noshot 0.1.6__py3-none-any.whl → 0.1.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +207 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +625 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +287 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +625 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +83 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +625 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +117 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +210 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +137 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +129 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +179 -0
- {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/METADATA +2 -2
- noshot-0.1.8.dist-info/RECORD +24 -0
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +0 -112
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +0 -111
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +0 -115
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +0 -123
- noshot/data/ML TS XAI/AIDS/10. ANOVA/2_ANOVA.csv +0 -769
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +0 -126
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Two Way ANOVA.ipynb +0 -138
- noshot/data/ML TS XAI/AIDS/10. ANOVA/reaction_time.csv +0 -5
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sample_data.csv +0 -16
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sleep_deprivation.csv +0 -4
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/3_Linear.csv +0 -4802
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +0 -113
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression.ipynb +0 -148
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/house_rate.csv +0 -22
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +0 -128
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression.ipynb +0 -145
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/default.csv +0 -1001
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/hours_scores_records.csv +0 -101
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +0 -256
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +0 -157
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +0 -178
- noshot/data/ML TS XAI/AIDS/3. Genetic Algorithm/Genetic.ipynb +0 -95
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +0 -74
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +0 -103
- noshot/data/ML TS XAI/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +0 -182
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +0 -120
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +0 -125
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/Random Sampling.ipynb +0 -73
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test Hash Function.ipynb +0 -141
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test.ipynb +0 -151
- noshot/data/ML TS XAI/AIDS/8. Z Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/1_heart.csv +0 -304
- noshot/data/ML TS XAI/AIDS/9. T Test/Independent T Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/9. T Test/Paired T Test.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test Hash Function.ipynb +0 -142
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test.ipynb +0 -158
- noshot/data/ML TS XAI/AIDS/9. T Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/iq_test.csv +0 -0
- noshot/data/ML TS XAI/AIDS/Others (AllinOne)/All In One.ipynb +0 -4581
- noshot/data/ML TS XAI/CN/1. Chat Application/chat.java +0 -81
- noshot/data/ML TS XAI/CN/1. Chat Application/output.png +0 -0
- noshot/data/ML TS XAI/CN/1. Chat Application/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +0 -65
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +0 -44
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +0 -229
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/file_to_send.txt +0 -2
