noshot 11.0.0__py3-none-any.whl → 13.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/1. DNN (Image Classification).ipynb +389 -0
- noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/2. DNN vs CNN.ipynb +516 -0
- noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/3. CNN (Object Detecrion).ipynb +259 -0
- noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/4. FCN (Image Segmentaion).ipynb +274 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.1 DNN (Pytorch).ipynb +164 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.2 DNN (Tensorflow).ipynb +94 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.3 DNN (Image Classification).ipynb +134 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/2.1 DNN vs CNN.ipynb +127 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/2.2 DNN vs CNN.ipynb +123 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/4. FCNN (Image Segmentation).ipynb +108 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/Lab Excercise (Training DNN).ipynb +646 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/Load-Images.ipynb +553 -0
- noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex1.ipynb +216 -0
- noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex2.ipynb +195 -0
- noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex3.ipynb +427 -0
- noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex4.ipynb +186 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/DNN Ex No 1.ipynb +398 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Ex No 1 Build in dataset.ipynb +171 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Exp1-Short-DL_ANN_ImageClassification.ipynb +401 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/OR GATE .ipynb +8511 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp02/Exp2-Short-DL_CNN_ImageClassification.ipynb +737 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp03/DL-Ex3-RNN.ipynb +591 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp04/Ex no 4.ipynb +551 -0
- noshot/main.py +3 -3
- {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/METADATA +1 -1
- noshot-13.0.0.dist-info/RECORD +32 -0
- noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb +0 -201
- noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb +0 -201
- noshot/data/ML TS XAI/ML/Json Codes/ML LAB CIA 2.ipynb +0 -409
- noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Balance Scale Dataset).ipynb +0 -147
- noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Rice Dataset).ipynb +0 -181
- noshot/data/ML TS XAI/ML/ML 1/10. HMM Veterbi.ipynb +0 -152
- noshot/data/ML TS XAI/ML/ML 1/2. KNN (Balance Scale Dataset).ipynb +0 -117
- noshot/data/ML TS XAI/ML/ML 1/2. KNN (Iris Dataset).ipynb +0 -156
- noshot/data/ML TS XAI/ML/ML 1/2. KNN (Sobar-72 Dataset).ipynb +0 -215
- noshot/data/ML TS XAI/ML/ML 1/3. LDA (Balance Scale Dataset).ipynb +0 -78
- noshot/data/ML TS XAI/ML/ML 1/3. LDA (NPHA Doctor Visits Dataset).ipynb +0 -114
- noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Machine Dataset).ipynb +0 -115
- noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Real Estate Dataset).ipynb +0 -146
- noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Magic04 Dataset).ipynb +0 -130
- noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Wine Dataset).ipynb +0 -112
- noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +0 -118
- noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Wine Dataset).ipynb +0 -89
- noshot/data/ML TS XAI/ML/ML 1/7. SVM (Rice Dataset).ipynb +0 -120
- noshot/data/ML TS XAI/ML/ML 1/8. FeedForward NN (Sobar72 Dataset).ipynb +0 -262
- noshot/data/ML TS XAI/ML/ML 1/9. CNN (Cifar10 Dataset).ipynb +0 -156
- noshot/data/ML TS XAI/ML/ML 2/1. PCA.ipynb +0 -162
- noshot/data/ML TS XAI/ML/ML 2/10. CNN.ipynb +0 -100
- noshot/data/ML TS XAI/ML/ML 2/11. HMM.ipynb +0 -336
- noshot/data/ML TS XAI/ML/ML 2/2. KNN.ipynb +0 -149
- noshot/data/ML TS XAI/ML/ML 2/3. LDA.ipynb +0 -132
- noshot/data/ML TS XAI/ML/ML 2/4. Linear Regression.ipynb +0 -86
- noshot/data/ML TS XAI/ML/ML 2/5. Logistic Regression.ipynb +0 -115
- noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Titanic).ipynb +0 -196
- noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Wine).ipynb +0 -98
- noshot/data/ML TS XAI/ML/ML 2/7. SVM Linear.ipynb +0 -109
- noshot/data/ML TS XAI/ML/ML 2/8. SVM Non-Linear.ipynb +0 -195
- noshot/data/ML TS XAI/ML/ML 2/9. FNN With Regularization.ipynb +0 -189
- noshot/data/ML TS XAI/ML/ML 2/9. FNN Without Regularization.ipynb +0 -197
- noshot/data/ML TS XAI/ML/ML 2/All in One Lab CIA 1 Q.ipynb +0 -1087
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb +0 -274
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb +0 -170
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb +0 -1087
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb +0 -178
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb +0 -185
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb +0 -106
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb +0 -177
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb +0 -195
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb +0 -267
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb +0 -104
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb +0 -109
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb +0 -220
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb +0 -99
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb +0 -211
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb +0 -99
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb +0 -118
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb +0 -603
- noshot/data/ML TS XAI/ML/ML Lab AllinOne.ipynb +0 -961
- noshot/data/ML TS XAI/ML/ML Lab H Sec/1. Iris Dataset (Softmax vs Sigmoid).ipynb +0 -231
- noshot/data/ML TS XAI/ML/ML Lab H Sec/2. Student Dataset (Overfit vs Regularized).ipynb +0 -269
- noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Categorical (Overfit vs Regularized).ipynb +0 -274
- noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Numerical (Overfit vs Regularized).ipynb +0 -263
- noshot/data/ML TS XAI/ML/ML Lab H Sec/4. Smart House System HMM.ipynb +0 -198
