noshot 11.0.0__py3-none-any.whl → 13.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (93) hide show
  1. noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/1. DNN (Image Classification).ipynb +389 -0
  2. noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/2. DNN vs CNN.ipynb +516 -0
  3. noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/3. CNN (Object Detecrion).ipynb +259 -0
  4. noshot/data/DLE FSD BDA/DLE/DLE 1 (Json)/4. FCN (Image Segmentaion).ipynb +274 -0
  5. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.1 DNN (Pytorch).ipynb +164 -0
  6. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.2 DNN (Tensorflow).ipynb +94 -0
  7. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/1.3 DNN (Image Classification).ipynb +134 -0
  8. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/2.1 DNN vs CNN.ipynb +127 -0
  9. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/2.2 DNN vs CNN.ipynb +123 -0
  10. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/4. FCNN (Image Segmentation).ipynb +108 -0
  11. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/Lab Excercise (Training DNN).ipynb +646 -0
  12. noshot/data/DLE FSD BDA/DLE/DLE 2 (tim stan s)/Load-Images.ipynb +553 -0
  13. noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex1.ipynb +216 -0
  14. noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex2.ipynb +195 -0
  15. noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex3.ipynb +427 -0
  16. noshot/data/DLE FSD BDA/DLE/DLE 3 (sonic boy)/Ex4.ipynb +186 -0
  17. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/DNN Ex No 1.ipynb +398 -0
  18. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Ex No 1 Build in dataset.ipynb +171 -0
  19. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/Exp1-Short-DL_ANN_ImageClassification.ipynb +401 -0
  20. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp01/OR GATE .ipynb +8511 -0
  21. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp02/Exp2-Short-DL_CNN_ImageClassification.ipynb +737 -0
  22. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp03/DL-Ex3-RNN.ipynb +591 -0
  23. noshot/data/DLE FSD BDA/DLE/DLE 4 (senior)/Exp04/Ex no 4.ipynb +551 -0
  24. noshot/main.py +3 -3
  25. {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/METADATA +1 -1
  26. noshot-13.0.0.dist-info/RECORD +32 -0
  27. noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb +0 -201
  28. noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb +0 -201
  29. noshot/data/ML TS XAI/ML/Json Codes/ML LAB CIA 2.ipynb +0 -409
  30. noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Balance Scale Dataset).ipynb +0 -147
  31. noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Rice Dataset).ipynb +0 -181
  32. noshot/data/ML TS XAI/ML/ML 1/10. HMM Veterbi.ipynb +0 -152
  33. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Balance Scale Dataset).ipynb +0 -117
  34. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Iris Dataset).ipynb +0 -156
  35. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Sobar-72 Dataset).ipynb +0 -215
  36. noshot/data/ML TS XAI/ML/ML 1/3. LDA (Balance Scale Dataset).ipynb +0 -78
  37. noshot/data/ML TS XAI/ML/ML 1/3. LDA (NPHA Doctor Visits Dataset).ipynb +0 -114
  38. noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Machine Dataset).ipynb +0 -115
  39. noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Real Estate Dataset).ipynb +0 -146
  40. noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Magic04 Dataset).ipynb +0 -130
  41. noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Wine Dataset).ipynb +0 -112
  42. noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +0 -118
  43. noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Wine Dataset).ipynb +0 -89
  44. noshot/data/ML TS XAI/ML/ML 1/7. SVM (Rice Dataset).ipynb +0 -120
  45. noshot/data/ML TS XAI/ML/ML 1/8. FeedForward NN (Sobar72 Dataset).ipynb +0 -262
  46. noshot/data/ML TS XAI/ML/ML 1/9. CNN (Cifar10 Dataset).ipynb +0 -156
  47. noshot/data/ML TS XAI/ML/ML 2/1. PCA.ipynb +0 -162
  48. noshot/data/ML TS XAI/ML/ML 2/10. CNN.ipynb +0 -100
