noshot 0.1.6__py3-none-any.whl → 0.1.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +207 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +625 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +287 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +625 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +83 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +625 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +117 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +210 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +137 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +129 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +179 -0
- {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/METADATA +2 -2
- noshot-0.1.8.dist-info/RECORD +24 -0
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +0 -112
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +0 -111
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +0 -115
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +0 -123
- noshot/data/ML TS XAI/AIDS/10. ANOVA/2_ANOVA.csv +0 -769
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +0 -126
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Two Way ANOVA.ipynb +0 -138
- noshot/data/ML TS XAI/AIDS/10. ANOVA/reaction_time.csv +0 -5
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sample_data.csv +0 -16
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sleep_deprivation.csv +0 -4
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/3_Linear.csv +0 -4802
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +0 -113
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression.ipynb +0 -148
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/house_rate.csv +0 -22
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +0 -128
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression.ipynb +0 -145
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/default.csv +0 -1001
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/hours_scores_records.csv +0 -101
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +0 -256
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +0 -157
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +0 -178
- noshot/data/ML TS XAI/AIDS/3. Genetic Algorithm/Genetic.ipynb +0 -95
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +0 -74
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +0 -103
- noshot/data/ML TS XAI/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +0 -182
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +0 -120
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +0 -125
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/Random Sampling.ipynb +0 -73
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test Hash Function.ipynb +0 -141
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test.ipynb +0 -151
- noshot/data/ML TS XAI/AIDS/8. Z Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/1_heart.csv +0 -304
- noshot/data/ML TS XAI/AIDS/9. T Test/Independent T Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/9. T Test/Paired T Test.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test Hash Function.ipynb +0 -142
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test.ipynb +0 -158
- noshot/data/ML TS XAI/AIDS/9. T Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/iq_test.csv +0 -0
- noshot/data/ML TS XAI/AIDS/Others (AllinOne)/All In One.ipynb +0 -4581
- noshot/data/ML TS XAI/CN/1. Chat Application/chat.java +0 -81
- noshot/data/ML TS XAI/CN/1. Chat Application/output.png +0 -0
- noshot/data/ML TS XAI/CN/1. Chat Application/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +0 -65
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +0 -44
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +0 -229
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/file_to_send.txt +0 -2
- noshot/data/ML TS XAI/CN/2. File Transfer/filetransfer.java +0 -119
