noshot 0.1.6__py3-none-any.whl → 0.1.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +207 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +625 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +287 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +625 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +83 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +625 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +117 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +210 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +137 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +129 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +179 -0
- {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/METADATA +2 -2
- noshot-0.1.8.dist-info/RECORD +24 -0
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +0 -112
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +0 -111
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +0 -115
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +0 -123
- noshot/data/ML TS XAI/AIDS/10. ANOVA/2_ANOVA.csv +0 -769
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +0 -126
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Two Way ANOVA.ipynb +0 -138
- noshot/data/ML TS XAI/AIDS/10. ANOVA/reaction_time.csv +0 -5
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sample_data.csv +0 -16
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sleep_deprivation.csv +0 -4
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/3_Linear.csv +0 -4802
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +0 -113
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression.ipynb +0 -148
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/house_rate.csv +0 -22
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +0 -128
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression.ipynb +0 -145
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/default.csv +0 -1001
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/hours_scores_records.csv +0 -101
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +0 -256
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +0 -157
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +0 -178
- noshot/data/ML TS XAI/AIDS/3. Genetic Algorithm/Genetic.ipynb +0 -95
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +0 -74
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +0 -103
- noshot/data/ML TS XAI/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +0 -182
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +0 -120
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +0 -125
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/Random Sampling.ipynb +0 -73
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test Hash Function.ipynb +0 -141
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test.ipynb +0 -151
- noshot/data/ML TS XAI/AIDS/8. Z Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/1_heart.csv +0 -304
- noshot/data/ML TS XAI/AIDS/9. T Test/Independent T Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/9. T Test/Paired T Test.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test Hash Function.ipynb +0 -142
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test.ipynb +0 -158
- noshot/data/ML TS XAI/AIDS/9. T Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/iq_test.csv +0 -0
- noshot/data/ML TS XAI/AIDS/Others (AllinOne)/All In One.ipynb +0 -4581
- noshot/data/ML TS XAI/CN/1. Chat Application/chat.java +0 -81
- noshot/data/ML TS XAI/CN/1. Chat Application/output.png +0 -0
- noshot/data/ML TS XAI/CN/1. Chat Application/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +0 -65
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +0 -44
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +0 -229
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/file_to_send.txt +0 -2
- noshot/data/ML TS XAI/CN/2. File Transfer/filetransfer.java +0 -119
- noshot/data/ML TS XAI/CN/2. File Transfer/output.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Client.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerImpl.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerIntf.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Server.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/rmi.java +0 -56
