noshot 11.0.0__py3-none-any.whl → 13.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (93) hide show
  1. noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/1. DNN (Image Classification).ipynb +389 -0
  2. noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/2. DNN vs CNN.ipynb +516 -0
  3. noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/3. CNN (Object Detecrion).ipynb +259 -0
  4. noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/4. FCN (Image Segmentaion).ipynb +274 -0
  5. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.1 DNN (Pytorch).ipynb +164 -0
  6. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.2 DNN (Tensorflow).ipynb +94 -0
  7. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.3 DNN (Image Classification).ipynb +134 -0
  8. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/2.1 DNN vs CNN.ipynb +127 -0
  9. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/2.2 DNN vs CNN.ipynb +123 -0
  10. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/4. FCNN (Image Segmentation).ipynb +108 -0
  11. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/Lab Excercise (Training DNN).ipynb +646 -0
  12. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/Load-Images.ipynb +553 -0
  13. noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex1.ipynb +216 -0
  14. noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex2.ipynb +195 -0
  15. noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex3.ipynb +427 -0
  16. noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex4.ipynb +186 -0
  17. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/DNN Ex No 1.ipynb +398 -0
  18. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Ex No 1 Build in dataset.ipynb +171 -0
  19. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Exp1-Short-DL_ANN_ImageClassification.ipynb +401 -0
  20. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/OR GATE .ipynb +8511 -0
  21. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp02/Exp2-Short-DL_CNN_ImageClassification.ipynb +737 -0
  22. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp03/DL-Ex3-RNN.ipynb +591 -0
  23. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp04/Ex no 4.ipynb +551 -0
  24. noshot/main.py +3 -3
  25. {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/METADATA +1 -1
  26. noshot-13.0.0.dist-info/RECORD +32 -0
  27. noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb +0 -201
  28. noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb +0 -201
  29. noshot/data/ML TS XAI/ML/Json Codes/ML LAB CIA 2.ipynb +0 -409
  30. noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Balance Scale Dataset).ipynb +0 -147
  31. noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Rice Dataset).ipynb +0 -181
  32. noshot/data/ML TS XAI/ML/ML 1/10. HMM Veterbi.ipynb +0 -152
  33. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Balance Scale Dataset).ipynb +0 -117
  34. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Iris Dataset).ipynb +0 -156
  35. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Sobar-72 Dataset).ipynb +0 -215
  36. noshot/data/ML TS XAI/ML/ML 1/3. LDA (Balance Scale Dataset).ipynb +0 -78
