noshot 11.0.0__py3-none-any.whl → 13.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/1. DNN (Image Classification).ipynb +389 -0
- noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/2. DNN vs CNN.ipynb +516 -0
- noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/3. CNN (Object Detecrion).ipynb +259 -0
- noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/4. FCN (Image Segmentaion).ipynb +274 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.1 DNN (Pytorch).ipynb +164 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.2 DNN (Tensorflow).ipynb +94 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.3 DNN (Image Classification).ipynb +134 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/2.1 DNN vs CNN.ipynb +127 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/2.2 DNN vs CNN.ipynb +123 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/4. FCNN (Image Segmentation).ipynb +108 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/Lab Excercise (Training DNN).ipynb +646 -0
- noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/Load-Images.ipynb +553 -0
- noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex1.ipynb +216 -0
- noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex2.ipynb +195 -0
- noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex3.ipynb +427 -0
- noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex4.ipynb +186 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/DNN Ex No 1.ipynb +398 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Ex No 1 Build in dataset.ipynb +171 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Exp1-Short-DL_ANN_ImageClassification.ipynb +401 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/OR GATE .ipynb +8511 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp02/Exp2-Short-DL_CNN_ImageClassification.ipynb +737 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp03/DL-Ex3-RNN.ipynb +591 -0
- noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp04/Ex no 4.ipynb +551 -0
- noshot/main.py +3 -3
- {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/METADATA +1 -1
- noshot-13.0.0.dist-info/RECORD +32 -0
- noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb +0 -201
- noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb +0 -201
- noshot/data/ML TS XAI/ML/Json Codes/ML LAB CIA 2.ipynb +0 -409
- noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Balance Scale Dataset).ipynb +0 -147
- noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Rice Dataset).ipynb +0 -181
- noshot/data/ML TS XAI/ML/ML 1/10. HMM Veterbi.ipynb +0 -152
- noshot/data/ML TS XAI/ML/ML 1/2. KNN (Balance Scale Dataset).ipynb +0 -117
- noshot/data/ML TS XAI/ML/ML 1/2. KNN (Iris Dataset).ipynb +0 -156
- noshot/data/ML TS XAI/ML/ML 1/2. KNN (Sobar-72 Dataset).ipynb +0 -215
- noshot/data/ML TS XAI/ML/ML 1/3. LDA (Balance Scale Dataset).ipynb +0 -78
- noshot/data/ML TS XAI/ML/ML 1/3. LDA (NPHA Doctor Visits Dataset).ipynb +0 -114
- noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Machine Dataset).ipynb +0 -115
- noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Real Estate Dataset).ipynb +0 -146
- noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Magic04 Dataset).ipynb +0 -130
- noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Wine Dataset).ipynb +0 -112
- noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +0 -118
- noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Wine Dataset).ipynb +0 -89
- noshot/data/ML TS XAI/ML/ML 1/7. SVM (Rice Dataset).ipynb +0 -120
- noshot/data/ML TS XAI/ML/ML 1/8. FeedForward NN (Sobar72 Dataset).ipynb +0 -262
- noshot/data/ML TS XAI/ML/ML 1/9. CNN (Cifar10 Dataset).ipynb +0 -156
- noshot/data/ML TS XAI/ML/ML 2/1. PCA.ipynb +0 -162
- noshot/data/ML TS XAI/ML/ML 2/10. CNN.ipynb +0 -100
- noshot/data/ML TS XAI/ML/ML 2/11. HMM.ipynb +0 -336
- noshot/data/ML TS XAI/ML/ML 2/2. KNN.ipynb +0 -149
- noshot/data/ML TS XAI/ML/ML 2/3. LDA.ipynb +0 -132
- noshot/data/ML TS XAI/ML/ML 2/4. Linear Regression.ipynb +0 -86
- noshot/data/ML TS XAI/ML/ML 2/5. Logistic Regression.ipynb +0 -115
- noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Titanic).ipynb +0 -196
- noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Wine).ipynb +0 -98
- noshot/data/ML TS XAI/ML/ML 2/7. SVM Linear.ipynb +0 -109
- noshot/data/ML TS XAI/ML/ML 2/8. SVM Non-Linear.ipynb +0 -195
- noshot/data/ML TS XAI/ML/ML 2/9. FNN With Regularization.ipynb +0 -189
- noshot/data/ML TS XAI/ML/ML 2/9. FNN Without Regularization.ipynb +0 -197
- noshot/data/ML TS XAI/ML/ML 2/All in One Lab CIA 1 Q.ipynb +0 -1087
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb +0 -274
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb +0 -170
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb +0 -1087
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb +0 -178
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb +0 -185
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb +0 -106
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb +0 -177
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb +0 -195