- noshot/data/ML TS XAI/CN/2. File Transfer/output.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Client.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerImpl.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerIntf.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Server.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/rmi.java +0 -56
- noshot/data/ML TS XAI/CN/4. Wired Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.awk +0 -25
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.tcl +0 -81
- noshot/data/ML TS XAI/CN/5. Wireless Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.awk +0 -27
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.tcl +0 -153
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +0 -28
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +0 -78
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +0 -79
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +0 -163
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/DV.tcl +0 -111
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/LS.tcl +0 -106
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/analysis.awk +0 -36
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/analysis.awk +0 -20
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/broadcast.tcl +0 -76
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/multicast.tcl +0 -103
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/DHCP.java +0 -125
- noshot/data/ML TS XAI/CN/9. DHCP/output.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/procedure.png +0 -0
- noshot/data/ML TS XAI/NLP/NLP 1/1-Prereqs.py +0 -18
- noshot/data/ML TS XAI/NLP/NLP 1/2-Chi2test.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 1/2-T-test.py +0 -79
- noshot/data/ML TS XAI/NLP/NLP 1/3-WSD-nb.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/4-Hindle-Rooth.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/5-HMM-Trellis.py +0 -82
- noshot/data/ML TS XAI/NLP/NLP 1/6-HMM-Viterbi.py +0 -16
- noshot/data/ML TS XAI/NLP/NLP 1/7-PCFG-parsetree.py +0 -15
- noshot/data/ML TS XAI/NLP/NLP 1/Chi2test.ipynb +0 -285
- noshot/data/ML TS XAI/NLP/NLP 1/Hindle-Rooth.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 1/PCFG.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 1/Prereqs.ipynb +0 -131
- noshot/data/ML TS XAI/NLP/NLP 1/T test.ipynb +0 -252
- noshot/data/ML TS XAI/NLP/NLP 1/TFIDF BOW.ipynb +0 -171
- noshot/data/ML TS XAI/NLP/NLP 1/Trellis.ipynb +0 -244
- noshot/data/ML TS XAI/NLP/NLP 1/WSD.ipynb +0 -645
- noshot/data/ML TS XAI/NLP/NLP 1/Word2Vec.ipynb +0 -93
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +0 -370
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +0 -274
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +0 -905
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/test.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +0 -272
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +0 -549
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +0 -817
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +0 -231
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +0 -507
- noshot/data/ML TS XAI/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +0 -255
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +0 -159
- noshot/data/ML TS XAI/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +0 -282
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +0 -670
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +0 -613
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +0 -74
- noshot/data/ML TS XAI/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +0 -480
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +0 -445
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +0 -105
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +0 -87
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +0 -11
