noshot 0.1.6__py3-none-any.whl → 0.1.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +207 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +625 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +287 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +625 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +83 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +625 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +117 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +210 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +137 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +129 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +179 -0
- {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/METADATA +2 -2
- noshot-0.1.8.dist-info/RECORD +24 -0
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +0 -112
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +0 -111
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +0 -115
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +0 -123
- noshot/data/ML TS XAI/AIDS/10. ANOVA/2_ANOVA.csv +0 -769
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +0 -126
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Two Way ANOVA.ipynb +0 -138
- noshot/data/ML TS XAI/AIDS/10. ANOVA/reaction_time.csv +0 -5
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sample_data.csv +0 -16
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sleep_deprivation.csv +0 -4
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/3_Linear.csv +0 -4802
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +0 -113
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression.ipynb +0 -148
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/house_rate.csv +0 -22
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +0 -128
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression.ipynb +0 -145
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/default.csv +0 -1001
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/hours_scores_records.csv +0 -101
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +0 -256
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +0 -157
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +0 -178
- noshot/data/ML TS XAI/AIDS/3. Genetic Algorithm/Genetic.ipynb +0 -95
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +0 -74
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +0 -103
- noshot/data/ML TS XAI/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +0 -182
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +0 -120
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +0 -125
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/Random Sampling.ipynb +0 -73
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test Hash Function.ipynb +0 -141
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test.ipynb +0 -151
- noshot/data/ML TS XAI/AIDS/8. Z Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/1_heart.csv +0 -304
- noshot/data/ML TS XAI/AIDS/9. T Test/Independent T Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/9. T Test/Paired T Test.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test Hash Function.ipynb +0 -142
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test.ipynb +0 -158
- noshot/data/ML TS XAI/AIDS/9. T Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/iq_test.csv +0 -0
- noshot/data/ML TS XAI/AIDS/Others (AllinOne)/All In One.ipynb +0 -4581
- noshot/data/ML TS XAI/CN/1. Chat Application/chat.java +0 -81
- noshot/data/ML TS XAI/CN/1. Chat Application/output.png +0 -0
- noshot/data/ML TS XAI/CN/1. Chat Application/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +0 -65
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +0 -44
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +0 -229
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/file_to_send.txt +0 -2
- noshot/data/ML TS XAI/CN/2. File Transfer/filetransfer.java +0 -119