  49. noshot/data/ML TS XAI/ML/ML 2/11. HMM.ipynb +0 -336
  50. noshot/data/ML TS XAI/ML/ML 2/2. KNN.ipynb +0 -149
  51. noshot/data/ML TS XAI/ML/ML 2/3. LDA.ipynb +0 -132
  52. noshot/data/ML TS XAI/ML/ML 2/4. Linear Regression.ipynb +0 -86
  53. noshot/data/ML TS XAI/ML/ML 2/5. Logistic Regression.ipynb +0 -115
  54. noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Titanic).ipynb +0 -196
  55. noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Wine).ipynb +0 -98
  56. noshot/data/ML TS XAI/ML/ML 2/7. SVM Linear.ipynb +0 -109
  57. noshot/data/ML TS XAI/ML/ML 2/8. SVM Non-Linear.ipynb +0 -195
  58. noshot/data/ML TS XAI/ML/ML 2/9. FNN With Regularization.ipynb +0 -189
  59. noshot/data/ML TS XAI/ML/ML 2/9. FNN Without Regularization.ipynb +0 -197
  60. noshot/data/ML TS XAI/ML/ML 2/All in One Lab CIA 1 Q.ipynb +0 -1087
  61. noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb +0 -274
  62. noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb +0 -170
  63. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb +0 -1087
  64. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb +0 -178
  65. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb +0 -185
  66. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb +0 -106
  67. noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb +0 -177
  68. noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb +0 -195
  69. noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb +0 -267
  70. noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb +0 -104
  71. noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb +0 -109
  72. noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb +0 -220
  73. noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb +0 -99
  74. noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb +0 -211
  75. noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb +0 -99
  76. noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb +0 -118
  77. noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb +0 -603
  78. noshot/data/ML TS XAI/ML/ML Lab AllinOne.ipynb +0 -961
  79. noshot/data/ML TS XAI/ML/ML Lab H Sec/1. Iris Dataset (Softmax vs Sigmoid).ipynb +0 -231
  80. noshot/data/ML TS XAI/ML/ML Lab H Sec/2. Student Dataset (Overfit vs Regularized).ipynb +0 -269
  81. noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Categorical (Overfit vs Regularized).ipynb +0 -274
  82. noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Numerical (Overfit vs Regularized).ipynb +0 -263
  83. noshot/data/ML TS XAI/ML/ML Lab H Sec/4. Smart House System HMM.ipynb +0 -198
  84. noshot/data/ML TS XAI/ML/ML Lab H Sec/5. Fraud Detection System HMM.ipynb +0 -201
  85. noshot/data/ML TS XAI/ML/ML Lab H Sec/insurance.csv +0 -1339
  86. noshot/data/ML TS XAI/ML/ML Lab H Sec/iris1.data +0 -151
  87. noshot/data/ML TS XAI/ML/ML Lab H Sec/student-mat.csv +0 -396
  88. noshot/data/ML TS XAI/ML/ML Lab H Sec/student-por.csv +0 -650
  89. noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +0 -691
  90. noshot-11.0.0.dist-info/RECORD +0 -72
  91. {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/WHEEL +0 -0
  92. {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/licenses/LICENSE.txt +0 -0
  93. {noshot-11.0.0.dist-info → noshot-13.0.0.dist-info}/top_level.txt +0 -0
@@ -1,691 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "c9eed15a-01b3-4a60-830c-ffe6cf24913f",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "#CNN\n",
11
- "import tensorflow as tf\n",
12
- "from tensorflow.keras.models import Sequential\n",
13
- "from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense\n",
14
- "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n",
15
- "from tensorflow.keras.utils import to_categorical\n",
16
- "from sklearn.metrics import classification_report, confusion_matrix\n",
17
- "import matplotlib.pyplot as plt\n",
18
- "import seaborn as sns\n",
19
- "import numpy as np\n",
20
- "\n",
21
- "# Set directory paths\n",
22
- "train_dir = 'path_to_train_directory'\n",
23
- "test_dir = 'path_to_test_directory'\n",