- noshot/data/ML TS XAI/CN/4. Wired Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.awk +0 -25
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.tcl +0 -81
- noshot/data/ML TS XAI/CN/5. Wireless Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.awk +0 -27
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.tcl +0 -153
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +0 -28
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +0 -78
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +0 -79
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +0 -163
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/DV.tcl +0 -111
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/LS.tcl +0 -106
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/analysis.awk +0 -36
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/analysis.awk +0 -20
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/broadcast.tcl +0 -76
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/multicast.tcl +0 -103
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/DHCP.java +0 -125
- noshot/data/ML TS XAI/CN/9. DHCP/output.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/procedure.png +0 -0
- noshot/data/ML TS XAI/NLP/NLP 1/1-Prereqs.py +0 -18
- noshot/data/ML TS XAI/NLP/NLP 1/2-Chi2test.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 1/2-T-test.py +0 -79
- noshot/data/ML TS XAI/NLP/NLP 1/3-WSD-nb.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/4-Hindle-Rooth.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/5-HMM-Trellis.py +0 -82
- noshot/data/ML TS XAI/NLP/NLP 1/6-HMM-Viterbi.py +0 -16
- noshot/data/ML TS XAI/NLP/NLP 1/7-PCFG-parsetree.py +0 -15
- noshot/data/ML TS XAI/NLP/NLP 1/Chi2test.ipynb +0 -285
- noshot/data/ML TS XAI/NLP/NLP 1/Hindle-Rooth.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 1/PCFG.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 1/Prereqs.ipynb +0 -131
- noshot/data/ML TS XAI/NLP/NLP 1/T test.ipynb +0 -252
- noshot/data/ML TS XAI/NLP/NLP 1/TFIDF BOW.ipynb +0 -171
- noshot/data/ML TS XAI/NLP/NLP 1/Trellis.ipynb +0 -244
- noshot/data/ML TS XAI/NLP/NLP 1/WSD.ipynb +0 -645
- noshot/data/ML TS XAI/NLP/NLP 1/Word2Vec.ipynb +0 -93
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +0 -370
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +0 -274
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +0 -905
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/test.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +0 -272
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +0 -549
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +0 -817
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +0 -231
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +0 -507
- noshot/data/ML TS XAI/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +0 -255
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +0 -159
- noshot/data/ML TS XAI/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +0 -282
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +0 -670
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +0 -613
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +0 -74
- noshot/data/ML TS XAI/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +0 -480
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +0 -445
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +0 -105
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +0 -87
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +0 -11
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +0 -201
- noshot/data/ML TS XAI/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 3/Backward-Procedure.ipynb +0 -597
- noshot/data/ML TS XAI/NLP/NLP 3/Bag_of.ipynb +0 -1422
- noshot/data/ML TS XAI/NLP/NLP 3/CYK-algorithm.ipynb +0 -1067
- noshot/data/ML TS XAI/NLP/NLP 3/Forward-Procedure.ipynb +0 -477
- noshot/data/ML TS XAI/NLP/NLP 3/LSTM.ipynb +0 -1290