- noshot/data/ML TS XAI/ML/ML Lab H Sec/5. Fraud Detection System HMM.ipynb +0 -201
- noshot/data/ML TS XAI/ML/ML Lab H Sec/insurance.csv +0 -1339
- noshot/data/ML TS XAI/ML/ML Lab H Sec/iris1.data +0 -151
- noshot/data/ML TS XAI/ML/ML Lab H Sec/student-mat.csv +0 -396
- noshot/data/ML TS XAI/ML/ML Lab H Sec/student-por.csv +0 -650
- noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +0 -691
- noshot-11.0.0.dist-info/RECORD +0 -72
- {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/WHEEL +0 -0
- {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/licenses/LICENSE.txt +0 -0
- {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/top_level.txt +0 -0
@@ -1,231 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "d9e9837e-70fc-47f0-9198-9c0bd862aa26",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import numpy as np\n",
|
11
|
-
"import pandas as pd\n",
|
12
|
-
"import seaborn as sns\n",
|
13
|
-
"import matplotlib.pyplot as plt\n",
|
14
|
-
"import tensorflow as tf\n",
|
15
|
-
"from tensorflow.keras.models import Sequential\n",
|
16
|
-
"from tensorflow.keras.layers import Dense, Input\n",
|
17
|
-
"from sklearn.model_selection import train_test_split\n",
|
18
|
-
"from sklearn.preprocessing import LabelEncoder, StandardScaler, label_binarize\n",
|
19
|
-
"from sklearn.metrics import classification_report, confusion_matrix \n",
|
20
|
-
"from sklearn.metrics import ConfusionMatrixDisplay, roc_curve, auc"
|
21
|
-
]
|
22
|
-
},
|
23
|
-
{
|
24
|
-
"cell_type": "code",
|
25
|
-
"execution_count": null,
|
26
|
-
"id": "5d5852fb-929b-4e10-b71a-2806723e538c",
|
27
|
-
"metadata": {},
|
28
|
-
"outputs": [],
|
29
|
-
"source": [
|
30
|
-
"names = ['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width', 'target']\n",
|
31
|
-
"df = pd.read_csv('iris.data', names=names)\n",
|
32
|
-
"df.head()"
|
33
|
-
]
|
34
|
-
},
|
35
|
-
{
|
36
|
-
"cell_type": "code",
|
37
|
-
"execution_count": null,
|
38
|
-
"id": "6944dd0f-23ad-4966-b9bd-93ea91f9ce02",
|
39
|
-
"metadata": {},
|
40
|
-
"outputs": [],
|
41
|
-
"source": [
|
42
|
-
"sns.countplot(df, x='target', hue='target', palette='viridis')\n",
|
43
|
-
"plt.show()"
|
44
|
-
]
|
45
|
-
},
|
46
|
-
{
|
47
|
-
"cell_type": "code",
|
48
|
-
"execution_count": null,
|
49
|
-
"id": "790b368d-c13f-4f2d-971d-71cb0649e64e",
|
50
|
-
"metadata": {},
|
51
|
-
"outputs": [],
|
52
|
-
"source": [
|
53
|
-
"X = df.drop(columns='target')\n",
|
54
|
-
"y = df['target']\n",
|
55
|
-
"\n",
|
56
|
-
"X = StandardScaler().fit_transform(X)\n",
|
57
|
-
"y = LabelEncoder().fit_transform(y)"
|
58
|
-
]
|
59
|
-
},
|
60
|
-
{
|
61
|
-
"cell_type": "code",
|
62
|
-
"execution_count": null,
|
63
|
-
"id": "c1bce7c1-f370-4f04-9663-64e3386baccb",
|
64
|
-
"metadata": {},
|
65
|
-
"outputs": [],
|
66
|
-
"source": [
|
67
|
-
"def build_model(output_activation):\n",
|
68
|
-
" model = Sequential([\n",
|
69
|
-
" Input(shape=(4,)),\n",
|
70
|
-
" Dense(64, activation='relu'),\n",
|
71
|
-
" Dense(32, activation='relu'),\n",
|
72
|
-
" Dense(3, activation=output_activation)\n",
|
73
|
-
" ])\n",
|
74
|
-
