/datasets/prakharrastogi534/bean-leaf-dataset/data\",force=True)"
27
+ ]
28
+ },
29
+ {
30
+ "cell_type": "code",
31
+ "execution_count": null,
32
+ "id": "83ef5252-c7dc-480c-b6e1-999465440421",
33
+ "metadata": {
34
+ "id": "83ef5252-c7dc-480c-b6e1-999465440421",
35
+ "outputId": "a53c12e9-9ec1-4dfc-846b-1fbb826ab20a"
36
+ },
37
+ "outputs": [],
38
+ "source": [
39
+ "!pip install tensorflow"
40
+ ]
41
+ },
42
+ {
43
+ "cell_type": "code",
44
+ "execution_count": null,
45
+ "id": "08d18c5b-917f-44eb-8051-d23126b7770a",
46
+ "metadata": {
47
+ "id": "08d18c5b-917f-44eb-8051-d23126b7770a",
48
+ "outputId": "151c6f85-1b99-479b-a14b-8201af5f547f"
49
+ },
50
+ "outputs": [],
51
+ "source": [
52
+ "import tensorflow as tf\n",
53
+ "import tensorflow as tf\n",
54
+ "from tensorflow.keras import layers, models\n",
55
+ "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n",
56
+ "import matplotlib.pyplot as plt\n",
57
+ "import seaborn as sns\n",
58
+ "import numpy as np\n",
59
+ "from sklearn.metrics import classification_report, confusion_matrix"
60
+ ]
61
+ },
62
+ {
63
+ "cell_type": "code",
64
+ "execution_count": null,
65
+ "id": "d0f0c066-4d98-43f4-9ece-f12da6c4ff94",
66
+ "metadata": {
67
+ "id": "d0f0c066-4d98-43f4-9ece-f12da6c4ff94"
68
+ },
69
+ "outputs": [],
70
+ "source": [
71
+ "train_dir=r'C:\\Users\\User\\Documents\\Jupyternotebookprgs\\bean-leaf-dataset\\train\\train'\n",
72
+ "validation_dir=r'C:\\Users\\User\\Documents\\Jupyternotebookprgs\\bean-leaf-dataset\\validation\\validation'\n",
73
+ "test_dir=r'C:\\Users\\User\\Documents\\Jupyternotebookprgs\\bean-leaf-dataset\\test\\test'"
74
+ ]
75
+ },
76
+ {
77
+ "cell_type": "code",
78
+ "execution_count": null,
79
+ "id": "be68a49f-7284-4481-a776-742218a276a7",
80
+ "metadata": {
81
+ "id": "be68a49f-7284-4481-a776-742218a276a7"
82
+ },
83
+ "outputs": [],
84
+ "source": [
85
+ "train_datagen = ImageDataGenerator(\n",
86
+ " rescale=1./255,\n",
87
+ " rotation_range=40,\n",
88
+ " width_shift_range=0.2,\n",
89
+ " height_shift_range=0.2,\n",
90
+ " shear_range=0.2,\n",
91
+ " zoom_range=0.2,\n",
92
+ " horizontal_flip=True,\n",
93
+ " fill_mode='nearest'\n",
94
+ ")"
95
+ ]
96
+ },
97
+ {
98
+ "cell_type": "code",
99
+ "execution_count": null,
100
+ "id": "25f04809-f073-4748-a87c-0771b6b89f9a",
101
+ "metadata": {
102
+ "id": "25f04809-f073-4748-a87c-0771b6b89f9a"
103
+ },
104
+ "outputs": [],
105
+ "source": [
106
+ "validation_datagen = ImageDataGenerator(rescale=1./255)\n",
107
+ "test_datagen = ImageDataGenerator(rescale=1./255)"
108
+ ]
109
+ },
110
+ {
111
+ "cell_type": "code",
112
+ "execution_count": null,
113
+ "id": "36a6ed4a-e961-47e8-9225-292e7298cb8d",
114
+ "metadata": {
115
+ "id": "36a6ed4a-e961-47e8-9225-292e7298cb8d",