  37. noshot/data/ML TS XAI/ML/ML 1/3. LDA (NPHA Doctor Visits Dataset).ipynb +0 -114
  38. noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Machine Dataset).ipynb +0 -115
  39. noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Real Estate Dataset).ipynb +0 -146
  40. noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Magic04 Dataset).ipynb +0 -130
  41. noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Wine Dataset).ipynb +0 -112
  42. noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +0 -118
  43. noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Wine Dataset).ipynb +0 -89
  44. noshot/data/ML TS XAI/ML/ML 1/7. SVM (Rice Dataset).ipynb +0 -120
  45. noshot/data/ML TS XAI/ML/ML 1/8. FeedForward NN (Sobar72 Dataset).ipynb +0 -262
  46. noshot/data/ML TS XAI/ML/ML 1/9. CNN (Cifar10 Dataset).ipynb +0 -156
  47. noshot/data/ML TS XAI/ML/ML 2/1. PCA.ipynb +0 -162
  48. noshot/data/ML TS XAI/ML/ML 2/10. CNN.ipynb +0 -100
  49. noshot/data/ML TS XAI/ML/ML 2/11. HMM.ipynb +0 -336
  50. noshot/data/ML TS XAI/ML/ML 2/2. KNN.ipynb +0 -149
  51. noshot/data/ML TS XAI/ML/ML 2/3. LDA.ipynb +0 -132
  52. noshot/data/ML TS XAI/ML/ML 2/4. Linear Regression.ipynb +0 -86
  53. noshot/data/ML TS XAI/ML/ML 2/5. Logistic Regression.ipynb +0 -115
  54. noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Titanic).ipynb +0 -196
  55. noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Wine).ipynb +0 -98
  56. noshot/data/ML TS XAI/ML/ML 2/7. SVM Linear.ipynb +0 -109
  57. noshot/data/ML TS XAI/ML/ML 2/8. SVM Non-Linear.ipynb +0 -195
  58. noshot/data/ML TS XAI/ML/ML 2/9. FNN With Regularization.ipynb +0 -189
  59. noshot/data/ML TS XAI/ML/ML 2/9. FNN Without Regularization.ipynb +0 -197
  60. noshot/data/ML TS XAI/ML/ML 2/All in One Lab CIA 1 Q.ipynb +0 -1087
  61. noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb +0 -274
  62. noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb +0 -170
  63. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb +0 -1087
  64. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb +0 -178
  65. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb +0 -185
  66. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb +0 -106
  67. noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb +0 -177
  68. noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb +0 -195
  69. noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb +0 -267
  70. noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb +0 -104
  71. noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb +0 -109
  72. noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb +0 -220
  73. noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb +0 -99
  74. noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb +0 -211
  75. noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb +0 -99
  76. noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb +0 -118
  77. noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb +0 -603
  78. noshot/data/ML TS XAI/ML/ML Lab AllinOne.ipynb +0 -961
  79. noshot/data/ML TS XAI/ML/ML Lab H Sec/1. Iris Dataset (Softmax vs Sigmoid).ipynb +0 -231