" model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])\n",
|
75
|
-
" return model"
|
76
|
-
]
|
77
|
-
},
|
78
|
-
{
|
79
|
-
"cell_type": "code",
|
80
|
-
"execution_count": null,
|
81
|
-
"id": "998082ab-6ab5-4df2-99f6-53b5c304a818",
|
82
|
-
"metadata": {
|
83
|
-
"scrolled": true
|
84
|
-
},
|
85
|
-
"outputs": [],
|
86
|
-
"source": [
|
87
|
-
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=2)\n",
|
88
|
-
"model_softmax = build_model('softmax')\n",
|
89
|
-
"history_softmax = model_softmax.fit(X_train, y_train, \n",
|
90
|
-
" validation_data=(X_test, y_test), \n",
|
91
|
-
" epochs=25, verbose=1)"
|
92
|
-
]
|
93
|
-
},
|
94
|
-
{
|
95
|
-
"cell_type": "code",
|
96
|
-
"execution_count": null,
|
97
|
-
"id": "f0dd395f-0831-4d78-9f06-0bb20d9bfdb7",
|
98
|
-
"metadata": {
|
99
|
-
"scrolled": true
|
100
|
-
},
|
101
|
-
"outputs": [],
|
102
|
-
"source": [
|
103
|
-
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=2)\n",
|
104
|
-
"model_sigmoid = build_model('sigmoid')\n",
|
105
|
-
"history_sigmoid = model_sigmoid.fit(X_train, y_train, \n",
|
106
|
-
" validation_data=(X_test, y_test), \n",
|
107
|
-
" epochs=25, verbose=1)"
|
108
|
-
]
|
109
|
-
},
|
110
|
-
{
|
111
|
-
"cell_type": "code",
|
112
|
-
"execution_count": null,
|
113
|
-
"id": "8c1c01d7-d783-438b-834b-2820c6ed1afc",
|
114
|
-
"metadata": {},
|
115
|
-
"outputs": [],
|
116
|
-
"source": [
|
117
|
-
"plt.figure(figsize=(10,6))\n",
|
118
|
-
"\n",
|
119
|
-
"plt.plot(history_softmax.history['accuracy'], label='Softmax - Train Accuracy', color='blue', linewidth=2)\n",
|
120
|
-
"plt.plot(history_softmax.history['val_accuracy'], label='Softmax - Val Accuracy', color='blue', linestyle='--')\n",
|
121
|
-
"\n",
|
122
|
-
"plt.plot(history_sigmoid.history['accuracy'], label='Sigmoid - Train Accuracy', color='green', linewidth=2)\n",
|
123
|
-
"plt.plot(history_sigmoid.history['val_accuracy'], label='Sigmoid - Val Accuracy', color='green', linestyle='--')\n",
|
124
|
-
"\n",
|
125
|
-
"plt.title('Training and Validation Accuracy Comparison')\n",
|
126
|
-
"plt.xlabel('Epoch')\n",
|
127
|
-
"plt.ylabel('Accuracy')\n",
|
128
|
-
"plt.legend()\n",
|
129
|
-
"plt.grid(True)\n",
|
130
|
-
"plt.show()"
|
131
|
-
]
|
132
|
-
},
|
133
|
-
{
|
134
|
-
"cell_type": "code",
|
135
|
-
"execution_count": null,
|
136
|
-
"id": "51329ded-8ea8-4404-94c7-65f968170e0c",
|
137
|
-
"metadata": {},
|
138
|
-
"outputs": [],
|
139
|
-
"source": [
|
140
|
-
"softmax_score = model_softmax.evaluate(X_test, y_test, verbose=0)\n",
|
141
|
-
"sigmoid_score = model_sigmoid.evaluate(X_test, y_test, verbose=0)\n",
|
142
|
-
"\n",
|
143
|
-
"print(f\"Test Accuracy with Softmax: {softmax_score[1]:.4f}\")\n",
|
144
|
-
"print(f\"Test Accuracy with Sigmoid: {sigmoid_score[1]:.4f}\")"
|
145
|
-
]
|
146
|
-
},
|
147
|
-
{
|
148
|
-
"cell_type": "code",
|
149
|
-
"execution_count": null,
|
150
|
-
"id": "9eb9a3f8-4d1b-46fd-b7f0-c860c884ce5e",
|
151
|
-
"metadata": {},
|
152
|
-
"outputs": [],
|
153
|
-
"source": [
|
154
|
-
"plt.bar(['Softmax', 'Sigmoid'], [softmax_score[1], sigmoid_score[1]], color=['blue','green'])\n",