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-4.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-5.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/abc.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 3/ex-1-nltk.ipynb +0 -711
- noshot/data/ML TS XAI/NLP/NLP 3/ex-2-nlp.ipynb +0 -267
- noshot/data/ML TS XAI/NLP/NLP 3/exp8&9.ipynb +0 -305
- noshot/data/ML TS XAI/NLP/NLP 3/hind.ipynb +0 -287
- noshot/data/ML TS XAI/NLP/NLP 3/lab66.ipynb +0 -752
- noshot/data/ML TS XAI/NLP/NLP 3/leb_3.ipynb +0 -612
- noshot/data/ML TS XAI/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_1.ipynb +0 -3008
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_2.ipynb +0 -3095
- noshot/data/ML TS XAI/NLP/NLP 3/nlplab-9.ipynb +0 -295
- noshot/data/ML TS XAI/NLP/NLP 3/nltk-ex-4.ipynb +0 -506
- noshot/data/ML TS XAI/NLP/NLP 3/text1.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/text2.txt +0 -8
- noshot/data/ML TS XAI/NLP/NLP 3/text3.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/translation-rnn.ipynb +0 -812
- noshot/data/ML TS XAI/NLP/NLP 3/word2vector.ipynb +0 -173
- noshot/data/ML TS XAI/NLP/NLP 4/Backward Procedure Algorithm.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 4/Chi Square Collocation.ipynb +0 -208
- noshot/data/ML TS XAI/NLP/NLP 4/Collocation (T test).ipynb +0 -188
- noshot/data/ML TS XAI/NLP/NLP 4/Experiment 1.ipynb +0 -437
- noshot/data/ML TS XAI/NLP/NLP 4/Forward Procedure Algorithm.ipynb +0 -132
- noshot/data/ML TS XAI/NLP/NLP 4/Hindle Rooth.ipynb +0 -414
- noshot/data/ML TS XAI/NLP/NLP 4/MachineTranslation.ipynb +0 -368
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +0 -86
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +0 -112
- noshot/data/ML TS XAI/NLP/NLP 4/PCFG Inside Probability.ipynb +0 -451
- noshot/data/ML TS XAI/NLP/NLP 4/Text Generation using LSTM.ipynb +0 -297
- noshot/data/ML TS XAI/NLP/NLP 4/Viterbi.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 4/Word Sense Disambiguation.ipynb +0 -335
- noshot/data/ML TS XAI/NLP/NLP 5/10.Text Generation using LSTM.ipynb +0 -316
- noshot/data/ML TS XAI/NLP/NLP 5/11.Machine Translation.ipynb +0 -868
- noshot/data/ML TS XAI/NLP/NLP 5/2.T and Chi2 Test.ipynb +0 -204
- noshot/data/ML TS XAI/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +0 -234
- noshot/data/ML TS XAI/NLP/NLP 5/4.Hinddle and Rooth.ipynb +0 -128
- noshot/data/ML TS XAI/NLP/NLP 5/5.Forward and Backward.ipynb +0 -149
- noshot/data/ML TS XAI/NLP/NLP 5/6.Viterbi.ipynb +0 -111
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG Parse Tree.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG using cyk.ipynb +0 -101
- noshot/data/ML TS XAI/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 5/9.Word2Vector.ipynb +0 -78
- noshot/data/ML TS XAI/NLP/NLP 5/NLP ALL In One.ipynb +0 -2619
- noshot/data/ML TS XAI/NLP/NLP 5/sample1.txt +0 -15
- noshot/data/ML TS XAI/NLP/NLP 5/sample2.txt +0 -4
- noshot/data/ML TS XAI/NLP/NLP 5/word2vec_model.bin +0 -0
- noshot/data/ML TS XAI/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +0 -312
- noshot/data/ML TS XAI/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 6/3. Naive Bayes WSD.ipynb +0 -199
- noshot/data/ML TS XAI/NLP/NLP 6/4. Hinddle and Rooth.ipynb +0 -151
- noshot/data/ML TS XAI/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +0 -164
- noshot/data/ML TS XAI/NLP/NLP 6/7. PCFG using CYK.ipynb +0 -383
- noshot/data/ML TS XAI/NLP/NLP 6/8. BOW and TF-IDF.ipynb +0 -252
- noshot/data/ML TS XAI/Ubuntu CN Lab.iso +0 -0
- noshot-0.1.6.dist-info/RECORD +0 -216
- {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/LICENSE.txt +0 -0
- {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/WHEEL +0 -0
- {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/top_level.txt +0 -0
@@ -1,297 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"nbformat": 4,
|
3
|
-
"nbformat_minor": 0,
|
4
|
-
"metadata": {
|
5
|
-
"colab": {
|
6
|
-
"provenance": []
|
7
|
-
},
|
8
|
-
"kernelspec": {
|
9
|
-
"name": "python3",
|
10
|
-
"display_name": "Python 3"
|
11
|
-
},
|
12
|
-
"language_info": {
|
13
|
-
"name": "python"
|
14
|
-
}
|
15
|
-
},
|
16
|
-
"cells": [
|
17
|
-
{
|
18
|
-
"cell_type": "code",
|
19
|
-
"execution_count": null,
|
