noshot 11.0.0__py3-none-any.whl → 13.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (93) hide show
  1. noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/1. DNN (Image Classification).ipynb +389 -0
  2. noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/2. DNN vs CNN.ipynb +516 -0
  3. noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/3. CNN (Object Detecrion).ipynb +259 -0
  4. noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/4. FCN (Image Segmentaion).ipynb +274 -0
  5. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.1 DNN (Pytorch).ipynb +164 -0
  6. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.2 DNN (Tensorflow).ipynb +94 -0
  7. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.3 DNN (Image Classification).ipynb +134 -0
  8. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/2.1 DNN vs CNN.ipynb +127 -0
  9. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/2.2 DNN vs CNN.ipynb +123 -0
  10. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/4. FCNN (Image Segmentation).ipynb +108 -0
  11. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/Lab Excercise (Training DNN).ipynb +646 -0
  12. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/Load-Images.ipynb +553 -0
  13. noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex1.ipynb +216 -0
  14. noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex2.ipynb +195 -0
  15. noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex3.ipynb +427 -0
  16. noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex4.ipynb +186 -0
  17. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/DNN Ex No 1.ipynb +398 -0
  18. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Ex No 1 Build in dataset.ipynb +171 -0
  19. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Exp1-Short-DL_ANN_ImageClassification.ipynb +401 -0
  20. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/OR GATE .ipynb +8511 -0
  21. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp02/Exp2-Short-DL_CNN_ImageClassification.ipynb +737 -0
  22. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp03/DL-Ex3-RNN.ipynb +591 -0
  23. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp04/Ex no 4.ipynb +551 -0
  24. noshot/main.py +3 -3
  25. {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/METADATA +1 -1
  26. noshot-13.0.0.dist-info/RECORD +32 -0
  27. noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb +0 -201
  28. noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb +0 -201
  29. noshot/data/ML TS XAI/ML/Json Codes/ML LAB CIA 2.ipynb +0 -409
  30. noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Balance Scale Dataset).ipynb +0 -147
  31. noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Rice Dataset).ipynb +0 -181
  32. noshot/data/ML TS XAI/ML/ML 1/10. HMM Veterbi.ipynb +0 -152
  33. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Balance Scale Dataset).ipynb +0 -117
  34. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Iris Dataset).ipynb +0 -156
  35. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Sobar-72 Dataset).ipynb +0 -215
  36. noshot/data/ML TS XAI/ML/ML 1/3. LDA (Balance Scale Dataset).ipynb +0 -78
  37. noshot/data/ML TS XAI/ML/ML 1/3. LDA (NPHA Doctor Visits Dataset).ipynb +0 -114
  38. noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Machine Dataset).ipynb +0 -115
  39. noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Real Estate Dataset).ipynb +0 -146
  40. noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Magic04 Dataset).ipynb +0 -130
  41. noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Wine Dataset).ipynb +0 -112
  42. noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +0 -118
  43. noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Wine Dataset).ipynb +0 -89
  44. noshot/data/ML TS XAI/ML/ML 1/7. SVM (Rice Dataset).ipynb +0 -120
  45. noshot/data/ML TS XAI/ML/ML 1/8. FeedForward NN (Sobar72 Dataset).ipynb +0 -262
  46. noshot/data/ML TS XAI/ML/ML 1/9. CNN (Cifar10 Dataset).ipynb +0 -156
  47. noshot/data/ML TS XAI/ML/ML 2/1. PCA.ipynb +0 -162
  48. noshot/data/ML TS XAI/ML/ML 2/10. CNN.ipynb +0 -100
  49. noshot/data/ML TS XAI/ML/ML 2/11. HMM.ipynb +0 -336
  50. noshot/data/ML TS XAI/ML/ML 2/2. KNN.ipynb +0 -149
  51. noshot/data/ML TS XAI/ML/ML 2/3. LDA.ipynb +0 -132
  52. noshot/data/ML TS XAI/ML/ML 2/4. Linear Regression.ipynb +0 -86
  53. noshot/data/ML TS XAI/ML/ML 2/5. Logistic Regression.ipynb +0 -115
  54. noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Titanic).ipynb +0 -196
  55. noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Wine).ipynb +0 -98