24
- "\n",
25
- "# Image Data Generator for data preprocessing (rescaling and augmentation)\n",
26
- "train_datagen = ImageDataGenerator(\n",
27
- " rescale=1./255,\n",
28
- " horizontal_flip=True,\n",
29
- " zoom_range=0.2,\n",
30
- " shear_range=0.2,\n",
31
- " rotation_range=20\n",
32
- ")\n",
33
- "\n",
34
- "test_datagen = ImageDataGenerator(rescale=1./255)\n",
35
- "\n",
36
- "# Flow images from directories\n",
37
- "train_generator = train_datagen.flow_from_directory(\n",
38
- " train_dir,\n",
39
- " target_size=(32, 32),\n",
40
- " batch_size=32,\n",
41
- " class_mode='categorical'\n",
42
- ")\n",
43
- "\n",
44
- "test_generator = test_datagen.flow_from_directory(\n",
45
- " test_dir,\n",
46
- " target_size=(32, 32),\n",
47
- " batch_size=32,\n",
48
- " class_mode='categorical'\n",
49
- ")\n",
50
- "\n",
51
- "# Build CNN\n",
52
- "model = Sequential([\n",
53
- " Conv2D(32, (3,3), activation='relu', input_shape=(32,32,3)),\n",
54
- " MaxPooling2D(2,2),\n",
55
- " Conv2D(64, (3,3), activation='relu'),\n",
56
- " MaxPooling2D(2,2),\n",
57
- " Conv2D(64, (3,3), activation='relu'),\n",
58
- " MaxPooling2D(2,2),\n",
59
- " Flatten(),\n",
60
- " Dense(128, activation='relu'),\n",
61
- " Dense(10, activation='softmax') # 10 classes in CIFAR-10 dataset\n",
62
- "])\n",
63
- "\n",
64
- "# Compile model\n",
65
- "model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])\n",
66
- "\n",
67
- "# Train model\n",
68
- "history = model.fit(\n",
69
- " train_generator,\n",
70
- " epochs=10,\n",
71
- " validation_data=test_generator\n",
72
- ")\n",
73
- "\n",
74
- "# Plot accuracy & loss\n",
75
- "plt.figure(figsize=(12, 4))\n",
76
- "plt.subplot(1, 2, 1)\n",
77
- "plt.plot(history.history['accuracy'], label='Train')\n",
78
- "plt.plot(history.history['val_accuracy'], label='Val')\n",
79
- "plt.title(\"Model Accuracy\")\n",
80
- "plt.xlabel(\"Epochs\")\n",
81
- "plt.ylabel(\"Accuracy\")\n",
82
- "plt.legend()\n",
83
- "\n",
84
- "plt.subplot(1, 2, 2)\n",
85
- "plt.plot(history.history['loss'], label='Train')\n",
86
- "plt.plot(history.history['val_loss'], label='Val')\n",
87
- "plt.title(\"Model Loss\")\n",
88
- "plt.xlabel(\"Epochs\")\n",
89
- "plt.ylabel(\"Loss\")\n",
90
- "plt.legend()\n",
91
- "plt.show()\n",
92
- "\n",
93
- "# Predictions and classification report\n",
94
- "y_pred = model.predict(test_generator)\n",
95
- "y_pred_classes = np.argmax(y_pred, axis=1)\n",
96
- "\n",
97
- "# True labels from test_generator\n",
98
- "y_true = test_generator.classes\n",
99
- "\n",
100
- "# Classification report\n",
101
- "print(\"Classification Report:\")\n",
102
- "print(classification_report(y_true, y_pred_classes))\n",
103
- "\n",
104
- "# Confusion matrix\n",
105
- "cm = confusion_matrix(y_true, y_pred_classes)\n",
106
- "plt.figure(figsize=(10, 8))\n",
107
- "sns.heatmap(cm, annot=True, fmt=\"d\", cmap='Blues')\n",
108
- "plt.title(\"Confusion Matrix\")\n",
109
- "plt.xlabel(\"Predicted Label\")\n",
110
- "plt.ylabel(\"True Label\")\n",
111
- "plt.show()\n"
112
- ]
113
- },
114
- {
115
- "cell_type": "code",
116
- "execution_count": null,
117
- "id": "fcbf452d-1962-4ae8-bb35-595f0f664d8a",
118
- "metadata": {},
119
- "outputs": [],
120
- "source": [
121
- "#CNN preloaded data\n",
122
- "\n",
123
- "import tensorflow as tf\n",
124
- "from tensorflow.keras.models import Sequential\n",
125
- "from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense\n",
126
- "from tensorflow.keras.utils import to_categorical\n",
127
- "from sklearn.metrics import classification_report, confusion_matrix\n",
128
- "import matplotlib.pyplot as plt\n",
129
- "import seaborn as sns\n",
130
- "import numpy as np\n",
131
- "\n",
132
- "# Load dataset\n",
133
- "(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()\n",
134
- "\n",
135
- "# Normalize and one-hot encode\n",
136
- "x_train, x_test = x_train / 255.0, x_test / 255.0\n",
137
- "y_train_cat = to_categorical(y_train, 10)\n",
138
- "y_test_cat = to_categorical(y_test, 10)\n",
139
- "\n",
140
- "# Build CNN\n",
141
- "model = Sequential([\n",
142