  80. noshot/data/ML TS XAI/ML/ML Lab H Sec/2. Student Dataset (Overfit vs Regularized).ipynb +0 -269
  81. noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Categorical (Overfit vs Regularized).ipynb +0 -274
  82. noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Numerical (Overfit vs Regularized).ipynb +0 -263
  83. noshot/data/ML TS XAI/ML/ML Lab H Sec/4. Smart House System HMM.ipynb +0 -198
  84. noshot/data/ML TS XAI/ML/ML Lab H Sec/5. Fraud Detection System HMM.ipynb +0 -201
  85. noshot/data/ML TS XAI/ML/ML Lab H Sec/insurance.csv +0 -1339
  86. noshot/data/ML TS XAI/ML/ML Lab H Sec/iris1.data +0 -151
  87. noshot/data/ML TS XAI/ML/ML Lab H Sec/student-mat.csv +0 -396
  88. noshot/data/ML TS XAI/ML/ML Lab H Sec/student-por.csv +0 -650
  89. noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +0 -691
  90. noshot-11.0.0.dist-info/RECORD +0 -72
  91. {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/WHEEL +0 -0
  92. {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/licenses/LICENSE.txt +0 -0
  93. {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/top_level.txt +0 -0
@@ -1,72 +0,0 @@
1
- noshot/__init__.py,sha256=000R40tii8lDFU8C1fBaD3SOnxD0PWRNWZU-km49YrU,21
2
- noshot/main.py,sha256=zXegIqjJPARlPnQMS-B2dAENcvyaZkNwmue63Gm8lHU,663
3
- noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb,sha256=VAk1gwoDTBMSdXJxiOLJRvWnzJs84kdNr8Tn_1LaGZw,8802
4
- noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb,sha256=o3Ho3f1CcYhzNW5yB8PEt5WuxFvgc04_bT73wMmpx14,8772
5
- noshot/data/ML TS XAI/ML/ML Lab AllinOne.ipynb,sha256=4E6ddpzBISsp-3aEm_mzMPKW1gSHBrMdhatEUiL59wQ,34015
6
- noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb,sha256=dQ3HgLix6HLqPltFiPrElmEdYAsvR6flDpHEIjcngp4,24774
7
- noshot/data/ML TS XAI/ML/Json Codes/ML LAB CIA 2.ipynb,sha256=mJFkK3jsrr1I967c3Ovm8jpMnO1wjAfb--pNeYnWZ7I,14767
8
- noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Balance Scale Dataset).ipynb,sha256=1QYmUb1QZ4FtmdwoWhTbF9divKNMOxS8AMOy56At0xg,3625
9
- noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Rice Dataset).ipynb,sha256=1rp60fJyQl0bxzFWeJb6XR8VRtlQeonv9Yw5_9pvIH8,4133
10
- noshot/data/ML TS XAI/ML/ML 1/10. HMM Veterbi.ipynb,sha256=0ESvYG9FT7wgcL2JUzMH2ChpSzevz2eez0X53a9wK20,4986
11
- noshot/data/ML TS XAI/ML/ML 1/2. KNN (Balance Scale Dataset).ipynb,sha256=tbkkRm6xHnmM-K8cRpnK8LH1pUmQl30bdyo0dFSNFcw,2988
12
- noshot/data/ML TS XAI/ML/ML 1/2. KNN (Iris Dataset).ipynb,sha256=9vxuGgpq2poMGb_AOJY_rpvUCzHwd-iCVYSXxseYVRs,4287
13
- noshot/data/ML TS XAI/ML/ML 1/2. KNN (Sobar-72 Dataset).ipynb,sha256=oEHLzQlc0aD1HiardgHPbTL2F-uXcm2_htA_dSmM68M,5840
14
- noshot/data/ML TS XAI/ML/ML 1/3. LDA (Balance Scale Dataset).ipynb,sha256=Z3zwZQKJmvCEgzTWN1OqgiOAF9Lw5oLIY1A63SRJ5tg,2101
15
- noshot/data/ML TS XAI/ML/ML 1/3. LDA (NPHA Doctor Visits Dataset).ipynb,sha256=N_IFGBAckF8vJI0lPPbZ1soG50B1_IVyACCyU7jvo3U,2651
16
- noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Machine Dataset).ipynb,sha256=PxFEgyFi6n5nURhtjeT__OP5T-UsggOI9RfBKfpDNBo,3081
17
- noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Real Estate Dataset).ipynb,sha256=avtEqkS38VccYJrQa91kjpmYG43dsDYiMcYtp70SbpA,3895
18
- noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Magic04 Dataset).ipynb,sha256=sSujtrR8C9GGjpIR4v6YN6gTF1cYMIxz5Ufnv_Fp5-I,3376
19
- noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Wine Dataset).ipynb,sha256=YphX35eCBBWu5sCSLS6bw__Em4gbwAzOW49z_Zv-tRs,2668
20
- noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb,sha256=gHvmS1w__3JxhdsxjcSstgrCfoBWfxp8e738O1rVlew,3077
21
- noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Wine Dataset).ipynb,sha256=Ile_WuRAt8Is1HbKdDXu-ogHvQRNBGyxpd8OWauEEek,2058
22
- noshot/data/ML TS XAI/ML/ML 1/7. SVM (Rice Dataset).ipynb,sha256=zJ4GGRSwNY73DQCEeAP8ladl6H_WB54B1C_nSyKb9q8,3762
23
- noshot/data/ML TS XAI/ML/ML 1/8. FeedForward NN (Sobar72 Dataset).ipynb,sha256=JaXAnYDa1AViE2WErFX8QzExbNyGvDYTsf3Vdlie8rs,7122
24
- noshot/data/ML TS XAI/ML/ML 1/9. CNN (Cifar10 Dataset).ipynb,sha256=Jt_x0JTXNM1KqbYQ8afLtj0qIHysN63UUzFnmZfCE3c,3996
25
- noshot/data/ML TS XAI/ML/ML 2/1. PCA.ipynb,sha256=QiJKjyYDWetwngiOwTi4fzuDIorkNLilAFV47V56kO4,3907
26
- noshot/data/ML TS XAI/ML/ML 2/10. CNN.ipynb,sha256=zraQfH-LW-CYMMawfVX--jaejlcTB2SE92wscb_eb50,3329
27
- noshot/data/ML TS XAI/ML/ML 2/11. HMM.ipynb,sha256=RvE_6vM5OWlFKVvGG9-K9sQfz9AtC_fRP5lgRgQrndo,11203
28
- noshot/data/ML TS XAI/ML/ML 2/2. KNN.ipynb,sha256=CP1tuMZoL6MyMIZXn7PL_Epof_0l5EWhKz6ySg3u_W4,4049
29
- noshot/data/ML TS XAI/ML/ML 2/3. LDA.ipynb,sha256=-VyjQ_i6r-1KaGagT3Aoq8UQ_1xYxcDPhmORxuu5eBg,3183
30
- noshot/data/ML TS XAI/ML/ML 2/4. Linear Regression.ipynb,sha256=e6qdlsdkQn-2D8s55C5ekZrd8oClxIglwsJoyW624GQ,2630
31
- noshot/data/ML TS XAI/ML/ML 2/5. Logistic Regression.ipynb,sha256=yC-rMnCgSjKyY7iVeuoIVlXq6ge8xYLKUijL2gAMuMo,3074
32
- noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Titanic).ipynb,sha256=EItNyvs2EHMY42SBEHlKxJ8_y6Oi4qlJOjsEMcOGCWg,4572
33
- noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Wine).ipynb,sha256=iW3yRzgGRgkhG-VkIGNU5LJuk-ef4ZlxmPx4Vl_PCSQ,2278
34
- noshot/data/ML TS XAI/ML/ML 2/7. SVM Linear.ipynb,sha256=ZUd1r_W94BdAOMhpXfL6gCylrAgU7E2NOI3xkW4vnHM,3526
35
- noshot/data/ML TS XAI/ML/ML 2/8. SVM Non-Linear.ipynb,sha256=E4psLvzD8XzKGTFyd2759CRjhUa-7WO8Ow577nDLIWo,6351
36
- noshot/data/ML TS XAI/ML/ML 2/9. FNN With Regularization.ipynb,sha256=SKdyms9nCdr3e0O3Os6Om3kFz9ebahv0OueqhJ4Psc4,6980
37
- noshot/data/ML TS XAI/ML/ML 2/9. FNN Without Regularization.ipynb,sha256=ZsdOcoPzaXM8bQV2ct5uOjRj6wF9Km0cc9iR1zRdXXQ,7520
38
- noshot/data/ML TS XAI/ML/ML 2/All in One Lab CIA 1 Q.ipynb,sha256=wJLu6e0vgrXxH_J1pVM8wB6Wg-o3lPcuzZ45hId1g2o,27364
39
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb,sha256=CnC8HU8x8GQOc6O_bA5YTtfKRJbH_J_agZTbonLwno4,6060
40
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb,sha256=OsPCe4ZLzed96tBpQ1H0KPtROT462pGHTbpecmT13n4,5282
41
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb,sha256=QtVv-mPZ3bG_AqnnzSSMXXHPHm94N_M5zZJAVQx_cEg,46615
42
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb,sha256=kl7Vcq3x7joA0I_n0MRTwDd2y5nQPfu8Oc729xQwRLA,5733
43
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb,sha256=ducKJvoZXPbQ8KMlU8Vl_VtkkziW0Evc0wJs2YGPKKA,5495
44
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb,sha256=GNdyfNAvkBtDQqSNfWD9VMcwIpcpE4LWhi-4KjES8jQ,2768