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb +0 -267
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb +0 -104
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb +0 -109
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb +0 -220
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb +0 -99
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb +0 -211
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb +0 -99
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb +0 -118
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb +0 -603
- noshot/data/ML TS XAI/ML/ML Lab AllinOne.ipynb +0 -961
- noshot/data/ML TS XAI/ML/ML Lab H Sec/1. Iris Dataset (Softmax vs Sigmoid).ipynb +0 -231
- noshot/data/ML TS XAI/ML/ML Lab H Sec/2. Student Dataset (Overfit vs Regularized).ipynb +0 -269
- noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Categorical (Overfit vs Regularized).ipynb +0 -274
- noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Numerical (Overfit vs Regularized).ipynb +0 -263
- noshot/data/ML TS XAI/ML/ML Lab H Sec/4. Smart House System HMM.ipynb +0 -198
- noshot/data/ML TS XAI/ML/ML Lab H Sec/5. Fraud Detection System HMM.ipynb +0 -201
- noshot/data/ML TS XAI/ML/ML Lab H Sec/insurance.csv +0 -1339
- noshot/data/ML TS XAI/ML/ML Lab H Sec/iris1.data +0 -151
- noshot/data/ML TS XAI/ML/ML Lab H Sec/student-mat.csv +0 -396
- noshot/data/ML TS XAI/ML/ML Lab H Sec/student-por.csv +0 -650
- noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +0 -691
- noshot-11.0.0.dist-info/RECORD +0 -72
- {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/WHEEL +0 -0
- {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/licenses/LICENSE.txt +0 -0
- {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/top_level.txt +0 -0
@@ -1,1087 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "markdown",
|
5
|
-
"metadata": {
|
6
|
-
"id": "R7euuRFaCdIZ"
|
7
|
-
},
|
8
|
-
"source": [
|
9
|
-
"### ***Required Packages***"
|
10
|
-
]
|
11
|
-
},
|
12
|
-
{
|
13
|
-
"cell_type": "code",
|
14
|
-
"execution_count": null,
|
15
|
-
"metadata": {
|
16
|
-
"executionInfo": {
|
17
|
-
"elapsed": 6,
|
18
|
-
"status": "ok",
|
19
|
-
"timestamp": 1741051571358,
|
20
|
-
"user": {
|
21
|
-
"displayName": "Jaison A",
|
22
|
-
"userId": "07006398627763032071"
|
23
|
-
},
|
24
|
-
"user_tz": -330
|
25
|
-
},
|
26
|
-
"id": "c5Fdgw1I3gJP"
|
27
|
-
},
|
28
|
-
"outputs": [],
|
29
|
-
"source": [
|
30
|
-
"import pandas as pd\n",
|
31
|
-
"import numpy as np\n",
|
32
|
-
"import matplotlib.pyplot as plt\n",
|
33
|
-
"from sklearn.neighbors import KNeighborsClassifier\n",
|
34
|
-
"from sklearn.linear_model import LogisticRegression,LinearRegression\n",
|
35
|
-
"from sklearn.cluster import KMeans\n",
|
36
|
-
"from sklearn.model_selection import train_test_split\n",
|
37
|
-
"from sklearn.metrics import accuracy_score,confusion_matrix,classification_report,f1_score,r2_score,adjusted_rand_score\n",
|
38
|
-
"from sklearn.decomposition import PCA\n",
|
39
|
-
"from sklearn.preprocessing import LabelEncoder,MinMaxScaler,StandardScaler\n",
|
40
|
-
"from statsmodels.stats.outliers_influence import variance_inflation_factor\n",
|
41
|
-
"import seaborn as sns"
|
42
|
-
]
|
43
|
-
},
|
44
|
-
{
|
45
|
-
"cell_type": "code",
|
46
|
-
"execution_count": null,
|
47
|
-
"metadata": {
|
48
|
-
"colab": {
|
49
|
-
"base_uri": "https://localhost:8080/"
|
50
|
-
},
|
51
|
-
"executionInfo": {
|
52
|
-
"elapsed": 2335,
|
53
|
-
"status": "ok",
|
54
|
-
"timestamp": 1741051573697,
|
55
|
-
"user": {
|
56
|
-
"displayName": "Jaison A",
|
57
|
-
"userId": "07006398627763032071"
|
58
|
-
},
|
59
|
-
"user_tz": -330
|
60
|
-
},
|
61
|
-
"id": "CZiiMp0u4QC1",
|
62
|
-
"outputId": "a0067b93-e036-4961-e8c6-31a318689332"
|
63
|
-
},
|
64
|
-
"outputs": [],
|
65
|
-
"source": [
|
66
|
-
"from google.colab import drive\n",
|
67
|
-
"drive.mount('/content/drive')"
|
68
|
-
]
|
69
|
-
},
|
70
|
-
{
|
71
|
-
"cell_type": "markdown",
|
72
|
-
"metadata": {
|
73
|
-
"id": "qCogj3nw4UUy"
|
74
|
-
},
|
75
|
-
"source": [
|
76
|
-
"### ***Question_1***"
|
77
|
-
]
|
78
|
-
},
|
79
|
-
{
|
80
|
-
"cell_type": "code",
|
81
|
-
"execution_count": null,
|
82
|
-
"metadata": {
|
83
|
-
"colab": {
|
84
|
-
"base_uri": "https://localhost:8080/",
|
85
|
-
"height": 0
|
86
|
-
},
|
87
|
-
"executionInfo": {
|
88
|
-
"elapsed": 9,
|
89
|
-
"status": "ok",
|
90
|
-
"timestamp": 1741051573708,
|
91
|
-
"user": {
|
92
|
-
"displayName": "Jaison A",
|
93
|
-
"userId": "07006398627763032071"
|
94
|
-
},
|
95
|
-
"user_tz": -330
|
96
|
-
},
|
97
|
-
"id": "G9xT9oSK4R7q",
|
98
|
-
"outputId": "e95932f3-44ae-4401-8723-860a9e41dd21"
|
99
|
-
},
|
100
|
-
"outputs": [],
|
101
|
-
"source": [
|
102
|
-
"df=pd.read_csv('/content/drive/MyDrive/sem 6/Lab/ML Lab/SOC_LAB1/dataset/KNN/heart_disease_uci.csv')\n",
|
103
|
-
"display(df.head())"
|
104
|
-
]
|
105
|
-
},
|
106
|
-
{
|
107
|
-
"cell_type": "markdown",
|
108
|
-
"metadata": {
|
109
|
-
"id": "xDAWQGs54t31"
|
110
|
-
},
|
111
|
-
"source": [
|
112
|
-
"**Handle Missing values**"
|
113
|
-
]
|