  56. noshot/data/ML TS XAI/ML/ML 2/7. SVM Linear.ipynb +0 -109
  57. noshot/data/ML TS XAI/ML/ML 2/8. SVM Non-Linear.ipynb +0 -195
  58. noshot/data/ML TS XAI/ML/ML 2/9. FNN With Regularization.ipynb +0 -189
  59. noshot/data/ML TS XAI/ML/ML 2/9. FNN Without Regularization.ipynb +0 -197
  60. noshot/data/ML TS XAI/ML/ML 2/All in One Lab CIA 1 Q.ipynb +0 -1087
  61. noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb +0 -274
  62. noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb +0 -170
  63. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb +0 -1087
  64. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb +0 -178
  65. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb +0 -185
  66. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb +0 -106
  67. noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb +0 -177
  68. noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb +0 -195
  69. noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb +0 -267
  70. noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb +0 -104
  71. noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb +0 -109
  72. noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb +0 -220
  73. noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb +0 -99
  74. noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb +0 -211
  75. noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb +0 -99
  76. noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb +0 -118
  77. noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb +0 -603
  78. noshot/data/ML TS XAI/ML/ML Lab AllinOne.ipynb +0 -961
  79. noshot/data/ML TS XAI/ML/ML Lab H Sec/1. Iris Dataset (Softmax vs Sigmoid).ipynb +0 -231
  80. noshot/data/ML TS XAI/ML/ML Lab H Sec/2. Student Dataset (Overfit vs Regularized).ipynb +0 -269
  81. noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Categorical (Overfit vs Regularized).ipynb +0 -274
  82. noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Numerical (Overfit vs Regularized).ipynb +0 -263
  83. noshot/data/ML TS XAI/ML/ML Lab H Sec/4. Smart House System HMM.ipynb +0 -198
  84. noshot/data/ML TS XAI/ML/ML Lab H Sec/5. Fraud Detection System HMM.ipynb +0 -201
  85. noshot/data/ML TS XAI/ML/ML Lab H Sec/insurance.csv +0 -1339
  86. noshot/data/ML TS XAI/ML/ML Lab H Sec/iris1.data +0 -151
  87. noshot/data/ML TS XAI/ML/ML Lab H Sec/student-mat.csv +0 -396
  88. noshot/data/ML TS XAI/ML/ML Lab H Sec/student-por.csv +0 -650
  89. noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +0 -691
  90. noshot-11.0.0.dist-info/RECORD +0 -72
  91. {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/WHEEL +0 -0
  92. {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/licenses/LICENSE.txt +0 -0
  93. {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/top_level.txt +0 -0
@@ -1,1087 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "metadata": {
6
- "id": "R7euuRFaCdIZ"
7
- },
8
- "source": [
9
- "### ***Required Packages***"
10
- ]
11
- },
12
- {
13
- "cell_type": "code",
14
- "execution_count": null,
15
- "metadata": {
16
- "executionInfo": {
17
- "elapsed": 6,
18
- "status": "ok",
19
- "timestamp": 1741051571358,
20
- "user": {
21
- "displayName": "Jaison A",
22
- "userId": "07006398627763032071"
23
- },
24
- "user_tz": -330
25
- },
26
- "id": "c5Fdgw1I3gJP"
27
- },
28
- "outputs": [],
29
- "source": [
30
- "import pandas as pd\n",
31
- "import numpy as np\n",
32
- "import matplotlib.pyplot as plt\n",
33
- "from sklearn.neighbors import KNeighborsClassifier\n",
34
- "from sklearn.linear_model import LogisticRegression,LinearRegression\n",
35
- "from sklearn.cluster import KMeans\n",
36
- "from sklearn.model_selection import train_test_split\n",
37
- "from sklearn.metrics import accuracy_score,confusion_matrix,classification_report,f1_score,r2_score,adjusted_rand_score\n",
38
- "from sklearn.decomposition import PCA\n",
39
- "from sklearn.preprocessing import LabelEncoder,MinMaxScaler,StandardScaler\n",
40
- "from statsmodels.stats.outliers_influence import variance_inflation_factor\n",
41
- "import seaborn as sns"
42
- ]
43
- },
44
- {
45
- "cell_type": "code",
46
- "execution_count": null,
47
- "metadata": {
48
- "colab": {
49
- "base_uri": "https://localhost:8080/"
50
- },
51
- "executionInfo": {
52
- "elapsed": 2335,
53
- "status": "ok",
54
- "timestamp": 1741051573697,
55
- "user": {
56
- "displayName": "Jaison A",
57
- "userId": "07006398627763032071"
58
- },
59
- "user_tz": -330
60
- },
61
- "id": "CZiiMp0u4QC1",
62
- "outputId": "a0067b93-e036-4961-e8c6-31a318689332"
63
- },
64
- "outputs": [],
65
- "source": [
66