- noshot/data/ML TS XAI/CN/2. File Transfer/filetransfer.java +0 -119
- noshot/data/ML TS XAI/CN/2. File Transfer/output.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Client.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerImpl.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerIntf.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Server.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/rmi.java +0 -56
- noshot/data/ML TS XAI/CN/4. Wired Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.awk +0 -25
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.tcl +0 -81
- noshot/data/ML TS XAI/CN/5. Wireless Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.awk +0 -27
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.tcl +0 -153
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +0 -28
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +0 -78
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +0 -79
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +0 -163
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/DV.tcl +0 -111
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/LS.tcl +0 -106
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/analysis.awk +0 -36
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/analysis.awk +0 -20
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/broadcast.tcl +0 -76
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/multicast.tcl +0 -103
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/DHCP.java +0 -125
- noshot/data/ML TS XAI/CN/9. DHCP/output.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/procedure.png +0 -0
- noshot/data/ML TS XAI/NLP/NLP 1/1-Prereqs.py +0 -18
- noshot/data/ML TS XAI/NLP/NLP 1/2-Chi2test.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 1/2-T-test.py +0 -79
- noshot/data/ML TS XAI/NLP/NLP 1/3-WSD-nb.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/4-Hindle-Rooth.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/5-HMM-Trellis.py +0 -82
- noshot/data/ML TS XAI/NLP/NLP 1/6-HMM-Viterbi.py +0 -16
- noshot/data/ML TS XAI/NLP/NLP 1/7-PCFG-parsetree.py +0 -15
- noshot/data/ML TS XAI/NLP/NLP 1/Chi2test.ipynb +0 -285
- noshot/data/ML TS XAI/NLP/NLP 1/Hindle-Rooth.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 1/PCFG.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 1/Prereqs.ipynb +0 -131
- noshot/data/ML TS XAI/NLP/NLP 1/T test.ipynb +0 -252
- noshot/data/ML TS XAI/NLP/NLP 1/TFIDF BOW.ipynb +0 -171
- noshot/data/ML TS XAI/NLP/NLP 1/Trellis.ipynb +0 -244
- noshot/data/ML TS XAI/NLP/NLP 1/WSD.ipynb +0 -645
- noshot/data/ML TS XAI/NLP/NLP 1/Word2Vec.ipynb +0 -93
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +0 -370
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +0 -274
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +0 -905
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/test.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +0 -272
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +0 -549
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +0 -817
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +0 -231
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +0 -507
- noshot/data/ML TS XAI/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +0 -255
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +0 -159
- noshot/data/ML TS XAI/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +0 -282
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +0 -670
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +0 -613
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +0 -74
- noshot/data/ML TS XAI/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +0 -480
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +0 -445
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +0 -105
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +0 -87