|
155
|
-
"plt.ylabel('Test Accuracy')\n",
|
156
|
-
"plt.title('Final Test Accuracy Comparison')\n",
|
157
|
-
"plt.ylim(0, 1)\n",
|
158
|
-
"plt.show()"
|
159
|
-
]
|
160
|
-
},
|
161
|
-
{
|
162
|
-
"cell_type": "code",
|
163
|
-
"execution_count": null,
|
164
|
-
"id": "f6af8884-54fa-4fbe-905c-e9bb2ce85d8f",
|
165
|
-
"metadata": {},
|
166
|
-
"outputs": [],
|
167
|
-
"source": [
|
168
|
-
"y_pred_softmax = np.argmax(model_softmax.predict(X_test), axis=1)\n",
|
169
|
-
"y_pred_sigmoid = np.argmax(model_sigmoid.predict(X_test), axis=1)"
|
170
|
-
]
|
171
|
-
},
|
172
|
-
{
|
173
|
-
"cell_type": "code",
|
174
|
-
"execution_count": null,
|
175
|
-
"id": "0c6dbf0c-b52d-4560-844d-f78562585cca",
|
176
|
-
"metadata": {},
|
177
|
-
"outputs": [],
|
178
|
-
"source": [
|
179
|
-
"labels = df['target'].unique()\n",
|
180
|
-
"print(\"Classification Report for Softmax:\")\n",
|
181
|
-
"print(classification_report(y_test, y_pred_softmax, target_names=labels))\n",
|
182
|
-
"\n",
|
183
|
-
"print(\"\\nClassification Report for Sigmoid:\")\n",
|
184
|
-
"print(classification_report(y_test, y_pred_sigmoid, target_names=labels))"
|
185
|
-
]
|
186
|
-
},
|
187
|
-
{
|
188
|
-
"cell_type": "code",
|
189
|
-
"execution_count": null,
|
190
|
-
"id": "246d7e32-f654-43f9-8535-caa20e613016",
|
191
|
-
"metadata": {},
|
192
|
-
"outputs": [],
|
193
|
-
"source": [
|
194
|
-
"cm_softmax = confusion_matrix(y_test, y_pred_softmax)\n",
|
195
|
-
"cm_sigmoid = confusion_matrix(y_test, y_pred_sigmoid)\n",
|
196
|
-
"\n",
|
197
|
-
"fig, ax = plt.subplots(1, 2, figsize=(14, 6))\n",
|
198
|
-
"\n",
|
199
|
-
"ConfusionMatrixDisplay(cm_softmax, display_labels=labels).plot(ax=ax[0])\n",
|
200
|
-
"ax[0].set_title(\"Softmax Confusion Matrix\", size=25)\n",
|
201
|
-
"\n",
|
202
|
-
"ConfusionMatrixDisplay(cm_sigmoid, display_labels=labels).plot(ax=ax[1])\n",
|
203
|
-
"ax[1].set_title(\"Sigmoid Confusion Matrix\", size=25)\n",
|
204
|
-
"\n",
|
205
|
-
"plt.tight_layout()\n",
|
206
|
-
"plt.show()"
|
207
|
-
]
|
208
|
-
}
|
209
|
-
],
|
210
|
-
"metadata": {
|
211
|
-
"kernelspec": {
|
212
|
-
"display_name": "NEW-VENV-1",
|
213
|
-
"language": "python",
|
214
|
-
"name": "new-venv-1"
|
215
|
-
},
|
216
|
-
"language_info": {
|
217
|
-
"codemirror_mode": {
|
218
|
-
"name": "ipython",
|
219
|
-
"version": 3
|
220
|
-
},
|
221
|
-
"file_extension": ".py",
|
222
|
-
"mimetype": "text/x-python",
|
223
|
-
"name": "python",
|
224
|
-
"nbconvert_exporter": "python",
|
225
|
-
"pygments_lexer": "ipython3",
|
226
|
-
"version": "3.11.5"
|
227
|
-
}
|
228
|
-
},
|
229
|
-
"nbformat": 4,
|
230
|
-
"nbformat_minor": 5
|
231
|
-
}
|
@@ -1,269 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "f8f281db-b729-4df9-8735-639cd5cf64d8",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import numpy as np\n",
|
11
|
-
"import pandas as pd\n",
|
12
|
-
"import matplotlib.pyplot as plt\n",
|
13
|
-
"import tensorflow as tf\n",
|
14
|
-
"from tensorflow.keras.models import Sequential\n",
|
15
|
-
"from tensorflow.keras.layers import Dense, Dropout, BatchNormalization\n",