114
|
-
},
|
115
|
-
{
|
116
|
-
"cell_type": "code",
|
117
|
-
"execution_count": null,
|
118
|
-
"metadata": {
|
119
|
-
"colab": {
|
120
|
-
"base_uri": "https://localhost:8080/"
|
121
|
-
},
|
122
|
-
"executionInfo": {
|
123
|
-
"elapsed": 16,
|
124
|
-
"status": "ok",
|
125
|
-
"timestamp": 1741051573727,
|
126
|
-
"user": {
|
127
|
-
"displayName": "Jaison A",
|
128
|
-
"userId": "07006398627763032071"
|
129
|
-
},
|
130
|
-
"user_tz": -330
|
131
|
-
},
|
132
|
-
"id": "8w3eecNs4xU8",
|
133
|
-
"outputId": "24fdd56c-0327-4233-ae56-3e6a7eb41849"
|
134
|
-
},
|
135
|
-
"outputs": [],
|
136
|
-
"source": [
|
137
|
-
"features=['id','age','sex','dataset','cp','trestbps','chol','fbs','restecg','thalch','exang','oldpeak','slope','ca','thal']\n",
|
138
|
-
"target=['num']\n",
|
139
|
-
"\n",
|
140
|
-
"le=LabelEncoder()\n",
|
141
|
-
"df['sex']=le.fit_transform(df['sex'])\n",
|
142
|
-
"df['dataset']=le.fit_transform(df['dataset'])\n",
|
143
|
-
"df['cp']=le.fit_transform(df['cp'])\n",
|
144
|
-
"df['fbs']=le.fit_transform(df['fbs'])\n",
|
145
|
-
"df['restecg']=le.fit_transform(df['restecg'])\n",
|
146
|
-
"df['exang']=le.fit_transform(df['exang'])\n",
|
147
|
-
"df['slope']=le.fit_transform(df['slope'])\n",
|
148
|
-
"df['thal']=le.fit_transform(df['thal'])\n",
|
149
|
-
"\n",
|
150
|
-
"\n",
|
151
|
-
"\n",
|
152
|
-
"df['trestbps']=df['trestbps'].fillna(df['trestbps'].mean())\n",
|
153
|
-
"df['chol']=df['chol'].fillna(df['chol'].mean())\n",
|
154
|
-
"df['fbs']=df['fbs'].fillna(df['fbs'])\n",
|
155
|
-
"df['restecg']=df['restecg'].fillna(df['restecg'])\n",
|
156
|
-
"df['thalch']=df['thalch'].fillna(df['thalch'].mean())\n",
|
157
|
-
"df['exang']=df['exang'].fillna(df['exang'])\n",
|
158
|
-
"df['oldpeak']=df['oldpeak'].fillna(df['oldpeak'].mean())\n",
|
159
|
-
"df['thal']=df['thal'].fillna(df['thal'].mean())\n",
|
160
|
-
"df['ca']=df['ca'].fillna(df['ca'].mean())\n",
|
161
|
-
"df['slope']=df['slope'].fillna(df['slope'].mean())\n",
|
162
|
-
"\n",
|
163
|
-
"print(df.isnull().sum())"
|
164
|
-
]
|
165
|
-
},
|
166
|
-
{
|
167
|
-
"cell_type": "markdown",
|
168
|
-
"metadata": {
|
169
|
-
"id": "zCvcMIjt7jaL"
|
170
|
-
},
|
171
|
-
"source": [
|
172
|
-
"**Data Split ,Scaling ,KNN Model and Metrics**"
|
173
|
-
]
|
174
|
-
},
|
175
|
-
{
|
176
|
-
"cell_type": "code",
|
177
|
-
"execution_count": null,
|
178
|
-
"metadata": {
|
179
|
-
"colab": {
|
180
|
-
"base_uri": "https://localhost:8080/"
|
181
|
-
},
|
182
|
-
"executionInfo": {
|
183
|
-
"elapsed": 285,
|
184
|
-
"status": "ok",
|
185
|
-
"timestamp": 1741051574014,
|
186
|
-
"user": {
|
187
|
-
"displayName": "Jaison A",
|
188
|
-
"userId": "07006398627763032071"
|
189
|
-
},
|
190
|
-
"user_tz": -330
|
191
|
-
},
|
192
|
-
"id": "8e2BPGlM7fGJ",
|
193
|
-
"outputId": "a135b7ff-b7d2-4872-b54f-c6910e75c2d8"
|
194
|
-
},
|
195
|
-
"outputs": [],
|
196
|
-
"source": [
|
197
|
-
"x=df[features]\n",
|
198
|
-
"y=df[target]\n",
|
199
|
-
"\n",
|
200
|
-
"X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)\n",
|
201
|
-
"\n",
|
202
|
-
"\n",
|
203
|
-
"scalers={'MinMax':MinMaxScaler(),'Standard':StandardScaler()}\n",
|
204
|
-
"\n",
|
205
|
-
"for name,scaler in scalers.items():\n",
|
206
|
-
" print(f'Applying {name} Scaling : ')\n",
|
207
|
-
" scaled_x_train=scaler.fit_transform(X_train)\n",
|
208
|
-
" scaled_x_test=scaler.transform(X_test)\n",
|
209
|
-
" for k in [3,5,7,9]:\n",
|
210
|
-
" knn=KNeighborsClassifier(n_neighbors=k)\n",
|
211
|
-
" knn.fit(scaled_x_train,y_train)\n",
|
212
|
-
" y_pred=knn.predict(scaled_x_test)\n",
|
213
|
-
" print(f\"K : {k}\")\n",
|
214
|
-
" print(f'Accuracy Score : {accuracy_score(y_test,y_pred)}')\n",
|
215
|
-
" print(f'Confusion Matrix : \\n{confusion_matrix(y_test,y_pred)}')\n",
|
216
|
-
" print(f'Classification Report : \\n{classification_report(y_test,y_pred)}')"
|
217
|
-
]
|
218
|
-
},
|
219
|
-
{
|
220
|
-
"cell_type": "markdown",
|
221
|
-
"metadata": {
|
222
|
-
"id": "ytnBNsap7xZZ"
|
223
|
-
},
|
224
|
-
"source": [
|
225
|
-
"### ***Question_2***"
|
226
|
-
]
|
227
|
-
},
|
228
|
-
{
|
229
|
-
"cell_type": "code",
|
230
|
-
"execution_count": null,
|
231
|
-
"metadata": {
|
232
|
-
"colab": {
|
233
|
-
"base_uri": "https://localhost:8080/",
|
234
|
-
"height": 0
|
235
|
-
},
|
236
|
-
"executionInfo": {
|
237
|
-
"elapsed": 3491,
|
238
|
-
"status": "ok",
|
239
|
-
"timestamp": 1741051577507,
|
240
|
-
"user": {
|
241
|
-
"displayName": "Jaison A",
|
242
|
-
"userId": "07006398627763032071"
|
243
|
-
},
|
244
|
-
"user_tz": -330
|
245
|
-
},
|
246
|
-
"id": "wdzmD1O-7wm7",
|
247
|
-
"outputId": "b3424de8-6d74-4f0c-f0e8-eaad63772df9"
|
248
|
-
},
|
249
|
-
"outputs": [],
|
250
|
-
"source": [
|
251
|
-
"df=pd.read_excel('/content/drive/MyDrive/sem 6/Lab/ML Lab/SOC_LAB1/dataset/KNN/Telco_customer_churn.xlsx')\n",
|
252
|
-
"display(df.head())"
|
253
|
-
]
|
254
|
-
},
|
255
|
-
{
|
256
|
-
"cell_type": "markdown",
|
257
|
-
"metadata": {
|
258
|
-
"id": "AjA-tcxd-12r"
|
259
|
-
},
|
260
|
-
"source": [
|
261
|
-
"**Handle Missing Values**"
|
262
|
-
]
|
263
|
-
},
|
264
|
-
{
|
265
|