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +0 -11
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +0 -201
- noshot/data/ML TS XAI/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 3/Backward-Procedure.ipynb +0 -597
- noshot/data/ML TS XAI/NLP/NLP 3/Bag_of.ipynb +0 -1422
- noshot/data/ML TS XAI/NLP/NLP 3/CYK-algorithm.ipynb +0 -1067
- noshot/data/ML TS XAI/NLP/NLP 3/Forward-Procedure.ipynb +0 -477
- noshot/data/ML TS XAI/NLP/NLP 3/LSTM.ipynb +0 -1290
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-4.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-5.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/abc.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 3/ex-1-nltk.ipynb +0 -711
- noshot/data/ML TS XAI/NLP/NLP 3/ex-2-nlp.ipynb +0 -267
- noshot/data/ML TS XAI/NLP/NLP 3/exp8&9.ipynb +0 -305
- noshot/data/ML TS XAI/NLP/NLP 3/hind.ipynb +0 -287
- noshot/data/ML TS XAI/NLP/NLP 3/lab66.ipynb +0 -752
- noshot/data/ML TS XAI/NLP/NLP 3/leb_3.ipynb +0 -612
- noshot/data/ML TS XAI/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_1.ipynb +0 -3008
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_2.ipynb +0 -3095
- noshot/data/ML TS XAI/NLP/NLP 3/nlplab-9.ipynb +0 -295
- noshot/data/ML TS XAI/NLP/NLP 3/nltk-ex-4.ipynb +0 -506
- noshot/data/ML TS XAI/NLP/NLP 3/text1.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/text2.txt +0 -8
- noshot/data/ML TS XAI/NLP/NLP 3/text3.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/translation-rnn.ipynb +0 -812
- noshot/data/ML TS XAI/NLP/NLP 3/word2vector.ipynb +0 -173
- noshot/data/ML TS XAI/NLP/NLP 4/Backward Procedure Algorithm.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 4/Chi Square Collocation.ipynb +0 -208
- noshot/data/ML TS XAI/NLP/NLP 4/Collocation (T test).ipynb +0 -188
- noshot/data/ML TS XAI/NLP/NLP 4/Experiment 1.ipynb +0 -437
- noshot/data/ML TS XAI/NLP/NLP 4/Forward Procedure Algorithm.ipynb +0 -132
- noshot/data/ML TS XAI/NLP/NLP 4/Hindle Rooth.ipynb +0 -414
- noshot/data/ML TS XAI/NLP/NLP 4/MachineTranslation.ipynb +0 -368
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +0 -86
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +0 -112
- noshot/data/ML TS XAI/NLP/NLP 4/PCFG Inside Probability.ipynb +0 -451
- noshot/data/ML TS XAI/NLP/NLP 4/Text Generation using LSTM.ipynb +0 -297
- noshot/data/ML TS XAI/NLP/NLP 4/Viterbi.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 4/Word Sense Disambiguation.ipynb +0 -335
- noshot/data/ML TS XAI/NLP/NLP 5/10.Text Generation using LSTM.ipynb +0 -316
- noshot/data/ML TS XAI/NLP/NLP 5/11.Machine Translation.ipynb +0 -868
- noshot/data/ML TS XAI/NLP/NLP 5/2.T and Chi2 Test.ipynb +0 -204
- noshot/data/ML TS XAI/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +0 -234
- noshot/data/ML TS XAI/NLP/NLP 5/4.Hinddle and Rooth.ipynb +0 -128
- noshot/data/ML TS XAI/NLP/NLP 5/5.Forward and Backward.ipynb +0 -149
- noshot/data/ML TS XAI/NLP/NLP 5/6.Viterbi.ipynb +0 -111
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG Parse Tree.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG using cyk.ipynb +0 -101
- noshot/data/ML TS XAI/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 5/9.Word2Vector.ipynb +0 -78
- noshot/data/ML TS XAI/NLP/NLP 5/NLP ALL In One.ipynb +0 -2619
- noshot/data/ML TS XAI/NLP/NLP 5/sample1.txt +0 -15
- noshot/data/ML TS XAI/NLP/NLP 5/sample2.txt +0 -4
- noshot/data/ML TS XAI/NLP/NLP 5/word2vec_model.bin +0 -0
- noshot/data/ML TS XAI/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +0 -312
- noshot/data/ML TS XAI/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 6/3. Naive Bayes WSD.ipynb +0 -199
- noshot/data/ML TS XAI/NLP/NLP 6/4. Hinddle and Rooth.ipynb +0 -151
- noshot/data/ML TS XAI/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +0 -164
- noshot/data/ML TS XAI/NLP/NLP 6/7. PCFG using CYK.ipynb +0 -383