20
|
-
"metadata": {
|
21
|
-
"colab": {
|
22
|
-
"base_uri": "https://localhost:8080/"
|
23
|
-
},
|
24
|
-
"id": "JhhJVsl7hapo",
|
25
|
-
"outputId": "10b4828e-0fc7-4a72-9357-838f81451143"
|
26
|
-
},
|
27
|
-
"outputs": [
|
28
|
-
{
|
29
|
-
"output_type": "stream",
|
30
|
-
"name": "stdout",
|
31
|
-
"text": [
|
32
|
-
"Epoch 1/100\n",
|
33
|
-
"3/3 [==============================] - 2s 13ms/step - loss: 3.0814\n",
|
34
|
-
"Epoch 2/100\n",
|
35
|
-
"3/3 [==============================] - 0s 12ms/step - loss: 3.0538\n",
|
36
|
-
"Epoch 3/100\n",
|
37
|
-
"3/3 [==============================] - 0s 13ms/step - loss: 3.0327\n",
|
38
|
-
"Epoch 4/100\n",
|
39
|
-
"3/3 [==============================] - 0s 12ms/step - loss: 3.0081\n",
|
40
|
-
"Epoch 5/100\n",
|
41
|
-
"3/3 [==============================] - 0s 12ms/step - loss: 2.9773\n",
|
42
|
-
"Epoch 6/100\n",
|
43
|
-
"3/3 [==============================] - 0s 12ms/step - loss: 2.9416\n",
|
44
|
-
"Epoch 7/100\n",
|
45
|
-
"3/3 [==============================] - 0s 12ms/step - loss: 2.8934\n",
|
46
|
-
"Epoch 8/100\n",
|
47
|
-
"3/3 [==============================] - 0s 12ms/step - loss: 2.8761\n",
|
48
|
-
"Epoch 9/100\n",
|
49
|
-
"3/3 [==============================] - 0s 11ms/step - loss: 2.8701\n",
|
50
|
-
"Epoch 10/100\n",
|
51
|
-
"3/3 [==============================] - 0s 12ms/step - loss: 2.8650\n",
|
52
|
-
"Epoch 11/100\n",
|
53
|
-
"3/3 [==============================] - 0s 13ms/step - loss: 2.8487\n",
|
54
|
-
"Epoch 12/100\n",
|
55
|
-
"3/3 [==============================] - 0s 15ms/step - loss: 2.8399\n",
|
56
|
-
"Epoch 13/100\n",
|
57
|
-
"3/3 [==============================] - 0s 12ms/step - loss: 2.8411\n",
|
58
|
-
"Epoch 14/100\n",
|
59
|
-
"3/3 [==============================] - 0s 12ms/step - loss: 2.8369\n",
|
60
|
-
"Epoch 15/100\n",
|
61
|
-
"3/3 [==============================] - 0s 13ms/step - loss: 2.8319\n",
|
62
|
-
"Epoch 16/100\n",
|
63
|
-
"3/3 [==============================] - 0s 13ms/step - loss: 2.8314\n",
|
64
|
-
"Epoch 17/100\n",
|
65
|
-
"3/3 [==============================] - 0s 12ms/step - loss: 2.8299\n",
|
66
|
-
"Epoch 18/100\n",
|
67
|
-
"3/3 [==============================] - 0s 11ms/step - loss: 2.8272\n",
|
68
|
-
"Epoch 19/100\n",
|
69
|
-
"3/3 [==============================] - 0s 12ms/step - loss: 2.8259\n",
|
70
|
-
"Epoch 20/100\n",
|
71
|
-
"3/3 [==============================] - 0s 14ms/step - loss: 2.8218\n",
|
72
|
-
"Epoch 21/100\n",
|
73
|
-
"3/3 [==============================] - 0s 12ms/step - loss: 2.8214\n",
|
74
|
-
"Epoch 22/100\n",
|
75
|
-
"3/3 [==============================] - 0s 13ms/step - loss: 2.8201\n",
|
76
|
-
"Epoch 23/100\n",
|
77
|
-
"3/3 [==============================] - 0s 12ms/step - loss: 2.8171\n",
|
78
|
-
"Epoch 24/100\n",
|
79
|
-
"3/3 [==============================] - 0s 12ms/step - loss: 2.8212\n",
|
80
|
-
"Epoch 25/100\n",
|
81
|
-
"3/3 [==============================] - 0s 16ms/step - loss: 2.8146\n",
|
82
|
-
"Epoch 26/100\n",
|
83
|
-
"3/3 [==============================] - 0s 13ms/step - loss: 2.8116\n",
|
84
|
-
"Epoch 27/100\n",
|
85
|
-
"3/3 [==============================] - 0s 13ms/step - loss: 2.8108\n",
|
86
|
-
"Epoch 28/100\n",
|
87
|
-
"3/3 [==============================] - 0s 13ms/step - loss: 2.8091\n",
|
88
|
-
"Epoch 29/100\n",
|
89
|
-
"3/3 [==============================] - 0s 12ms/step - loss: 2.8076\n",
|
90
|
-
"Epoch 30/100\n",
|
91
|
-
"3/3 [==============================] - 0s 12ms/step - loss: 2.8080\n",
|
92
|
-
"Epoch 31/100\n",
|
93
|
-
"3/3 [==============================] - 0s 12ms/step - loss: 2.8015\n",
|
94
|
-
"Epoch 32/100\n",
|
95
|
-
"3/3 [==============================] - 0s 14ms/step - loss: 2.7974\n",
|
96
|
-
"Epoch 33/100\n",
|
97
|
-
"3/3 [==============================] - 0s 11ms/step - loss: 2.7995\n",
|
98
|
-
"Epoch 34/100\n",
|
99
|
-
"3/3 [==============================] - 0s 14ms/step - loss: 2.7947\n",
|
100
|
-
"Epoch 35/100\n",
|
101
|
-
"3/3 [==============================] - 0s 13ms/step - loss: 2.7938\n",
|
102
|
-
"Epoch 36/100\n",
|
103
|
-