-
"cell_type": "code",
|
266
|
-
"execution_count": null,
|
267
|
-
"metadata": {
|
268
|
-
"colab": {
|
269
|
-
"base_uri": "https://localhost:8080/"
|
270
|
-
},
|
271
|
-
"executionInfo": {
|
272
|
-
"elapsed": 9,
|
273
|
-
"status": "ok",
|
274
|
-
"timestamp": 1741051577509,
|
275
|
-
"user": {
|
276
|
-
"displayName": "Jaison A",
|
277
|
-
"userId": "07006398627763032071"
|
278
|
-
},
|
279
|
-
"user_tz": -330
|
280
|
-
},
|
281
|
-
"id": "YWaaBkbf85Qp",
|
282
|
-
"outputId": "2a526a88-5be8-4e91-b6a5-80f36f48f8de"
|
283
|
-
},
|
284
|
-
"outputs": [],
|
285
|
-
"source": [
|
286
|
-
"df.drop(columns=['Churn Reason','CustomerID'],inplace=True)\n",
|
287
|
-
"print(df.isnull().sum())"
|
288
|
-
]
|
289
|
-
},
|
290
|
-
{
|
291
|
-
"cell_type": "markdown",
|
292
|
-
"metadata": {
|
293
|
-
"id": "S-OTOJ83-twv"
|
294
|
-
},
|
295
|
-
"source": [
|
296
|
-
"**Encode Data**"
|
297
|
-
]
|
298
|
-
},
|
299
|
-
{
|
300
|
-
"cell_type": "code",
|
301
|
-
"execution_count": null,
|
302
|
-
"metadata": {
|
303
|
-
"colab": {
|
304
|
-
"base_uri": "https://localhost:8080/",
|
305
|
-
"height": 0
|
306
|
-
},
|
307
|
-
"executionInfo": {
|
308
|
-
"elapsed": 61,
|
309
|
-
"status": "ok",
|
310
|
-
"timestamp": 1741051577564,
|
311
|
-
"user": {
|
312
|
-
"displayName": "Jaison A",
|
313
|
-
"userId": "07006398627763032071"
|
314
|
-
},
|
315
|
-
"user_tz": -330
|
316
|
-
},
|
317
|
-
"id": "gcWGzUiV9g1l",
|
318
|
-
"outputId": "5d78e4e4-d3dc-4609-ccfc-df783d1de7ed"
|
319
|
-
},
|
320
|
-
"outputs": [],
|
321
|
-
"source": [
|
322
|
-
"le=LabelEncoder()\n",
|
323
|
-
"for col in df.select_dtypes(include=['object']).columns:\n",
|
324
|
-
" df[col]=df[col].astype('str')\n",
|
325
|
-
" df[col]=le.fit_transform(df[col])\n",
|
326
|
-
"\n",
|
327
|
-
"display(df.head())"
|
328
|
-
]
|
329
|
-
},
|
330
|
-
{
|
331
|
-
"cell_type": "markdown",
|
332
|
-
"metadata": {
|
333
|
-
"id": "hO_W1tgT-3MV"
|
334
|
-
},
|
335
|
-
"source": [
|
336
|
-
"**Data Split , Model Training and Metrics**"
|
337
|
-
]
|
338
|
-
},
|
339
|
-
{
|
340
|
-
"cell_type": "code",
|
341
|
-
"execution_count": null,
|
342
|
-
"metadata": {
|
343
|
-
"colab": {
|
344
|
-
"base_uri": "https://localhost:8080/"
|
345
|
-
},
|
346
|
-
"executionInfo": {
|
347
|
-
"elapsed": 239,
|
348
|
-
"status": "ok",
|
349
|
-
"timestamp": 1741051577801,
|
350
|
-
"user": {
|
351
|
-
"displayName": "Jaison A",
|
352
|
-
"userId": "07006398627763032071"
|
353
|
-
},
|
354
|
-
"user_tz": -330
|
355
|
-
},
|
356
|
-
"id": "-8dwgDMc-95x",
|
357
|
-
"outputId": "725916d8-f062-4bf7-b3e4-57b91e7a3f51"
|
358
|
-
},
|
359
|
-
"outputs": [],
|
360
|
-
"source": [
|
361
|
-
"X_train,X_test,y_train,y_test=train_test_split(df.drop(columns=['Churn Value']),df['Churn Value'],test_size=0.2,random_state=42)\n",
|
362
|
-
"\n",
|
363
|
-
"scalers=StandardScaler()\n",
|
364
|
-
"\n",
|
365
|
-
"X_train_Scaled=scalers.fit_transform(X_train)\n",
|
366
|
-
"X_test_Scaled=scalers.transform(X_test)\n",
|
367
|
-
"\n",
|
368
|
-
"knn=KNeighborsClassifier(n_neighbors=5)\n",
|
369
|
-
"knn.fit(X_train_Scaled,y_train)\n",
|
370
|
-
"y_pred_knn=knn.predict(X_test_Scaled)\n",
|
371
|
-
"\n",
|
372
|
-
"logreg=LogisticRegression()\n",
|
373
|
-
"logreg.fit(X_train_Scaled,y_train)\n",
|
374
|
-
"y_pred_logreg=logreg.predict(X_test_Scaled)\n",
|
375
|
-
"\n",
|
376
|
-
"print(f'KNN Accuracy : {accuracy_score(y_test,y_pred_knn)}')\n",
|
377
|
-
"print(f'Logistic Regression Accuracy : {accuracy_score(y_test,y_pred_logreg)}')\n",
|
378
|
-
"\n",
|
379
|
-
"print(f\"KNN f1 Score : {f1_score(y_test,y_pred_knn)}\")\n",
|
380
|
-
"print(f\"Logistic Regression f1 Score : {f1_score(y_test,y_pred_logreg)}\")\n",
|
381
|
-
"\n",
|
382
|
-
"print(f\"KNN Classification Report : \\n{classification_report(y_test,y_pred_knn)}\")\n",
|
383
|
-
"print(f\"Logistic Regression Classification Report : \\n{classification_report(y_test,y_pred_logreg)}\")"
|
384
|
-
]
|
385
|
-
},
|
386
|
-
{
|
387
|
-
"cell_type": "markdown",
|
388
|
-
"metadata": {
|
389
|
-
"id": "FU9VMoYaByfs"
|
390
|
-
},
|
391
|
-
"source": [
|
392
|
-
"### ***Question 3***"
|
393
|
-
]
|
394
|
-
},
|
395
|
-
{
|
396
|
-
"cell_type": "code",
|
397
|
-
"execution_count": null,
|
398
|
-
"metadata": {
|
399
|
-
"colab": {
|
400
|
-
"base_uri": "https://localhost:8080/",
|
401
|
-
"height": 0
|
402
|
-
},
|
403
|
-
"executionInfo": {
|
404
|
-
"elapsed": 2763,
|
405
|
-
"status": "ok",
|
406
|
-
"timestamp": 1741051580562,
|
407
|
-
"user": {
|
408
|
-
"displayName": "Jaison A",
|
409
|
-
"userId": "07006398627763032071"
|
410
|
-
},
|
411
|
-
"user_tz": -330
|
412
|
-
},
|
413
|
-
"id": "WnZ6_jhgB1I7",
|
414
|
-
"outputId": "73b756b8-0fc3-45aa-c067-22ca9d42cefa"
|
415
|
-
},
|
416
|
-
"outputs": [],
|
417
|
-
"source": [
|
418
|
-
"df=pd.read_csv('/content/drive/MyDrive/sem 6/Lab/ML Lab/SOC_LAB1/dataset/PCA/all_stocks_5yr.csv')\n",
|
419
|
-
"display(df.head())"
|
420
|
-
]
|
421
|
-
},
|
422
|
-
{
|
423
|
-
"cell_type": "code",
|
424
|
-
"execution_count": null,
|
425
|
-
"metadata": {
|
426
|
-
"executionInfo": {
|
427
|
-
"elapsed": 126,
|