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +0 -201
- noshot/data/ML TS XAI/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 3/Backward-Procedure.ipynb +0 -597
- noshot/data/ML TS XAI/NLP/NLP 3/Bag_of.ipynb +0 -1422
- noshot/data/ML TS XAI/NLP/NLP 3/CYK-algorithm.ipynb +0 -1067
- noshot/data/ML TS XAI/NLP/NLP 3/Forward-Procedure.ipynb +0 -477
- noshot/data/ML TS XAI/NLP/NLP 3/LSTM.ipynb +0 -1290
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-4.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-5.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/abc.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 3/ex-1-nltk.ipynb +0 -711
- noshot/data/ML TS XAI/NLP/NLP 3/ex-2-nlp.ipynb +0 -267
- noshot/data/ML TS XAI/NLP/NLP 3/exp8&9.ipynb +0 -305
- noshot/data/ML TS XAI/NLP/NLP 3/hind.ipynb +0 -287
- noshot/data/ML TS XAI/NLP/NLP 3/lab66.ipynb +0 -752
- noshot/data/ML TS XAI/NLP/NLP 3/leb_3.ipynb +0 -612
- noshot/data/ML TS XAI/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_1.ipynb +0 -3008
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_2.ipynb +0 -3095
- noshot/data/ML TS XAI/NLP/NLP 3/nlplab-9.ipynb +0 -295
- noshot/data/ML TS XAI/NLP/NLP 3/nltk-ex-4.ipynb +0 -506
- noshot/data/ML TS XAI/NLP/NLP 3/text1.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/text2.txt +0 -8
- noshot/data/ML TS XAI/NLP/NLP 3/text3.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/translation-rnn.ipynb +0 -812
- noshot/data/ML TS XAI/NLP/NLP 3/word2vector.ipynb +0 -173
- noshot/data/ML TS XAI/NLP/NLP 4/Backward Procedure Algorithm.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 4/Chi Square Collocation.ipynb +0 -208
- noshot/data/ML TS XAI/NLP/NLP 4/Collocation (T test).ipynb +0 -188
- noshot/data/ML TS XAI/NLP/NLP 4/Experiment 1.ipynb +0 -437
- noshot/data/ML TS XAI/NLP/NLP 4/Forward Procedure Algorithm.ipynb +0 -132
- noshot/data/ML TS XAI/NLP/NLP 4/Hindle Rooth.ipynb +0 -414
- noshot/data/ML TS XAI/NLP/NLP 4/MachineTranslation.ipynb +0 -368
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +0 -86
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +0 -112
- noshot/data/ML TS XAI/NLP/NLP 4/PCFG Inside Probability.ipynb +0 -451
- noshot/data/ML TS XAI/NLP/NLP 4/Text Generation using LSTM.ipynb +0 -297
- noshot/data/ML TS XAI/NLP/NLP 4/Viterbi.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 4/Word Sense Disambiguation.ipynb +0 -335
- noshot/data/ML TS XAI/NLP/NLP 5/10.Text Generation using LSTM.ipynb +0 -316
- noshot/data/ML TS XAI/NLP/NLP 5/11.Machine Translation.ipynb +0 -868
- noshot/data/ML TS XAI/NLP/NLP 5/2.T and Chi2 Test.ipynb +0 -204
- noshot/data/ML TS XAI/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +0 -234
- noshot/data/ML TS XAI/NLP/NLP 5/4.Hinddle and Rooth.ipynb +0 -128
- noshot/data/ML TS XAI/NLP/NLP 5/5.Forward and Backward.ipynb +0 -149
- noshot/data/ML TS XAI/NLP/NLP 5/6.Viterbi.ipynb +0 -111
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG Parse Tree.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG using cyk.ipynb +0 -101
- noshot/data/ML TS XAI/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 5/9.Word2Vector.ipynb +0 -78
- noshot/data/ML TS XAI/NLP/NLP 5/NLP ALL In One.ipynb +0 -2619
- noshot/data/ML TS XAI/NLP/NLP 5/sample1.txt +0 -15
- noshot/data/ML TS XAI/NLP/NLP 5/sample2.txt +0 -4
- noshot/data/ML TS XAI/NLP/NLP 5/word2vec_model.bin +0 -0
- noshot/data/ML TS XAI/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +0 -312
- noshot/data/ML TS XAI/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 6/3. Naive Bayes WSD.ipynb +0 -199
- noshot/data/ML TS XAI/NLP/NLP 6/4. Hinddle and Rooth.ipynb +0 -151
- noshot/data/ML TS XAI/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +0 -164
- noshot/data/ML TS XAI/NLP/NLP 6/7. PCFG using CYK.ipynb +0 -383
- noshot/data/ML TS XAI/NLP/NLP 6/8. BOW and TF-IDF.ipynb +0 -252
- noshot/data/ML TS XAI/Ubuntu CN Lab.iso +0 -0