116
+ "outputId": "ae5a6d17-8f5e-4536-86ce-c52fb059f097"
117
+ },
118
+ "outputs": [],
119
+ "source": [
120
+ "train_generator = train_datagen.flow_from_directory(\n",
121
+ " train_dir, target_size=(150, 150), batch_size=32, class_mode='sparse'\n",
122
+ ")"
123
+ ]
124
+ },
125
+ {
126
+ "cell_type": "code",
127
+ "execution_count": null,
128
+ "id": "a0e150d9-8057-4c07-be06-966bbe6e26a3",
129
+ "metadata": {
130
+ "id": "a0e150d9-8057-4c07-be06-966bbe6e26a3",
131
+ "outputId": "a77a76ff-fd24-451f-a18e-5e0122b86bfc"
132
+ },
133
+ "outputs": [],
134
+ "source": [
135
+ "validation_generator = validation_datagen.flow_from_directory(\n",
136
+ " validation_dir, target_size=(150, 150), batch_size=32, class_mode='sparse'\n",
137
+ ")"
138
+ ]
139
+ },
140
+ {
141
+ "cell_type": "code",
142
+ "execution_count": null,
143
+ "id": "4cef37dc-3af1-49c3-9f7d-134687400a01",
144
+ "metadata": {
145
+ "id": "4cef37dc-3af1-49c3-9f7d-134687400a01",
146
+ "outputId": "25405fdf-d8c0-4b68-9159-707f94ce98d0"
147
+ },
148
+ "outputs": [],
149
+ "source": [
150
+ "test_generator = test_datagen.flow_from_directory(\n",
151
+ " test_dir, target_size=(150, 150), batch_size=32, class_mode='sparse', shuffle=False\n",
152
+ ")\n"
153
+ ]
154
+ },
155
+ {
156
+ "cell_type": "code",
157
+ "execution_count": null,
158
+ "id": "5139b795",
159
+ "metadata": {
160
+ "id": "5139b795",
161
+ "outputId": "67351a99-3612-4fee-d795-791b25efe8bc"
162
+ },
163
+ "outputs": [],
164
+ "source": [
165
+ "class_names = list(test_generator.class_indices.keys())\n",
166
+ "class_names"
167
+ ]
168
+ },
169
+ {
170
+ "cell_type": "code",
171
+ "execution_count": null,
172
+ "id": "2ee841f4-6d52-4aeb-8db4-1ccd907d7b7a",
173
+ "metadata": {
174
+ "id": "2ee841f4-6d52-4aeb-8db4-1ccd907d7b7a",
175
+ "outputId": "bdba5bd7-949e-4031-8e00-0c2ddb03e1e1"
176
+ },
177
+ "outputs": [],
178
+ "source": [
179
+ "model = models.Sequential([\n",
180
+ " layers.Flatten(input_shape=(150, 150, 3)), # Flatten the input (150, 150, 3) to 150*150*3 = 67500\n",
181
+ " layers.Dense(512, activation='relu'),\n",
182
+ " layers.Dense(256, activation='relu'),\n",
183
+ " layers.Dense(128, activation='relu'),\n",
184
+ " layers.Dense(len(class_names), activation='softmax')\n",
185
+ "])"
186
+ ]
187
+ },
188
+ {
189
+ "cell_type": "code",
190
+ "execution_count": null,
191
+ "id": "7cb22179-4433-448e-9335-9690bfb2bf1e",
192
+ "metadata": {
193
+ "id": "7cb22179-4433-448e-9335-9690bfb2bf1e",
194
+ "outputId": "f180ed05-2cd1-4de1-ff18-c906bb84f4d4"
195
+ },
196
+ "outputs": [],
197
+ "source": [
198
+ "model.compile(\n",
199
+ " optimizer='adam',\n",
200
+ " loss='sparse_categorical_crossentropy',\n",
201
+ " metrics=['accuracy']\n",