- noshot/data/ML TS XAI/CN/2. File Transfer/output.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Client.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerImpl.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerIntf.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Server.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/rmi.java +0 -56
- noshot/data/ML TS XAI/CN/4. Wired Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.awk +0 -25
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.tcl +0 -81
- noshot/data/ML TS XAI/CN/5. Wireless Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.awk +0 -27
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.tcl +0 -153
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +0 -28
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +0 -78
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +0 -79
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +0 -163
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/DV.tcl +0 -111
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/LS.tcl +0 -106
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/analysis.awk +0 -36
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/analysis.awk +0 -20
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/broadcast.tcl +0 -76
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/multicast.tcl +0 -103
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/DHCP.java +0 -125
- noshot/data/ML TS XAI/CN/9. DHCP/output.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/procedure.png +0 -0
- noshot/data/ML TS XAI/NLP/NLP 1/1-Prereqs.py +0 -18
- noshot/data/ML TS XAI/NLP/NLP 1/2-Chi2test.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 1/2-T-test.py +0 -79
- noshot/data/ML TS XAI/NLP/NLP 1/3-WSD-nb.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/4-Hindle-Rooth.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/5-HMM-Trellis.py +0 -82
- noshot/data/ML TS XAI/NLP/NLP 1/6-HMM-Viterbi.py +0 -16
- noshot/data/ML TS XAI/NLP/NLP 1/7-PCFG-parsetree.py +0 -15
- noshot/data/ML TS XAI/NLP/NLP 1/Chi2test.ipynb +0 -285
- noshot/data/ML TS XAI/NLP/NLP 1/Hindle-Rooth.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 1/PCFG.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 1/Prereqs.ipynb +0 -131
- noshot/data/ML TS XAI/NLP/NLP 1/T test.ipynb +0 -252
- noshot/data/ML TS XAI/NLP/NLP 1/TFIDF BOW.ipynb +0 -171
- noshot/data/ML TS XAI/NLP/NLP 1/Trellis.ipynb +0 -244
- noshot/data/ML TS XAI/NLP/NLP 1/WSD.ipynb +0 -645
- noshot/data/ML TS XAI/NLP/NLP 1/Word2Vec.ipynb +0 -93
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +0 -370
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +0 -274
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +0 -905
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/test.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +0 -272
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +0 -549
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +0 -817
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +0 -231
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +0 -507
- noshot/data/ML TS XAI/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +0 -255
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +0 -159
- noshot/data/ML TS XAI/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +0 -282
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +0 -670
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +0 -613
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +0 -74
- noshot/data/ML TS XAI/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +0 -480
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +0 -445
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +0 -105
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +0 -87
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +0 -11
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +0 -201