|
16
|
-
"from tensorflow.keras.optimizers import Adam\n",
|
17
|
-
"from tensorflow.keras import regularizers\n",
|
18
|
-
"from sklearn.preprocessing import LabelEncoder\n",
|
19
|
-
"from sklearn.model_selection import train_test_split\n",
|
20
|
-
"from sklearn.metrics import classification_report, confusion_matrix \n",
|
21
|
-
"from sklearn.metrics import ConfusionMatrixDisplay, accuracy_score, roc_curve, auc\n",
|
22
|
-
"\n",
|
23
|
-
"import warnings\n",
|
24
|
-
"warnings.filterwarnings('ignore')"
|
25
|
-
]
|
26
|
-
},
|
27
|
-
{
|
28
|
-
"cell_type": "code",
|
29
|
-
"execution_count": null,
|
30
|
-
"id": "cb163478-4de9-4d16-ae12-d650a7c7bffd",
|
31
|
-
"metadata": {},
|
32
|
-
"outputs": [],
|
33
|
-
"source": [
|
34
|
-
"df = pd.read_csv('student-mat.csv', sep=';')\n",
|
35
|
-
"#df = pd.read_csv('student-por.csv', sep=';')\n",
|
36
|
-
"print(\"Shape:\",df.shape)\n",
|
37
|
-
"df = df.drop(columns=['G1','G2'])\n",
|
38
|
-
"df = df.rename(columns={'G3': 'target'})\n",
|
39
|
-
"df.head()"
|
40
|
-
]
|
41
|
-
},
|
42
|
-
{
|
43
|
-
"cell_type": "code",
|
44
|
-
"execution_count": null,
|
45
|
-
"id": "91764ed3-4699-45e0-b795-0c79b77a78ca",
|
46
|
-
"metadata": {},
|
47
|
-
"outputs": [],
|
48
|
-
"source": [
|
49
|
-
"cat_cols = df.select_dtypes(include='object').columns.tolist()\n",
|
50
|
-
"df[cat_cols] = df[cat_cols].apply(LabelEncoder().fit_transform)\n",
|
51
|
-
"df.head()"
|
52
|
-
]
|
53
|
-
},
|
54
|
-
{
|
55
|
-
"cell_type": "code",
|
56
|
-
"execution_count": null,
|
57
|
-
"id": "284440eb-4a57-496c-a7c3-847027372c4e",
|
58
|
-
"metadata": {},
|
59
|
-
"outputs": [],
|
60
|
-
"source": [
|
61
|
-
"X = df.drop(columns=['target'])\n",
|
62
|
-
"y = tf.keras.utils.to_categorical(df['target'], num_classes=21)"
|
63
|
-
]
|
64
|
-
},
|
65
|
-
{
|
66
|
-
"cell_type": "code",
|
67
|
-
"execution_count": null,
|
68
|
-
"id": "e7a7a68d-1aeb-4099-ae62-3f7a06167fa6",
|
69
|
-
"metadata": {},
|
70
|
-
"outputs": [],
|
71
|
-
"source": [
|
72
|
-
"overfit = Sequential([\n",
|
73
|
-
" Dense(128, activation='relu', input_shape=(30,)),\n",
|
74
|
-
" Dense(64, activation='relu'),\n",
|
75
|
-
" Dense(32, activation='relu'),\n",
|
76
|
-
" Dense(21, activation='softmax')\n",
|
77
|
-
"])\n",
|
78
|
-
"\n",
|
79
|
-
"overfit.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])"
|
80
|
-
]
|
81
|
-
},
|
82
|
-
{
|
83
|
-
"cell_type": "code",
|
84
|
-
"execution_count": null,
|
85
|
-
"id": "8f92d2c8-2117-46d0-82e6-51ccf67957f8",
|
86
|
-
"metadata": {},
|
87
|
-
"outputs": [],
|
88
|
-
"source": [
|
89
|
-
"x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=1)\n",
|
90
|
-
"history1 = overfit.fit(x_train, y_train, epochs=25,\n",
|
91
|
-
" batch_size=8, validation_split=0.2,\n",
|
92
|
-
" verbose=1)"
|
93
|
-
]
|
94
|
-
},
|
95
|
-
{
|
96
|
-
"cell_type": "code",
|
97
|
-
"execution_count": null,
|
98
|
-
"id": "12d28840-d3d7-42f6-b33c-63c833123ddd",
|
99
|
-
"metadata": {},
|
100
|
-
"outputs": [],
|
101
|
-
"source": [
|
102
|
-
"regularized = Sequential([\n",
|
103
|
-