- " Conv2D(32, (3,3), activation='relu', input_shape=(32,32,3)),\n",
143
- " MaxPooling2D(2,2),\n",
144
- " Conv2D(64, (3,3), activation='relu'),\n",
145
- " MaxPooling2D(2,2),\n",
146
- " Conv2D(64, (3,3), activation='relu'),\n",
147
- " MaxPooling2D(2,2),\n",
148
- " Flatten(),\n",
149
- " Dense(128, activation='relu'),\n",
150
- " Dense(10, activation='softmax')\n",
151
- "])\n",
152
- "\n",
153
- "# Compile\n",
154
- "model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])\n",
155
- "\n",
156
- "# Train\n",
157
- "history = model.fit(x_train, y_train_cat, epochs=10, validation_data=(x_test, y_test_cat))\n",
158
- "\n",
159
- "# Plot accuracy & loss\n",
160
- "plt.figure(figsize=(12, 4))\n",
161
- "plt.subplot(1, 2, 1)\n",
162
- "plt.plot(history.history['accuracy'], label='Train')\n",
163
- "plt.plot(history.history['val_accuracy'], label='Val')\n",
164
- "plt.title(\"Model Accuracy\")\n",
165
- "plt.xlabel(\"Epochs\")\n",
166
- "plt.ylabel(\"Accuracy\")\n",
167
- "plt.legend()\n",
168
- "\n",
169
- "plt.subplot(1, 2, 2)\n",
170
- "plt.plot(history.history['loss'], label='Train')\n",
171
- "plt.plot(history.history['val_loss'], label='Val')\n",
172
- "plt.title(\"Model Loss\")\n",
173
- "plt.xlabel(\"Epochs\")\n",
174
- "plt.ylabel(\"Loss\")\n",
175
- "plt.legend()\n",
176
- "plt.show()\n",
177
- "\n",
178
- "# Predictions and classification report\n",
179
- "y_pred = model.predict(x_test)\n",
180
- "y_pred_classes = np.argmax(y_pred, axis=1)\n",
181
- "y_true = y_test.flatten()\n",
182
- "\n",
183
- "# Classification report\n",
184
- "print(\"Classification Report:\")\n",
185
- "print(classification_report(y_true, y_pred_classes))\n",
186
- "\n",
187
- "# Confusion matrix\n",
188
- "cm = confusion_matrix(y_true, y_pred_classes)\n",
189
- "plt.figure(figsize=(10, 8))\n",
190
- "sns.heatmap(cm, annot=True, fmt=\"d\", cmap='Blues')\n",
191
- "plt.title(\"Confusion Matrix\")\n",
192
- "plt.xlabel(\"Predicted Label\")\n",
193
- "plt.ylabel(\"True Label\")\n",
194
- "plt.show()\n"
195
- ]
196
- },
197
- {
198
- "cell_type": "code",
199
- "execution_count": null,
200
- "id": "5a729281-229e-4a51-9f7c-71f1c6f65c42",
201
- "metadata": {},
202
- "outputs": [],
203
- "source": [
204
- "#SVM\n",
205
- "\n",
206
- "import pandas as pd\n",
207
- "from sklearn.model_selection import train_test_split\n",
208
- "from sklearn.preprocessing import StandardScaler\n",
209
- "from sklearn.svm import SVC\n",
210
- "from sklearn.metrics import classification_report, confusion_matrix\n",
211
- "from sklearn.decomposition import PCA\n",
212
- "import matplotlib.pyplot as plt\n",
213
- "import seaborn as sns\n",
214
- "\n",
215
- "# Load dataset\n",
216
- "df = pd.read_csv('ML TS XAI/ML/data/wine-dataset.csv') # Change to your CSV filename\n",
217
- "\n",
218
- "# Split features and target\n",
219
- "X = df.drop('target', axis=1) # Change 'label' to your actual target column\n",
220
- "y = df['target']\n",
221
- "\n",
222
- "# Train-test split\n",
223
- "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
224
- "\n",
225
- "# Standardize features\n",
226
- "scaler = StandardScaler()\n",
227
- "X_train = scaler.fit_transform(X_train)\n",
228
- "X_test = scaler.transform(X_test)\n",
229
- "\n",
230
- "# Train SVM\n",
231
- "svm_model = SVC(kernel='rbf', C=1.0, gamma='scale')\n",
232
- "svm_model.fit(X_train, y_train)\n",
233
- "\n",
234
- "# Predict\n",
235
- "y_pred = svm_model.predict(X_test)\n",
236
- "\n",
237
- "# Classification report\n",
238
- "print(\"Classification Report:\")\n",
239
- "print(classification_report(y_test, y_pred))\n",
240
- "\n",
241
- "# Confusion Matrix\n",
242
- "cm = confusion_matrix(y_test, y_pred)\n",
243
- "plt.figure(figsize=(8, 6))\n",
244
- "sns.heatmap(cm, annot=True, fmt=\"d\", cmap='Purples')\n",
245
- "plt.title(\"Confusion Matrix\")\n",
246
- "plt.xlabel(\"Predicted\")\n",
247
- "plt.ylabel(\"Actual\")\n",
248
- "plt.show()\n",
249
- "\n",
250
- "# Optional: PCA 2D visualization (for visual separation)\n",
251
- "pca = PCA(n_components=2)\n",
252
- "X_pca = pca.fit_transform(X_test)\n",
253
- "\n",