"3/3 [==============================] - 0s 17ms/step - loss: 2.7870\n",
|
104
|
-
"Epoch 37/100\n",
|
105
|
-
"3/3 [==============================] - 0s 13ms/step - loss: 2.7836\n",
|
106
|
-
"Epoch 38/100\n",
|
107
|
-
"3/3 [==============================] - 0s 12ms/step - loss: 2.7833\n",
|
108
|
-
"Epoch 39/100\n",
|
109
|
-
"3/3 [==============================] - 0s 16ms/step - loss: 2.7749\n",
|
110
|
-
"Epoch 40/100\n",
|
111
|
-
"3/3 [==============================] - 0s 12ms/step - loss: 2.7677\n",
|
112
|
-
"Epoch 41/100\n",
|
113
|
-
"3/3 [==============================] - 0s 12ms/step - loss: 2.7596\n",
|
114
|
-
"Epoch 42/100\n",
|
115
|
-
"3/3 [==============================] - 0s 12ms/step - loss: 2.7599\n",
|
116
|
-
"Epoch 43/100\n",
|
117
|
-
"3/3 [==============================] - 0s 12ms/step - loss: 2.7422\n",
|
118
|
-
"Epoch 44/100\n",
|
119
|
-
"3/3 [==============================] - 0s 18ms/step - loss: 2.7323\n",
|
120
|
-
"Epoch 45/100\n",
|
121
|
-
"3/3 [==============================] - 0s 18ms/step - loss: 2.7200\n",
|
122
|
-
"Epoch 46/100\n",
|
123
|
-
"3/3 [==============================] - 0s 20ms/step - loss: 2.7005\n",
|
124
|
-
"Epoch 47/100\n",
|
125
|
-
"3/3 [==============================] - 0s 19ms/step - loss: 2.6986\n",
|
126
|
-
"Epoch 48/100\n",
|
127
|
-
"3/3 [==============================] - 0s 17ms/step - loss: 2.6953\n",
|
128
|
-
"Epoch 49/100\n",
|
129
|
-
"3/3 [==============================] - 0s 20ms/step - loss: 2.6842\n",
|
130
|
-
"Epoch 50/100\n",
|
131
|
-
"3/3 [==============================] - 0s 19ms/step - loss: 2.6726\n",
|
132
|
-
"Epoch 51/100\n",
|
133
|
-
"3/3 [==============================] - 0s 18ms/step - loss: 2.6660\n",
|
134
|
-
"Epoch 52/100\n",
|
135
|
-
"3/3 [==============================] - 0s 18ms/step - loss: 2.6363\n",
|
136
|
-
"Epoch 53/100\n",
|
137
|
-
"3/3 [==============================] - 0s 17ms/step - loss: 2.6074\n",
|
138
|
-
"Epoch 54/100\n",
|
139
|
-
"3/3 [==============================] - 0s 19ms/step - loss: 2.6035\n",
|
140
|
-
"Epoch 55/100\n",
|
141
|
-
"3/3 [==============================] - 0s 19ms/step - loss: 2.5875\n",
|
142
|
-
"Epoch 56/100\n",
|
143
|
-
"3/3 [==============================] - 0s 19ms/step - loss: 2.6009\n",
|
144
|
-
"Epoch 57/100\n",
|
145
|
-
"3/3 [==============================] - 0s 17ms/step - loss: 2.5479\n",
|
146
|
-
"Epoch 58/100\n",
|
147
|
-
"3/3 [==============================] - 0s 18ms/step - loss: 2.5328\n",
|
148
|
-
"Epoch 59/100\n",
|
149
|
-
"3/3 [==============================] - 0s 20ms/step - loss: 2.5000\n",
|
150
|
-
"Epoch 60/100\n",
|
151
|
-
"3/3 [==============================] - 0s 17ms/step - loss: 2.4774\n",
|
152
|
-
"Epoch 61/100\n",
|
153
|
-
"3/3 [==============================] - 0s 17ms/step - loss: 2.5492\n",
|
154
|
-
"Epoch 62/100\n",
|
155
|
-
"3/3 [==============================] - 0s 17ms/step - loss: 2.4640\n",
|
156
|
-
"Epoch 63/100\n",
|
157
|
-
"3/3 [==============================] - 0s 17ms/step - loss: 2.4343\n",
|
158
|
-
"Epoch 64/100\n",
|
159
|
-
"3/3 [==============================] - 0s 17ms/step - loss: 2.4382\n",
|
160
|
-
"Epoch 65/100\n",
|
161
|
-
"3/3 [==============================] - 0s 17ms/step - loss: 2.4170\n",
|
162
|
-
"Epoch 66/100\n",
|
163
|
-
"3/3 [==============================] - 0s 17ms/step - loss: 2.3897\n",
|
164
|
-
"Epoch 67/100\n",
|
165
|
-
"3/3 [==============================] - 0s 17ms/step - loss: 2.3674\n",
|
166
|
-
"Epoch 68/100\n",
|
167
|
-
"3/3 [==============================] - 0s 17ms/step - loss: 2.3501\n",
|
168
|
-
"Epoch 69/100\n",
|
169
|
-
"3/3 [==============================] - 0s 18ms/step - loss: 2.3383\n",
|
170
|
-
"Epoch 70/100\n",
|
171
|
-
"3/3 [==============================] - 0s 17ms/step - loss: 2.3089\n",
|
172
|
-
"Epoch 71/100\n",
|
173
|
-
"3/3 [==============================] - 0s 18ms/step - loss: 2.3383\n",
|
174
|
-
"Epoch 72/100\n",
|
175
|
-
"3/3 [==============================] - 0s 18ms/step - loss: 2.2974\n",
|
176
|
-
"Epoch 73/100\n",
|
177
|
-
"3/3 [==============================] - 0s 19ms/step - loss: 2.2858\n",
|
178
|
-