428
|
-
"status": "ok",
|
429
|
-
"timestamp": 1741051580686,
|
430
|
-
"user": {
|
431
|
-
"displayName": "Jaison A",
|
432
|
-
"userId": "07006398627763032071"
|
433
|
-
},
|
434
|
-
"user_tz": -330
|
435
|
-
},
|
436
|
-
"id": "3nU3DybvD0kt"
|
437
|
-
},
|
438
|
-
"outputs": [],
|
439
|
-
"source": [
|
440
|
-
"features = ['open', 'high', 'low', 'close', 'volume']\n",
|
441
|
-
"data = df[features]\n",
|
442
|
-
"\n",
|
443
|
-
"# Handle missing values if any\n",
|
444
|
-
"data = data.dropna()\n",
|
445
|
-
"\n",
|
446
|
-
"# Standardize the data\n",
|
447
|
-
"scaler = StandardScaler()\n",
|
448
|
-
"data_scaled = scaler.fit_transform(data)\n"
|
449
|
-
]
|
450
|
-
},
|
451
|
-
{
|
452
|
-
"cell_type": "code",
|
453
|
-
"execution_count": null,
|
454
|
-
"metadata": {
|
455
|
-
"colab": {
|
456
|
-
"base_uri": "https://localhost:8080/"
|
457
|
-
},
|
458
|
-
"executionInfo": {
|
459
|
-
"elapsed": 83,
|
460
|
-
"status": "ok",
|
461
|
-
"timestamp": 1741051580771,
|
462
|
-
"user": {
|
463
|
-
"displayName": "Jaison A",
|
464
|
-
"userId": "07006398627763032071"
|
465
|
-
},
|
466
|
-
"user_tz": -330
|
467
|
-
},
|
468
|
-
"id": "PPghwxj_D3QT",
|
469
|
-
"outputId": "d4c39545-9879-4464-fc35-3d57ec0e9763"
|
470
|
-
},
|
471
|
-
"outputs": [],
|
472
|
-
"source": [
|
473
|
-
"# Perform PCA and retain 90% variance\n",
|
474
|
-
"pca = PCA(n_components=0.90)\n",
|
475
|
-
"data_pca = pca.fit_transform(data_scaled)\n",
|
476
|
-
"\n",
|
477
|
-
"# Number of components required to retain 90% variance\n",
|
478
|
-
"num_components = pca.n_components_\n",
|
479
|
-
"print(f'Number of components to retain 90% variance: {num_components}')"
|
480
|
-
]
|
481
|
-
},
|
482
|
-
{
|
483
|
-
"cell_type": "code",
|
484
|
-
"execution_count": null,
|
485
|
-
"metadata": {
|
486
|
-
"colab": {
|
487
|
-
"base_uri": "https://localhost:8080/",
|
488
|
-
"height": 0
|
489
|
-
},
|
490
|
-
"executionInfo": {
|
491
|
-
"elapsed": 393,
|
492
|
-
"status": "ok",
|
493
|
-
"timestamp": 1741051581177,
|
494
|
-
"user": {
|
495
|
-
"displayName": "Jaison A",
|
496
|
-
"userId": "07006398627763032071"
|
497
|
-
},
|
498
|
-
"user_tz": -330
|
499
|
-
},
|
500
|
-
"id": "WfqAFub0EAhg",
|
501
|
-
"outputId": "54331b4c-87fe-40f5-a68c-1673bdacdc9d"
|
502
|
-
},
|
503
|
-
"outputs": [],
|
504
|
-
"source": [
|
505
|
-
"# Plot variance explained by each component\n",
|
506
|
-
"plt.figure(figsize=(8, 5))\n",
|
507
|
-
"plt.plot(range(1, num_components + 1), np.cumsum(pca.explained_variance_ratio_), marker='o', linestyle='--')\n",
|
508
|
-
"plt.xlabel('Number of Components')\n",
|
509
|
-
"plt.ylabel('Cumulative Explained Variance')\n",
|
510
|
-
"plt.title('Explained Variance by Components')\n",
|
511
|
-
"plt.show()"
|
512
|
-
]
|
513
|
-
},
|
514
|
-
{
|
515
|
-
"cell_type": "code",
|
516
|
-
"execution_count": null,
|
517
|
-
"metadata": {
|
518
|
-
"colab": {
|
519
|
-
"base_uri": "https://localhost:8080/",
|
520
|
-
"height": 0
|
521
|
-
},
|
522
|
-
"executionInfo": {
|
523
|
-
"elapsed": 52676,
|
524
|
-
"status": "ok",
|
525
|
-
"timestamp": 1741051633865,
|
526
|
-
"user": {
|
527
|
-
"displayName": "Jaison A",
|
528
|
-
"userId": "07006398627763032071"
|
529
|
-
},
|
530
|
-
"user_tz": -330
|
531
|
-
},
|
532
|
-
"id": "bzEs9MZnEENb",
|
533
|
-
"outputId": "073b9e4a-fd78-4086-92fa-70dad35ed944"
|
534
|
-
},
|
535
|
-
"outputs": [],
|
536
|
-
"source": [
|
537
|
-
"# Scatter plot before PCA\n",
|
538
|
-
"sns.pairplot(pd.DataFrame(data_scaled, columns=features), diag_kind='kde')\n",
|
539
|
-
"plt.suptitle('Stock Data Before PCA')\n",
|
540
|
-
"plt.show()\n"
|
541
|
-
]
|
542
|
-
},
|
543
|
-
{
|
544
|
-
"cell_type": "code",
|
545
|
-
"execution_count": null,
|
546
|
-
"metadata": {
|
547
|
-
"colab": {
|
548
|
-
"base_uri": "https://localhost:8080/",
|
549
|
-
"height": 0
|
550
|
-
},
|
551
|
-
"executionInfo": {
|
552
|
-
"elapsed": 1697,
|
553
|
-
"status": "ok",
|
554
|
-
"timestamp": 1741051635567,
|
555
|
-
"user": {
|
556
|
-
"displayName": "Jaison A",
|
557
|
-
"userId": "07006398627763032071"
|
558
|
-
},
|
559
|
-
"user_tz": -330
|
560
|
-
},
|
561
|
-
"id": "LvNwIOpeEImM",
|
562
|
-
"outputId": "16fcf1f3-b788-4ead-c672-b8c25dddd7e6"
|
563
|
-
},
|
564
|
-
"outputs": [],
|
565
|
-
"source": [
|
566
|
-
"# Scatter plot after PCA\n",
|
567
|
-
"plt.scatter(data_pca[:, 0], data_pca[:, 1], alpha=0.5)\n",
|
568
|
-
"plt.xlabel('Principal Component 1')\n",
|
569
|
-
"plt.ylabel('Principal Component 2')\n",
|
570
|
-
"plt.title('Stock Data After PCA')\n",
|
571
|
-
"plt.show()"
|
572
|
-
]
|
573
|
-
},
|
574
|
-
{
|
575
|
-
"cell_type": "code",
|
576
|
-
"execution_count": null,
|
577
|
-
"metadata": {
|
578
|
-
"colab": {
|
579
|
-
"base_uri": "https://localhost:8080/"
|
580
|
-
},
|
581
|
-
"executionInfo": {
|
582
|
-
"elapsed": 7873,
|
583
|
-
"status": "ok",
|
584
|
-
"timestamp": 1741051643443,
|
585
|
-
"user": {
|
586
|
-
"displayName": "Jaison A",
|
587
|
-
"userId": "07006398627763032071"
|
588
|
-
},
|
589
|
-
"user_tz": -330
|
590
|
-
},
|
591
|
-
"id": "V1WmxZ0lEl99",
|
592
|
-