- noshot-0.1.6.dist-info/RECORD +0 -216
- {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/LICENSE.txt +0 -0
- {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/WHEEL +0 -0
- {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/top_level.txt +0 -0
@@ -1,310 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": 1,
|
6
|
-
"id": "e288984d-5ed7-4349-bb04-c69da5dba922",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import warnings\n",
|
11
|
-
"warnings.filterwarnings('ignore')"
|
12
|
-
]
|
13
|
-
},
|
14
|
-
{
|
15
|
-
"cell_type": "code",
|
16
|
-
"execution_count": 2,
|
17
|
-
"id": "0da6600d-5299-4999-ac05-0e272aa41813",
|
18
|
-
"metadata": {},
|
19
|
-
"outputs": [
|
20
|
-
{
|
21
|
-
"name": "stdout",
|
22
|
-
"output_type": "stream",
|
23
|
-
"text": [
|
24
|
-
"Training with Bag of Words (BoW)...\n",
|
25
|
-
"Epoch 1/50\n",
|
26
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 17ms/step - accuracy: 0.1667 - loss: 0.94180\n",
|
27
|
-
"Epoch 2/50\n",
|
28
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0s/step - accuracy: 0.3333 - loss: 0.8584 \n",
|
29
|
-
"Epoch 3/50\n",
|
30
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - accuracy: 0.1667 - loss: 0.9124 \n",
|
31
|
-
"Epoch 4/50\n",
|
32
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.3333 - loss: 0.8234\n",
|
33
|
-
"Epoch 5/50\n",
|
34
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.3333 - loss: 0.8137 \n",
|
35
|
-
"Epoch 6/50\n",
|
36
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.1667 - loss: 0.8736 \n",
|
37
|
-
"Epoch 7/50\n",
|
38
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - accuracy: 0.1667 - loss: 0.8626.92\n",
|
39
|
-
"Epoch 8/50\n",
|
40
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 17ms/step - accuracy: 0.3333 - loss: 0.7857\n",
|
41
|
-
"Epoch 9/50\n",
|
42
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.3333 - loss: 0.7769\n",
|
43
|
-
"Epoch 10/50\n",
|
44
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - accuracy: 0.3333 - loss: 0.7683\n",
|
45
|
-
"Epoch 11/50\n",
|
46
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.3333 - loss: 0.7599 \n",
|
47
|
-
"Epoch 12/50\n",
|
48
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - accuracy: 0.3333 - loss: 0.7605\n",
|
49
|
-
"Epoch 13/50\n",
|
50
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.3333 - loss: 0.7529\n",
|
51
|
-
"Epoch 14/50\n",
|
52
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step - accuracy: 0.1667 - loss: 0.7893 \n",
|
53
|
-
"Epoch 15/50\n",
|
54
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0s/step - accuracy: 0.3333 - loss: 0.7387 \n",
|
55
|
-
"Epoch 16/50\n",
|
56
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0s/step - accuracy: 0.1667 - loss: 0.77170.811\n",
|
57
|
-
"Epoch 17/50\n",
|
58
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.1667 - loss: 0.7609 \n",
|
59
|
-
"Epoch 18/50\n",
|
60
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 17ms/step - accuracy: 0.1667 - loss: 0.7672 \n",
|
61
|
-
"Epoch 19/50\n",
|
62
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0s/step - accuracy: 0.1667 - loss: 0.7476 \n",
|
63
|
-
"Epoch 20/50\n",
|
64
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.3333 - loss: 0.7125\n",
|
65
|
-
"Epoch 21/50\n",
|
66
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step - accuracy: 0.3333 - loss: 0.7117\n",
|
67
|
-
"Epoch 22/50\n",
|
68
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - accuracy: 0.1667 - loss: 0.7444 5\n",
|
69
|
-
"Epoch 23/50\n",
|
70
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0s/step - accuracy: 0.3333 - loss: 0.7018 \n",
|
71
|
-
"Epoch 24/50\n",
|
72
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step - accuracy: 0.1667 - loss: 0.7199 \n",
|
73
|
-
"Epoch 25/50\n",
|
74
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step - accuracy: 0.5000 - loss: 0.7136\n",
|
75
|
-
"Epoch 26/50\n",
|