- "from google.colab import drive\n",
67
- "drive.mount('/content/drive')"
68
- ]
69
- },
70
- {
71
- "cell_type": "markdown",
72
- "metadata": {
73
- "id": "qCogj3nw4UUy"
74
- },
75
- "source": [
76
- "### ***Question_1***"
77
- ]
78
- },
79
- {
80
- "cell_type": "code",
81
- "execution_count": null,
82
- "metadata": {
83
- "colab": {
84
- "base_uri": "https://localhost:8080/",
85
- "height": 0
86
- },
87
- "executionInfo": {
88
- "elapsed": 9,
89
- "status": "ok",
90
- "timestamp": 1741051573708,
91
- "user": {
92
- "displayName": "Jaison A",
93
- "userId": "07006398627763032071"
94
- },
95
- "user_tz": -330
96
- },
97
- "id": "G9xT9oSK4R7q",
98
- "outputId": "e95932f3-44ae-4401-8723-860a9e41dd21"
99
- },
100
- "outputs": [],
101
- "source": [
102
- "df=pd.read_csv('/content/drive/MyDrive/sem 6/Lab/ML Lab/SOC_LAB1/dataset/KNN/heart_disease_uci.csv')\n",
103
- "display(df.head())"
104
- ]
105
- },
106
- {
107
- "cell_type": "markdown",
108
- "metadata": {
109
- "id": "xDAWQGs54t31"
110
- },
111
- "source": [
112
- "**Handle Missing values**"
113
- ]
114
- },
115
- {
116
- "cell_type": "code",
117
- "execution_count": null,
118
- "metadata": {
119
- "colab": {
120
- "base_uri": "https://localhost:8080/"
121
- },
122
- "executionInfo": {
123
- "elapsed": 16,
124
- "status": "ok",
125
- "timestamp": 1741051573727,
126
- "user": {
127
- "displayName": "Jaison A",
128
- "userId": "07006398627763032071"
129
- },
130
- "user_tz": -330
131
- },
132
- "id": "8w3eecNs4xU8",
133
- "outputId": "24fdd56c-0327-4233-ae56-3e6a7eb41849"
134
- },
135
- "outputs": [],
136
- "source": [
137
- "features=['id','age','sex','dataset','cp','trestbps','chol','fbs','restecg','thalch','exang','oldpeak','slope','ca','thal']\n",
138
- "target=['num']\n",
139
- "\n",
140
- "le=LabelEncoder()\n",
141
- "df['sex']=le.fit_transform(df['sex'])\n",
142
- "df['dataset']=le.fit_transform(df['dataset'])\n",
143
- "df['cp']=le.fit_transform(df['cp'])\n",
144
- "df['fbs']=le.fit_transform(df['fbs'])\n",
145
- "df['restecg']=le.fit_transform(df['restecg'])\n",
146
- "df['exang']=le.fit_transform(df['exang'])\n",
147
- "df['slope']=le.fit_transform(df['slope'])\n",
148
- "df['thal']=le.fit_transform(df['thal'])\n",
149
- "\n",
150
- "\n",
151
- "\n",
152
- "df['trestbps']=df['trestbps'].fillna(df['trestbps'].mean())\n",
153
- "df['chol']=df['chol'].fillna(df['chol'].mean())\n",
154
- "df['fbs']=df['fbs'].fillna(df['fbs'])\n",
155
- "df['restecg']=df['restecg'].fillna(df['restecg'])\n",
156
- "df['thalch']=df['thalch'].fillna(df['thalch'].mean())\n",
157
- "df['exang']=df['exang'].fillna(df['exang'])\n",
158
- "df['oldpeak']=df['oldpeak'].fillna(df['oldpeak'].mean())\n",
159
- "df['thal']=df['thal'].fillna(df['thal'].mean())\n",
160
- "df['ca']=df['ca'].fillna(df['ca'].mean())\n",
161
- "df['slope']=df['slope'].fillna(df['slope'].mean())\n",
162
- "\n",
163
- "print(df.isnull().sum())"
164
- ]
165
- },
166
- {
167
- "cell_type": "markdown",
168
- "metadata": {
169
- "id": "zCvcMIjt7jaL"
170
- },
171
- "source": [
172
- "**Data Split ,Scaling ,KNN Model and Metrics**"
173
- ]
174
- },
175
- {
176
- "cell_type": "code",
177
- "execution_count": null,
178
- "metadata": {
179
- "colab": {
180
- "base_uri": "https://localhost:8080/"
181
- },
182
- "executionInfo": {
183
- "elapsed": 285,
184
- "status": "ok",
185
- "timestamp": 1741051574014,
186
- "user": {
187
- "displayName": "Jaison A",
188
- "userId": "07006398627763032071"
189
- },
190
- "user_tz": -330
191
- },
192
- "id": "8e2BPGlM7fGJ",
193
- "outputId": "a135b7ff-b7d2-4872-b54f-c6910e75c2d8"
194
- },
195
- "outputs": [],
196
- "source": [
197
- "x=df[features]\n",
198
- "y=df[target]\n",
199
- "\n",
200
- "X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)\n",
201
- "\n",
202
- "\n",
203
- "scalers={'MinMax':MinMaxScaler(),'Standard':StandardScaler()}\n",
204
- "\n",
205
- "for name,scaler in scalers.items():\n",
206
- " print(f'Applying {name} Scaling : ')\n",
207
- " scaled_x_train=scaler.fit_transform(X_train)\n",
208
- " scaled_x_test=scaler.transform(X_test)\n",
209
- " for k in [3,5,7,9]:\n",
210
- " knn=KNeighborsClassifier(n_neighbors=k)\n",
211
- " knn.fit(scaled_x_train,y_train)\n",
212
- " y_pred=knn.predict(scaled_x_test)\n",
213
- " print(f\"K : {k}\")\n",
214
- " print(f'Accuracy Score : {accuracy_score(y_test,y_pred)}')\n",
215
- " print(f'Confusion Matrix : \\n{confusion_matrix(y_test,y_pred)}')\n",
216
- " print(f'Classification Report : \\n{classification_report(y_test,y_pred)}')"
217
- ]
218
- },
219
- {
220
- "cell_type": "markdown",
221
- "metadata": {
222
- "id": "ytnBNsap7xZZ"
223
- },
224