- noshot/data/ML TS XAI/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 3/Backward-Procedure.ipynb +0 -597
- noshot/data/ML TS XAI/NLP/NLP 3/Bag_of.ipynb +0 -1422
- noshot/data/ML TS XAI/NLP/NLP 3/CYK-algorithm.ipynb +0 -1067
- noshot/data/ML TS XAI/NLP/NLP 3/Forward-Procedure.ipynb +0 -477
- noshot/data/ML TS XAI/NLP/NLP 3/LSTM.ipynb +0 -1290
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-4.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-5.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/abc.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 3/ex-1-nltk.ipynb +0 -711
- noshot/data/ML TS XAI/NLP/NLP 3/ex-2-nlp.ipynb +0 -267
- noshot/data/ML TS XAI/NLP/NLP 3/exp8&9.ipynb +0 -305
- noshot/data/ML TS XAI/NLP/NLP 3/hind.ipynb +0 -287
- noshot/data/ML TS XAI/NLP/NLP 3/lab66.ipynb +0 -752
- noshot/data/ML TS XAI/NLP/NLP 3/leb_3.ipynb +0 -612
- noshot/data/ML TS XAI/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_1.ipynb +0 -3008
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_2.ipynb +0 -3095
- noshot/data/ML TS XAI/NLP/NLP 3/nlplab-9.ipynb +0 -295
- noshot/data/ML TS XAI/NLP/NLP 3/nltk-ex-4.ipynb +0 -506
- noshot/data/ML TS XAI/NLP/NLP 3/text1.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/text2.txt +0 -8
- noshot/data/ML TS XAI/NLP/NLP 3/text3.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/translation-rnn.ipynb +0 -812
- noshot/data/ML TS XAI/NLP/NLP 3/word2vector.ipynb +0 -173
- noshot/data/ML TS XAI/NLP/NLP 4/Backward Procedure Algorithm.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 4/Chi Square Collocation.ipynb +0 -208
- noshot/data/ML TS XAI/NLP/NLP 4/Collocation (T test).ipynb +0 -188
- noshot/data/ML TS XAI/NLP/NLP 4/Experiment 1.ipynb +0 -437
- noshot/data/ML TS XAI/NLP/NLP 4/Forward Procedure Algorithm.ipynb +0 -132
- noshot/data/ML TS XAI/NLP/NLP 4/Hindle Rooth.ipynb +0 -414
- noshot/data/ML TS XAI/NLP/NLP 4/MachineTranslation.ipynb +0 -368
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +0 -86
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +0 -112
- noshot/data/ML TS XAI/NLP/NLP 4/PCFG Inside Probability.ipynb +0 -451
- noshot/data/ML TS XAI/NLP/NLP 4/Text Generation using LSTM.ipynb +0 -297
- noshot/data/ML TS XAI/NLP/NLP 4/Viterbi.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 4/Word Sense Disambiguation.ipynb +0 -335
- noshot/data/ML TS XAI/NLP/NLP 5/10.Text Generation using LSTM.ipynb +0 -316
- noshot/data/ML TS XAI/NLP/NLP 5/11.Machine Translation.ipynb +0 -868
- noshot/data/ML TS XAI/NLP/NLP 5/2.T and Chi2 Test.ipynb +0 -204
- noshot/data/ML TS XAI/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +0 -234
- noshot/data/ML TS XAI/NLP/NLP 5/4.Hinddle and Rooth.ipynb +0 -128
- noshot/data/ML TS XAI/NLP/NLP 5/5.Forward and Backward.ipynb +0 -149
- noshot/data/ML TS XAI/NLP/NLP 5/6.Viterbi.ipynb +0 -111
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG Parse Tree.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG using cyk.ipynb +0 -101
- noshot/data/ML TS XAI/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 5/9.Word2Vector.ipynb +0 -78
- noshot/data/ML TS XAI/NLP/NLP 5/NLP ALL In One.ipynb +0 -2619
- noshot/data/ML TS XAI/NLP/NLP 5/sample1.txt +0 -15
- noshot/data/ML TS XAI/NLP/NLP 5/sample2.txt +0 -4
- noshot/data/ML TS XAI/NLP/NLP 5/word2vec_model.bin +0 -0
- noshot/data/ML TS XAI/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +0 -312
- noshot/data/ML TS XAI/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 6/3. Naive Bayes WSD.ipynb +0 -199
- noshot/data/ML TS XAI/NLP/NLP 6/4. Hinddle and Rooth.ipynb +0 -151
- noshot/data/ML TS XAI/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +0 -164
- noshot/data/ML TS XAI/NLP/NLP 6/7. PCFG using CYK.ipynb +0 -383
- noshot/data/ML TS XAI/NLP/NLP 6/8. BOW and TF-IDF.ipynb +0 -252
- noshot/data/ML TS XAI/Ubuntu CN Lab.iso +0 -0
- noshot-0.1.6.dist-info/RECORD +0 -216