254
- "plt.figure(figsize=(8, 6))\n",
255
- "sns.scatterplot(x=X_pca[:, 0], y=X_pca[:, 1], hue=y_pred, palette='Set2', s=60)\n",
256
- "plt.title(\"SVM Predictions (Visualized with PCA)\")\n",
257
- "plt.xlabel(\"PCA 1\")\n",
258
- "plt.ylabel(\"PCA 2\")\n",
259
- "plt.legend(title='Predicted Class')\n",
260
- "plt.grid(True)\n",
261
- "plt.show()\n"
262
- ]
263
- },
264
- {
265
- "cell_type": "code",
266
- "execution_count": null,
267
- "id": "47118414-c5b3-4f3a-9f45-e607861207d7",
268
- "metadata": {},
269
- "outputs": [],
270
- "source": [
271
- "#logistic Regression\n",
272
- "\n",
273
- "import pandas as pd\n",
274
- "from sklearn.model_selection import train_test_split\n",
275
- "from sklearn.preprocessing import StandardScaler\n",
276
- "from sklearn.linear_model import LogisticRegression\n",
277
- "from sklearn.metrics import classification_report, confusion_matrix, roc_curve, auc\n",
278
- "from sklearn.decomposition import PCA\n",
279
- "import matplotlib.pyplot as plt\n",
280
- "import seaborn as sns\n",
281
- "\n",
282
- "# Load dataset\n",
283
- "# Load dataset\n",
284
- "df = pd.read_csv('ML TS XAI/ML/data/wine-dataset.csv') # Change to your CSV filename\n",
285
- "\n",
286
- "# Split features and target\n",
287
- "X = df.drop('target', axis=1) # Change 'label' to your actual target column\n",
288
- "y = df['target']\n",
289
- "\n",
290
- "# Train-test split\n",
291
- "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
292
- "\n",
293
- "# Feature scaling\n",
294
- "scaler = StandardScaler()\n",
295
- "X_train = scaler.fit_transform(X_train)\n",
296
- "X_test = scaler.transform(X_test)\n",
297
- "\n",
298
- "# Train logistic regression\n",
299
- "logreg = LogisticRegression(max_iter=1000)\n",
300
- "logreg.fit(X_train, y_train)\n",
301
- "\n",
302
- "# Predict labels\n",
303
- "y_pred = logreg.predict(X_test)\n",
304
- "\n",
305
- "# Classification report\n",
306
- "print(\"Classification Report:\")\n",
307
- "print(classification_report(y_test, y_pred))\n",
308
- "\n",
309
- "# Confusion Matrix\n",
310
- "cm = confusion_matrix(y_test, y_pred)\n",
311
- "plt.figure(figsize=(8, 6))\n",
312
- "sns.heatmap(cm, annot=True, fmt=\"d\", cmap='Greens')\n",
313
- "plt.title(\"Confusion Matrix\")\n",
314
- "plt.xlabel(\"Predicted\")\n",
315
- "plt.ylabel(\"Actual\")\n",
316
- "plt.show()\n",
317
- "\n",
318
- "# PCA 2D Scatter plot\n",
319
- "pca = PCA(n_components=2)\n",
320
- "X_pca = pca.fit_transform(X_test)\n",
321
- "\n",
322
- "plt.figure(figsize=(8, 6))\n",
323
- "sns.scatterplot(x=X_pca[:, 0], y=X_pca[:, 1], hue=y_pred, palette='coolwarm', s=60)\n",
324
- "plt.title(\"Logistic Regression Predictions (PCA 2D)\")\n",
325
- "plt.xlabel(\"PCA Component 1\")\n",
326
- "plt.ylabel(\"PCA Component 2\")\n",
327
- "plt.legend(title='Predicted Class')\n",
328
- "plt.grid(True)\n",
329
- "plt.show()\n",
330
- "\n",
331
- "# ROC Curve (Only for binary classification)\n",
332
- "if len(y.unique()) == 2:\n",
333
- " y_prob = logreg.predict_proba(X_test)[:, 1]\n",
334
- " fpr, tpr, _ = roc_curve(y_test, y_prob)\n",
335
- " roc_auc = auc(fpr, tpr)\n",
336
- "\n",
337
- " plt.figure(figsize=(8, 6))\n",
338
- " plt.plot(fpr, tpr, label=f\"ROC Curve (AUC = {roc_auc:.2f})\", color='darkorange')\n",
339
- " plt.plot([0, 1], [0, 1], linestyle='--', color='gray')\n",
340
- " plt.title(\"ROC Curve\")\n",
341
- " plt.xlabel(\"False Positive Rate\")\n",
342
- " plt.ylabel(\"True Positive Rate\")\n",
343
- " plt.legend()\n",
344
- " plt.grid(True)\n",
345
- " plt.show()\n",
346
- "else:\n",
347
- " print(\"ROC Curve skipped — works only for binary classification.\")\n"
348
- ]
349
- },
350
- {
351
- "cell_type": "code",
352
- "execution_count": null,
353
- "id": "1a438b33-1336-4f80-8bd8-85bf18d04fe9",
354
- "metadata": {},
355
- "outputs": [],
356
- "source": [
357
- "#Bayseian Classifier\n",
358
- "import pandas as pd\n",
359
- "from sklearn.model_selection import train_test_split\n",
360
- "from sklearn.preprocessing import StandardScaler\n",
361
- "from sklearn.naive_bayes import GaussianNB\n",
362