202
+ ")"
203
+ ]
204
+ },
205
+ {
206
+ "cell_type": "code",
207
+ "execution_count": null,
208
+ "id": "5750b6e9",
209
+ "metadata": {
210
+ "id": "5750b6e9",
211
+ "outputId": "b2d7aef0-9570-461a-bf6c-abf8fefe4f5e"
212
+ },
213
+ "outputs": [],
214
+ "source": [
215
+ "history = model.fit(\n",
216
+ " train_generator,\n",
217
+ " epochs=5,\n",
218
+ " validation_data=validation_generator,\n",
219
+ "\n",
220
+ ")"
221
+ ]
222
+ },
223
+ {
224
+ "cell_type": "code",
225
+ "execution_count": null,
226
+ "id": "5a313b75",
227
+ "metadata": {
228
+ "id": "5a313b75",
229
+ "outputId": "a76bd934-a9d3-4f5f-927d-0d177cb5f309"
230
+ },
231
+ "outputs": [],
232
+ "source": [
233
+ "test_loss, test_acc = model.evaluate(test_generator, steps=test_generator.samples // test_generator.batch_size)\n",
234
+ "print(f'Test accuracy: {test_acc}')"
235
+ ]
236
+ },
237
+ {
238
+ "cell_type": "code",
239
+ "execution_count": null,
240
+ "id": "3cb43468",
241
+ "metadata": {
242
+ "id": "3cb43468",
243
+ "outputId": "90b54c16-a4b9-40ce-daa1-5246caa8e3ed"
244
+ },
245
+ "outputs": [],
246
+ "source": [
247
+ "Y_pred = model.predict(test_generator, steps=test_generator.samples // test_generator.batch_size + 1)\n",
248
+ "y_pred = np.argmax(Y_pred, axis=1)"
249
+ ]
250
+ },
251
+ {
252
+ "cell_type": "code",
253
+ "execution_count": null,
254
+ "id": "6e03f8b6",
255
+ "metadata": {
256
+ "id": "6e03f8b6",
257
+ "outputId": "0239f1fa-e1fd-46dc-ea30-3465080b2749"
258
+ },
259
+ "outputs": [],
260
+ "source": [
261
+ "print(classification_report(y_true, y_pred, target_names=class_names))"
262
+ ]
263
+ },
264
+ {
265
+ "cell_type": "code",
266
+ "execution_count": null,
267
+ "id": "648bda44",
268
+ "metadata": {
269
+ "id": "648bda44"
270
+ },
271
+ "outputs": [],
272
+ "source": []
273
+ },
274
+ {
275
+ "cell_type": "code",
276
+ "execution_count": null,
277
+ "id": "7eb184d5",
278
+ "metadata": {
279
+ "id": "7eb184d5"
280
+ },
281
+ "outputs": [],
282
+ "source": [
283
+ "CNN_model = models.Sequential([\n",
284
+ " layers.Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)),\n",
285
+ " layers.MaxPooling2D((2, 2)),\n",
286
+ " layers.Conv2D(64, (3, 3), activation='relu'),\n",
287
+ " layers.MaxPooling2D((2, 2)),\n",
288
+ " layers.Conv2D(128, (3, 3), activation='relu'),\n",
289
+ " layers.MaxPooling2D((2, 2)),\n",
290
+ " layers.Conv2D(128, (3, 3), activation='relu'),\n",
291
+ " layers.MaxPooling2D((2, 2)),\n",
292
+ " layers.Flatten(),\n",
293
+ " layers.Dense(512, activation='relu'),\n",
294
+ " layers.Dense(len(class_names), activation='softmax')\n",
295
+ "])\n"
296
+ ]
297
+ },
298
+ {
299
+ "cell_type": "markdown",
300
+ "id": "d391e18f",
301
+ "metadata": {
302
+ "id": "d391e18f"
303