"Epoch 74/100\n",
|
179
|
-
"3/3 [==============================] - 0s 21ms/step - loss: 2.3051\n",
|
180
|
-
"Epoch 75/100\n",
|
181
|
-
"3/3 [==============================] - 0s 18ms/step - loss: 2.2262\n",
|
182
|
-
"Epoch 76/100\n",
|
183
|
-
"3/3 [==============================] - 0s 22ms/step - loss: 2.2349\n",
|
184
|
-
"Epoch 77/100\n",
|
185
|
-
"3/3 [==============================] - 0s 18ms/step - loss: 2.2466\n",
|
186
|
-
"Epoch 78/100\n",
|
187
|
-
"3/3 [==============================] - 0s 17ms/step - loss: 2.1873\n",
|
188
|
-
"Epoch 79/100\n",
|
189
|
-
"3/3 [==============================] - 0s 18ms/step - loss: 2.1898\n",
|
190
|
-
"Epoch 80/100\n",
|
191
|
-
"3/3 [==============================] - 0s 19ms/step - loss: 2.1487\n",
|
192
|
-
"Epoch 81/100\n",
|
193
|
-
"3/3 [==============================] - 0s 17ms/step - loss: 2.1016\n",
|
194
|
-
"Epoch 82/100\n",
|
195
|
-
"3/3 [==============================] - 0s 17ms/step - loss: 2.1179\n",
|
196
|
-
"Epoch 83/100\n",
|
197
|
-
"3/3 [==============================] - 0s 18ms/step - loss: 2.0715\n",
|
198
|
-
"Epoch 84/100\n",
|
199
|
-
"3/3 [==============================] - 0s 18ms/step - loss: 2.0920\n",
|
200
|
-
"Epoch 85/100\n",
|
201
|
-
"3/3 [==============================] - 0s 17ms/step - loss: 2.0995\n",
|
202
|
-
"Epoch 86/100\n",
|
203
|
-
"3/3 [==============================] - 0s 17ms/step - loss: 2.0618\n",
|
204
|
-
"Epoch 87/100\n",
|
205
|
-
"3/3 [==============================] - 0s 18ms/step - loss: 2.0372\n",
|
206
|
-
"Epoch 88/100\n",
|
207
|
-
"3/3 [==============================] - 0s 18ms/step - loss: 2.0018\n",
|
208
|
-
"Epoch 89/100\n",
|
209
|
-
"3/3 [==============================] - 0s 19ms/step - loss: 1.9799\n",
|
210
|
-
"Epoch 90/100\n",
|
211
|
-
"3/3 [==============================] - 0s 18ms/step - loss: 1.9973\n",
|
212
|
-
"Epoch 91/100\n",
|
213
|
-
"3/3 [==============================] - 0s 17ms/step - loss: 1.9362\n",
|
214
|
-
"Epoch 92/100\n",
|
215
|
-
"3/3 [==============================] - 0s 19ms/step - loss: 1.9132\n",
|
216
|
-
"Epoch 93/100\n",
|
217
|
-
"3/3 [==============================] - 0s 18ms/step - loss: 1.8939\n",
|
218
|
-
"Epoch 94/100\n",
|
219
|
-
"3/3 [==============================] - 0s 20ms/step - loss: 1.9069\n",
|
220
|
-
"Epoch 95/100\n",
|
221
|
-
"3/3 [==============================] - 0s 20ms/step - loss: 1.9107\n",
|
222
|
-
"Epoch 96/100\n",
|
223
|
-
"3/3 [==============================] - 0s 21ms/step - loss: 1.9625\n",
|
224
|
-
"Epoch 97/100\n",
|
225
|
-
"3/3 [==============================] - 0s 20ms/step - loss: 1.8766\n",
|
226
|
-
"Epoch 98/100\n",
|
227
|
-
"3/3 [==============================] - 0s 19ms/step - loss: 1.8318\n",
|
228
|
-
"Epoch 99/100\n",
|
229
|
-
"3/3 [==============================] - 0s 14ms/step - loss: 1.8404\n",
|
230
|
-
"Epoch 100/100\n",
|
231
|
-
"3/3 [==============================] - 0s 14ms/step - loss: 1.8333\n",
|
232
|
-
"This is a ea.pppp grTa.ppp oeetppl geSTM.pppll eTM..ppp \n"
|
233
|
-
]
|
234
|
-
}
|
235
|
-
],
|
236
|
-
"source": [
|
237
|
-
"from keras.models import Sequential\n",
|
238
|
-
"from keras.layers import LSTM, Dense\n",
|
239
|
-
"import numpy as np\n",
|
240
|
-
"\n",
|
241
|
-
"# Define your text data\n",
|
242
|
-
"text = \"This is a sample text for text generation using LSTM.\"\n",
|
243
|
-
"\n",
|
244
|
-
"# Preprocess the text data\n",
|
245
|
-
"chars = sorted(list(set(text)))\n",
|
246
|
-
"char_to_int = {char: i for i, char in enumerate(chars)}\n",
|
247
|
-
"int_to_char = {i: char for i, char in enumerate(chars)}\n",
|
248
|
-
"num_chars = len(chars)\n",
|
249
|
-
"seq_length = 10\n",
|
250
|
-
"\n",
|
251
|
-
"data_X = []\n",
|
252
|
-
"data_y = []\n",
|
253
|
-
"for i in range(0, len(text) - seq_length):\n",
|
254
|
-
" seq_in = text[i:i+seq_length]\n",
|
255
|
-
" seq_out = text[i+seq_length]\n",
|
256
|
-
" data_X.append([char_to_int[char] for char in seq_in])\n",
|
257
|
-
" data_y.append(char_to_int[seq_out])\n",
|
258
|
-
"\n",
|
259
|
-
"X = np.reshape(data_X, (len(data_X), seq_length, 1))\n",
|
260
|
-
"X = X / float(num_chars)\n",