- {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/LICENSE.txt +0 -0
- {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/WHEEL +0 -0
- {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/top_level.txt +0 -0
@@ -1,670 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": 1,
|
6
|
-
"id": "4ceaf650",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import pandas as pd\n",
|
11
|
-
"import string"
|
12
|
-
]
|
13
|
-
},
|
14
|
-
{
|
15
|
-
"cell_type": "code",
|
16
|
-
"execution_count": 2,
|
17
|
-
"id": "a62e40d9",
|
18
|
-
"metadata": {},
|
19
|
-
"outputs": [],
|
20
|
-
"source": [
|
21
|
-
"df = pd.read_csv('final_all_names_code.csv')"
|
22
|
-
]
|
23
|
-
},
|
24
|
-
{
|
25
|
-
"cell_type": "code",
|
26
|
-
"execution_count": 9,
|
27
|
-
"id": "8966cbf3",
|
28
|
-
"metadata": {},
|
29
|
-
"outputs": [
|
30
|
-
{
|
31
|
-
"data": {
|
32
|
-
"text/plain": [
|
33
|
-
"(404062, 3)"
|
34
|
-
]
|
35
|
-
},
|
36
|
-
"execution_count": 9,
|
37
|
-
"metadata": {},
|
38
|
-
"output_type": "execute_result"
|
39
|
-
}
|
40
|
-
],
|
41
|
-
"source": [
|
42
|
-
"df.shape"
|
43
|
-
]
|
44
|
-
},
|
45
|
-
{
|
46
|
-
"cell_type": "code",
|
47
|
-
"execution_count": 4,
|
48
|
-
"id": "735515ae",
|
49
|
-
"metadata": {},
|
50
|
-
"outputs": [
|
51
|
-
{
|
52
|
-
"data": {
|
53
|
-
"text/plain": [
|
54
|
-
"78"
|
55
|
-
]
|
56
|
-
},
|
57
|
-
"execution_count": 4,
|
58
|
-
"metadata": {},
|
59
|
-
"output_type": "execute_result"
|
60
|
-
}
|
61
|
-
],
|
62
|
-
"source": [
|
63
|
-
"len(df['Country_code'].unique())"
|
64
|
-
]
|
65
|
-
},
|
66
|
-
{
|
67
|
-
"cell_type": "code",
|
68
|
-
"execution_count": 5,
|
69
|
-
"id": "dbe1031b",
|
70
|
-
"metadata": {},
|
71
|
-
"outputs": [],
|
72
|
-
"source": [
|
73
|
-
"columns=list(string.ascii_lowercase) + ['Country_code', 'Country']\n",
|
74
|
-
"newdf = pd.DataFrame(columns=columns)"
|
75
|
-
]
|
76
|
-
},
|
77
|
-
{
|
78
|
-
"cell_type": "code",
|
79
|
-
"execution_count": 6,
|
80
|
-
"id": "086a56f0",
|
81
|
-
"metadata": {},
|
82
|
-
"outputs": [
|
83
|
-
{
|
84
|
-
"data": {
|
85
|
-
"text/html": [
|
86
|
-
"<div>\n",
|
87
|
-
"<style scoped>\n",
|
88
|
-
" .dataframe tbody tr th:only-of-type {\n",
|
89
|
-
" vertical-align: middle;\n",
|
90
|
-
" }\n",
|
91
|
-
"\n",
|
92
|
-
" .dataframe tbody tr th {\n",
|
93
|
-
" vertical-align: top;\n",
|
94
|
-
" }\n",
|
95
|
-
"\n",
|
96
|
-
" .dataframe thead th {\n",
|
97
|
-
" text-align: right;\n",
|
98
|
-
" }\n",
|
99
|
-
"</style>\n",
|
100
|
-
"<table border=\"1\" class=\"dataframe\">\n",
|
101
|
-
" <thead>\n",
|
102
|
-
" <tr style=\"text-align: right;\">\n",
|
103
|
-
" <th></th>\n",
|
104
|
-
" <th>a</th>\n",
|
105
|
-
" <th>b</th>\n",
|
106
|
-
" <th>c</th>\n",
|
107
|
-
" <th>d</th>\n",
|
108
|
-
" <th>e</th>\n",
|
109
|
-
" <th>f</th>\n",
|
110
|
-
" <th>g</th>\n",
|
111
|
-
" <th>h</th>\n",
|
112
|
-
" <th>i</th>\n",
|
113
|
-
" <th>j</th>\n",
|
114
|
-
" <th>...</th>\n",
|
115
|
-
" <th>s</th>\n",
|
116
|
-
" <th>t</th>\n",
|
117
|
-
" <th>u</th>\n",
|
118
|
-
" <th>v</th>\n",
|
119
|
-
" <th>w</th>\n",
|
120
|
-
" <th>x</th>\n",
|
121
|
-
" <th>y</th>\n",
|
122
|
-
" <th>z</th>\n",
|
123
|
-
" <th>Country_code</th>\n",
|
124
|
-
" <th>Country</th>\n",
|
125
|
-
" </tr>\n",
|
126
|
-
" </thead>\n",
|
127
|
-
" <tbody>\n",
|
128
|
-
" <tr>\n",
|
129
|
-
" <th>0</th>\n",
|
130
|
-
" <td>0</td>\n",
|
131
|
-
" <td>0</td>\n",
|
132
|
-
" <td>0</td>\n",
|
133
|
-
" <td>0</td>\n",
|
134
|
-
" <td>0</td>\n",
|
135
|
-
" <td>0</td>\n",
|
136
|
-
" <td>0</td>\n",
|
137
|
-
" <td>1</td>\n",
|
138
|
-
" <td>0</td>\n",
|
139
|
-
" <td>1</td>\n",
|
140
|
-
" <td>...</td>\n",
|
141
|
-
" <td>1</td>\n",
|
142
|
-
" <td>0</td>\n",
|
143
|
-
" <td>0</td>\n",
|
144
|
-
" <td>0</td>\n",
|
145
|
-
" <td>0</td>\n",
|
146
|
-
" <td>0</td>\n",
|
147
|
-
" <td>0</td>\n",
|
148
|
-
" <td>0</td>\n",
|
149
|
-
" <td>ar_AE</td>\n",
|
150
|
-
" <td>AE</td>\n",
|
151
|
-