+ },
304
+ "source": [
305
+ "Visualize the Feature Map"
306
+ ]
307
+ },
308
+ {
309
+ "cell_type": "code",
310
+ "execution_count": null,
311
+ "id": "fa0a18bc",
312
+ "metadata": {
313
+ "id": "fa0a18bc"
314
+ },
315
+ "outputs": [],
316
+ "source": [
317
+ "from tensorflow.keras.models import Model\n",
318
+ "\n",
319
+ "# Specify the layers to visualize\n",
320
+ "layer_names = [\n",
321
+ " 'conv2d', # 1st Conv Layer\n",
322
+ " 'max_pooling2d', # 1st MaxPooling Layer\n",
323
+ " 'conv2d_1', # 2nd Conv Layer\n",
324
+ " 'max_pooling2d_1', # 2nd MaxPooling Layer\n",
325
+ " 'conv2d_2', # 3rd Conv Layer\n",
326
+ " 'max_pooling2d_2', # 3rd MaxPooling Layer\n",
327
+ " 'conv2d_3', # 4th Conv Layer\n",
328
+ " 'max_pooling2d_3' # 4th MaxPooling Layer\n",
329
+ "]\n",
330
+ "\n",
331
+ "# Create a new model that outputs the feature maps\n",
332
+ "layer_outputs = [CNN_model.get_layer(name).output for name in layer_names]\n",
333
+ "feature_map_model = Model(inputs=CNN_model.input, outputs=layer_outputs)\n"
334
+ ]
335
+ },
336
+ {
337
+ "cell_type": "code",
338
+ "execution_count": null,
339
+ "id": "7ae275da",
340
+ "metadata": {
341
+ "id": "7ae275da"
342
+ },
343
+ "outputs": [],
344
+ "source": [
345
+ "from tensorflow.keras.preprocessing import image\n",
346
+ "import numpy as np\n",
347
+ "\n",
348
+ "img_path = r'C:\\Users\\User\\Documents\\Jupyternotebookprgs\\bean-leaf-dataset\\train\\train\\angular_leaf_spot\\angular_leaf_spot_train.0.jpg' # Update this path\n",
349
+ "img = image.load_img(img_path, target_size=(150, 150))\n",
350
+ "img_array = image.img_to_array(img)\n",
351
+ "img_array = np.expand_dims(img_array, axis=0) # Add batch dimension\n",
352
+ "img_array /= 255.0 # Normalize the image\n"
353
+ ]
354
+ },
355
+ {
356
+ "cell_type": "code",
357
+ "execution_count": null,
358
+ "id": "9a989eba",
359
+ "metadata": {
360
+ "id": "9a989eba",
361
+ "outputId": "cb4d70d0-204b-4ca2-93e9-b3e1cc713dbe"
362
+ },
363
+ "outputs": [],
364
+ "source": [
365
+ "feature_maps = feature_map_model.predict(img_array)\n"
366
+ ]
367
+ },
368
+ {
369
+ "cell_type": "code",
370
+ "execution_count": null,
371
+ "id": "7fb737e9",
372
+ "metadata": {
373
+ "id": "7fb737e9",
374
+ "outputId": "2d9eb44e-cd14-4dfc-f7ee-e8b6f82ff8cb"
375
+ },
376
+ "outputs": [],
377
+ "source": [
378
+ "import matplotlib.pyplot as plt\n",
379
+ "\n",
380
+ "def plot_feature_maps(feature_maps, layer_names):\n",
381
+ " n_layers = len(layer_names)\n",
382
+ " fig, axes = plt.subplots(n_layers, 10, figsize=(20, 20))\n",
383
+ "\n",
384
+ " for i, layer_name in enumerate(layer_names):\n",
385
+ " fmap = feature_maps[i]\n",
386
+ " n_features = fmap.shape[-1]\n",
387
+ " for j in range(min(n_features, 10)):\n",