" Dense(128, activation='relu', input_shape=(30,), kernel_regularizer=regularizers.l2(0.002)),\n",
|
104
|
-
" Dropout(0.25),\n",
|
105
|
-
" Dense(64, activation='relu', kernel_regularizer=regularizers.l2(0.002)),\n",
|
106
|
-
" Dropout(0.25),\n",
|
107
|
-
" Dense(21, activation='softmax')\n",
|
108
|
-
"])\n",
|
109
|
-
"\n",
|
110
|
-
"regularized.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])"
|
111
|
-
]
|
112
|
-
},
|
113
|
-
{
|
114
|
-
"cell_type": "code",
|
115
|
-
"execution_count": null,
|
116
|
-
"id": "f30536d9-df1f-41be-8821-75cab3a74d9b",
|
117
|
-
"metadata": {},
|
118
|
-
"outputs": [],
|
119
|
-
"source": [
|
120
|
-
"early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', \n",
|
121
|
-
" patience=10, \n",
|
122
|
-
" restore_best_weights=True)"
|
123
|
-
]
|
124
|
-
},
|
125
|
-
{
|
126
|
-
"cell_type": "code",
|
127
|
-
"execution_count": null,
|
128
|
-
"id": "b8dd5fbb-71a5-4e00-925d-ff522b9ab314",
|
129
|
-
"metadata": {},
|
130
|
-
"outputs": [],
|
131
|
-
"source": [
|
132
|
-
"x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=1)\n",
|
133
|
-
"history2 = regularized.fit(x_train, y_train, epochs=25, \n",
|
134
|
-
" batch_size=16, validation_split=0.3,\n",
|
135
|
-
" callbacks=[early_stopping], verbose=1)"
|
136
|
-
]
|
137
|
-
},
|
138
|
-
{
|
139
|
-
"cell_type": "code",
|
140
|
-
"execution_count": null,
|
141
|
-
"id": "cb392228-7a26-4dc5-a2a3-5cd44875c4ea",
|
142
|
-
"metadata": {},
|
143
|
-
"outputs": [],
|
144
|
-
"source": [
|
145
|
-
"def plot_history(history1, history2):\n",
|
146
|
-
" plt.figure(figsize=(12, 5))\n",
|
147
|
-
" plt.subplot(1, 2, 1)\n",
|
148
|
-
" plt.plot(history1.history['accuracy'], label='Overfit Model Validation Accuracy')\n",
|
149
|
-
" plt.plot(history2.history['accuracy'], label='Regularized Model Validation Accuracy')\n",
|
150
|
-
" plt.title('Training Accuracy')\n",
|
151
|
-
" plt.xlabel('Epoch')\n",
|
152
|
-
" plt.ylabel('Accuracy')\n",
|
153
|
-
" plt.legend()\n",
|
154
|
-
"\n",
|
155
|
-
" plt.subplot(1, 2, 2)\n",
|
156
|
-
" plt.plot(history1.history['val_accuracy'], label='Overfit Model Validation Accuracy')\n",
|
157
|
-
" plt.plot(history2.history['val_accuracy'], label='Regularized Model Validation Accuracy')\n",
|
158
|
-
" plt.title('Validation Accuracy')\n",
|
159
|
-
" plt.xlabel('Epoch')\n",
|
160
|
-
" plt.ylabel('Accuracy')\n",
|
161
|
-
" plt.legend()\n",
|
162
|
-
"\n",
|
163
|
-
" plt.tight_layout()\n",
|
164
|
-
" plt.show()\n",
|
165
|
-
"\n",
|
166
|
-
"plot_history(history1, history2)"
|
167
|
-
]
|
168
|
-
},
|
169
|
-
{
|
170
|
-
"cell_type": "code",
|
171
|
-
"execution_count": null,
|
172
|
-
"id": "8703400f-47a9-4c4e-b9b4-e302c69a209b",
|
173
|
-
"metadata": {},
|
174
|
-
"outputs": [],
|
175
|
-
"source": [
|
176
|
-
"loss1, accuracy1 = overfit.evaluate(x_train, y_train)\n",
|
177
|
-
"loss2, accuracy2 = overfit.evaluate(x_test, y_test)\n",
|
178
|
-
"print(f'Train accuracy Overfit Model: {accuracy1:.4f}')\n",
|
179
|
-
"print(f'Test accuracy Overfit Model: {accuracy2:.4f}')"
|
180
|
-
]
|
181
|
-
},
|
182
|
-
{
|
183
|
-
"cell_type": "code",
|
184
|
-