76
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 848us/step - accuracy: 0.5000 - loss: 0.6845\n",
|
77
|
-
"Epoch 27/50\n",
|
78
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - accuracy: 0.5000 - loss: 0.7001 \n",
|
79
|
-
"Epoch 28/50\n",
|
80
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.6667 - loss: 0.6622 \n",
|
81
|
-
"Epoch 29/50\n",
|
82
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.5000 - loss: 0.6915\n",
|
83
|
-
"Epoch 30/50\n",
|
84
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - accuracy: 0.5000 - loss: 0.6891\n",
|
85
|
-
"Epoch 31/50\n",
|
86
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step - accuracy: 0.6667 - loss: 0.6513\n",
|
87
|
-
"Epoch 32/50\n",
|
88
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0s/step - accuracy: 0.5000 - loss: 0.6813 \n",
|
89
|
-
"Epoch 33/50\n",
|
90
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0s/step - accuracy: 0.6667 - loss: 0.64534\n",
|
91
|
-
"Epoch 34/50\n",
|
92
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step - accuracy: 0.5000 - loss: 0.6737\n",
|
93
|
-
"Epoch 35/50\n",
|
94
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0s/step - accuracy: 0.5000 - loss: 0.67078\n",
|
95
|
-
"Epoch 36/50\n",
|
96
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - accuracy: 0.5000 - loss: 0.6495\n",
|
97
|
-
"Epoch 37/50\n",
|
98
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0s/step - accuracy: 0.5000 - loss: 0.66421\n",
|
99
|
-
"Epoch 38/50\n",
|
100
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - accuracy: 0.5000 - loss: 0.6609\n",
|
101
|
-
"Epoch 39/50\n",
|
102
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - accuracy: 0.5000 - loss: 0.6577\n",
|
103
|
-
"Epoch 40/50\n",
|
104
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step - accuracy: 0.5000 - loss: 0.6392\n",
|
105
|
-
"Epoch 41/50\n",
|
106
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.5000 - loss: 0.6326 \n",
|
107
|
-
"Epoch 42/50\n",
|
108
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 0.6667 - loss: 0.6334 \n",
|
109
|
-
"Epoch 43/50\n",
|
110
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 17ms/step - accuracy: 0.8333 - loss: 0.6453\n",
|
111
|
-
"Epoch 44/50\n",
|
112
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - accuracy: 0.8333 - loss: 0.6420\n",
|
113
|
-
"Epoch 45/50\n",
|
114
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step - accuracy: 0.8333 - loss: 0.6388\n",
|
115
|
-
"Epoch 46/50\n",
|
116
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0s/step - accuracy: 0.8333 - loss: 0.6081 \n",
|
117
|
-
"Epoch 47/50\n",
|
118
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0s/step - accuracy: 0.6667 - loss: 0.63936\n",
|
119
|
-
"Epoch 48/50\n",
|
120
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0s/step - accuracy: 0.6667 - loss: 0.64323\n",
|
121
|
-
"Epoch 49/50\n",
|
122
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 17ms/step - accuracy: 0.6667 - loss: 0.6340\n",
|
123
|
-
"Epoch 50/50\n",
|
124
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0s/step - accuracy: 0.8333 - loss: 0.6018 \n",
|
125
|
-
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 339ms/step - accuracy: 0.0000e+00 - loss: 0.7986\n",
|
126
|
-
"BoW Model Accuracy: 0.00\n",
|
127
|
-
"Training with TF-IDF...\n",
|
128
|
-
"Epoch 1/50\n",
|
129
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 22ms/step - accuracy: 1.0000 - loss: 0.6225\n",
|
130
|
-
"Epoch 2/50\n",
|
131
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 1.0000 - loss: 0.6307\n",
|
132
|
-
"Epoch 3/50\n",
|
133
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 1.0000 - loss: 0.6083\n",
|
134
|
-
"Epoch 4/50\n",
|
135
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0s/step - accuracy: 1.0000 - loss: 0.6007 \n",
|
136
|
-
"Epoch 5/50\n",
|
137
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - accuracy: 1.0000 - loss: 0.6158\n",