388
+ " ax = axes[i, j]\n",
389
+ " ax.imshow(fmap[0, :, :, j], cmap='viridis')\n",
390
+ " ax.axis('off')\n",
391
+ " axes[i, 0].set_title(f'Layer: {layer_name}')\n",
392
+ "\n",
393
+ " plt.tight_layout()\n",
394
+ " plt.show()\n",
395
+ "\n",
396
+ "plot_feature_maps(feature_maps, layer_names)\n"
397
+ ]
398
+ },
399
+ {
400
+ "cell_type": "code",
401
+ "execution_count": null,
402
+ "id": "c0645049-c2f6-4f1a-adce-55f1b743eed3",
403
+ "metadata": {
404
+ "id": "c0645049-c2f6-4f1a-adce-55f1b743eed3"
405
+ },
406
+ "outputs": [],
407
+ "source": [
408
+ "CNN_model.compile(\n",
409
+ " optimizer='adam',\n",
410
+ " loss='sparse_categorical_crossentropy',\n",
411
+ " metrics=['accuracy']\n",
412
+ ")"
413
+ ]
414
+ },
415
+ {
416
+ "cell_type": "code",
417
+ "execution_count": null,
418
+ "id": "c56323f2-3524-424c-b232-a0db433b72ed",
419
+ "metadata": {
420
+ "id": "c56323f2-3524-424c-b232-a0db433b72ed",
421
+ "outputId": "6a387ae7-dd10-4b21-8d88-747a8324849d"
422
+ },
423
+ "outputs": [],
424
+ "source": [
425
+ "CNN_history = CNN_model.fit(\n",
426
+ " train_generator,\n",
427
+ " epochs=5,\n",
428
+ " validation_data=validation_generator,\n",
429
+ "\n",
430
+ ")"
431
+ ]
432
+ },
433
+ {
434
+ "cell_type": "code",
435
+ "execution_count": null,
436
+ "id": "1e5d4cc3-7550-469e-9d80-5b914d895b63",
437
+ "metadata": {
438
+ "id": "1e5d4cc3-7550-469e-9d80-5b914d895b63",
439
+ "outputId": "ce3e721a-14d1-42c9-ecf6-c0a1729b14fb"
440
+ },
441
+ "outputs": [],
442
+ "source": [
443
+ "test_loss, test_acc = CNN_model.evaluate(test_generator, steps=test_generator.samples // test_generator.batch_size)\n",
444
+ "print(f'Test accuracy: {test_acc}')"
445
+ ]
446
+ },
447
+ {
448
+ "cell_type": "code",
449
+ "execution_count": null,
450
+ "id": "64f25696-1315-43e3-825c-d9e852fd2783",
451
+ "metadata": {
452
+ "id": "64f25696-1315-43e3-825c-d9e852fd2783",
453
+ "outputId": "07fdb09f-20cc-48aa-cea8-0e65145ccb0a"
454
+ },
455
+ "outputs": [],
456
+ "source": [
457
+ "CNN_Y_pred = CNN_model.predict(test_generator, steps=test_generator.samples // test_generator.batch_size + 1)\n",
458
+ "CNN_y_pred = np.argmax(CNN_Y_pred, axis=1)\n"
459
+ ]
460
+ },
461
+ {
462
+ "cell_type": "code",
463
+ "execution_count": null,
464
+ "id": "f33d6e62-5f49-4962-8ba9-69abda6976ea",
465
+ "metadata": {
466
+ "id": "f33d6e62-5f49-4962-8ba9-69abda6976ea"
467
+ },
468
+ "outputs": [],
469
+ "source": [
470
+ "y_true = test_generator.classes\n"
471
+ ]
472
+ },
473
+ {
474
+ "cell_type": "code",
475
+ "execution_count": null,
476
+ "id": "31a7fa08-1081-4a9c-8370-908671bc5505",
477
+ "metadata": {
478
+ "id": "31a7fa08-1081-4a9c-8370-908671bc5505",
479
+ "outputId": "ed71b9c1-4765-42f8-bb87-a72c3b0b9ba0"
480