|
261
|
-
"y = np.eye(num_chars)[data_y]\n",
|
262
|
-
"\n",
|
263
|
-
"# Define and train the LSTM model\n",
|
264
|
-
"model = Sequential()\n",
|
265
|
-
"model.add(LSTM(128, input_shape=(X.shape[1], X.shape[2])))\n",
|
266
|
-
"model.add(Dense(num_chars, activation='softmax'))\n",
|
267
|
-
"model.compile(loss='categorical_crossentropy', optimizer='adam')\n",
|
268
|
-
"\n",
|
269
|
-
"model.fit(X, y, epochs=100, batch_size=16)\n",
|
270
|
-
"\n",
|
271
|
-
"# Generate text using the trained model\n",
|
272
|
-
"start_seq = \"This is a \"\n",
|
273
|
-
"generated_text = start_seq\n",
|
274
|
-
"\n",
|
275
|
-
"for _ in range(50):\n",
|
276
|
-
" x = np.reshape([char_to_int[char] for char in start_seq], (1, len(start_seq), 1))\n",
|
277
|
-
" x = x / float(num_chars)\n",
|
278
|
-
" prediction = model.predict(x, verbose=0)\n",
|
279
|
-
" index = np.argmax(prediction)\n",
|
280
|
-
" result = int_to_char[index]\n",
|
281
|
-
" generated_text += result\n",
|
282
|
-
" start_seq = start_seq[1:] + result\n",
|
283
|
-
"\n",
|
284
|
-
"print(generated_text)\n"
|
285
|
-
]
|
286
|
-
},
|
287
|
-
{
|
288
|
-
"cell_type": "code",
|
289
|
-
"source": [],
|
290
|
-
"metadata": {
|
291
|
-
"id": "d9O6MJA5l0Sc"
|
292
|
-
},
|
293
|
-
"execution_count": null,
|
294
|
-
"outputs": []
|
295
|
-
}
|
296
|
-
]
|
297
|
-
}
|
@@ -1,310 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "229a68af",
|
7
|
-
"metadata": {
|
8
|
-
"id": "229a68af",
|
9
|
-
"outputId": "5ab1b98a-1ba9-4635-f407-0e811c06a86d"
|
10
|
-
},
|
11
|
-
"outputs": [
|
12
|
-
{
|
13
|
-
"name": "stdout",
|
14
|
-
"output_type": "stream",
|
15
|
-
"text": [
|
16
|
-
"Number of word to get input : 2\n",
|
17
|
-
"Enter the word : she\n",
|
18
|
-
"Enter she-start : 0\n",
|
19
|
-
"Enter she-NP : .4\n",
|
20
|
-
"Enter she-VP : .3\n",
|
21
|
-
"Enter the word : is\n",
|
22
|
-
"Enter is-start : 0\n",
|
23
|
-
"Enter is-NP : .6\n",
|
24
|
-
"Enter is-VP : .7\n",
|
25
|
-
"{'she-start': 0.0, 'she-NP': 0.4, 'she-VP': 0.3, 'is-start': 0.0, 'is-NP': 0.6, 'is-VP': 0.7}\n"
|
26
|
-
]
|
27
|
-
}
|
28
|
-
],
|
29
|
-
"source": [
|
30
|
-
"x = int(input(\"Number of word to get input : \"))\n",
|
31
|
-
"hash_bag = {}\n",
|
32
|
-
"words = []\n",
|
33
|
-
"\n",
|
34
|
-
"for i in range(x):\n",
|
35
|
-
" val = 0 \n",
|
36
|
-
" inp = input(\"Enter the word : \")\n",
|
37
|
-
" words.append(inp)\n",
|
38
|
-
" printer = [inp+ \"-\" + \"start\",inp+ \"-\" + \"NP\",inp+ \"-\" + \"VP\"]\n",
|
39
|
-
" for i in printer:\n",
|
40
|
-
" val = float(input(\"Enter \" + i +\" : \"))\n",
|
41
|
-
" hash_bag[i] = val\n",
|
42
|
-
"\n",
|
43
|
-
"print(hash_bag)"
|
44
|
-
]
|
45
|
-
},
|
46
|
-
{
|
47
|
-
"cell_type": "code",
|
48
|
-
"execution_count": null,
|
49
|
-
"id": "b8d4312f",
|
50
|
-
"metadata": {
|
51
|
-
"id": "b8d4312f",
|
52
|
-
"outputId": "9b927d9f-b708-4ec2-d9a4-ccfff4e9199c"
|
53
|
-
},
|
54
|
-
"outputs": [
|
55
|
-
{
|
56
|
-
"name": "stdout",
|
57
|
-
"output_type": "stream",
|
58
|
-
"text": [
|
59
|
-
"Enter start-NP : .7\n",
|
60
|
-
"Enter start-VP : .3\n",
|
61
|
-
"Enter start-end : 0\n",
|
62
|
-
"Enter NP-NP : .7\n",
|
63
|
-
"Enter NP-VP : .2\n",
|
64
|
-
"Enter NP-end : .1\n",
|
65
|
-
"Enter VP-NP : .3\n",
|
66
|
-
"Enter VP-VP : .6\n",
|
67
|
-
"Enter VP-end : .1\n"
|
68
|
-
]
|
69
|
-
}
|
70
|
-
],
|
71
|
-
"source": [
|
72
|
-
"lister1 = ['start','NP','VP']\n",
|
73
|
-
"lister2 = ['NP','VP','end']\n",
|
74
|
-
"\n",
|
75
|
-
"\n",
|
76
|
-
"for i in lister1 :\n",
|
77
|
-
" for j in lister2 :\n",
|
78
|
-
" stry = i +\"-\"+j\n",
|
79
|
-
" hash_bag[stry] = float(input(\"Enter \" + stry + \" : \"))"
|
80
|
-
]
|
81
|
-
},
|
82
|
-
{
|
83
|
-
"cell_type": "code",
|
84
|
-
"execution_count": null,
|
85
|
-
"id": "a03505dd",
|
86
|
-
"metadata": {
|
87
|
-
"id": "a03505dd",
|
88
|
-
"outputId": "e65dbcba-9312-4332-98c9-85527eb0bc3a"
|
89
|
-
},
|
90
|
-
"outputs": [
|
91
|
-
{
|
92
|
-
"data": {
|
93
|
-
"text/plain": [
|
94
|
-
"{'she-start': 0.0,\n",
|
95
|
-
" 'she-NP': 0.4,\n",
|
96
|
-
" 'she-VP': 0.3,\n",
|
97
|
-
" 'is-start': 0.0,\n",
|
98
|
-
" 'is-NP': 0.6,\n",
|
99
|
-
" 'is-VP': 0.7,\n",
|