- "source": [
225
- "### ***Question_2***"
226
- ]
227
- },
228
- {
229
- "cell_type": "code",
230
- "execution_count": null,
231
- "metadata": {
232
- "colab": {
233
- "base_uri": "https://localhost:8080/",
234
- "height": 0
235
- },
236
- "executionInfo": {
237
- "elapsed": 3491,
238
- "status": "ok",
239
- "timestamp": 1741051577507,
240
- "user": {
241
- "displayName": "Jaison A",
242
- "userId": "07006398627763032071"
243
- },
244
- "user_tz": -330
245
- },
246
- "id": "wdzmD1O-7wm7",
247
- "outputId": "b3424de8-6d74-4f0c-f0e8-eaad63772df9"
248
- },
249
- "outputs": [],
250
- "source": [
251
- "df=pd.read_excel('/content/drive/MyDrive/sem 6/Lab/ML Lab/SOC_LAB1/dataset/KNN/Telco_customer_churn.xlsx')\n",
252
- "display(df.head())"
253
- ]
254
- },
255
- {
256
- "cell_type": "markdown",
257
- "metadata": {
258
- "id": "AjA-tcxd-12r"
259
- },
260
- "source": [
261
- "**Handle Missing Values**"
262
- ]
263
- },
264
- {
265
- "cell_type": "code",
266
- "execution_count": null,
267
- "metadata": {
268
- "colab": {
269
- "base_uri": "https://localhost:8080/"
270
- },
271
- "executionInfo": {
272
- "elapsed": 9,
273
- "status": "ok",
274
- "timestamp": 1741051577509,
275
- "user": {
276
- "displayName": "Jaison A",
277
- "userId": "07006398627763032071"
278
- },
279
- "user_tz": -330
280
- },
281
- "id": "YWaaBkbf85Qp",
282
- "outputId": "2a526a88-5be8-4e91-b6a5-80f36f48f8de"
283
- },
284
- "outputs": [],
285
- "source": [
286
- "df.drop(columns=['Churn Reason','CustomerID'],inplace=True)\n",
287
- "print(df.isnull().sum())"
288
- ]
289
- },
290
- {
291
- "cell_type": "markdown",
292
- "metadata": {
293
- "id": "S-OTOJ83-twv"
294
- },
295
- "source": [
296
- "**Encode Data**"
297
- ]
298
- },
299
- {
300
- "cell_type": "code",
301
- "execution_count": null,
302
- "metadata": {
303
- "colab": {
304
- "base_uri": "https://localhost:8080/",
305
- "height": 0
306
- },
307
- "executionInfo": {
308
- "elapsed": 61,
309
- "status": "ok",
310
- "timestamp": 1741051577564,
311
- "user": {
312
- "displayName": "Jaison A",
313
- "userId": "07006398627763032071"
314
- },
315
- "user_tz": -330
316
- },
317
- "id": "gcWGzUiV9g1l",
318
- "outputId": "5d78e4e4-d3dc-4609-ccfc-df783d1de7ed"
319
- },
320
- "outputs": [],
321
- "source": [
322
- "le=LabelEncoder()\n",
323
- "for col in df.select_dtypes(include=['object']).columns:\n",
324
- " df[col]=df[col].astype('str')\n",
325
- " df[col]=le.fit_transform(df[col])\n",
326
- "\n",
327
- "display(df.head())"
328
- ]
329
- },
330
- {
331
- "cell_type": "markdown",
332
- "metadata": {
333
- "id": "hO_W1tgT-3MV"
334
- },
335
- "source": [
336
- "**Data Split , Model Training and Metrics**"
337
- ]
338
- },
339
- {
340
- "cell_type": "code",
341
- "execution_count": null,
342
- "metadata": {
343
- "colab": {
344
- "base_uri": "https://localhost:8080/"
345
- },
346
- "executionInfo": {
347
- "elapsed": 239,
348
- "status": "ok",
349
- "timestamp": 1741051577801,
350
- "user": {
351
- "displayName": "Jaison A",
352
- "userId": "07006398627763032071"
353
- },
354
- "user_tz": -330
355
- },
356
- "id": "-8dwgDMc-95x",
357
- "outputId": "725916d8-f062-4bf7-b3e4-57b91e7a3f51"
358
- },
359
- "outputs": [],
360
- "source": [
361
- "X_train,X_test,y_train,y_test=train_test_split(df.drop(columns=['Churn Value']),df['Churn Value'],test_size=0.2,random_state=42)\n",
362
- "\n",
363
- "scalers=StandardScaler()\n",
364
- "\n",
365
- "X_train_Scaled=scalers.fit_transform(X_train)\n",
366
- "X_test_Scaled=scalers.transform(X_test)\n",
367
- "\n",
368
- "knn=KNeighborsClassifier(n_neighbors=5)\n",
369
- "knn.fit(X_train_Scaled,y_train)\n",
370
- "y_pred_knn=knn.predict(X_test_Scaled)\n",
371
- "\n",
372
- "logreg=LogisticRegression()\n",
373
- "logreg.fit(X_train_Scaled,y_train)\n",
374
- "y_pred_logreg=logreg.predict(X_test_Scaled)\n",
375
- "\n",
376
- "print(f'KNN Accuracy : {accuracy_score(y_test,y_pred_knn)}')\n",
377
- "print(f'Logistic Regression Accuracy : {accuracy_score(y_test,y_pred_logreg)}')\n",
378
- "\n",
379
- "print(f\"KNN f1 Score : {f1_score(y_test,y_pred_knn)}\")\n",
380
- "print(f\"Logistic Regression f1 Score : {f1_score(y_test,y_pred_logreg)}\")\n",
381
- "\n",
382
- "print(f\"KNN Classification Report : \\n{classification_report(y_test,y_pred_knn)}\")\n",
383
- "print(f\"Logistic Regression Classification Report : \\n{classification_report(y_test,y_pred_logreg)}\")"
384
- ]
385
- },
386
- {
387
- "cell_type": "markdown",
388
- "metadata": {
389
- "id": "FU9VMoYaByfs"
390
- },
391
- "source": [
392
- "### ***Question 3***"
393
- ]
394
- },
395
- {
396
- "cell_type": "code",
397
- "execution_count": null,
398