- noshot/data/ML TS XAI/NLP/NLP 6/8. BOW and TF-IDF.ipynb +0 -252
- noshot/data/ML TS XAI/Ubuntu CN Lab.iso +0 -0
- noshot-0.1.6.dist-info/RECORD +0 -216
- {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/LICENSE.txt +0 -0
- {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/WHEEL +0 -0
- {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/top_level.txt +0 -0
@@ -1,126 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "0c5491e5-16d7-48af-9c5c-4656cc870c22",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import pandas as pd\n",
|
11
|
-
"import numpy as np\n",
|
12
|
-
"import matplotlib.pyplot as plt\n",
|
13
|
-
"import numpy as np\n",
|
14
|
-
"from scipy import stats"
|
15
|
-
]
|
16
|
-
},
|
17
|
-
{
|
18
|
-
"cell_type": "markdown",
|
19
|
-
"id": "240a2de4-c0b4-4edc-a26c-c1eb5b688af3",
|
20
|
-
"metadata": {},
|
21
|
-
"source": [
|
22
|
-
"<b>Does sleep deprivation cause us to be either more or less aggressie? To test\n",
|
23
|
-
" this assumption, a psychologist randomly assigns volunteer subjects to sleep-deprivation\n",
|
24
|
-
" periods of either 0, 24, or 48 hours (independent variable). Subsequently, subjects are tested\n",
|
25
|
-
" for agressive behaviour. Aggressioin scores (dependent variable) indicate the total number of \n",
|
26
|
-
" different agressive behaviour.\n",
|
27
|
-
"</b>"
|
28
|
-
]
|
29
|
-
},
|
30
|
-
{
|
31
|
-
"cell_type": "code",
|
32
|
-
"execution_count": null,
|
33
|
-
"id": "68731695-7b9e-4b8a-a7f1-5ccee8454842",
|
34
|
-
"metadata": {},
|
35
|
-
"outputs": [],
|
36
|
-
"source": [
|
37
|
-
"def ANOVA_REP(groups, alpha):\n",
|
38
|
-
" group_mean = [np.mean(group) for group in groups]\n",
|
39
|
-
" subject_mean = [np.mean(subject) for subject in zip(*groups)]\n",
|
40
|
-
" grand_mean = np.mean(group_mean)\n",
|
41
|
-
" k = len(groups)\n",
|
42
|
-
" N = sum([len(group) for group in groups])\n",
|
43
|
-
" SSB = sum( len(group) * (group_mean[i] - grand_mean)**2 \\\n",
|
44
|
-
" for i, group in enumerate(groups) )\n",
|
45
|
-
" SSW = sum( (x - group_mean[i])**2 \\\n",
|
46
|
-
" for i, group in enumerate(groups) for x in group )\n",
|
47
|
-
" SSS = sum( k * (subject_mean[i] - grand_mean)**2 \\\n",
|
48
|
-
" for i, group in enumerate(groups) )\n",
|
49
|
-
" SSE = SSW - SSS\n",
|
50
|
-
" dfb = k - 1\n",
|
51
|
-
" dfw = N - k\n",
|
52
|
-
" dfs = len(groups[0]) - 1\n",
|
53
|
-
" dfe = dfw - dfs\n",
|
54
|
-
" MSB = SSB/dfb\n",
|
55
|
-
" MSE = SSE/dfe\n",
|
56
|
-
" F = MSB/MSE\n",
|
57
|
-
" critical = stats.f.ppf(1-alpha, dfb, dfe)\n",
|
58
|
-
"\n",
|
59
|
-
" print(\"Critical Value =\", critical)\n",
|
60
|
-
" print(\"F Statistic =\", F)\n",
|
61
|
-
" if F > critical: \n",
|
62
|
-
" print(\"Reject Null Hypothesis\")\n",
|
63
|
-
" else:\n",
|
64
|
-
" print(\"Accept Null Hypothesis\")\n",
|
65
|
-
"\n",
|
66
|
-
" x = np.linspace(0, 50, 1000) #adjust as required\n",
|
67
|
-
" y = stats.f.pdf(x, dfb, dfe)\n",
|
68
|
-
" plt.figure(figsize = (10, 8)) #adjust if you need to\n",
|
69
|
-
" plt.plot(x, y, color = 'blue', label = 'F Distribution')\n",
|
70
|
-
" plt.axvline(x = F, color = 'green', linestyle = '--', label = 'F Statistic')\n",
|
71
|
-
" plt.fill_between(x, y, color = 'red', where = (x > critical), alpha = 0.5, label = 'Critical Region')\n",
|
72
|
-
"\n",
|
73
|
-
" plt.xlabel('F Score')\n",
|
74
|
-
" plt.ylabel('Probability Density')\n",
|
75
|
-
" plt.title('One Way ANOVA (Repeated Measure) Test')\n",
|
76
|
-
" plt.legend()\n",
|
77
|
-
" plt.show()"
|
78
|
-
]
|
79
|
-
},
|
80
|
-
{
|
81
|
-
"cell_type": "code",
|
82
|
-
"execution_count": null,
|
83
|
-
"id": "57dcb781-e81a-4f37-a900-6a8389480ddd",
|
84
|
-
"metadata": {},
|
85
|
-
"outputs": [],
|
86
|
-
"source": [
|
87
|
-
"df = pd.read_csv('sleep_deprivation.csv')\n",
|
88
|
-
"df"
|
89
|
-
]
|
90
|
-
},
|
91
|
-
{
|
92
|
-
"cell_type": "code",
|
93
|
-