"execution_count": null,
|
185
|
-
"id": "8548d072-206c-4ab6-8c98-c5fb63b644c7",
|
186
|
-
"metadata": {},
|
187
|
-
"outputs": [],
|
188
|
-
"source": [
|
189
|
-
"loss1, accuracy1 = regularized.evaluate(x_train, y_train)\n",
|
190
|
-
"loss2, accuracy2 = regularized.evaluate(x_test, y_test)\n",
|
191
|
-
"print(f'Train accuracy Regularized Model: {accuracy1:.4f}')\n",
|
192
|
-
"print(f'Test accuracy Regularized Model: {accuracy2:.4f}')"
|
193
|
-
]
|
194
|
-
},
|
195
|
-
{
|
196
|
-
"cell_type": "code",
|
197
|
-
"execution_count": null,
|
198
|
-
"id": "ad978e23-15b8-402f-bb31-d00aa4771c93",
|
199
|
-
"metadata": {},
|
200
|
-
"outputs": [],
|
201
|
-
"source": [
|
202
|
-
"y_pred1 = np.argmax(overfit.predict(x_test), axis=1)\n",
|
203
|
-
"y_test1 = np.argmax(y_test, axis=1)\n",
|
204
|
-
"y_pred2 = np.argmax(regularized.predict(x_test), axis=1)\n",
|
205
|
-
"y_test2 = np.argmax(y_test, axis=1)"
|
206
|
-
]
|
207
|
-
},
|
208
|
-
{
|
209
|
-
"cell_type": "code",
|
210
|
-
"execution_count": null,
|
211
|
-
"id": "1ca0a093-04ac-48f3-8454-010413d268cf",
|
212
|
-
"metadata": {},
|
213
|
-
"outputs": [],
|
214
|
-
"source": [
|
215
|
-
"print(\"Classification Report for Overfit:\")\n",
|
216
|
-
"print(classification_report(y_test1, y_pred1))\n",
|
217
|
-
"\n",
|
218
|
-
"print(\"\\nClassification Report for Regularized:\")\n",
|
219
|
-
"print(classification_report(y_test2, y_pred2))"
|
220
|
-
]
|
221
|
-
},
|
222
|
-
{
|
223
|
-
"cell_type": "code",
|
224
|
-
"execution_count": null,
|
225
|
-
"id": "c31bd086-7fd9-4ea9-b0bf-9ac14bcca5bc",
|
226
|
-
"metadata": {},
|
227
|
-
"outputs": [],
|
228
|
-
"source": [
|
229
|
-
"labels1 = np.unique(np.concatenate((y_test1, y_pred1)))\n",
|
230
|
-
"labels2 = np.unique(np.concatenate((y_test2, y_pred2)))\n",
|
231
|
-
"\n",
|
232
|
-
"cm1 = confusion_matrix(y_test1, y_pred1, labels=labels1)\n",
|
233
|
-
"cm2 = confusion_matrix(y_test2, y_pred2, labels=labels2)\n",
|
234
|
-
"\n",
|
235
|
-
"fig, ax = plt.subplots(1, 2, figsize=(14, 6))\n",
|
236
|
-
"\n",
|
237
|
-
"ConfusionMatrixDisplay(cm1, display_labels=labels1).plot(ax=ax[0], colorbar=False)\n",
|
238
|
-
"ax[0].set_title(\"Overfit Confusion Matrix\", size=25)\n",
|
239
|
-
"\n",
|
240
|
-
"ConfusionMatrixDisplay(cm2, display_labels=labels2).plot(ax=ax[1], colorbar=False)\n",
|
241
|
-
"ax[1].set_title(\"Regularized Confusion Matrix\", size=25)\n",
|
242
|
-
"\n",
|
243
|
-
"plt.tight_layout()\n",
|
244
|
-
"plt.show()"
|
245
|
-
]
|
246
|
-
}
|
247
|
-
],
|
248
|
-
"metadata": {
|
249
|
-
"kernelspec": {
|
250
|
-
"display_name": "NEW-VENV-1",
|
251
|
-
"language": "python",
|
252
|
-
"name": "new-venv-1"
|
253
|
-
},
|
254
|
-
"language_info": {
|
255
|
-
"codemirror_mode": {
|
256
|
-
"name": "ipython",
|
257
|
-
"version": 3
|
258
|
-
},
|
259
|
-
"file_extension": ".py",
|
260
|
-
"mimetype": "text/x-python",
|
261
|
-
"name": "python",
|
262
|
-
"nbconvert_exporter": "python",
|
263
|
-
"pygments_lexer": "ipython3",
|
264
|
-
"version": "3.11.5"
|
265
|
-
}
|
266
|
-
},
|
267
|
-
"nbformat": 4,
|
268
|
-
"nbformat_minor": 5
|
269
|
-
}
|