" </tr>\n",
|
152
|
-
" </tbody>\n",
|
153
|
-
"</table>\n",
|
154
|
-
"<p>1 rows × 28 columns</p>\n",
|
155
|
-
"</div>"
|
156
|
-
],
|
157
|
-
"text/plain": [
|
158
|
-
" a b c d e f g h i j ... s t u v w x y z Country_code \\\n",
|
159
|
-
"0 0 0 0 0 0 0 0 1 0 1 ... 1 0 0 0 0 0 0 0 ar_AE \n",
|
160
|
-
"\n",
|
161
|
-
" Country \n",
|
162
|
-
"0 AE \n",
|
163
|
-
"\n",
|
164
|
-
"[1 rows x 28 columns]"
|
165
|
-
]
|
166
|
-
},
|
167
|
-
"execution_count": 6,
|
168
|
-
"metadata": {},
|
169
|
-
"output_type": "execute_result"
|
170
|
-
}
|
171
|
-
],
|
172
|
-
"source": [
|
173
|
-
"ind = 0\n",
|
174
|
-
"name = df['Name'][ind]\n",
|
175
|
-
"nameLst = str(name).split(' ')\n",
|
176
|
-
"lastName = nameLst[-1].lower()\n",
|
177
|
-
"chars = dict.fromkeys(columns, 0)\n",
|
178
|
-
"for i in lastName:\n",
|
179
|
-
" chars[i] = 1\n",
|
180
|
-
"chars['Country_code'] = df['Country_code'][ind]\n",
|
181
|
-
"chars['Country'] = df['Country'][ind]\n",
|
182
|
-
"newdf = newdf.append(chars, ignore_index=True)\n",
|
183
|
-
"newdf.head()"
|
184
|
-
]
|
185
|
-
},
|
186
|
-
{
|
187
|
-
"cell_type": "code",
|
188
|
-
"execution_count": 13,
|
189
|
-
"id": "0123b2ef",
|
190
|
-
"metadata": {},
|
191
|
-
"outputs": [],
|
192
|
-
"source": [
|
193
|
-
"for ind in range(1000):\n",
|
194
|
-
" name = df['Name'][ind]\n",
|
195
|
-
" nameLst = str(name).split(' ')\n",
|
196
|
-
" lastName = nameLst[-1].lower()\n",
|
197
|
-
" chars = dict.fromkeys(columns, 0)\n",
|
198
|
-
" for i in lastName:\n",
|
199
|
-
" chars[i] = 1\n",
|
200
|
-
" chars['Country_code'] = df['Country_code'][ind]\n",
|
201
|
-
" chars['Country'] = df['Country'][ind]\n",
|
202
|
-
" newdf = newdf.append(chars, ignore_index=True)\n",
|
203
|
-
" "
|
204
|
-
]
|
205
|
-
},
|
206
|
-
{
|
207
|
-
"cell_type": "code",
|
208
|
-
"execution_count": 42,
|
209
|
-
"id": "0eecfb59",
|
210
|
-
"metadata": {},
|
211
|
-
"outputs": [
|
212
|
-
{
|
213
|
-
"data": {
|
214
|
-
"text/plain": [
|
215
|
-
"0 AE\n",
|
216
|
-
"1 AE\n",
|
217
|
-
"2 AE\n",
|
218
|
-
"3 AE\n",
|
219
|
-
"4 AE\n",
|
220
|
-
" ..\n",
|
221
|
-
"10404 AE\n",
|
222
|
-
"10405 AE\n",
|
223
|
-
"10406 AE\n",
|
224
|
-
"10407 AE\n",
|
225
|
-
"10408 AE\n",
|
226
|
-
"Name: Country, Length: 10409, dtype: object"
|
227
|
-
]
|
228
|
-
},
|
229
|
-
"execution_count": 42,
|
230
|
-
"metadata": {},
|
231
|
-
"output_type": "execute_result"
|
232
|
-
}
|
233
|
-
],
|
234
|
-
"source": [
|
235
|
-
"newdf['Country']"
|
236
|
-
]
|
237
|
-
},
|
238
|
-
{
|
239
|
-
"cell_type": "code",
|
240
|
-
"execution_count": 14,
|
241
|
-
"id": "48f9c747",
|
242
|
-
"metadata": {},
|
243
|
-
"outputs": [
|
244
|
-
{
|
245
|
-
"data": {
|
246
|
-
"text/html": [
|
247
|
-
"<div>\n",
|
248
|
-
"<style scoped>\n",
|
249
|
-
" .dataframe tbody tr th:only-of-type {\n",
|
250
|
-
" vertical-align: middle;\n",
|
251
|
-
" }\n",
|
252
|
-
"\n",
|
253
|
-
" .dataframe tbody tr th {\n",
|
254
|
-
" vertical-align: top;\n",
|
255
|
-
" }\n",
|
256
|
-
"\n",
|
257
|
-
" .dataframe thead th {\n",
|
258
|
-
" text-align: right;\n",
|
259
|
-
" }\n",
|
260
|
-
"</style>\n",
|
261
|
-
"<table border=\"1\" class=\"dataframe\">\n",
|
262
|
-
" <thead>\n",
|
263
|
-
" <tr style=\"text-align: right;\">\n",
|
264
|
-
" <th></th>\n",
|
265
|
-
" <th>a</th>\n",
|
266
|
-
" <th>b</th>\n",
|
267
|
-
" <th>c</th>\n",
|
268
|
-
" <th>d</th>\n",
|
269
|
-
" <th>e</th>\n",
|
270
|
-
" <th>f</th>\n",
|
271
|
-
" <th>g</th>\n",
|
272
|
-
" <th>h</th>\n",
|
273
|
-
" <th>i</th>\n",
|
274
|
-
" <th>j</th>\n",
|
275
|
-
" <th>...</th>\n",
|
276
|
-
" <th>t</th>\n",
|
277
|
-
" <th>u</th>\n",
|
278
|
-
" <th>v</th>\n",
|
279
|
-
" <th>w</th>\n",
|
280
|
-
" <th>x</th>\n",
|
281
|
-
" <th>y</th>\n",
|
282
|
-
" <th>z</th>\n",
|
283
|
-
" <th>Country_code</th>\n",
|
284
|
-
" <th>Country</th>\n",
|
285
|
-
" <th>.</th>\n",
|
286
|
-
" </tr>\n",
|
287
|
-
" </thead>\n",
|
288
|
-
" <tbody>\n",