"execution_count": null,
|
94
|
-
"id": "874682bf-61dc-460a-92e1-ef075a410398",
|
95
|
-
"metadata": {},
|
96
|
-
"outputs": [],
|
97
|
-
"source": [
|
98
|
-
"groups = [df['Zero'], df['Twenty_Four'], df['Forty_Eight']]\n",
|
99
|
-
"groups = [list(x) for x in groups]\n",
|
100
|
-
"alpha = 0.05\n",
|
101
|
-
"ANOVA_REP(groups, alpha)"
|
102
|
-
]
|
103
|
-
}
|
104
|
-
],
|
105
|
-
"metadata": {
|
106
|
-
"kernelspec": {
|
107
|
-
"display_name": "Python 3 (ipykernel)",
|
108
|
-
"language": "python",
|
109
|
-
"name": "python3"
|
110
|
-
},
|
111
|
-
"language_info": {
|
112
|
-
"codemirror_mode": {
|
113
|
-
"name": "ipython",
|
114
|
-
"version": 3
|
115
|
-
},
|
116
|
-
"file_extension": ".py",
|
117
|
-
"mimetype": "text/x-python",
|
118
|
-
"name": "python",
|
119
|
-
"nbconvert_exporter": "python",
|
120
|
-
"pygments_lexer": "ipython3",
|
121
|
-
"version": "3.12.4"
|
122
|
-
}
|
123
|
-
},
|
124
|
-
"nbformat": 4,
|
125
|
-
"nbformat_minor": 5
|
126
|
-
}
|
@@ -1,134 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "0fcaaf6e-3185-4a2f-b4e9-f2f295b1c88d",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import pandas as pd\n",
|
11
|
-
"import numpy as np\n",
|
12
|
-
"import random\n",
|
13
|
-
"import matplotlib.pyplot as plt\n",
|
14
|
-
"from scipy import stats"
|
15
|
-
]
|
16
|
-
},
|
17
|
-
{
|
18
|
-
"cell_type": "code",
|
19
|
-
"execution_count": null,
|
20
|
-
"id": "ba7494c2-fc54-4fb1-b5de-28bc61904c23",
|
21
|
-
"metadata": {},
|
22
|
-
"outputs": [],
|
23
|
-
"source": [
|
24
|
-
"def ANOVA(groups, alpha):\n",
|
25
|
-
" group_mean = [np.mean(group) for group in groups]\n",
|
26
|
-
" grand_mean = np.mean(group_mean)\n",
|
27
|
-
" k = len(groups)\n",
|
28
|
-
" N = sum([len(group) for group in groups])\n",
|
29
|
-
" SSB = sum( len(group) * (group_mean[i] - grand_mean)**2 \\\n",
|
30
|
-
" for i, group in enumerate(groups) )\n",
|
31
|
-
" SSW = sum( (x - group_mean[i])**2 \\\n",
|
32
|
-
" for i, group in enumerate(groups) for x in group )\n",
|
33
|
-
" dfb = k - 1\n",
|
34
|
-
" dfw = N - k\n",
|
35
|
-
" MSB = SSB/dfb\n",
|
36
|
-
" MSW = SSW/dfw\n",
|
37
|
-
" F = MSB/MSW\n",
|
38
|
-
" critical = stats.f.ppf(1-alpha, dfb, dfw)\n",
|
39
|
-
"\n",
|
40
|
-
" print(\"Critical Value =\", critical)\n",
|
41
|
-
" print(\"F Statistic =\", F)\n",
|
42
|
-
" if F > critical: \n",
|
43
|
-
" print(\"Reject Null Hypothesis\")\n",
|
44
|
-
" else:\n",
|
45
|
-
" print(\"Accept Null Hypothesis\")\n",
|
46
|
-
"\n",
|
47
|
-
" x = np.linspace(0, 6, 1000)\n",
|
48
|
-
" y = stats.f.pdf(x, dfb, dfw)\n",
|
49
|
-
" plt.figure(figsize = (10, 6))\n",
|
50
|
-
" plt.plot(x, y, color = 'blue', label = 'F Distribution')\n",
|
51
|
-
" plt.axvline(x = F, color = 'green', linestyle = '--', label = 'F Statistic')\n",
|
52
|
-
" plt.fill_between(x, y, color = 'red', where = (x > critical), alpha = 0.5, label = 'Critical Region')\n",
|
53
|
-
"\n",
|
54
|
-
" plt.xlabel('F Score')\n",
|
55
|
-
" plt.ylabel('Probability Density')\n",
|
56
|
-
" plt.title('One Way ANOVA Test')\n",
|
57
|
-
" plt.legend()\n",
|
58
|
-
" plt.show()"
|
59
|
-
]
|
60
|
-
},
|
61
|
-
{
|
62
|
-
"cell_type": "markdown",
|
63
|
-
"id": "b9460934-9472-4cea-b804-258f6cd5fa33",
|
64
|
-
"metadata": {},
|
65
|
-
"source": [
|
66
|
-
"<b>Implement Random Sampling, Demonstrate ANOVA. \n",
|
67
|
-
"Is there a significant difference in the DiabetesPedigreeFunction levels between young adults (20-30), middle-aged adults (31-50), and older adults (50+) diagnosed with diabetes?\n",
|
68
|
-
"</b>"
|
69
|
-
]
|
70
|
-
},
|
71
|
-
{
|
72
|
-
"cell_type": "code",
|
73
|
-
"execution_count": null,
|
74
|
-
"id": "0bd5d561-99d0-4e2a-8146-a86140809a07",
|
75
|
-
"metadata": {},
|
76
|
-
"outputs": [],
|
77
|
-
"source": [
|
78
|
-
"df = pd.read_csv('2_ANOVA.csv')\n",
|
79
|
-
"print(df.shape)\n",
|
80
|
-
"df.head()"
|
81
|
-