- "from sklearn.metrics import classification_report, confusion_matrix, roc_curve, auc\n",
363
- "from sklearn.decomposition import PCA\n",
364
- "import matplotlib.pyplot as plt\n",
365
- "import seaborn as sns\n",
366
- "\n",
367
- "# Load dataset\n",
368
- "# Load dataset\n",
369
- "df = pd.read_csv('ML TS XAI/ML/data/wine-dataset.csv') # Change to your CSV filename\n",
370
- "\n",
371
- "# Split features and target\n",
372
- "X = df.drop('target', axis=1) # Change 'label' to your actual target column\n",
373
- "y = df['target']\n",
374
- "\n",
375
- "# Train-test split\n",
376
- "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
377
- "\n",
378
- "# Feature scaling\n",
379
- "scaler = StandardScaler()\n",
380
- "X_train = scaler.fit_transform(X_train)\n",
381
- "X_test = scaler.transform(X_test)\n",
382
- "\n",
383
- "# Train Naive Bayes Classifier\n",
384
- "nb = GaussianNB()\n",
385
- "nb.fit(X_train, y_train)\n",
386
- "\n",
387
- "# Predict labels\n",
388
- "y_pred = nb.predict(X_test)\n",
389
- "\n",
390
- "# Classification report\n",
391
- "print(\"Classification Report:\")\n",
392
- "print(classification_report(y_test, y_pred))\n",
393
- "\n",
394
- "# Confusion Matrix\n",
395
- "cm = confusion_matrix(y_test, y_pred)\n",
396
- "plt.figure(figsize=(8, 6))\n",
397
- "sns.heatmap(cm, annot=True, fmt=\"d\", cmap='Blues')\n",
398
- "plt.title(\"Confusion Matrix\")\n",
399
- "plt.xlabel(\"Predicted\")\n",
400
- "plt.ylabel(\"Actual\")\n",
401
- "plt.show()\n",
402
- "\n",
403
- "# PCA 2D Scatter plot\n",
404
- "pca = PCA(n_components=2)\n",
405
- "X_pca = pca.fit_transform(X_test)\n",
406
- "\n",
407
- "plt.figure(figsize=(8, 6))\n",
408
- "sns.scatterplot(x=X_pca[:, 0], y=X_pca[:, 1], hue=y_pred, palette='coolwarm', s=60)\n",
409
- "plt.title(\"Naive Bayes Predictions (PCA 2D)\")\n",
410
- "plt.xlabel(\"PCA Component 1\")\n",
411
- "plt.ylabel(\"PCA Component 2\")\n",
412
- "plt.legend(title='Predicted Class')\n",
413
- "plt.grid(True)\n",
414
- "plt.show()\n",
415
- "\n",
416
- "# ROC Curve (Only for binary classification)\n",
417
- "if len(y.unique()) == 2:\n",
418
- " y_prob = nb.predict_proba(X_test)[:, 1]\n",
419
- " fpr, tpr, _ = roc_curve(y_test, y_prob)\n",
420
- " roc_auc = auc(fpr, tpr)\n",
421
- "\n",
422
- " plt.figure(figsize=(8, 6))\n",
423
- " plt.plot(fpr, tpr, label=f\"ROC Curve (AUC = {roc_auc:.2f})\", color='darkorange')\n",
424
- " plt.plot([0, 1], [0, 1], linestyle='--', color='gray')\n",
425
- " plt.title(\"ROC Curve\")\n",
426
- " plt.xlabel(\"False Positive Rate\")\n",
427
- " plt.ylabel(\"True Positive Rate\")\n",
428
- " plt.legend()\n",
429
- " plt.grid(True)\n",
430
- " plt.show()\n",
431
- "else:\n",
432
- " print(\"ROC Curve skipped — works only for binary classification.\")\n"
433
- ]
434
- },
435
- {
436
- "cell_type": "code",
437
- "execution_count": null,
438
- "id": "76cb7d36-be60-42a4-8089-8dd3f33d32e6",
439
- "metadata": {},
440
- "outputs": [],
441
- "source": [
442
- "#FeedFOrwardNeuralNetwork\n",
443
- "\n",
444
- "import pandas as pd\n",
445
- "from sklearn.model_selection import train_test_split\n",
446
- "from sklearn.preprocessing import StandardScaler\n",
447
- "from sklearn.metrics import classification_report, confusion_matrix, roc_curve, auc\n",
448
- "from sklearn.decomposition import PCA\n",
449
- "import matplotlib.pyplot as plt\n",
450
- "import seaborn as sns\n",
451
- "from tensorflow.keras.models import Sequential\n",
452
- "from tensorflow.keras.layers import Dense\n",
453
- "\n",
454
- "# Load dataset\n",
455
- "# Load dataset\n",
456
- "df = pd.read_csv('ML TS XAI/ML/data/wine-dataset.csv') # Change to your CSV filename\n",
457
- "\n",
458
- "# Split features and target\n",
459
- "X = df.drop('target', axis=1) # Change 'label' to your actual target column\n",
460
- "y = df['target']\n",
461
- "# Train-test split\n",
462
- "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
463
- "\n",
464
- "# Feature scaling\n",
465
- "scaler = StandardScaler()\n",
466
- "X_train = scaler.fit_transform(X_train)\n",
467
- "X_test = scaler.transform(X_test)\n",
468
- "\n",
469