+ },
481
+ "outputs": [],
482
+ "source": [
483
+ "print(classification_report(y_true, CNN_y_pred , target_names=class_names))\n"
484
+ ]
485
+ },
486
+ {
487
+ "cell_type": "code",
488
+ "execution_count": null,
489
+ "id": "a137ffdc-a0ff-4e82-a0b5-ed62ef2c564f",
490
+ "metadata": {
491
+ "id": "a137ffdc-a0ff-4e82-a0b5-ed62ef2c564f"
492
+ },
493
+ "outputs": [],
494
+ "source": [
495
+ "def plot_confusion_matrix(y_true, y_pred, class_names):\n",
496
+ " cm = confusion_matrix(y_true, y_pred)\n",
497
+ " print(cm)\n",
498
+ "\n",
499
+ " plt.figure(figsize=(5, 5))\n",
500
+ " sns.heatmap(cm, annot=True, cmap='Blues', fmt='g', xticklabels=class_names, yticklabels=class_names)\n",
501
+ " plt.xlabel('Predicted')\n",
502
+ " plt.ylabel('True')\n",
503
+ " plt.title('Confusion Matrix')\n",
504
+ " plt.show()"
505
+ ]
506
+ },
507
+ {
508
+ "cell_type": "code",
509
+ "execution_count": null,
510
+ "id": "4a0db27f-b2f9-46e8-9dc3-15df1bb1a38d",
511
+ "metadata": {
512
+ "id": "4a0db27f-b2f9-46e8-9dc3-15df1bb1a38d",
513
+ "outputId": "d2529d1d-ef92-4e7f-8639-7a375657228f"
514
+ },
515
+ "outputs": [],
516
+ "source": [
517
+ "plot_confusion_matrix(y_true, CNN_y_pred, class_names)\n"
518
+ ]
519
+ },
520
+ {
521
+ "cell_type": "code",
522
+ "execution_count": null,
523
+ "id": "a4e7c2cc-16b5-4427-b808-ae32ac7b95e6",
524
+ "metadata": {
525
+ "id": "a4e7c2cc-16b5-4427-b808-ae32ac7b95e6"
526
+ },
527
+ "outputs": [],
528
+ "source": [
529
+ "def plot_training_history(history):\n",
530
+ " acc = history.history['accuracy']\n",
531
+ " val_acc = history.history['val_accuracy']\n",
532
+ " loss = history.history['loss']\n",
533
+ " val_loss = history.history['val_loss']\n",
534
+ " epochs = range(len(acc))\n",
535
+ "\n",
536
+ " plt.figure(figsize=(12, 4))\n",
537
+ "\n",
538
+ " plt.subplot(1, 2, 1)\n",
539
+ " plt.plot(epochs, acc, 'b', label='Training accuracy')\n",
540
+ " plt.plot(epochs, val_acc, 'r', label='Validation accuracy')\n",
541
+ " plt.title('Training and validation accuracy')\n",
542
+ " plt.legend()\n",
543
+ "\n",
544
+ " plt.subplot(1, 2, 2)\n",
545
+ " plt.plot(epochs, loss, 'b', label='Training loss')\n",
546
+ " plt.plot(epochs, val_loss, 'r', label='Validation loss')\n",
547
+ " plt.title('Training and validation loss')\n",
548
+ " plt.legend()\n",
549
+ "\n",
550
+ " plt.show()"
551
+ ]
552
+ },
553
+ {
554
+ "cell_type": "code",
555
+ "execution_count": null,
556
+ "id": "3c474de3-ed19-47ab-92ef-b6484baaaecb",
557
+ "metadata": {
558
+ "id": "3c474de3-ed19-47ab-92ef-b6484baaaecb",
559
+ "outputId": "9c9f2f48-9891-43de-ab77-60e192e16df3"
560
+ },
561
+ "outputs": [],
562
+ "source": [
563
+ "plot_training_history(CNN_history)"
564
+ ]
565
+ },
566
+ {
567