]
|
82
|
-
},
|
83
|
-
{
|
84
|
-
"cell_type": "code",
|
85
|
-
"execution_count": null,
|
86
|
-
"id": "7dfab0a1-f7eb-4b98-80a7-8c916634006f",
|
87
|
-
"metadata": {},
|
88
|
-
"outputs": [],
|
89
|
-
"source": [
|
90
|
-
"def categorize(age):\n",
|
91
|
-
" if 20 <= age <= 30: return \"young\"\n",
|
92
|
-
" elif 30 < age <= 50: return \"middle-aged\"\n",
|
93
|
-
" elif 50 < age: return \"old\"\n",
|
94
|
-
"\n",
|
95
|
-
"df['Age_Category'] = df['Age'].apply(categorize)\n",
|
96
|
-
"df[['DiabetesPedigreeFunction', 'Age', 'Age_Category']].head(10)"
|
97
|
-
]
|
98
|
-
},
|
99
|
-
{
|
100
|
-
"cell_type": "code",
|
101
|
-
"execution_count": null,
|
102
|
-
"id": "ac1d0667-cde4-4d91-af95-8e50e1b155c8",
|
103
|
-
"metadata": {},
|
104
|
-
"outputs": [],
|
105
|
-
"source": [
|
106
|
-
"groups = df.groupby('Age_Category')['DiabetesPedigreeFunction'].apply(list)\n",
|
107
|
-
"groups = [random.choices(group, k = 50) for group in groups]\n",
|
108
|
-
"alpha = 0.05\n",
|
109
|
-
"ANOVA(groups, alpha)"
|
110
|
-
]
|
111
|
-
}
|
112
|
-
],
|
113
|
-
"metadata": {
|
114
|
-
"kernelspec": {
|
115
|
-
"display_name": "Python 3 (ipykernel)",
|
116
|
-
"language": "python",
|
117
|
-
"name": "python3"
|
118
|
-
},
|
119
|
-
"language_info": {
|
120
|
-
"codemirror_mode": {
|
121
|
-
"name": "ipython",
|
122
|
-
"version": 3
|
123
|
-
},
|
124
|
-
"file_extension": ".py",
|
125
|
-
"mimetype": "text/x-python",
|
126
|
-
"name": "python",
|
127
|
-
"nbconvert_exporter": "python",
|
128
|
-
"pygments_lexer": "ipython3",
|
129
|
-
"version": "3.12.4"
|
130
|
-
}
|
131
|
-
},
|
132
|
-
"nbformat": 4,
|
133
|
-
"nbformat_minor": 5
|
134
|
-
}
|
@@ -1,119 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "c96adcb7-b9d3-444a-ab9e-b8a191af58a1",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import numpy as np\n",
|
11
|
-
"import matplotlib.pyplot as plt\n",
|
12
|
-
"from scipy import stats\n",
|
13
|
-
"import pandas as pd"
|
14
|
-
]
|
15
|
-
},
|
16
|
-
{
|
17
|
-
"cell_type": "code",
|
18
|
-
"execution_count": null,
|
19
|
-
"id": "960be4dd-22a3-45e7-8f75-680209a6513d",
|
20
|
-
"metadata": {},
|
21
|
-
"outputs": [],
|
22
|
-
"source": [
|
23
|
-
"def show_curve(F_statistic, critical_value, df_between, df_within):\n",
|
24
|
-
" x = np.linspace(0, 12, 1000) # Range for F-distribution\n",
|
25
|
-
" y = stats.f.pdf(x, df_between, df_within) # PDF of F-distribution\n",
|
26
|
-
" plt.figure(figsize=(10, 6))\n",
|
27
|
-
" plt.plot(x, y, label='F-distribution', color='blue')\n",
|
28
|
-
"\n",
|
29
|
-
" # Shade the critical region\n",
|
30
|
-
" plt.fill_between(x, y, where=(x > critical_value), color='red', alpha=0.5, label='Critical Region')\n",
|
31
|
-
" \n",
|
32
|
-
" # Draw the F-statistic line\n",
|
33
|
-
" plt.axvline(F_statistic, color='orange', linestyle='--', label='F-statistic')\n",
|
34
|
-
" \n",
|
35
|
-
" plt.title('ANOVA: F-Distribution and Critical Region')\n",
|
36
|
-
" plt.xlabel('F Value')\n",
|
37
|
-
" plt.ylabel('Probability Density')\n",
|
38
|
-
" plt.legend()\n",
|
39
|
-
" plt.grid()\n",
|
40
|
-
" plt.xlim(0, 12) # Adjust x-axis limits\n",
|
41
|
-
" plt.ylim(0, max(y) * 1.1) # Adjust y-axis limits for better visibility\n",
|
42
|
-
" plt.show()"
|
43
|
-
]
|
44
|
-
},
|
45
|
-
{
|
46
|
-
"cell_type": "code",
|
47
|
-
"execution_count": null,
|
48
|
-
"id": "409dfa77-3937-4b66-a8be-5dcb1960e6a4",
|
49
|
-
"metadata": {},
|
50
|
-
"outputs": [],
|
51
|
-
"source": [
|
52
|
-
"# Step 1: Load the dataset\n",
|
53
|
-
"file_path = 'sample_data.csv' # Replace with the path to your CSV file\n",
|
54
|
-
"df = pd.read_csv(file_path)\n",
|
55
|
-
"df = df.dropna()\n",
|
56
|
-
"# Assume 'School' is the categorical column and 'Values' is the numerical column.\n",
|
57
|
-
"# Step 2: Group the data by 'School' and calculate means\n",
|
58
|
-
"groups = df.groupby('School')['Values']\n",