- "metadata": {
399
- "colab": {
400
- "base_uri": "https://localhost:8080/",
401
- "height": 0
402
- },
403
- "executionInfo": {
404
- "elapsed": 2763,
405
- "status": "ok",
406
- "timestamp": 1741051580562,
407
- "user": {
408
- "displayName": "Jaison A",
409
- "userId": "07006398627763032071"
410
- },
411
- "user_tz": -330
412
- },
413
- "id": "WnZ6_jhgB1I7",
414
- "outputId": "73b756b8-0fc3-45aa-c067-22ca9d42cefa"
415
- },
416
- "outputs": [],
417
- "source": [
418
- "df=pd.read_csv('/content/drive/MyDrive/sem 6/Lab/ML Lab/SOC_LAB1/dataset/PCA/all_stocks_5yr.csv')\n",
419
- "display(df.head())"
420
- ]
421
- },
422
- {
423
- "cell_type": "code",
424
- "execution_count": null,
425
- "metadata": {
426
- "executionInfo": {
427
- "elapsed": 126,
428
- "status": "ok",
429
- "timestamp": 1741051580686,
430
- "user": {
431
- "displayName": "Jaison A",
432
- "userId": "07006398627763032071"
433
- },
434
- "user_tz": -330
435
- },
436
- "id": "3nU3DybvD0kt"
437
- },
438
- "outputs": [],
439
- "source": [
440
- "features = ['open', 'high', 'low', 'close', 'volume']\n",
441
- "data = df[features]\n",
442
- "\n",
443
- "# Handle missing values if any\n",
444
- "data = data.dropna()\n",
445
- "\n",
446
- "# Standardize the data\n",
447
- "scaler = StandardScaler()\n",
448
- "data_scaled = scaler.fit_transform(data)\n"
449
- ]
450
- },
451
- {
452
- "cell_type": "code",
453
- "execution_count": null,
454
- "metadata": {
455
- "colab": {
456
- "base_uri": "https://localhost:8080/"
457
- },
458
- "executionInfo": {
459
- "elapsed": 83,
460
- "status": "ok",
461
- "timestamp": 1741051580771,
462
- "user": {
463
- "displayName": "Jaison A",
464
- "userId": "07006398627763032071"
465
- },
466
- "user_tz": -330
467
- },
468
- "id": "PPghwxj_D3QT",
469
- "outputId": "d4c39545-9879-4464-fc35-3d57ec0e9763"
470
- },
471
- "outputs": [],
472
- "source": [
473
- "# Perform PCA and retain 90% variance\n",
474
- "pca = PCA(n_components=0.90)\n",
475
- "data_pca = pca.fit_transform(data_scaled)\n",
476
- "\n",
477
- "# Number of components required to retain 90% variance\n",
478
- "num_components = pca.n_components_\n",
479
- "print(f'Number of components to retain 90% variance: {num_components}')"
480
- ]
481
- },
482
- {
483
- "cell_type": "code",
484
- "execution_count": null,
485
- "metadata": {
486
- "colab": {
487
- "base_uri": "https://localhost:8080/",
488
- "height": 0
489
- },
490
- "executionInfo": {
491
- "elapsed": 393,
492
- "status": "ok",
493
- "timestamp": 1741051581177,
494
- "user": {
495
- "displayName": "Jaison A",
496
- "userId": "07006398627763032071"
497
- },
498
- "user_tz": -330
499
- },
500
- "id": "WfqAFub0EAhg",
501
- "outputId": "54331b4c-87fe-40f5-a68c-1673bdacdc9d"
502
- },
503
- "outputs": [],
504
- "source": [
505
- "# Plot variance explained by each component\n",
506
- "plt.figure(figsize=(8, 5))\n",
507
- "plt.plot(range(1, num_components + 1), np.cumsum(pca.explained_variance_ratio_), marker='o', linestyle='--')\n",
508
- "plt.xlabel('Number of Components')\n",
509
- "plt.ylabel('Cumulative Explained Variance')\n",
510
- "plt.title('Explained Variance by Components')\n",
511
- "plt.show()"
512
- ]
513
- },
514
- {
515
- "cell_type": "code",
516
- "execution_count": null,
517
- "metadata": {
518
- "colab": {
519
- "base_uri": "https://localhost:8080/",
520
- "height": 0
521
- },
522
- "executionInfo": {
523
- "elapsed": 52676,
524
- "status": "ok",
525
- "timestamp": 1741051633865,
526
- "user": {
527
- "displayName": "Jaison A",
528
- "userId": "07006398627763032071"
529
- },
530
- "user_tz": -330
531
- },
532
- "id": "bzEs9MZnEENb",
533
- "outputId": "073b9e4a-fd78-4086-92fa-70dad35ed944"
534
- },
535
- "outputs": [],
536
- "source": [
537
- "# Scatter plot before PCA\n",
538
- "sns.pairplot(pd.DataFrame(data_scaled, columns=features), diag_kind='kde')\n",
539
- "plt.suptitle('Stock Data Before PCA')\n",
540
- "plt.show()\n"
541
- ]
542
- },
543
- {
544
- "cell_type": "code",
545
- "execution_count": null,
546
- "metadata": {
547
- "colab": {
548
- "base_uri": "https://localhost:8080/",
549
- "height": 0
550
- },
551
- "executionInfo": {
552
- "elapsed": 1697,
553
- "status": "ok",
554
- "timestamp": 1741051635567,
555
- "user": {
556
- "displayName": "Jaison A",
557
- "userId": "07006398627763032071"
558
- },
559
- "user_tz": -330
560
- },
561
- "id": "LvNwIOpeEImM",
562
- "outputId": "16fcf1f3-b788-4ead-c672-b8c25dddd7e6"
563
- },
564
- "outputs": [],
565
- "source": [
566
- "# Scatter plot after PCA\n",
567
- "plt.scatter(data_pca[:, 0], data_pca[:, 1], alpha=0.5)\n",
568
- "plt.xlabel('Principal Component 1')\n",
569