+ "cell_type": "code",
568
+ "execution_count": null,
569
+ "id": "53ec029b-123d-4e01-b6f3-92d705f64689",
570
+ "metadata": {
571
+ "id": "53ec029b-123d-4e01-b6f3-92d705f64689"
572
+ },
573
+ "outputs": [],
574
+ "source": [
575
+ "def plot_predictions(generator, model, class_names):\n",
576
+ " x, y_true = next(generator)\n",
577
+ " y_pred_prob = CNN_model.predict(x)\n",
578
+ " y_pred = np.argmax(y_pred_prob, axis=1)\n",
579
+ "\n",
580
+ " plt.figure(figsize=(20, 10))\n",
581
+ " for i in range(12):\n",
582
+ " plt.subplot(3, 4, i + 1)\n",
583
+ " plt.imshow(x[i])\n",
584
+ " plt.title(f'True: {class_names[int(y_true[i])]}, Pred: {class_names[y_pred[i]]}\\nProb: {y_pred_prob[i][y_pred[i]]:.2f}')\n",
585
+ " plt.axis('off')\n",
586
+ " plt.show()"
587
+ ]
588
+ },
589
+ {
590
+ "cell_type": "code",
591
+ "execution_count": null,
592
+ "id": "53913002-8093-4ff9-a9e7-121669333dec",
593
+ "metadata": {
594
+ "id": "53913002-8093-4ff9-a9e7-121669333dec",
595
+ "outputId": "37dba8c0-8af9-486a-8d46-879b28b34c04"
596
+ },
597
+ "outputs": [],
598
+ "source": [
599
+ "plot_predictions(test_generator, CNN_model, class_names)\n"
600
+ ]
601
+ },
602
+ {
603
+ "cell_type": "code",
604
+ "execution_count": null,
605
+ "id": "991a0720",
606
+ "metadata": {
607
+ "id": "991a0720"
608
+ },
609
+ "outputs": [],
610
+ "source": [
611
+ "from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score\n",
612
+ "import numpy as np\n"
613
+ ]
614
+ },
615
+ {
616
+ "cell_type": "code",
617
+ "execution_count": null,
618
+ "id": "be5dd19c",
619
+ "metadata": {
620
+ "id": "be5dd19c"
621
+ },
622
+ "outputs": [],
623
+ "source": [
624
+ "precision_dnn = precision_score(y_true, y_pred, average='weighted')\n",
625
+ "recall_dnn = recall_score(y_true, y_pred, average='weighted')\n",
626
+ "f1_dnn = f1_score(y_true, y_pred, average='weighted')\n",
627
+ "accuracy_dnn = accuracy_score(y_true, y_pred)\n",
628
+ "\n",
629
+ "# Calculate metrics for CNN model\n",
630
+ "precision_cnn = precision_score(y_true, CNN_y_pred, average='weighted')\n",
631
+ "recall_cnn = recall_score(y_true, CNN_y_pred, average='weighted')\n",
632
+ "f1_cnn = f1_score(y_true, CNN_y_pred, average='weighted')\n",
633
+ "accuracy_cnn = accuracy_score(y_true, CNN_y_pred)\n",
634
+ "\n"
635
+ ]
636
+ },
637
+ {
638
+ "cell_type": "code",
639
+ "execution_count": null,
640
+ "id": "89e25117-c92e-4121-9719-d2dcd0e5906a",
641
+ "metadata": {
642
+ "id": "89e25117-c92e-4121-9719-d2dcd0e5906a",
643
+ "outputId": "4d4a6fac-5b2a-459d-830b-3f5536d79f63"
644
+ },
645
+ "outputs": [],
646
+ "source": [
647
+ "import matplotlib.pyplot as plt\n",
648
+ "import numpy as np\n",
649
+ "import pandas as pd\n",
650
+ "\n",
651
+ "# Metrics for DNN\n",
652