|
59
|
-
"group_means = groups.mean()\n",
|
60
|
-
"overall_mean = df['Values'].mean()\n",
|
61
|
-
"\n",
|
62
|
-
"# Step 3: Calculate SSB (Sum of Squares Between)\n",
|
63
|
-
"SSB = sum(groups.size()[group] * (group_mean - overall_mean) ** 2 \n",
|
64
|
-
" for group, group_mean in group_means.items())\n",
|
65
|
-
"\n",
|
66
|
-
"# Step 4: Calculate SSW (Sum of Squares Within)\n",
|
67
|
-
"SSW = sum(((group_data - group_means[group_name]) ** 2).sum() \n",
|
68
|
-
" for group_name, group_data in groups)\n",
|
69
|
-
"\n",
|
70
|
-
"# Step 5: Degrees of freedom\n",
|
71
|
-
"df_between = len(group_means) - 1 # k - 1\n",
|
72
|
-
"df_within = len(df) - len(group_means) # N - k\n",
|
73
|
-
"\n",
|
74
|
-
"# Step 6: Calculate MSB and MSW\n",
|
75
|
-
"MSB = SSB / df_between\n",
|
76
|
-
"MSW = SSW / df_within\n",
|
77
|
-
"\n",
|
78
|
-
"# Step 7: Calculate the F-statistic\n",
|
79
|
-
"F_statistic = MSB / MSW\n",
|
80
|
-
"\n",
|
81
|
-
"# Step 8: Determine the critical F-value from the F-distribution table\n",
|
82
|
-
"alpha = 0.05 # Significance level\n",
|
83
|
-
"critical_value = stats.f.ppf(1 - alpha, df_between, df_within)\n",
|
84
|
-
"\n",
|
85
|
-
"# Step 9: Print results\n",
|
86
|
-
"print(f\"F-statistic: {F_statistic:.2f}\")\n",
|
87
|
-
"print(f\"Critical F-value: {critical_value:.2f}\")\n",
|
88
|
-
"\n",
|
89
|
-
"show_curve(F_statistic, critical_value, df_between, df_within)\n",
|
90
|
-
"# Step 10: Decision - Reject or Fail to Reject Null Hypothesis\n",
|
91
|
-
"if F_statistic > critical_value:\n",
|
92
|
-
" print(\"Reject the null hypothesis (There is a significant difference between group means).\")\n",
|
93
|
-
"else:\n",
|
94
|
-
" print(\"Fail to reject the null hypothesis (No significant difference between group means).\")"
|
95
|
-
]
|
96
|
-
}
|
97
|
-
],
|
98
|
-
"metadata": {
|
99
|
-
"kernelspec": {
|
100
|
-
"display_name": "Python 3 (ipykernel)",
|
101
|
-
"language": "python",
|
102
|
-
"name": "python3"
|
103
|
-
},
|
104
|
-
"language_info": {
|
105
|
-
"codemirror_mode": {
|
106
|
-
"name": "ipython",
|
107
|
-
"version": 3
|
108
|
-
},
|
109
|
-
"file_extension": ".py",
|
110
|
-
"mimetype": "text/x-python",
|
111
|
-
"name": "python",
|
112
|
-
"nbconvert_exporter": "python",
|
113
|
-
"pygments_lexer": "ipython3",
|
114
|
-
"version": "3.12.4"
|
115
|
-
}
|
116
|
-
},
|
117
|
-
"nbformat": 4,
|
118
|
-
"nbformat_minor": 5
|
119
|
-
}
|
@@ -1,138 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "2e356560-a7fa-44fd-bc9f-08becb1209c6",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import pandas as pd\n",
|
11
|
-
"import numpy as np\n",
|
12
|
-
"import matplotlib.pyplot as plt\n",
|
13
|
-
"from scipy import stats"
|
14
|
-
]
|
15
|
-
},
|
16
|
-
{
|
17
|
-
"cell_type": "code",
|
18
|
-
"execution_count": null,
|
19
|
-
"id": "a6db50e0-3436-418d-99eb-e0e1ee7b6485",
|
20
|
-
"metadata": {},
|
21
|
-
"outputs": [],
|
22
|
-
"source": [
|
23
|
-
"def show_curve(x, y, F, critical, title):\n",
|
24
|
-
" plt.figure(figsize = (10, 8)) #adjust if you need to\n",
|
25
|
-
" plt.plot(x, y, color = 'blue', label = 'F Distribution')\n",
|
26
|
-
" plt.axvline(x = F, color = 'green', linestyle = '--', label = 'F Statistic')\n",
|
27
|
-
" plt.fill_between(x, y, color = 'red', where = (x > critical), alpha = 0.5, label = 'Critical Region')\n",
|
28
|
-
" plt.xlabel('F Score')\n",
|
29
|
-
" plt.ylabel('Probability Density')\n",
|
30
|
-
" plt.title(title)\n",
|
31
|
-
" plt.legend()\n",
|
32
|
-
" plt.show()\n",
|
33
|
-
"def Two_Way_ANOVA(groups, row_groups, col_groups, alpha):\n",
|
34
|
-
" cell_mean = [np.mean(group) for group in groups]\n",
|
35
|
-
" col_mean = [np.mean(col) for col in col_groups]\n",
|
36
|
-
" row_mean = [np.mean(row) for row in row_groups]\n",
|
37
|
-
" grand_mean = np.mean(cell_mean)\n",
|
38
|
-
" \n",
|
39
|
-