"outputId": "7eff00e8-16ed-4879-f56e-8905540a0fee"
|
593
|
-
},
|
594
|
-
"outputs": [],
|
595
|
-
"source": [
|
596
|
-
"# Create binary classification target (1 if price increases, 0 if it decreases)\n",
|
597
|
-
"df['price_movement'] = np.where(df['close'].shift(-1) > df['close'], 1, 0)\n",
|
598
|
-
"df = df.dropna() # Remove NaNs that result from shift operation\n",
|
599
|
-
"y = df['price_movement'].values\n",
|
600
|
-
"\n",
|
601
|
-
"# Split data into train and test sets\n",
|
602
|
-
"X_train, X_test, y_train, y_test = train_test_split(data_pca, y, test_size=0.2, random_state=42)\n",
|
603
|
-
"\n",
|
604
|
-
"# Apply KNN classification\n",
|
605
|
-
"knn = KNeighborsClassifier(n_neighbors=5)\n",
|
606
|
-
"knn.fit(X_train, y_train)\n",
|
607
|
-
"y_pred = knn.predict(X_test)\n",
|
608
|
-
"\n",
|
609
|
-
"# Evaluate KNN classification performance\n",
|
610
|
-
"accuracy = accuracy_score(y_test, y_pred)\n",
|
611
|
-
"print(f'KNN Classification Accuracy: {accuracy}')\n",
|
612
|
-
"print('Classification Report:\\n', classification_report(y_test, y_pred))"
|
613
|
-
]
|
614
|
-
},
|
615
|
-
{
|
616
|
-
"cell_type": "markdown",
|
617
|
-
"metadata": {
|
618
|
-
"id": "vugOPwlBFzmb"
|
619
|
-
},
|
620
|
-
"source": [
|
621
|
-
"### ***Question 4***"
|
622
|
-
]
|
623
|
-
},
|
624
|
-
{
|
625
|
-
"cell_type": "code",
|
626
|
-
"execution_count": null,
|
627
|
-
"metadata": {
|
628
|
-
"colab": {
|
629
|
-
"base_uri": "https://localhost:8080/",
|
630
|
-
"height": 0
|
631
|
-
},
|
632
|
-
"executionInfo": {
|
633
|
-
"elapsed": 9,
|
634
|
-
"status": "ok",
|
635
|
-
"timestamp": 1741051643450,
|
636
|
-
"user": {
|
637
|
-
"displayName": "Jaison A",
|
638
|
-
"userId": "07006398627763032071"
|
639
|
-
},
|
640
|
-
"user_tz": -330
|
641
|
-
},
|
642
|
-
"id": "T7-4PahjFzED",
|
643
|
-
"outputId": "90198191-aa59-469a-c25f-c2784588917e"
|
644
|
-
},
|
645
|
-
"outputs": [],
|
646
|
-
"source": [
|
647
|
-
"df=pd.read_csv('/content/drive/MyDrive/sem 6/Lab/ML Lab/SOC_LAB1/dataset/KNN/heart_disease_uci.csv')\n",
|
648
|
-
"display(df.head())\n",
|
649
|
-
"df.info()"
|
650
|
-
]
|
651
|
-
},
|
652
|
-
{
|
653
|
-
"cell_type": "code",
|
654
|
-
"execution_count": null,
|
655
|
-
"metadata": {
|
656
|
-
"colab": {
|
657
|
-
"base_uri": "https://localhost:8080/",
|
658
|
-
"height": 0
|
659
|
-
},
|
660
|
-
"executionInfo": {
|
661
|
-
"elapsed": 28,
|
662
|
-
"status": "ok",
|
663
|
-
"timestamp": 1741051643481,
|
664
|
-
"user": {
|
665
|
-
"displayName": "Jaison A",
|
666
|
-
"userId": "07006398627763032071"
|
667
|
-
},
|
668
|
-
"user_tz": -330
|
669
|
-
},
|
670
|
-
"id": "kRJLOdSDnaH3",
|
671
|
-
"outputId": "7f4ca5b9-dd81-4b25-f449-7ab5837dd475"
|
672
|
-
},
|
673
|
-
"outputs": [],
|
674
|
-
"source": [
|
675
|
-
"df=df.drop(columns=['id','ca'])\n",
|
676
|
-
"display(df.head())\n",
|
677
|
-
"\n",
|
678
|
-
"for col in df.select_dtypes(include=['object']).columns:\n",
|
679
|
-
" df[col]=df[col].astype('str')\n",
|
680
|
-
" df[col]=LabelEncoder().fit_transform(df[col])\n",
|
681
|
-
"\n",
|
682
|
-
"display(df.head())"
|
683
|
-
]
|
684
|
-
},
|
685
|
-
{
|
686
|
-
"cell_type": "code",
|
687
|
-
"execution_count": null,
|
688
|
-
"metadata": {
|
689
|
-
"colab": {
|
690
|
-
"base_uri": "https://localhost:8080/"
|
691
|
-
},
|
692
|
-
"executionInfo": {
|
693
|
-
"elapsed": 7,
|
694
|
-
"status": "ok",
|
695
|
-
"timestamp": 1741051643490,
|
696
|
-
"user": {
|
697
|
-
"displayName": "Jaison A",
|
698
|
-
"userId": "07006398627763032071"
|
699
|
-
},
|
700
|
-
"user_tz": -330
|
701
|
-
},
|
702
|
-
"id": "FPX8T0AUo4Fq",
|
703
|
-
"outputId": "3fc16702-dbb5-4472-b04c-7993d26aa753"
|
704
|
-
},
|
705
|
-
"outputs": [],
|
706
|
-
"source": [
|
707
|
-
"print(df.isnull().sum())"
|
708
|
-
]
|
709
|
-
},
|
710
|
-
{
|
711
|
-
"cell_type": "code",
|
712
|
-
"execution_count": null,
|
713
|
-
"metadata": {
|
714
|
-
"executionInfo": {
|
715
|
-
"elapsed": 2,
|
716
|
-
"status": "ok",
|
717
|
-
"timestamp": 1741051643494,
|
718
|
-
"user": {
|
719
|
-
"displayName": "Jaison A",
|
720
|
-
"userId": "07006398627763032071"
|
721
|
-
},
|
722
|
-
"user_tz": -330
|
723
|
-
},
|
724
|
-
"id": "MfxJ653BpOt7"
|
725
|
-
},
|
726
|
-
"outputs": [],
|
727
|
-
"source": [
|
728
|
-
"df['trestbps']=df['trestbps'].fillna(df['trestbps'].mean())\n",
|
729
|
-
"df['chol']=df['chol'].fillna(df['chol'].mean())\n",
|
730
|
-
"df['thalch']=df['thalch'].fillna(df['thalch'].mean())\n",
|
731
|
-
"df['oldpeak']=df['oldpeak'].fillna(df['oldpeak'].mean())"
|
732
|
-
]
|
733
|
-
},
|
734
|
-
{
|
735
|
-
"cell_type": "markdown",
|
736
|
-
"metadata": {
|
737
|
-
"id": "vYZLZ6dyp0uy"
|
738
|
-
},
|
739
|
-
"source": [
|
740
|
-
"**Without PCA**"
|
741
|
-
]
|
742
|
-
},
|
743
|
-
{
|
744
|
-
"cell_type": "code",
|
745
|
-
"execution_count": null,
|
746
|
-
"metadata": {
|
747
|
-
"colab": {
|
748
|
-
"base_uri": "https://localhost:8080/"
|
749
|
-
},
|
750
|
-
"executionInfo": {
|
751
|
-
"elapsed": 48,
|
752
|
-
"status": "ok",
|
753
|
-
"timestamp": 1741051643551,
|
754
|
-
"user": {
|
755
|
-
"displayName": "Jaison A",
|
756
|
-
"userId": "07006398627763032071"