- "plt.ylabel('Principal Component 2')\n",
570
- "plt.title('Stock Data After PCA')\n",
571
- "plt.show()"
572
- ]
573
- },
574
- {
575
- "cell_type": "code",
576
- "execution_count": null,
577
- "metadata": {
578
- "colab": {
579
- "base_uri": "https://localhost:8080/"
580
- },
581
- "executionInfo": {
582
- "elapsed": 7873,
583
- "status": "ok",
584
- "timestamp": 1741051643443,
585
- "user": {
586
- "displayName": "Jaison A",
587
- "userId": "07006398627763032071"
588
- },
589
- "user_tz": -330
590
- },
591
- "id": "V1WmxZ0lEl99",
592
- "outputId": "7eff00e8-16ed-4879-f56e-8905540a0fee"
593
- },
594
- "outputs": [],
595
- "source": [
596
- "# Create binary classification target (1 if price increases, 0 if it decreases)\n",
597
- "df['price_movement'] = np.where(df['close'].shift(-1) > df['close'], 1, 0)\n",
598
- "df = df.dropna() # Remove NaNs that result from shift operation\n",
599
- "y = df['price_movement'].values\n",
600
- "\n",
601
- "# Split data into train and test sets\n",
602
- "X_train, X_test, y_train, y_test = train_test_split(data_pca, y, test_size=0.2, random_state=42)\n",
603
- "\n",
604
- "# Apply KNN classification\n",
605
- "knn = KNeighborsClassifier(n_neighbors=5)\n",
606
- "knn.fit(X_train, y_train)\n",
607
- "y_pred = knn.predict(X_test)\n",
608
- "\n",
609
- "# Evaluate KNN classification performance\n",
610
- "accuracy = accuracy_score(y_test, y_pred)\n",
611
- "print(f'KNN Classification Accuracy: {accuracy}')\n",
612
- "print('Classification Report:\\n', classification_report(y_test, y_pred))"
613
- ]
614
- },
615
- {
616
- "cell_type": "markdown",
617
- "metadata": {
618
- "id": "vugOPwlBFzmb"
619
- },
620
- "source": [
621
- "### ***Question 4***"
622
- ]
623
- },
624
- {
625
- "cell_type": "code",
626
- "execution_count": null,
627
- "metadata": {
628
- "colab": {
629
- "base_uri": "https://localhost:8080/",
630
- "height": 0
631
- },
632
- "executionInfo": {
633
- "elapsed": 9,
634
- "status": "ok",
635
- "timestamp": 1741051643450,
636
- "user": {
637
- "displayName": "Jaison A",
638
- "userId": "07006398627763032071"
639
- },
640
- "user_tz": -330
641
- },
642
- "id": "T7-4PahjFzED",
643
- "outputId": "90198191-aa59-469a-c25f-c2784588917e"
644
- },
645
- "outputs": [],
646
- "source": [
647
- "df=pd.read_csv('/content/drive/MyDrive/sem 6/Lab/ML Lab/SOC_LAB1/dataset/KNN/heart_disease_uci.csv')\n",
648
- "display(df.head())\n",
649
- "df.info()"
650
- ]
651
- },
652
- {
653
- "cell_type": "code",
654
- "execution_count": null,
655
- "metadata": {
656
- "colab": {
657
- "base_uri": "https://localhost:8080/",
658
- "height": 0
659
- },
660
- "executionInfo": {
661
- "elapsed": 28,
662
- "status": "ok",
663
- "timestamp": 1741051643481,
664
- "user": {
665
- "displayName": "Jaison A",
666
- "userId": "07006398627763032071"
667
- },
668
- "user_tz": -330
669
- },
670
- "id": "kRJLOdSDnaH3",
671
- "outputId": "7f4ca5b9-dd81-4b25-f449-7ab5837dd475"
672
- },
673
- "outputs": [],
674
- "source": [
675
- "df=df.drop(columns=['id','ca'])\n",
676
- "display(df.head())\n",
677
- "\n",
678
- "for col in df.select_dtypes(include=['object']).columns:\n",
679
- " df[col]=df[col].astype('str')\n",
680
- " df[col]=LabelEncoder().fit_transform(df[col])\n",
681
- "\n",
682
- "display(df.head())"
683
- ]
684
- },
685
- {
686
- "cell_type": "code",
687
- "execution_count": null,
688
- "metadata": {
689
- "colab": {
690
- "base_uri": "https://localhost:8080/"
691
- },
692
- "executionInfo": {
693
- "elapsed": 7,
694
- "status": "ok",
695
- "timestamp": 1741051643490,
696
- "user": {
697
- "displayName": "Jaison A",
698
- "userId": "07006398627763032071"
699
- },
700
- "user_tz": -330
701
- },
702
- "id": "FPX8T0AUo4Fq",
703
- "outputId": "3fc16702-dbb5-4472-b04c-7993d26aa753"
704
- },
705
- "outputs": [],
706
- "source": [
707
- "print(df.isnull().sum())"
708
- ]
709
- },
710
- {
711
- "cell_type": "code",
712
- "execution_count": null,
713
- "metadata": {
714
- "executionInfo": {
715
- "elapsed": 2,
716
- "status": "ok",
717
- "timestamp": 1741051643494,
718
- "user": {
719
- "displayName": "Jaison A",
720
- "userId": "07006398627763032071"
721
- },
722
- "user_tz": -330
723
- },
724
- "id": "MfxJ653BpOt7"
725
- },
726
- "outputs": [],
727
- "source": [
728
- "df['trestbps']=df['trestbps'].fillna(df['trestbps'].mean())\n",
729
- "df['chol']=df['chol'].fillna(df['chol'].mean())\n",
730
- "df['thalch']=df['thalch'].fillna(df['thalch'].mean())\n",
731
- "df['oldpeak']=df['oldpeak'].fillna(df['oldpeak'].mean())"
732
- ]
733
- },
734
- {
735
- "cell_type": "markdown",
736
- "metadata": {
737
- "id": "vYZLZ6dyp0uy"
738
- },
739