- "# Build Feedforward Neural Network\n",
470
- "model = Sequential()\n",
471
- "model.add(Dense(128, input_dim=X_train.shape[1], activation='relu')) # Hidden Layer\n",
472
- "model.add(Dense(64, activation='relu')) # Hidden Layer\n",
473
- "model.add(Dense(1, activation='sigmoid')) # Output Layer (for binary classification)\n",
474
- "\n",
475
- "# Compile the model\n",
476
- "model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])\n",
477
- "\n",
478
- "# Train the model\n",
479
- "history = model.fit(X_train, y_train, epochs=50, batch_size=32, validation_data=(X_test, y_test))\n",
480
- "\n",
481
- "# Predict labels\n",
482
- "y_pred = (model.predict(X_test) > 0.5).astype(\"int32\")\n",
483
- "\n",
484
- "# Classification report\n",
485
- "print(\"Classification Report:\")\n",
486
- "print(classification_report(y_test, y_pred))\n",
487
- "\n",
488
- "# Confusion Matrix\n",
489
- "cm = confusion_matrix(y_test, y_pred)\n",
490
- "plt.figure(figsize=(8, 6))\n",
491
- "sns.heatmap(cm, annot=True, fmt=\"d\", cmap='Blues')\n",
492
- "plt.title(\"Confusion Matrix\")\n",
493
- "plt.xlabel(\"Predicted\")\n",
494
- "plt.ylabel(\"Actual\")\n",
495
- "plt.show()\n",
496
- "\n",
497
- "# PCA 2D Scatter plot\n",
498
- "pca = PCA(n_components=2)\n",
499
- "X_pca = pca.fit_transform(X_test)\n",
500
- "\n",
501
- "plt.figure(figsize=(8, 6))\n",
502
- "sns.scatterplot(x=X_pca[:, 0], y=X_pca[:, 1], hue=y_pred.flatten(), palette='coolwarm', s=60)\n",
503
- "plt.title(\"Feedforward Neural Network Predictions (PCA 2D)\")\n",
504
- "plt.xlabel(\"PCA Component 1\")\n",
505
- "plt.ylabel(\"PCA Component 2\")\n",
506
- "plt.legend(title='Predicted Class')\n",
507
- "plt.grid(True)\n",
508
- "plt.show()\n",
509
- "\n",
510
- "# ROC Curve (Only for binary classification)\n",
511
- "if len(y.unique()) == 2:\n",
512
- " y_prob = model.predict(X_test)\n",
513
- " fpr, tpr, _ = roc_curve(y_test, y_prob)\n",
514
- " roc_auc = auc(fpr, tpr)\n",
515
- "\n",
516
- " plt.figure(figsize=(8, 6))\n",
517
- " plt.plot(fpr, tpr, label=f\"ROC Curve (AUC = {roc_auc:.2f})\", color='darkorange')\n",
518
- " plt.plot([0, 1], [0, 1], linestyle='--', color='gray')\n",
519
- " plt.title(\"ROC Curve\")\n",
520
- " plt.xlabel(\"False Positive Rate\")\n",
521
- " plt.ylabel(\"True Positive Rate\")\n",
522
- " plt.legend()\n",
523
- " plt.grid(True)\n",
524
- " plt.show()\n",
525
- "else:\n",
526
- " print(\"ROC Curve skipped — works only for binary classification.\")\n",
527
- "# Plot training & validation accuracy and loss\n",
528
- "plt.figure(figsize=(12, 6))\n",
529
- "\n",
530
- "# Accuracy plot\n",
531
- "plt.subplot(1, 2, 1)\n",
532
- "plt.plot(history.history['accuracy'], label='train accuracy')\n",
533
- "plt.plot(history.history['val_accuracy'], label='val accuracy')\n",
534
- "plt.title('Training and Validation Accuracy')\n",
535
- "plt.xlabel('Epochs')\n",
536
- "plt.ylabel('Accuracy')\n",
537
- "plt.legend()\n",
538
- "\n",
539
- "# Loss plot\n",
540
- "plt.subplot(1, 2, 2)\n",
541
- "plt.plot(history.history['loss'], label='train loss')\n",
542
- "plt.plot(history.history['val_loss'], label='val loss')\n",
543
- "plt.title('Training and Validation Loss')\n",
544
- "plt.xlabel('Epochs')\n",
545
- "plt.ylabel('Loss')\n",
546
- "plt.legend()\n",
547
- "\n",
548
- "plt.tight_layout()\n",
549
- "plt.show()\n"
550
- ]
551
- },
552
- {
553
- "cell_type": "code",
554
- "execution_count": null,
555
- "id": "cc441bb8-59f8-4c0d-8cfc-526d308bb229",
556
- "metadata": {},
557
- "outputs": [],
558
- "source": [
559
- "import numpy as np\n",
560
- "\n",
561
- "# Define the HMM parameters (example with 2 states and 3 observations)\n",
562
- "states = ['S1', 'S2']\n",
563
- "observations = ['O1', 'O2', 'O3']\n",
564
- "\n",
565
- "# Transition probabilities\n",
566
- "A = np.array([\n",
567
- " [0.7, 0.3], # P(S1->S1, S1->S2)\n",
568
- " [0.4, 0.6] # P(S2->S1, S2->S2)\n",
569
- "])\n",
570
- "\n",
571
- "# Emission probabilities\n",
572
- "B = np.array([\n",
573
- " [0.5, 0.4, 0.1], # P(O1|S1), P(O2|S1), P(O3|S1)\n",
574
- " [0.1, 0.3, 0.6] # P(O1|S2), P(O2|S2), P(O3|S2)\n",