|
289
|
-
" <tr>\n",
|
290
|
-
" <th>0</th>\n",
|
291
|
-
" <td>0</td>\n",
|
292
|
-
" <td>0</td>\n",
|
293
|
-
" <td>0</td>\n",
|
294
|
-
" <td>0</td>\n",
|
295
|
-
" <td>0</td>\n",
|
296
|
-
" <td>0</td>\n",
|
297
|
-
" <td>0</td>\n",
|
298
|
-
" <td>1</td>\n",
|
299
|
-
" <td>0</td>\n",
|
300
|
-
" <td>1</td>\n",
|
301
|
-
" <td>...</td>\n",
|
302
|
-
" <td>0</td>\n",
|
303
|
-
" <td>0</td>\n",
|
304
|
-
" <td>0</td>\n",
|
305
|
-
" <td>0</td>\n",
|
306
|
-
" <td>0</td>\n",
|
307
|
-
" <td>0</td>\n",
|
308
|
-
" <td>0</td>\n",
|
309
|
-
" <td>ar_AE</td>\n",
|
310
|
-
" <td>AE</td>\n",
|
311
|
-
" <td>NaN</td>\n",
|
312
|
-
" </tr>\n",
|
313
|
-
" <tr>\n",
|
314
|
-
" <th>1</th>\n",
|
315
|
-
" <td>0</td>\n",
|
316
|
-
" <td>0</td>\n",
|
317
|
-
" <td>0</td>\n",
|
318
|
-
" <td>0</td>\n",
|
319
|
-
" <td>0</td>\n",
|
320
|
-
" <td>0</td>\n",
|
321
|
-
" <td>0</td>\n",
|
322
|
-
" <td>1</td>\n",
|
323
|
-
" <td>0</td>\n",
|
324
|
-
" <td>1</td>\n",
|
325
|
-
" <td>...</td>\n",
|
326
|
-
" <td>0</td>\n",
|
327
|
-
" <td>0</td>\n",
|
328
|
-
" <td>0</td>\n",
|
329
|
-
" <td>0</td>\n",
|
330
|
-
" <td>0</td>\n",
|
331
|
-
" <td>0</td>\n",
|
332
|
-
" <td>0</td>\n",
|
333
|
-
" <td>ar_AE</td>\n",
|
334
|
-
" <td>AE</td>\n",
|
335
|
-
" <td>NaN</td>\n",
|
336
|
-
" </tr>\n",
|
337
|
-
" <tr>\n",
|
338
|
-
" <th>2</th>\n",
|
339
|
-
" <td>0</td>\n",
|
340
|
-
" <td>0</td>\n",
|
341
|
-
" <td>0</td>\n",
|
342
|
-
" <td>0</td>\n",
|
343
|
-
" <td>0</td>\n",
|
344
|
-
" <td>0</td>\n",
|
345
|
-
" <td>1</td>\n",
|
346
|
-
" <td>1</td>\n",
|
347
|
-
" <td>1</td>\n",
|
348
|
-
" <td>0</td>\n",
|
349
|
-
" <td>...</td>\n",
|
350
|
-
" <td>1</td>\n",
|
351
|
-
" <td>0</td>\n",
|
352
|
-
" <td>0</td>\n",
|
353
|
-
" <td>1</td>\n",
|
354
|
-
" <td>0</td>\n",
|
355
|
-
" <td>0</td>\n",
|
356
|
-
" <td>0</td>\n",
|
357
|
-
" <td>ar_AE</td>\n",
|
358
|
-
" <td>AE</td>\n",
|
359
|
-
" <td>NaN</td>\n",
|
360
|
-
" </tr>\n",
|
361
|
-
" <tr>\n",
|
362
|
-
" <th>3</th>\n",
|
363
|
-
" <td>0</td>\n",
|
364
|
-
" <td>0</td>\n",
|
365
|
-
" <td>0</td>\n",
|
366
|
-
" <td>1</td>\n",
|
367
|
-
" <td>0</td>\n",
|
368
|
-
" <td>0</td>\n",
|
369
|
-
" <td>0</td>\n",
|
370
|
-
" <td>0</td>\n",
|
371
|
-
" <td>0</td>\n",
|
372
|
-
" <td>0</td>\n",
|
373
|
-
" <td>...</td>\n",
|
374
|
-
" <td>0</td>\n",
|
375
|
-
" <td>0</td>\n",
|
376
|
-
" <td>0</td>\n",
|
377
|
-
" <td>0</td>\n",
|
378
|
-
" <td>0</td>\n",
|
379
|
-
" <td>0</td>\n",
|
380
|
-
" <td>0</td>\n",
|
381
|
-
" <td>ar_AE</td>\n",
|
382
|
-
" <td>AE</td>\n",
|
383
|
-
" <td>NaN</td>\n",
|
384
|
-
" </tr>\n",
|
385
|
-
" <tr>\n",
|
386
|
-
" <th>4</th>\n",
|
387
|
-
" <td>0</td>\n",
|
388
|
-
" <td>1</td>\n",
|
389
|
-
" <td>0</td>\n",
|
390
|
-
" <td>0</td>\n",
|
391
|
-
" <td>0</td>\n",
|
392
|
-
" <td>0</td>\n",
|
393
|
-
" <td>0</td>\n",
|
394
|
-
" <td>0</td>\n",
|
395
|
-
" <td>1</td>\n",
|
396
|
-
" <td>0</td>\n",
|
397
|
-
" <td>...</td>\n",
|
398
|
-
" <td>0</td>\n",
|
399
|
-
" <td>0</td>\n",
|
400
|
-
" <td>0</td>\n",
|
401
|
-
" <td>0</td>\n",
|
402
|
-
" <td>0</td>\n",
|
403
|
-
" <td>0</td>\n",
|
404
|
-
" <td>0</td>\n",
|
405
|
-
" <td>ar_AE</td>\n",
|
406
|
-
" <td>AE</td>\n",
|
407
|
-
" <td>NaN</td>\n",
|
408
|
-
" </tr>\n",
|
409
|
-
" </tbody>\n",
|
410
|
-
"</table>\n",
|
411
|
-
"<p>5 rows × 29 columns</p>\n",
|
412
|
-
"</div>"
|
413
|
-
],
|
414
|
-
"text/plain": [
|
415
|
-
" a b c d e f g h i j ... t u v w x y z Country_code \\\n",
|
416
|
-
"0 0 0 0 0 0 0 0 1 0 1 ... 0 0 0 0 0 0 0 ar_AE \n",
|
417
|
-
"1 0 0 0 0 0 0 0 1 0 1 ... 0 0 0 0 0 0 0 ar_AE \n",
|
418
|
-
"2 0 0 0 0 0 0 1 1 1 0 ... 1 0 0 1 0 0 0 ar_AE \n",
|
419
|
-
"3 0 0 0 1 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 ar_AE \n",
|
420
|
-
"4 0 1 0 0 0 0 0 0 1 0 ... 0 0 0 0 0 0 0 ar_AE \n",
|
421
|
-
"\n",
|
422
|
-
" Country . \n",
|
423
|
-
"0 AE NaN \n",
|
424
|
-
"1 AE NaN \n",
|
425
|
-
"2 AE NaN \n",
|
426
|
-