|
757
|
-
},
|
758
|
-
"user_tz": -330
|
759
|
-
},
|
760
|
-
"id": "tKjY9CGjtW_Q",
|
761
|
-
"outputId": "506e2397-7fc4-4332-f7ac-581ba4a91be7"
|
762
|
-
},
|
763
|
-
"outputs": [],
|
764
|
-
"source": [
|
765
|
-
"kmeans=KMeans(n_clusters=5,random_state=42,n_init=10)\n",
|
766
|
-
"y_pred_kmeans=kmeans.fit_predict(df.drop(columns=['num']))\n",
|
767
|
-
"\n",
|
768
|
-
"ari=adjusted_rand_score(df['num'],y_pred_kmeans)\n",
|
769
|
-
"print(ari)"
|
770
|
-
]
|
771
|
-
},
|
772
|
-
{
|
773
|
-
"cell_type": "markdown",
|
774
|
-
"metadata": {
|
775
|
-
"id": "deVfVji5uPnB"
|
776
|
-
},
|
777
|
-
"source": [
|
778
|
-
"**With PCA**"
|
779
|
-
]
|
780
|
-
},
|
781
|
-
{
|
782
|
-
"cell_type": "code",
|
783
|
-
"execution_count": null,
|
784
|
-
"metadata": {
|
785
|
-
"colab": {
|
786
|
-
"base_uri": "https://localhost:8080/"
|
787
|
-
},
|
788
|
-
"executionInfo": {
|
789
|
-
"elapsed": 48,
|
790
|
-
"status": "ok",
|
791
|
-
"timestamp": 1741051643607,
|
792
|
-
"user": {
|
793
|
-
"displayName": "Jaison A",
|
794
|
-
"userId": "07006398627763032071"
|
795
|
-
},
|
796
|
-
"user_tz": -330
|
797
|
-
},
|
798
|
-
"id": "_DuzNnwAuRkQ",
|
799
|
-
"outputId": "8027f17a-f0a2-4737-b390-32ee25bbda7c"
|
800
|
-
},
|
801
|
-
"outputs": [],
|
802
|
-
"source": [
|
803
|
-
"pca=PCA(n_components=2)\n",
|
804
|
-
"pca_x=pca.fit_transform(df.drop(columns=['num']))\n",
|
805
|
-
"y_pred_kmeans=kmeans.fit_predict(pca_x)\n",
|
806
|
-
"ari=adjusted_rand_score(df['num'],y_pred_kmeans)\n",
|
807
|
-
"print(ari)"
|
808
|
-
]
|
809
|
-
},
|
810
|
-
{
|
811
|
-
"cell_type": "code",
|
812
|
-
"execution_count": null,
|
813
|
-
"metadata": {
|
814
|
-
"colab": {
|
815
|
-
"base_uri": "https://localhost:8080/",
|
816
|
-
"height": 0
|
817
|
-
},
|
818
|
-
"executionInfo": {
|
819
|
-
"elapsed": 423,
|
820
|
-
"status": "ok",
|
821
|
-
"timestamp": 1741051644051,
|
822
|
-
"user": {
|
823
|
-
"displayName": "Jaison A",
|
824
|
-
"userId": "07006398627763032071"
|
825
|
-
},
|
826
|
-
"user_tz": -330
|
827
|
-
},
|
828
|
-
"id": "kcofB6n_skcD",
|
829
|
-
"outputId": "f55e545c-6fe9-4f19-cc1b-1513d89caabc"
|
830
|
-
},
|
831
|
-
"outputs": [],
|
832
|
-
"source": [
|
833
|
-
"plt.figure(figsize=(8, 6))\n",
|
834
|
-
"scatter = plt.scatter(pca_x[:, 0], pca_x[:, 1], c=y_pred_kmeans, cmap='viridis', alpha=0.6)\n",
|
835
|
-
"plt.colorbar(scatter, label='Digit Label')\n",
|
836
|
-
"plt.xlabel('Principal Component 1')\n",
|
837
|
-
"plt.ylabel('Principal Component 2')\n",
|
838
|
-
"plt.title('K Means Clustering')\n",
|
839
|
-
"plt.show()"
|
840
|
-
]
|
841
|
-
},
|
842
|
-
{
|
843
|
-
"cell_type": "code",
|
844
|
-
"execution_count": null,
|
845
|
-
"metadata": {
|
846
|
-
"colab": {
|
847
|
-
"base_uri": "https://localhost:8080/"
|
848
|
-
},
|
849
|
-
"executionInfo": {
|
850
|
-
"elapsed": 9,
|
851
|
-
"status": "ok",
|
852
|
-
"timestamp": 1741051644055,
|
853
|
-
"user": {
|
854
|
-
"displayName": "Jaison A",
|
855
|
-
"userId": "07006398627763032071"
|
856
|
-
},
|
857
|
-
"user_tz": -330
|
858
|
-
},
|
859
|
-
"id": "pmdXFh2Pslhu",
|
860
|
-
"outputId": "1f864500-b714-4c40-db6e-c10bf593fbb4"
|
861
|
-
},
|
862
|
-
"outputs": [],
|
863
|
-
"source": [
|
864
|
-
"X=df.drop(columns=['num'])\n",
|
865
|
-
"X_reconstructed = pca.inverse_transform(pca_x)\n",
|
866
|
-
"reconstruction_error = np.mean(np.square(X - X_reconstructed))\n",
|
867
|
-
"print(f\"Reconstruction error: {reconstruction_error:.4f}\")"
|
868
|
-
]
|
869
|
-
},
|
870
|
-
{
|
871
|
-
"cell_type": "markdown",
|
872
|
-
"metadata": {
|
873
|
-
"id": "z5iVUmUvF3mZ"
|
874
|
-
},
|
875
|
-
"source": [
|
876
|
-
"### ***Question 5***"
|
877
|
-
]
|
878
|
-
},
|
879
|
-
{
|
880
|
-
"cell_type": "code",
|
881
|
-
"execution_count": null,
|
882
|
-
"metadata": {
|
883
|
-
"colab": {
|
884
|
-
"base_uri": "https://localhost:8080/",
|
885
|
-
"height": 206
|
886
|
-
},
|
887
|
-
"executionInfo": {
|
888
|
-
"elapsed": 394,
|
889
|
-
"status": "ok",
|
890
|
-
"timestamp": 1741051644442,
|
891
|
-
"user": {
|
892
|
-
"displayName": "Jaison A",
|
893
|
-
"userId": "07006398627763032071"
|
894
|
-
},
|
895
|
-
"user_tz": -330
|
896
|
-
},
|
897
|
-
"id": "CJ7Y5gaLF6LQ",
|
898
|
-
"outputId": "3cbf424b-07ba-4fef-a73f-c000a5e9c074"
|
899
|
-
},
|
900
|
-
"outputs": [],
|
901
|
-
"source": [
|
902
|
-
"df=pd.read_csv('/content/drive/MyDrive/sem 6/Lab/ML Lab/SOC_LAB1/dataset/Regression/Housing.csv')\n",
|
903
|
-
"le=LabelEncoder()\n",
|
904
|
-
"for col in df.select_dtypes(include=['object']).columns:\n",
|
905
|
-
" df[col]=le.fit_transform(df[col])\n",
|
906
|
-
"display(df.head())"
|
907
|
-
]
|
908
|
-
},
|
909
|
-
{
|
910
|
-
"cell_type": "code",
|
911
|
-
"execution_count": null,
|
912
|
-
"metadata": {
|
913
|
-
"colab": {
|
914
|
-
"base_uri": "https://localhost:8080/",
|
915
|
-
"height": 465
|
916
|
-
},
|
917
|
-
"executionInfo": {
|
918
|
-
"elapsed": 193,
|
919
|
-
"status": "ok",
|
920
|
-
"timestamp": 1741051644636,
|
921
|
-
"user": {
|
922
|
-
"displayName": "Jaison A",
|
923
|
-
"userId": "07006398627763032071"
|
924
|
-
},
|
925
|
-
"user_tz": -330