" k = len(groups)\n",
|
40
|
-
" N = sum([len(group) for group in groups])\n",
|
41
|
-
" c = len(col_groups)\n",
|
42
|
-
" r = len(row_groups)\n",
|
43
|
-
" SSB = sum( len(group) * (cell_mean[i] - grand_mean)**2 \\\n",
|
44
|
-
" for i, group in enumerate(groups) )\n",
|
45
|
-
" SSW = sum( (x - cell_mean[i])**2 \\\n",
|
46
|
-
" for i, group in enumerate(groups) for x in group )\n",
|
47
|
-
" SSC = sum( len(col) * (col_mean[i] - grand_mean)**2 \\\n",
|
48
|
-
" for i, col in enumerate(col_groups) )\n",
|
49
|
-
" SSR = sum( len(row) * (row_mean[i] - grand_mean)**2 \\\n",
|
50
|
-
" for i, row in enumerate(row_groups) )\n",
|
51
|
-
" SSI = SSB - (SSC + SSR)\n",
|
52
|
-
" dfb = k - 1\n",
|
53
|
-
" dfc = c - 1\n",
|
54
|
-
" dfr = r - 1\n",
|
55
|
-
" dfi = dfc*dfr\n",
|
56
|
-
" dfw = N - c*r\n",
|
57
|
-
" MSC = SSC/dfc\n",
|
58
|
-
" MSR = SSR/dfr\n",
|
59
|
-
" MSI = SSI/dfi\n",
|
60
|
-
" MSW = SSW/dfw\n",
|
61
|
-
"\n",
|
62
|
-
" F_col = MSC/MSW\n",
|
63
|
-
" F_row = MSR/MSW\n",
|
64
|
-
" F_intr = MSI/MSW \n",
|
65
|
-
" critical_col = stats.f.ppf(1-alpha, dfc, dfw)\n",
|
66
|
-
" critical_row = stats.f.ppf(1-alpha, dfr, dfw)\n",
|
67
|
-
" critical_intr = stats.f.ppf(1-alpha, dfi, dfw)\n",
|
68
|
-
"\n",
|
69
|
-
" print(\"Critical Vaue =\", critical_col, \"\\tF Column =\", F_col)\n",
|
70
|
-
" print(\"Critical Vaue =\", critical_row, \"\\tF Row =\", F_row)\n",
|
71
|
-
" print(\"Critical Vaue =\", critical_intr, \"\\tF Interaction =\", F_intr)\n",
|
72
|
-
" if F_col > critical_col or F_row > critical_row | F_intr > critical_intr: \n",
|
73
|
-
" print(\"Reject Null Hypothesis\")\n",
|
74
|
-
" else:\n",
|
75
|
-
" print(\"Accept Null Hypothesis\")\n",
|
76
|
-
"\n",
|
77
|
-
" x = np.linspace(0, 6, 1000)\n",
|
78
|
-
" y_col = stats.f.pdf(x, dfc, dfw)\n",
|
79
|
-
" y_row = stats.f.pdf(x, dfr, dfw)\n",
|
80
|
-
" y_intr = stats.f.pdf(x, dfi, dfw)\n",
|
81
|
-
" show_curve(x, y_col, F_col, critical_col, \"F Column\")\n",
|
82
|
-
" show_curve(x, y_row, F_row, critical_row, \"F Row\")\n",
|
83
|
-
" show_curve(x, y_intr, F_intr, critical_intr, \"F Interaction\")"
|
84
|
-
]
|
85
|
-
},
|
86
|
-
{
|
87
|
-
"cell_type": "code",
|
88
|
-
"execution_count": null,
|
89
|
-
"id": "a8d52120-5d61-4f59-9781-f368ee14f6b8",
|
90
|
-
"metadata": {},
|
91
|
-
"outputs": [],
|
92
|
-
"source": [
|
93
|
-
"df = pd.read_csv('reaction_time.csv')\n",
|
94
|
-
"df"
|
95
|
-
]
|
96
|
-
},
|
97
|
-
{
|
98
|
-
"cell_type": "code",
|
99
|
-
"execution_count": null,
|
100
|
-
"id": "e3b28a0b-45eb-4178-9201-358c6897fc04",
|
101
|
-
"metadata": {},
|
102
|
-
"outputs": [],
|
103
|
-
"source": [
|
104
|
-
"df1 = df[df['Degree of Danger'] == 'Dangerous']\n",
|
105
|
-
"df2 = df[df['Degree of Danger'] == 'Nondangerous']\n",
|
106
|
-
"\n",
|
107
|
-
"groups = [df1['Zero'], df1['Two'], df1['Four'], df2['Zero'], df2['Two'], df2['Four']]\n",
|
108
|
-
"row_groups = []\n",
|
109
|
-
"for _, cell in df.groupby(['Degree of Danger']):\n",
|
110
|
-
" row_groups.append([*cell['Zero'].values , *cell['Two'].values, *cell['Four'].values])\n",
|
111
|
-
"col_groups = [df['Zero'], df['Two'], df['Four']]\n",
|
112
|
-
"alpha = 0.05\n",
|
113
|
-
"Two_Way_ANOVA(groups,row_groups, col_groups, alpha)"
|
114
|
-
]
|
115
|
-
}
|
116
|
-
],
|
117
|
-
"metadata": {
|
118
|
-
"kernelspec": {
|
119
|
-
"display_name": "Python 3 (ipykernel)",
|
120
|
-
"language": "python",
|
121
|
-
"name": "python3"
|
122
|
-
},
|
123
|
-
"language_info": {
|
124
|
-
"codemirror_mode": {
|
125
|
-
"name": "ipython",
|
126
|
-
"version": 3
|
127
|
-
},
|
128
|
-
"file_extension": ".py",
|
129
|
-
"mimetype": "text/x-python",
|
130
|
-
"name": "python",
|
131
|
-
"nbconvert_exporter": "python",
|
132
|
-
"pygments_lexer": "ipython3",
|
133
|
-
"version": "3.12.4"
|
134
|
-
}
|
135
|
-
},
|
136
|
-
"nbformat": 4,
|
137
|
-
"nbformat_minor": 5
|
138
|
-
}
|