"3 AE NaN \n",
|
427
|
-
"4 AE NaN \n",
|
428
|
-
"\n",
|
429
|
-
"[5 rows x 29 columns]"
|
430
|
-
]
|
431
|
-
},
|
432
|
-
"execution_count": 14,
|
433
|
-
"metadata": {},
|
434
|
-
"output_type": "execute_result"
|
435
|
-
}
|
436
|
-
],
|
437
|
-
"source": [
|
438
|
-
"newdf.head()"
|
439
|
-
]
|
440
|
-
},
|
441
|
-
{
|
442
|
-
"cell_type": "code",
|
443
|
-
"execution_count": 15,
|
444
|
-
"id": "730860b3",
|
445
|
-
"metadata": {},
|
446
|
-
"outputs": [],
|
447
|
-
"source": [
|
448
|
-
"from sklearn.preprocessing import LabelEncoder"
|
449
|
-
]
|
450
|
-
},
|
451
|
-
{
|
452
|
-
"cell_type": "code",
|
453
|
-
"execution_count": 16,
|
454
|
-
"id": "465e5213",
|
455
|
-
"metadata": {},
|
456
|
-
"outputs": [],
|
457
|
-
"source": [
|
458
|
-
"le = LabelEncoder()\n",
|
459
|
-
"df['Name'] = le.fit_transform(df['Name'])"
|
460
|
-
]
|
461
|
-
},
|
462
|
-
{
|
463
|
-
"cell_type": "code",
|
464
|
-
"execution_count": 33,
|
465
|
-
"id": "9637d8ce",
|
466
|
-
"metadata": {},
|
467
|
-
"outputs": [],
|
468
|
-
"source": [
|
469
|
-
"# X = pd.factorize(df['Name'])[0].reshape(-1,1)\n",
|
470
|
-
"# Y = pd.factorize(df['Country'])[0].reshape(-1,1)"
|
471
|
-
]
|
472
|
-
},
|
473
|
-
{
|
474
|
-
"cell_type": "code",
|
475
|
-
"execution_count": 51,
|
476
|
-
"id": "06b72dff",
|
477
|
-
"metadata": {},
|
478
|
-
"outputs": [],
|
479
|
-
"source": [
|
480
|
-
"X = newdf[list(string.ascii_lowercase)]\n",
|
481
|
-
"Y = newdf['Country']"
|
482
|
-
]
|
483
|
-
},
|
484
|
-
{
|
485
|
-
"cell_type": "code",
|
486
|
-
"execution_count": 52,
|
487
|
-
"id": "74556760",
|
488
|
-
"metadata": {},
|
489
|
-
"outputs": [
|
490
|
-
{
|
491
|
-
"data": {
|
492
|
-
"text/plain": [
|
493
|
-
"(10409, 26)"
|
494
|
-
]
|
495
|
-
},
|
496
|
-
"execution_count": 52,
|
497
|
-
"metadata": {},
|
498
|
-
"output_type": "execute_result"
|
499
|
-
}
|
500
|
-
],
|
501
|
-
"source": [
|
502
|
-
"X.shape"
|
503
|
-
]
|
504
|
-
},
|
505
|
-
{
|
506
|
-
"cell_type": "code",
|
507
|
-
"execution_count": 53,
|
508
|
-
"id": "63ddabf0",
|
509
|
-
"metadata": {},
|
510
|
-
"outputs": [],
|
511
|
-
"source": [
|
512
|
-
"from sklearn.model_selection import train_test_split\n",
|
513
|
-
"X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size=0.2, random_state=0)"
|
514
|
-
]
|
515
|
-
},
|
516
|
-
{
|
517
|
-
"cell_type": "code",
|
518
|
-
"execution_count": 55,
|
519
|
-
"id": "779a90d2",
|
520
|
-
"metadata": {},
|
521
|
-
"outputs": [
|
522
|
-
{
|
523
|
-
"name": "stdout",
|
524
|
-
"output_type": "stream",
|
525
|
-
"text": [
|
526
|
-
"Iteration 1, loss = 0.61870553\n",
|
527
|
-
"Iteration 2, loss = 0.61414579\n",
|
528
|
-
"Iteration 3, loss = 0.61337488\n",
|
529
|
-
"Iteration 4, loss = 0.61172227\n",
|
530
|
-
"Iteration 5, loss = 0.61135576\n",
|
531
|
-
"Iteration 6, loss = 0.61056831\n",
|
532
|
-
"Iteration 7, loss = 0.60952742\n",
|
533
|
-
"Iteration 8, loss = 0.60972004\n",
|
534
|
-
"Iteration 9, loss = 0.60878205\n",
|
535
|
-
"Iteration 10, loss = 0.60874295\n",
|
536
|
-
"Iteration 11, loss = 0.60902916\n",
|
537
|
-
"Iteration 12, loss = 0.60804079\n",
|
538
|
-
"Iteration 13, loss = 0.60786734\n",
|
539
|
-
"Iteration 14, loss = 0.60755309\n",
|
540
|
-
"Iteration 15, loss = 0.60719918\n",
|
541
|
-
"Iteration 16, loss = 0.60863441\n",
|
542
|
-
"Iteration 17, loss = 0.60752479\n",
|
543
|
-
"Iteration 18, loss = 0.60705796\n",
|
544
|
-
"Iteration 19, loss = 0.60791483\n",
|
545
|
-
"Iteration 20, loss = 0.60842593\n",
|
546
|
-
"Iteration 21, loss = 0.60655986\n",
|
547
|
-
"Iteration 22, loss = 0.60565789\n",
|
548
|
-
"Iteration 23, loss = 0.60539939\n",
|
549
|
-
"Iteration 24, loss = 0.60649128\n",
|
550
|
-
"Iteration 25, loss = 0.60583964\n",
|
551
|
-
"Iteration 26, loss = 0.60555888\n",
|
552
|
-
"Iteration 27, loss = 0.60548889\n",
|
553
|
-
"Iteration 28, loss = 0.60527387\n",
|
554
|
-
"Iteration 29, loss = 0.60598688\n",
|
555
|
-