|
138
|
-
"Epoch 6/50\n",
|
139
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 1.0000 - loss: 0.6028\n",
|
140
|
-
"Epoch 7/50\n",
|
141
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 1.0000 - loss: 0.5791\n",
|
142
|
-
"Epoch 8/50\n",
|
143
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 1.0000 - loss: 0.6008\n",
|
144
|
-
"Epoch 9/50\n",
|
145
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 1.0000 - loss: 0.5828 \n",
|
146
|
-
"Epoch 10/50\n",
|
147
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 1.0000 - loss: 0.5744 \n",
|
148
|
-
"Epoch 11/50\n",
|
149
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - accuracy: 1.0000 - loss: 0.5696\n",
|
150
|
-
"Epoch 12/50\n",
|
151
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 1.0000 - loss: 0.5630\n",
|
152
|
-
"Epoch 13/50\n",
|
153
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - accuracy: 1.0000 - loss: 0.5578\n",
|
154
|
-
"Epoch 14/50\n",
|
155
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 1.0000 - loss: 0.5501 \n",
|
156
|
-
"Epoch 15/50\n",
|
157
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 1.0000 - loss: 0.5666\n",
|
158
|
-
"Epoch 16/50\n",
|
159
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 1.0000 - loss: 0.5416 \n",
|
160
|
-
"Epoch 17/50\n",
|
161
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 1.0000 - loss: 0.5120\n",
|
162
|
-
"Epoch 18/50\n",
|
163
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0s/step - accuracy: 1.0000 - loss: 0.5059 \n",
|
164
|
-
"Epoch 19/50\n",
|
165
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0s/step - accuracy: 1.0000 - loss: 0.5205 \n",
|
166
|
-
"Epoch 20/50\n",
|
167
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 1.0000 - loss: 0.4940 \n",
|
168
|
-
"Epoch 21/50\n",
|
169
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0s/step - accuracy: 1.0000 - loss: 0.5400 \n",
|
170
|
-
"Epoch 22/50\n",
|
171
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0s/step - accuracy: 1.0000 - loss: 0.50558\n",
|
172
|
-
"Epoch 23/50\n",
|
173
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0s/step - accuracy: 1.0000 - loss: 0.47692\n",
|
174
|
-
"Epoch 24/50\n",
|
175
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 1.0000 - loss: 0.5038\n",
|
176
|
-
"Epoch 25/50\n",
|
177
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0s/step - accuracy: 1.0000 - loss: 0.46510\n",
|
178
|
-
"Epoch 26/50\n",
|
179
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 17ms/step - accuracy: 1.0000 - loss: 0.4822\n",
|
180
|
-
"Epoch 27/50\n",
|
181
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step - accuracy: 1.0000 - loss: 0.4733\n",
|
182
|
-
"Epoch 28/50\n",
|
183
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step - accuracy: 1.0000 - loss: 0.4845\n",
|
184
|
-
"Epoch 29/50\n",
|
185
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0s/step - accuracy: 1.0000 - loss: 0.4595 \n",
|
186
|
-
"Epoch 30/50\n",
|
187
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - accuracy: 1.0000 - loss: 0.4738\n",
|
188
|
-
"Epoch 31/50\n",
|
189
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 1.0000 - loss: 0.4876 \n",
|
190
|
-
"Epoch 32/50\n",
|
191
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 1.0000 - loss: 0.4817\n",
|
192
|
-
"Epoch 33/50\n",
|
193
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - accuracy: 1.0000 - loss: 0.4347\n",
|
194
|
-
"Epoch 34/50\n",
|
195
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - accuracy: 1.0000 - loss: 0.4255\n",
|
196
|
-
"Epoch 35/50\n",
|
197
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - accuracy: 1.0000 - loss: 0.4015\n",
|
198
|
-
"Epoch 36/50\n",
|
199
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 1.0000 - loss: 0.4424 \n",
|
200
|
-
"Epoch 37/50\n",
|
201
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - accuracy: 1.0000 - loss: 0.4088 \n",