+ "dnn_metrics = {\n",
653
+ " 'Precision': precision_dnn,\n",
654
+ " 'Recall': recall_dnn,\n",
655
+ " 'F1 Score': f1_dnn,\n",
656
+ " 'Accuracy': accuracy_dnn,\n",
657
+ " 'Loss': 1.6507\n",
658
+ "}\n",
659
+ "\n",
660
+ "# Metrics for CNN\n",
661
+ "cnn_metrics = {\n",
662
+ " 'Precision': precision_cnn,\n",
663
+ " 'Recall': recall_cnn,\n",
664
+ " 'F1 Score': f1_cnn,\n",
665
+ " 'Accuracy': accuracy_cnn,\n",
666
+ " 'Loss': 0.6988\n",
667
+ "}\n",
668
+ "\n",
669
+ "# Convert to DataFrame for easy plotting\n",
670
+ "metrics_df = pd.DataFrame({\n",
671
+ " 'Metric': list(dnn_metrics.keys()) + list(cnn_metrics.keys()),\n",
672
+ " 'Value': list(dnn_metrics.values()) + list(cnn_metrics.values()),\n",
673
+ " 'Model': ['DNN']*len(dnn_metrics) + ['CNN']*len(cnn_metrics)\n",
674
+ "})\n",
675
+ "\n",
676
+ "# Set up the plot\n",
677
+ "plt.figure(figsize=(5,5))\n",
678
+ "\n",
679
+ "# Bar positions\n",
680
+ "x = np.arange(len(dnn_metrics)) # the label locations\n",
681
+ "width = 0.35 # the width of the bars\n",
682
+ "\n",
683
+ "# Plotting bars\n",
684
+ "bars1 = plt.bar(x - width/2, list(dnn_metrics.values()), width, label='DNN', color='blue')\n",
685
+ "bars2 = plt.bar(x + width/2, list(cnn_metrics.values()), width, label='CNN', color='orange')\n",
686
+ "\n",
687
+ "# Adding labels, title, and legend\n",
688
+ "plt.xlabel('Metrics', fontsize=12)\n",
689
+ "plt.ylabel('Scores', fontsize=12)\n",
690
+ "plt.title('Comparison of Model Performance', fontsize=14)\n",
691
+ "plt.xticks(x, list(dnn_metrics.keys()), rotation=45)\n",
692
+ "plt.legend()\n",
693
+ "\n",
694
+ "# Add value labels on top of the bars\n",
695
+ "def add_labels(bars):\n",
696
+ " for bar in bars:\n",
697
+ " height = bar.get_height()\n",
698
+ " plt.annotate(f'{height:.2f}',\n",
699
+ " xy=(bar.get_x() + bar.get_width() / 2, height),\n",
700
+ " xytext=(0, 3), # 3 points vertical offset\n",
701
+ " textcoords=\"offset points\",\n",
702
+ " ha='center', va='bottom')\n",
703
+ "\n",
704
+ "add_labels(bars1)\n",
705
+ "add_labels(bars2)\n",
706
+ "\n",
707
+ "# Display the plot\n",
708
+ "plt.tight_layout()\n",
709
+ "plt.show()\n"
710
+ ]
711
+ }
712
+ ],
713
+ "metadata": {
714
+ "colab": {
715
+ "provenance": []
716
+ },
717
+ "kernelspec": {
718
+ "display_name": "Python 3 (ipykernel)",
719
+ "language": "python",
720
+ "name": "python3"
721
+ },
722
+ "language_info": {
723
+ "codemirror_mode": {
724
+ "name": "ipython",
725
+ "version": 3
726
+ },
727
+ "file_extension": ".py",
728
+ "mimetype": "text/x-python",
729
+ "name": "python",
730
+ "nbconvert_exporter": "python",
731
+ "pygments_lexer": "ipython3",
732
+ "version": "3.12.4"
733
+ }
734
+ },
735
+ "nbformat": 4,
736
+ "nbformat_minor": 5
737
+ }