45
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb,sha256=-7Qa-bGgYZJtuZclr00_TkmVcH7zgMxKsjNN9PQTGko,5284
46
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb,sha256=5PZVV-mWca3CtSSRGavzp-LNwFKWJHn-SBGY2pwsjcg,4846
47
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb,sha256=pSQVwAmyP4z3g_xcgk_EjsX21Qk1Rnyv-K8MSZlbTE8,5691
48
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb,sha256=fHtNkZjbbAra8an4hLcSX92KuRt9pbma4GlPBH26OcY,3210
49
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb,sha256=91UbAZ41vK6q_K08IeXVZRDpDmQ3Xz8ZKVq0os0Eo0Y,2711
50
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb,sha256=QjQ2aT8HF8mg8bGDzLExJWimtKBfvcRKOhwoQts5bHw,4850
51
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb,sha256=OX9i_Pk-j-vswnwjAHxGfCtdvn5wcv4WrkXy6gLF6-c,3154
52
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb,sha256=wzI5UoSCQvExOhWRpKzhEl21s-rbe7R3oE0AeIbN7fk,8056
53
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb,sha256=rDY1cJzA1MXQWM7fA-T72c5RR68KZTzbSdYYiX-J-yU,2813
54
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb,sha256=4vCJo_ODnUrqz8WUrk-Dtvt0BIWz6gfGbc43LASV62o,4806
55
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb,sha256=hc__yVZbRoSVy9sur02kfTCNE_TenLdHjYxG4iosT5U,22230
56
- noshot/data/ML TS XAI/ML/ML Lab H Sec/1. Iris Dataset (Softmax vs Sigmoid).ipynb,sha256=W8PwhK_SGvFoeO7Ox-rkKpFjIdvf6ln6taefb6cIzSY,7073
57
- noshot/data/ML TS XAI/ML/ML Lab H Sec/2. Student Dataset (Overfit vs Regularized).ipynb,sha256=BO1TuKB4v72r9NSdjz6ob-bzIgWDwX6S7RKlpCBcGDE,8450
58
- noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Categorical (Overfit vs Regularized).ipynb,sha256=FtUEsUGHxV1pFrQLU4INFFpHHe9VWlV-lDprhfUSCcI,8308
59
- noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Numerical (Overfit vs Regularized).ipynb,sha256=g5GCadTaFZxDVzN5JrWHXPcjrTuJ36Q-6rki4asGs_8,7855
60
- noshot/data/ML TS XAI/ML/ML Lab H Sec/4. Smart House System HMM.ipynb,sha256=AiHQ-0wJRkH68gz5fBF3Kt-iXvImSra4hNAKhiCv_eg,5282
61
- noshot/data/ML TS XAI/ML/ML Lab H Sec/5. Fraud Detection System HMM.ipynb,sha256=zwLOjk5pWZt113F7WXTzuUyUt5C1HMt0iWbz9VXQ8Cg,5505
62
- noshot/data/ML TS XAI/ML/ML Lab H Sec/insurance.csv,sha256=OI7_Z5VX0IrBn0Y9Al3l4LStxIJTfIRW0Zk014Yh_Uc,55628
63
- noshot/data/ML TS XAI/ML/ML Lab H Sec/iris1.data,sha256=b2CLcacxchYxm00ntNm8hOar1zTtp4crcaRYVp4mVsA,4551
64
- noshot/data/ML TS XAI/ML/ML Lab H Sec/student-mat.csv,sha256=dnzX-s54dAWJJsKLcXCHrV_rmncC9AVRAhN3yg15dGo,71609
65
- noshot/data/ML TS XAI/ML/ML Lab H Sec/student-por.csv,sha256=6nnPKJRApzZilddcT1eTL_i0dSqvIvgmhM4pi3R83bs,117234
66
- noshot/utils/__init__.py,sha256=QVrN1ZpzPXxZqDOqot5-t_ulFjZXVx7Cvr-Is9AK0po,110
67
- noshot/utils/shell_utils.py,sha256=-XfgYlNQlULa_rRJ3vsfTns4m_jiueGEj396J_y0Gus,2611
68
- noshot-11.0.0.dist-info/licenses/LICENSE.txt,sha256=fgCruaVm5cUjFGOeEoGIimT6nnUunBqcNZHpGzK8TSw,1086
69
- noshot-11.0.0.dist-info/METADATA,sha256=XK3d0s_DAtwG-YPjhwU2UiaSnoLvmVbhovIR1ilNZU0,2574
70
- noshot-11.0.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
71
- noshot-11.0.0.dist-info/top_level.txt,sha256=UL-c0HffdRwohz-y9icY_rnY48pQDdxGcBsgyCKh2Q8,7
72
- noshot-11.0.0.dist-info/RECORD,,