- "source": [
740
- "**Without PCA**"
741
- ]
742
- },
743
- {
744
- "cell_type": "code",
745
- "execution_count": null,
746
- "metadata": {
747
- "colab": {
748
- "base_uri": "https://localhost:8080/"
749
- },
750
- "executionInfo": {
751
- "elapsed": 48,
752
- "status": "ok",
753
- "timestamp": 1741051643551,
754
- "user": {
755
- "displayName": "Jaison A",
756
- "userId": "07006398627763032071"
757
- },
758
- "user_tz": -330
759
- },
760
- "id": "tKjY9CGjtW_Q",
761
- "outputId": "506e2397-7fc4-4332-f7ac-581ba4a91be7"
762
- },
763
- "outputs": [],
764
- "source": [
765
- "kmeans=KMeans(n_clusters=5,random_state=42,n_init=10)\n",
766
- "y_pred_kmeans=kmeans.fit_predict(df.drop(columns=['num']))\n",
767
- "\n",
768
- "ari=adjusted_rand_score(df['num'],y_pred_kmeans)\n",
769
- "print(ari)"
770
- ]
771
- },
772
- {
773
- "cell_type": "markdown",
774
- "metadata": {
775
- "id": "deVfVji5uPnB"
776
- },
777
- "source": [
778
- "**With PCA**"
779
- ]
780
- },
781
- {
782
- "cell_type": "code",
783
- "execution_count": null,
784
- "metadata": {
785
- "colab": {
786
- "base_uri": "https://localhost:8080/"
787
- },
788
- "executionInfo": {
789
- "elapsed": 48,
790
- "status": "ok",
791
- "timestamp": 1741051643607,
792
- "user": {
793
- "displayName": "Jaison A",
794
- "userId": "07006398627763032071"
795
- },
796
- "user_tz": -330
797
- },
798
- "id": "_DuzNnwAuRkQ",
799
- "outputId": "8027f17a-f0a2-4737-b390-32ee25bbda7c"
800
- },
801
- "outputs": [],
802
- "source": [
803
- "pca=PCA(n_components=2)\n",
804
- "pca_x=pca.fit_transform(df.drop(columns=['num']))\n",
805
- "y_pred_kmeans=kmeans.fit_predict(pca_x)\n",
806
- "ari=adjusted_rand_score(df['num'],y_pred_kmeans)\n",
807
- "print(ari)"
808
- ]
809
- },
810
- {
811
- "cell_type": "code",
812
- "execution_count": null,
813
- "metadata": {
814
- "colab": {
815
- "base_uri": "https://localhost:8080/",
816
- "height": 0
817
- },
818
- "executionInfo": {
819
- "elapsed": 423,
820
- "status": "ok",
821
- "timestamp": 1741051644051,
822
- "user": {
823
- "displayName": "Jaison A",
824
- "userId": "07006398627763032071"
825
- },
826
- "user_tz": -330
827
- },
828
- "id": "kcofB6n_skcD",
829
- "outputId": "f55e545c-6fe9-4f19-cc1b-1513d89caabc"
830
- },
831
- "outputs": [],
832
- "source": [
833
- "plt.figure(figsize=(8, 6))\n",
834
- "scatter = plt.scatter(pca_x[:, 0], pca_x[:, 1], c=y_pred_kmeans, cmap='viridis', alpha=0.6)\n",
835
- "plt.colorbar(scatter, label='Digit Label')\n",
836
- "plt.xlabel('Principal Component 1')\n",
837
- "plt.ylabel('Principal Component 2')\n",
838
- "plt.title('K Means Clustering')\n",
839
- "plt.show()"
840
- ]
841
- },
842
- {
843
- "cell_type": "code",
844
- "execution_count": null,
845
- "metadata": {
846
- "colab": {
847
- "base_uri": "https://localhost:8080/"
848
- },
849
- "executionInfo": {
850
- "elapsed": 9,
851
- "status": "ok",
852
- "timestamp": 1741051644055,
853
- "user": {
854
- "displayName": "Jaison A",
855
- "userId": "07006398627763032071"
856
- },
857
- "user_tz": -330
858
- },
859
- "id": "pmdXFh2Pslhu",
860
- "outputId": "1f864500-b714-4c40-db6e-c10bf593fbb4"
861
- },
862
- "outputs": [],
863
- "source": [
864
- "X=df.drop(columns=['num'])\n",
865
- "X_reconstructed = pca.inverse_transform(pca_x)\n",
866
- "reconstruction_error = np.mean(np.square(X - X_reconstructed))\n",
867
- "print(f\"Reconstruction error: {reconstruction_error:.4f}\")"
868
- ]
869
- },
870
- {
871
- "cell_type": "markdown",
872
- "metadata": {
873
- "id": "z5iVUmUvF3mZ"
874
- },
875
- "source": [
876
- "### ***Question 5***"
877
- ]
878
- },
879
- {
880
- "cell_type": "code",
881
- "execution_count": null,
882
- "metadata": {
883
- "colab": {
884
- "base_uri": "https://localhost:8080/",
885
- "height": 206
886
- },
887
- "executionInfo": {
888
- "elapsed": 394,
889
- "status": "ok",
890
- "timestamp": 1741051644442,
891
- "user": {
892
- "displayName": "Jaison A",
893
- "userId": "07006398627763032071"
894
- },
895
- "user_tz": -330
896
- },
897
- "id": "CJ7Y5gaLF6LQ",
898
- "outputId": "3cbf424b-07ba-4fef-a73f-c000a5e9c074"
899
- },
900
- "outputs": [],
901
- "source": [
902
- "df=pd.read_csv('/content/drive/MyDrive/sem 6/Lab/ML Lab/SOC_LAB1/dataset/Regression/Housing.csv')\n",
903
- "le=LabelEncoder()\n",
904
- "for col in df.select_dtypes(include=['object']).columns:\n",
905
- " df[col]=le.fit_transform(df[col])\n",
906
- "display(df.head())"
907
- ]
908
- },
909
- {
910
- "cell_type": "code",
911
- "execution_count": null,
912
- "metadata": {
913
- "colab": {
914
- "base_uri": "https://localhost:8080/",
915
- "height": 465
916
- },
917
- "executionInfo": {
918
- "elapsed": 193,