|
202
|
-
"Epoch 38/50\n",
|
203
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - accuracy: 1.0000 - loss: 0.4325\n",
|
204
|
-
"Epoch 39/50\n",
|
205
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 1.0000 - loss: 0.4276\n",
|
206
|
-
"Epoch 40/50\n",
|
207
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 1.0000 - loss: 0.4230\n",
|
208
|
-
"Epoch 41/50\n",
|
209
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 1.0000 - loss: 0.4183 \n",
|
210
|
-
"Epoch 42/50\n",
|
211
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 1.0000 - loss: 0.3790\n",
|
212
|
-
"Epoch 43/50\n",
|
213
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - accuracy: 1.0000 - loss: 0.3728 \n",
|
214
|
-
"Epoch 44/50\n",
|
215
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 1.0000 - loss: 0.3662 \n",
|
216
|
-
"Epoch 45/50\n",
|
217
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 1.0000 - loss: 0.3594\n",
|
218
|
-
"Epoch 46/50\n",
|
219
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0s/step - accuracy: 1.0000 - loss: 0.39049\n",
|
220
|
-
"Epoch 47/50\n",
|
221
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 1.0000 - loss: 0.3864\n",
|
222
|
-
"Epoch 48/50\n",
|
223
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step - accuracy: 1.0000 - loss: 0.3960\n",
|
224
|
-
"Epoch 49/50\n",
|
225
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - accuracy: 1.0000 - loss: 0.3338\n",
|
226
|
-
"Epoch 50/50\n",
|
227
|
-
"\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - accuracy: 1.0000 - loss: 0.3699\n",
|
228
|
-
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 278ms/step - accuracy: 1.0000 - loss: 0.4346\n",
|
229
|
-
"TF-IDF Model Accuracy: 1.00\n"
|
230
|
-
]
|
231
|
-
}
|
232
|
-
],
|
233
|
-
"source": [
|
234
|
-
"import numpy as np\n",
|
235
|
-
"import pandas as pd\n",
|
236
|
-
"from sklearn.model_selection import train_test_split\n",
|
237
|
-
"from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer\n",
|
238
|
-
"from sklearn.preprocessing import LabelEncoder\n",
|
239
|
-
"import tensorflow as tf\n",
|
240
|
-
"from tensorflow.keras import Sequential\n",
|
241
|
-
"from tensorflow.keras.layers import Dense\n",
|
242
|
-
"\n",
|
243
|
-
"data = {'text': ['I love programming', 'Python is great', 'I enjoy machine learning',\n",
|
244
|
-
" 'TensorFlow is a powerful tool', 'AI is the future'],\n",
|
245
|
-
" 'label': ['positive', 'positive', 'positive', 'positive', 'neutral']}\n",
|
246
|
-
"\n",
|
247
|
-
"df = pd.DataFrame(data)\n",
|
248
|
-
"label_encoder = LabelEncoder()\n",
|
249
|
-
"df['label'] = label_encoder.fit_transform(df['label'])\n",
|
250
|
-
"X_train, X_test, y_train, y_test = train_test_split(df['text'], df['label'], test_size=0.2, random_state=42)\n",
|
251
|
-
"\n",
|
252
|
-
"# Option 1: Bag of Words (BoW)\n",
|
253
|
-
"vectorizer_bow = CountVectorizer()\n",
|
254
|
-
"X_train_bow = vectorizer_bow.fit_transform(X_train).toarray()\n",
|
255
|
-
"X_test_bow = vectorizer_bow.transform(X_test).toarray()\n",
|
256
|
-
"\n",
|
257
|
-
"# Option 2: TF-IDF\n",
|
258
|
-
"vectorizer_tfidf = TfidfVectorizer()\n",
|
259
|
-
"X_train_tfidf = vectorizer_tfidf.fit_transform(X_train).toarray()\n",
|
260
|
-
"X_test_tfidf = vectorizer_tfidf.transform(X_test).toarray()\n",
|
261
|
-
"\n",
|
262
|
-
"# Build a simple neural network with TensorFlow\n",
|
263
|
-
"def build_model(input_dim):\n",
|
264
|
-
" model = Sequential()\n",
|
265
|
-
" model.add(Dense(16, activation='relu', input_dim=input_dim))\n",
|
266
|
-
" model.add(Dense(8, activation='relu'))\n",
|
267
|
-
" model.add(Dense(1, activation='sigmoid')) # Binary classification (positive or neutral)\n",
|
268
|
-
" model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])\n",
|
269
|
-
" return model\n",
|
270
|
-
"\n",
|
271
|
-
"\n",
|
272
|
-
"print(\"Training with Bag of Words (BoW)...\")\n",
|
273
|
-