|
926
|
-
},
|
927
|
-
"id": "W0cMte6vGo91",
|
928
|
-
"outputId": "f9299ed7-2902-484a-a2c5-5c085dfc7bcb"
|
929
|
-
},
|
930
|
-
"outputs": [],
|
931
|
-
"source": [
|
932
|
-
"plt.scatter(x=df['area'],y=df['price'])\n",
|
933
|
-
"plt.xlabel('area')\n",
|
934
|
-
"plt.ylabel('price')\n",
|
935
|
-
"plt.show()"
|
936
|
-
]
|
937
|
-
},
|
938
|
-
{
|
939
|
-
"cell_type": "code",
|
940
|
-
"execution_count": null,
|
941
|
-
"metadata": {
|
942
|
-
"colab": {
|
943
|
-
"base_uri": "https://localhost:8080/"
|
944
|
-
},
|
945
|
-
"executionInfo": {
|
946
|
-
"elapsed": 14,
|
947
|
-
"status": "ok",
|
948
|
-
"timestamp": 1741051644653,
|
949
|
-
"user": {
|
950
|
-
"displayName": "Jaison A",
|
951
|
-
"userId": "07006398627763032071"
|
952
|
-
},
|
953
|
-
"user_tz": -330
|
954
|
-
},
|
955
|
-
"id": "tBRb-1x2G8cM",
|
956
|
-
"outputId": "a915ec62-947d-4805-f162-22a2ea2d3c45"
|
957
|
-
},
|
958
|
-
"outputs": [],
|
959
|
-
"source": [
|
960
|
-
"features=[\n",
|
961
|
-
" \"area\", \"bedrooms\", \"bathrooms\", \"stories\", \"mainroad\", \"guestroom\",\n",
|
962
|
-
" \"basement\", \"hotwaterheating\", \"airconditioning\", \"parking\",\n",
|
963
|
-
" \"prefarea\", \"furnishingstatus\"\n",
|
964
|
-
"]\n",
|
965
|
-
"\n",
|
966
|
-
"\n",
|
967
|
-
"x=df[['area']]\n",
|
968
|
-
"y=df['price']\n",
|
969
|
-
"\n",
|
970
|
-
"X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)\n",
|
971
|
-
"\n",
|
972
|
-
"lg=LinearRegression()\n",
|
973
|
-
"lg.fit(X_train,y_train)\n",
|
974
|
-
"\n",
|
975
|
-
"y_pred=lg.predict(X_test)\n",
|
976
|
-
"\n",
|
977
|
-
"print(f'r2_Score : {r2_score(y_test,y_pred)}')"
|
978
|
-
]
|
979
|
-
},
|
980
|
-
{
|
981
|
-
"cell_type": "code",
|
982
|
-
"execution_count": null,
|
983
|
-
"metadata": {
|
984
|
-
"colab": {
|
985
|
-
"base_uri": "https://localhost:8080/"
|
986
|
-
},
|
987
|
-
"executionInfo": {
|
988
|
-
"elapsed": 18,
|
989
|
-
"status": "ok",
|
990
|
-
"timestamp": 1741051644668,
|
991
|
-
"user": {
|
992
|
-
"displayName": "Jaison A",
|
993
|
-
"userId": "07006398627763032071"
|
994
|
-
},
|
995
|
-
"user_tz": -330
|
996
|
-
},
|
997
|
-
"id": "d92QBRPwHIPD",
|
998
|
-
"outputId": "24a67bdc-2b7f-4cbb-a177-0281cd54dff6"
|
999
|
-
},
|
1000
|
-
"outputs": [],
|
1001
|
-
"source": [
|
1002
|
-
"y=df[features]\n",
|
1003
|
-
"x=df['price']\n",
|
1004
|
-
"\n",
|
1005
|
-
"X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)\n",
|
1006
|
-
"\n",
|
1007
|
-
"# Reshape X_train to a 2D array\n",
|
1008
|
-
"X_train = X_train.values.reshape(-1, 1)\n",
|
1009
|
-
"X_test = X_test.values.reshape(-1, 1) # Reshape X_test as well for consistency\n",
|
1010
|
-
"\n",
|
1011
|
-
"lg=LinearRegression()\n",
|
1012
|
-
"lg.fit(X_train,y_train)\n",
|
1013
|
-
"\n",
|
1014
|
-
"y_pred=lg.predict(X_test)\n",
|
1015
|
-
"\n",
|
1016
|
-
"print(f'r2_Score : {r2_score(y_test,y_pred)}')"
|
1017
|
-
]
|
1018
|
-
},
|
1019
|
-
{
|
1020
|
-
"cell_type": "code",
|
1021
|
-
"execution_count": null,
|
1022
|
-
"metadata": {
|
1023
|
-
"colab": {
|
1024
|
-
"base_uri": "https://localhost:8080/"
|
1025
|
-
},
|
1026
|
-
"executionInfo": {
|
1027
|
-
"elapsed": 37,
|
1028
|
-
"status": "ok",
|
1029
|
-
"timestamp": 1741051644707,
|
1030
|
-
"user": {
|
1031
|
-
"displayName": "Jaison A",
|
1032
|
-
"userId": "07006398627763032071"
|
1033
|
-
},
|
1034
|
-
"user_tz": -330
|
1035
|
-
},
|
1036
|
-
"id": "bZr_ZoedHOJI",
|
1037
|
-
"outputId": "7a9a1d5e-18d6-4656-9ab0-e247abd8a5dc"
|
1038
|
-
},
|
1039
|
-
"outputs": [],
|
1040
|
-
"source": [
|
1041
|
-
"features=[\n",
|
1042
|
-
" \"area\", \"bedrooms\", \"bathrooms\", \"stories\", \"mainroad\", \"guestroom\",\n",
|
1043
|
-
" \"basement\", \"hotwaterheating\", \"airconditioning\", \"parking\",\n",
|
1044
|
-
" \"prefarea\", \"furnishingstatus\"\n",
|
1045
|
-
"]\n",
|
1046
|
-
"X=df[features]\n",
|
1047
|
-
"vif_data = pd.DataFrame()\n",
|
1048
|
-
"vif_data[\"Feature\"] = features\n",
|
1049
|
-
"vif_data[\"VIF\"] = [variance_inflation_factor(X.values, i) for i in range(len(features))]\n",
|
1050
|
-
"print(\"\\nVariance Inflation Factor (VIF):\")\n",
|
1051
|
-
"print(vif_data)"
|
1052
|
-
]
|
1053
|
-
}
|
1054
|
-
],
|
1055
|
-
"metadata": {
|
1056
|
-
"colab": {
|
1057
|
-
"authorship_tag": "ABX9TyOo5KSbG35NjuMjAiytt9Xd",
|
1058
|
-
"collapsed_sections": [
|
1059
|
-
"R7euuRFaCdIZ",
|
1060
|
-
"qCogj3nw4UUy",
|
1061
|
-
"ytnBNsap7xZZ",
|
1062
|
-
"FU9VMoYaByfs",
|
1063
|
-
"vugOPwlBFzmb"
|
1064
|
-
],
|
1065
|
-
"provenance": []
|
1066
|
-
},
|
1067
|
-
"kernelspec": {
|
1068
|
-
"display_name": "Python 3 (ipykernel)",
|
1069
|
-
"language": "python",
|
1070
|
-
"name": "python3"
|
1071
|
-
},
|
1072
|
-
"language_info": {
|
1073
|
-
"codemirror_mode": {
|
1074
|
-
"name": "ipython",
|
1075
|
-
"version": 3
|
1076
|
-
},
|
1077
|
-
"file_extension": ".py",
|
1078
|
-
"mimetype": "text/x-python",
|
1079
|
-
"name": "python",
|
1080
|
-
"nbconvert_exporter": "python",
|
1081
|
-
"pygments_lexer": "ipython3",
|
1082
|
-
"version": "3.12.4"
|
1083
|
-
}
|
1084
|
-
},
|
1085
|
-
"nbformat": 4,
|
1086
|
-
"nbformat_minor": 4
|
1087
|
-
}
|