919
- "status": "ok",
920
- "timestamp": 1741051644636,
921
- "user": {
922
- "displayName": "Jaison A",
923
- "userId": "07006398627763032071"
924
- },
925
- "user_tz": -330
926
- },
927
- "id": "W0cMte6vGo91",
928
- "outputId": "f9299ed7-2902-484a-a2c5-5c085dfc7bcb"
929
- },
930
- "outputs": [],
931
- "source": [
932
- "plt.scatter(x=df['area'],y=df['price'])\n",
933
- "plt.xlabel('area')\n",
934
- "plt.ylabel('price')\n",
935
- "plt.show()"
936
- ]
937
- },
938
- {
939
- "cell_type": "code",
940
- "execution_count": null,
941
- "metadata": {
942
- "colab": {
943
- "base_uri": "https://localhost:8080/"
944
- },
945
- "executionInfo": {
946
- "elapsed": 14,
947
- "status": "ok",
948
- "timestamp": 1741051644653,
949
- "user": {
950
- "displayName": "Jaison A",
951
- "userId": "07006398627763032071"
952
- },
953
- "user_tz": -330
954
- },
955
- "id": "tBRb-1x2G8cM",
956
- "outputId": "a915ec62-947d-4805-f162-22a2ea2d3c45"
957
- },
958
- "outputs": [],
959
- "source": [
960
- "features=[\n",
961
- " \"area\", \"bedrooms\", \"bathrooms\", \"stories\", \"mainroad\", \"guestroom\",\n",
962
- " \"basement\", \"hotwaterheating\", \"airconditioning\", \"parking\",\n",
963
- " \"prefarea\", \"furnishingstatus\"\n",
964
- "]\n",
965
- "\n",
966
- "\n",
967
- "x=df[['area']]\n",
968
- "y=df['price']\n",
969
- "\n",
970
- "X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)\n",
971
- "\n",
972
- "lg=LinearRegression()\n",
973
- "lg.fit(X_train,y_train)\n",
974
- "\n",
975
- "y_pred=lg.predict(X_test)\n",
976
- "\n",
977
- "print(f'r2_Score : {r2_score(y_test,y_pred)}')"
978
- ]
979
- },
980
- {
981
- "cell_type": "code",
982
- "execution_count": null,
983
- "metadata": {
984
- "colab": {
985
- "base_uri": "https://localhost:8080/"
986
- },
987
- "executionInfo": {
988
- "elapsed": 18,
989
- "status": "ok",
990
- "timestamp": 1741051644668,
991
- "user": {
992
- "displayName": "Jaison A",
993
- "userId": "07006398627763032071"
994
- },
995
- "user_tz": -330
996
- },
997
- "id": "d92QBRPwHIPD",
998
- "outputId": "24a67bdc-2b7f-4cbb-a177-0281cd54dff6"
999
- },
1000
- "outputs": [],
1001
- "source": [
1002
- "y=df[features]\n",
1003
- "x=df['price']\n",
1004
- "\n",
1005
- "X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)\n",
1006
- "\n",
1007
- "# Reshape X_train to a 2D array\n",
1008
- "X_train = X_train.values.reshape(-1, 1)\n",
1009
- "X_test = X_test.values.reshape(-1, 1) # Reshape X_test as well for consistency\n",
1010
- "\n",
1011
- "lg=LinearRegression()\n",
1012
- "lg.fit(X_train,y_train)\n",
1013
- "\n",
1014
- "y_pred=lg.predict(X_test)\n",
1015
- "\n",
1016
- "print(f'r2_Score : {r2_score(y_test,y_pred)}')"
1017
- ]
1018
- },
1019
- {
1020
- "cell_type": "code",
1021
- "execution_count": null,
1022
- "metadata": {
1023
- "colab": {
1024
- "base_uri": "https://localhost:8080/"
1025
- },
1026
- "executionInfo": {
1027
- "elapsed": 37,
1028
- "status": "ok",
1029
- "timestamp": 1741051644707,
1030
- "user": {
1031
- "displayName": "Jaison A",
1032
- "userId": "07006398627763032071"
1033
- },
1034
- "user_tz": -330
1035
- },
1036
- "id": "bZr_ZoedHOJI",
1037
- "outputId": "7a9a1d5e-18d6-4656-9ab0-e247abd8a5dc"
1038
- },
1039
- "outputs": [],
1040
- "source": [
1041
- "features=[\n",
1042
- " \"area\", \"bedrooms\", \"bathrooms\", \"stories\", \"mainroad\", \"guestroom\",\n",
1043
- " \"basement\", \"hotwaterheating\", \"airconditioning\", \"parking\",\n",
1044
- " \"prefarea\", \"furnishingstatus\"\n",
1045
- "]\n",
1046
- "X=df[features]\n",
1047
- "vif_data = pd.DataFrame()\n",
1048
- "vif_data[\"Feature\"] = features\n",
1049
- "vif_data[\"VIF\"] = [variance_inflation_factor(X.values, i) for i in range(len(features))]\n",
1050
- "print(\"\\nVariance Inflation Factor (VIF):\")\n",
1051
- "print(vif_data)"
1052
- ]
1053
- }
1054
- ],
1055
- "metadata": {
1056
- "colab": {
1057
- "authorship_tag": "ABX9TyOo5KSbG35NjuMjAiytt9Xd",
1058
- "collapsed_sections": [
1059
- "R7euuRFaCdIZ",
1060
- "qCogj3nw4UUy",
1061
- "ytnBNsap7xZZ",
1062
- "FU9VMoYaByfs",
1063
- "vugOPwlBFzmb"
1064
- ],
1065
- "provenance": []
1066
- },
1067
- "kernelspec": {
1068
- "display_name": "Python 3 (ipykernel)",
1069
- "language": "python",
1070
- "name": "python3"
1071
- },
1072
- "language_info": {
1073
- "codemirror_mode": {
1074
- "name": "ipython",
1075
- "version": 3
1076
- },
1077
- "file_extension": ".py",
1078
- "mimetype": "text/x-python",
1079
- "name": "python",
1080
- "nbconvert_exporter": "python",
1081
- "pygments_lexer": "ipython3",
1082
- "version": "3.12.4"
1083
- }
1084
- },
1085
- "nbformat": 4,
1086
- "nbformat_minor": 4
1087
- }