575
- "])\n",
576
- "\n",
577
- "# Initial probabilities\n",
578
- "pi = np.array([0.6, 0.4]) # P(S1), P(S2)\n",
579
- "\n",
580
- "# Observations sequence (e.g., O1, O2, O1)\n",
581
- "obs_sequence = [0, 1, 0] # Indices of O1, O2, O1 in the 'observations' list\n",
582
- "\n",
583
- "# FORWARD ALGORITHM (Forward Chaining)\n",
584
- "def forward(A, B, pi, obs_sequence):\n",
585
- " T = len(obs_sequence)\n",
586
- " N = len(A)\n",
587
- " \n",
588
- " # Initialize forward probability matrix (alpha)\n",
589
- " alpha = np.zeros((T, N))\n",
590
- " \n",
591
- " # Initialization step\n",
592
- " alpha[0, :] = pi * B[:, obs_sequence[0]]\n",
593
- " \n",
594
- " # Recursion step\n",
595
- " for t in range(1, T):\n",
596
- " for j in range(N):\n",
597
- " alpha[t, j] = B[j, obs_sequence[t]] * np.sum(alpha[t-1, :] * A[:, j])\n",
598
- " \n",
599
- " # Termination step\n",
600
- " prob = np.sum(alpha[T-1, :])\n",
601
- " return prob, alpha\n",
602
- "\n",
603
- "# BACKWARD ALGORITHM (Backward Chaining)\n",
604
- "def backward(A, B, obs_sequence):\n",
605
- " T = len(obs_sequence)\n",
606
- " N = len(A)\n",
607
- " \n",
608
- " # Initialize backward probability matrix (beta)\n",
609
- " beta = np.zeros((T, N))\n",
610
- " \n",
611
- " # Initialization step\n",
612
- " beta[T-1, :] = 1\n",
613
- " \n",
614
- " # Recursion step (backward direction)\n",
615
- " for t in range(T-2, -1, -1):\n",
616
- " for i in range(N):\n",
617
- " beta[t, i] = np.sum(A[i, :] * B[:, obs_sequence[t+1]] * beta[t+1, :])\n",
618
- " \n",
619
- " return beta\n",
620
- "\n",
621
- "# VITERBI ALGORITHM (for finding the most likely state sequence)\n",
622
- "def viterbi(A, B, pi, obs_sequence):\n",
623
- " T = len(obs_sequence)\n",
624
- " N = len(A)\n",
625
- " \n",
626
- " # Initialize viterbi probability matrix (delta) and path matrix (psi)\n",
627
- " delta = np.zeros((T, N))\n",
628
- " psi = np.zeros((T, N), dtype=int)\n",
629
- " \n",
630
- " # Initialization step\n",
631
- " delta[0, :] = pi * B[:, obs_sequence[0]]\n",
632
- " \n",
633
- " # Recursion step\n",
634
- " for t in range(1, T):\n",
635
- " for j in range(N):\n",
636
- " delta[t, j] = np.max(delta[t-1, :] * A[:, j]) * B[j, obs_sequence[t]]\n",
637
- " psi[t, j] = np.argmax(delta[t-1, :] * A[:, j])\n",
638
- " \n",
639
- " # Termination step (finding the best last state)\n",
640
- " best_path_prob = np.max(delta[T-1, :])\n",
641
- " best_last_state = np.argmax(delta[T-1, :])\n",
642
- " \n",
643
- " # Backtrack to find the best path (most likely sequence of states)\n",
644
- " best_path = np.zeros(T, dtype=int)\n",
645
- " best_path[T-1] = best_last_state\n",
646
- " \n",
647
- " for t in range(T-2, -1, -1):\n",
648
- " best_path[t] = psi[t+1, best_path[t+1]]\n",
649
- " \n",
650
- " # Map state indices to state names\n",
651
- " best_state_sequence = [states[i] for i in best_path]\n",
652
- " \n",
653
- " return best_path_prob, best_state_sequence\n",
654
- "\n",
655
- "# Run the forward algorithm\n",
656
- "forward_prob, alpha = forward(A, B, pi, obs_sequence)\n",
657
- "print(f\"Forward Probability: {forward_prob}\")\n",
658
- "\n",
659
- "# Run the backward algorithm\n",
660
- "beta = backward(A, B, obs_sequence)\n",
661
- "print(f\"Backward Matrix (Beta):\\n{beta}\")\n",
662
- "\n",
663
- "# Run the Viterbi algorithm\n",
664
- "viterbi_prob, viterbi_states = viterbi(A, B, pi, obs_sequence)\n",
665
- "print(f\"Viterbi Probability: {viterbi_prob}\")\n",
666
- "print(f\"Most Likely State Sequence (Viterbi): {viterbi_states}\")\n"
667
- ]
668
- }
669
- ],
670
- "metadata": {
671
- "kernelspec": {
672
- "display_name": "Python 3 (ipykernel)",
673
- "language": "python",
674
- "name": "python3"
675
- },
676
- "language_info": {
677
- "codemirror_mode": {
678
- "name": "ipython",
679
- "version": 3
680
- },
681
- "file_extension": ".py",
682
- "mimetype": "text/x-python",
683
- "name": "python",
684
- "nbconvert_exporter": "python",
685
- "pygments_lexer": "ipython3",
686
- "version": "3.12.4"
687
- }
688
- },
689
- "nbformat": 4,
690
- "nbformat_minor": 5
691
- }