"model_bow = build_model(X_train_bow.shape[1])\n",
|
274
|
-
"model_bow.fit(X_train_bow, y_train, epochs=50, batch_size=2, verbose=1)\n",
|
275
|
-
"\n",
|
276
|
-
"loss, accuracy = model_bow.evaluate(X_test_bow, y_test)\n",
|
277
|
-
"print(f'BoW Model Accuracy: {accuracy:.2f}')\n",
|
278
|
-
"\n",
|
279
|
-
"print(\"Training with TF-IDF...\")\n",
|
280
|
-
"model_tfidf = build_model(X_train_tfidf.shape[1])\n",
|
281
|
-
"model_tfidf.fit(X_train_tfidf, y_train, epochs=50, batch_size=2, verbose=1)\n",
|
282
|
-
"\n",
|
283
|
-
"\n",
|
284
|
-
"loss, accuracy = model_tfidf.evaluate(X_test_tfidf, y_test)\n",
|
285
|
-
"print(f'TF-IDF Model Accuracy: {accuracy:.2f}')"
|
286
|
-
]
|
287
|
-
}
|
288
|
-
],
|
289
|
-
"metadata": {
|
290
|
-
"kernelspec": {
|
291
|
-
"display_name": "Python 3 (ipykernel)",
|
292
|
-
"language": "python",
|
293
|
-
"name": "python3"
|
294
|
-
},
|
295
|
-
"language_info": {
|
296
|
-
"codemirror_mode": {
|
297
|
-
"name": "ipython",
|
298
|
-
"version": 3
|
299
|
-
},
|
300
|
-
"file_extension": ".py",
|
301
|
-
"mimetype": "text/x-python",
|
302
|
-
"name": "python",
|
303
|
-
"nbconvert_exporter": "python",
|
304
|
-
"pygments_lexer": "ipython3",
|
305
|
-
"version": "3.12.4"
|
306
|
-
}
|
307
|
-
},
|
308
|
-
"nbformat": 4,
|
309
|
-
"nbformat_minor": 5
|
310
|
-
}
|
@@ -1,78 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": 1,
|
6
|
-
"id": "d2e8ca01-88e6-4574-ac39-df95af94d592",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [
|
9
|
-
{
|
10
|
-
"name": "stdout",
|
11
|
-
"output_type": "stream",
|
12
|
-
"text": [
|
13
|
-
"Words most similar to 'programming':\n",
|
14
|
-
"the: 0.1783\n",
|
15
|
-
"i: 0.1607\n",
|
16
|
-
"a: 0.1056\n",
|
17
|
-
"great: 0.0922\n",
|
18
|
-
"python: 0.0270\n"
|
19
|
-
]
|
20
|
-
},
|
21
|
-
{
|
22
|
-
"name": "stderr",
|
23
|
-
"output_type": "stream",
|
24
|
-
"text": [
|
25
|
-
"[nltk_data] Downloading package punkt to\n",
|
26
|
-
"[nltk_data] C:\\Users\\sugan\\AppData\\Roaming\\nltk_data...\n",
|
27
|
-
"[nltk_data] Package punkt is already up-to-date!\n"
|
28
|
-
]
|
29
|
-
}
|
30
|
-
],
|
31
|
-
"source": [
|
32
|
-
"#Implement word2vec model to explore the semantic similarity between the words.\n",
|
33
|
-
"import gensim\n",
|
34
|
-
"from gensim.models import Word2Vec\n",
|
35
|
-
"import nltk\n",
|
36
|
-
"nltk.download('punkt')\n",
|
37
|
-
"from nltk.tokenize import word_tokenize\n",
|
38
|
-
"sentences = ['I love programming', 'Python is great', 'I enjoy machine learning',\n",
|
39
|
-
" 'TensorFlow is a powerful tool', 'AI is the future']\n",
|
40
|
-
"\n",
|
41
|
-
"tokenized_sentences = [word_tokenize(sentence.lower()) for sentence in sentences]\n",
|
42
|
-
"\n",
|
43
|
-
"\n",
|
44
|
-
"model_w2v = Word2Vec(sentences=tokenized_sentences, vector_size=100, window=5, min_count=1, workers=4)\n",
|
45
|
-
"\n",
|
46
|
-
"# word vectors (semantic similarity)\n",
|
47
|
-
"word = 'programming'\n",
|
48
|
-
"similar_words = model_w2v.wv.most_similar(word, topn=5)\n",
|
49
|
-
"print(f\"Words most similar to '{word}':\")\n",
|
50
|
-
"for sim_word, sim_score in similar_words:\n",
|
51
|
-
" print(f\"{sim_word}: {sim_score:.4f}\")\n",
|
52
|
-
"model_w2v.save(\"word2vec_model.bin\")\n",
|
53
|
-
"#loaded_model = Word2Vec.load(\"word2vec_model.bin\")"
|
54
|
-
]
|
55
|
-
}
|
56
|
-
],
|
57
|
-
"metadata": {
|
58
|
-
"kernelspec": {
|
59
|
-
"display_name": "Python 3 (ipykernel)",
|
60
|
-
"language": "python",
|
61
|
-
"name": "python3"
|
62
|
-
},
|
63
|
-
"language_info": {
|
64
|
-
"codemirror_mode": {
|
65
|
-
"name": "ipython",
|
66
|
-
"version": 3
|
67
|
-
},
|
68
|
-
"file_extension": ".py",
|
69
|
-
"mimetype": "text/x-python",
|
70
|
-
"name": "python",
|
71
|
-
"nbconvert_exporter": "python",
|
72
|
-
"pygments_lexer": "ipython3",
|
73
|
-
"version": "3.12.4"
|
74
|
-
}
|
75
|
-
},
|
76
|
-
"nbformat": 4,
|
77
|
-
"nbformat_minor": 5
|
78
|
-
}
|