"Iteration 30, loss = 0.60518383\n",
|
556
|
-
"Iteration 31, loss = 0.60477972\n",
|
557
|
-
"Iteration 32, loss = 0.60453700\n",
|
558
|
-
"Iteration 33, loss = 0.60491897\n",
|
559
|
-
"Iteration 34, loss = 0.60476366\n",
|
560
|
-
"Iteration 35, loss = 0.60429963\n",
|
561
|
-
"Iteration 36, loss = 0.60434233\n",
|
562
|
-
"Iteration 37, loss = 0.60396974\n",
|
563
|
-
"Iteration 38, loss = 0.60381930\n",
|
564
|
-
"Iteration 39, loss = 0.60372379\n",
|
565
|
-
"Iteration 40, loss = 0.60458396\n",
|
566
|
-
"Iteration 41, loss = 0.60366756\n",
|
567
|
-
"Iteration 42, loss = 0.60346354\n",
|
568
|
-
"Iteration 43, loss = 0.60363257\n",
|
569
|
-
"Iteration 44, loss = 0.60365863\n",
|
570
|
-
"Iteration 45, loss = 0.60314015\n",
|
571
|
-
"Iteration 46, loss = 0.60403392\n",
|
572
|
-
"Iteration 47, loss = 0.60298309\n",
|
573
|
-
"Iteration 48, loss = 0.60324196\n",
|
574
|
-
"Iteration 49, loss = 0.60370857\n",
|
575
|
-
"Iteration 50, loss = 0.60324461\n",
|
576
|
-
"Iteration 51, loss = 0.60248548\n",
|
577
|
-
"Iteration 52, loss = 0.60339082\n",
|
578
|
-
"Iteration 53, loss = 0.60297300\n",
|
579
|
-
"Iteration 54, loss = 0.60342077\n",
|
580
|
-
"Iteration 55, loss = 0.60309616\n",
|
581
|
-
"Iteration 56, loss = 0.60223223\n",
|
582
|
-
"Iteration 57, loss = 0.60260851\n",
|
583
|
-
"Iteration 58, loss = 0.60292578\n",
|
584
|
-
"Iteration 59, loss = 0.60237197\n",
|
585
|
-
"Iteration 60, loss = 0.60241951\n",
|
586
|
-
"Iteration 61, loss = 0.60304916\n",
|
587
|
-
"Iteration 62, loss = 0.60284411\n",
|
588
|
-
"Iteration 63, loss = 0.60278383\n",
|
589
|
-
"Iteration 64, loss = 0.60218386\n",
|
590
|
-
"Iteration 65, loss = 0.60231279\n",
|
591
|
-
"Iteration 66, loss = 0.60208652\n",
|
592
|
-
"Iteration 67, loss = 0.60248264\n",
|
593
|
-
"Training loss did not improve more than tol=0.000100 for 10 consecutive epochs. Stopping.\n"
|
594
|
-
]
|
595
|
-
},
|
596
|
-
{
|
597
|
-
"data": {
|
598
|
-
"text/plain": [
|
599
|
-
"MLPClassifier(hidden_layer_sizes=(6, 5), learning_rate_init=0.01,\n",
|
600
|
-
" random_state=0, verbose=True)"
|
601
|
-
]
|
602
|
-
},
|
603
|
-
"execution_count": 55,
|
604
|
-
"metadata": {},
|
605
|
-
"output_type": "execute_result"
|
606
|
-
}
|
607
|
-
],
|
608
|
-
"source": [
|
609
|
-
"from sklearn.neural_network import MLPClassifier\n",
|
610
|
-
"clf = MLPClassifier(hidden_layer_sizes=(6,5),\n",
|
611
|
-
" random_state=0,\n",
|
612
|
-
" verbose=True,\n",
|
613
|
-
" learning_rate_init=0.01)\n",
|
614
|
-
"clf.fit(X_train, Y_train)"
|
615
|
-
]
|
616
|
-
},
|
617
|
-
{
|
618
|
-
"cell_type": "code",
|
619
|
-
"execution_count": 56,
|
620
|
-
"id": "0db36b8c",
|
621
|
-
"metadata": {},
|
622
|
-
"outputs": [
|
623
|
-
{
|
624
|
-
"data": {
|
625
|
-
"text/plain": [
|
626
|
-
"0.686359269932757"
|
627
|
-
]
|
628
|
-
},
|
629
|
-
"execution_count": 56,
|
630
|
-
"metadata": {},
|
631
|
-
"output_type": "execute_result"
|
632
|
-
}
|
633
|
-
],
|
634
|
-
"source": [
|
635
|
-
"Y_pred = clf.predict(X_test)\n",
|
636
|
-
"from sklearn.metrics import accuracy_score\n",
|
637
|
-
"accuracy_score(Y_test, Y_pred)"
|
638
|
-
]
|
639
|
-
},
|
640
|
-
{
|
641
|
-
"cell_type": "code",
|
642
|
-
"execution_count": null,
|
643
|
-
"id": "7d589a4a",
|
644
|
-
"metadata": {},
|
645
|
-
"outputs": [],
|
646
|
-
"source": []
|
647
|
-
}
|
648
|
-
],
|
649
|
-
"metadata": {
|
650
|
-
"kernelspec": {
|
651
|
-
"display_name": "Python 3",
|
652
|
-
"language": "python",
|
653
|
-
"name": "python3"
|
654
|
-
},
|
655
|
-
"language_info": {
|
656
|
-
"codemirror_mode": {
|
657
|
-
"name": "ipython",
|
658
|
-
"version": 3
|
659
|
-
},
|
660
|
-
"file_extension": ".py",
|
661
|
-
"mimetype": "text/x-python",
|
662
|
-
"name": "python",
|
663
|
-
"nbconvert_exporter": "python",
|
664
|
-
"pygments_lexer": "ipython3",
|
665
|
-
"version": "3.8.8"
|
666
|
-
}
|
667
|
-
},
|
668
|
-
"nbformat": 4,
|
669
|
-
"nbformat_minor": 5
|
670
|
-
}
|