100
|
-
" 'start-NP': 0.7,\n",
|
101
|
-
" 'start-VP': 0.3,\n",
|
102
|
-
" 'start-end': 0.0,\n",
|
103
|
-
" 'NP-NP': 0.7,\n",
|
104
|
-
" 'NP-VP': 0.2,\n",
|
105
|
-
" 'NP-end': 0.1,\n",
|
106
|
-
" 'VP-NP': 0.3,\n",
|
107
|
-
" 'VP-VP': 0.6,\n",
|
108
|
-
" 'VP-end': 0.1}"
|
109
|
-
]
|
110
|
-
},
|
111
|
-
"execution_count": 6,
|
112
|
-
"metadata": {},
|
113
|
-
"output_type": "execute_result"
|
114
|
-
}
|
115
|
-
],
|
116
|
-
"source": [
|
117
|
-
"hash_bag"
|
118
|
-
]
|
119
|
-
},
|
120
|
-
{
|
121
|
-
"cell_type": "code",
|
122
|
-
"execution_count": null,
|
123
|
-
"id": "7777e1c7",
|
124
|
-
"metadata": {
|
125
|
-
"id": "7777e1c7"
|
126
|
-
},
|
127
|
-
"outputs": [],
|
128
|
-
"source": [
|
129
|
-
"class Dnode :\n",
|
130
|
-
" def __init__(self,name,prev1,prev2):\n",
|
131
|
-
" self.name = name\n",
|
132
|
-
" self.prev1 = prev1\n",
|
133
|
-
" self.prev2 = prev2\n",
|
134
|
-
" self.preferred = None\n",
|
135
|
-
" \n",
|
136
|
-
" def calculateValue(self,dicty,word):\n",
|
137
|
-
" self.hit = 1 if self.name == \"start\" or self.name == \"end\" else dicty[word+\"-\"+self.name]\n",
|
138
|
-
" if self.name == \"start\":\n",
|
139
|
-
" # Assume start\n",
|
140
|
-
" self.state_prob = 1\n",
|
141
|
-
" elif self.prev1.name == \"start\":\n",
|
142
|
-
" self.state_prob = dicty[self.prev1.name+\"-\"+self.name] \n",
|
143
|
-
" self.preferred = self.prev1\n",
|
144
|
-
" else:\n",
|
145
|
-
" # prev1\n",
|
146
|
-
" prev1_prob = dicty[self.prev1.name+\"-\"+self.name] * self.prev1.hit * self.prev1.state_prob\n",
|
147
|
-
" # prev1\n",
|
148
|
-
" prev2_prob = dicty[self.prev2.name+\"-\"+self.name] * self.prev2.hit * self.prev2.state_prob\n",
|
149
|
-
" if prev1_prob > prev2_prob:\n",
|
150
|
-
" self.state_prob = prev1_prob\n",
|
151
|
-
" self.preferred = self.prev1\n",
|
152
|
-
" else:\n",
|
153
|
-
" self.state_prob = prev2_prob\n",
|
154
|
-
" self.preferred = self.prev2"
|
155
|
-
]
|
156
|
-
},
|
157
|
-
{
|
158
|
-
"cell_type": "code",
|
159
|
-
"execution_count": null,
|
160
|
-
"id": "c1d9bf98",
|
161
|
-
"metadata": {
|
162
|
-
"id": "c1d9bf98",
|
163
|
-
"outputId": "6ec4e1b8-2592-4f32-cf2d-eac3fc95a9cc"
|
164
|
-
},
|
165
|
-
"outputs": [
|
166
|
-
{
|
167
|
-
"name": "stdout",
|
168
|
-
"output_type": "stream",
|
169
|
-
"text": [
|
170
|
-
"Enter no of words to find probs3\n",
|
171
|
-
"Enter word 0 : she\n",
|
172
|
-
"Enter word 1 : is\n",
|
173
|
-
"Enter word 2 : is\n"
|
174
|
-
]
|
175
|
-
}
|
176
|
-
],
|
177
|
-
"source": [
|
178
|
-
"x = int(input(\"Enter no of words to find probs\"))\n",
|
179
|
-
"l = [input(f\"Enter word {i} : \") for i in range(0,x)]"
|
180
|
-
]
|
181
|
-
},
|
182
|
-
{
|
183
|
-
"cell_type": "code",
|
184
|
-
"execution_count": null,
|
185
|
-
"id": "a6603f14",
|
186
|
-
"metadata": {
|
187
|
-
"id": "a6603f14",
|
188
|
-
"outputId": "a7ef2508-d58f-4568-f90a-7bdc72b08d4a"
|
189
|
-
},
|
190
|
-
"outputs": [
|
191
|
-
{
|
192
|
-
"name": "stdout",
|
193
|
-
"output_type": "stream",
|
194
|
-
"text": [
|
195
|
-
"End node probability : 0.0049391999999999995\n"
|
196
|
-
]
|
197
|
-
}
|
198
|
-
],
|
199
|
-
"source": [
|
200
|
-
"nodes = []\n",
|
201
|
-
"startNode = Dnode(name=\"start\",prev1=None,prev2=None)\n",
|
202
|
-
"startNode.calculateValue(hash_bag,None)\n",
|
203
|
-
"prevNP,prevVP = None , None\n",
|
204
|
-
"for i,val in enumerate(l):\n",
|
205
|
-
" if i == 0:\n",
|
206
|
-
" prevNP = Dnode(name=\"NP\",prev1=startNode,prev2=None)\n",
|
207
|
-
" prevNP.calculateValue(hash_bag,val)\n",
|
208
|
-
" prevVP = Dnode(name=\"VP\",prev1=startNode,prev2=None)\n",
|
209
|
-
" prevVP.calculateValue(hash_bag,val)\n",
|
210
|
-
" nodes.append(prevNP)\n",
|
211
|
-
" nodes.append(prevVP)\n",
|
212
|
-
" else:\n",
|
213
|
-
" a = Dnode(name=\"VP\",prev1=prevNP,prev2=prevVP)\n",
|
214
|
-
" a.calculateValue(hash_bag,val)\n",
|
215
|
-
" b = Dnode(name=\"NP\",prev1=prevNP,prev2=prevVP)\n",
|
216
|
-
" b.calculateValue(hash_bag,val)\n",
|
217
|
-
" prevVP = a\n",
|
218
|
-
" prevNP = b\n",
|
219
|
-
" \n",
|
220
|
-
"# if i == 1:\n",
|
221
|
-
"# print(prevN)\n",
|
222
|
-
"endNode = Dnode(\"end\",prevNP,prevVP)\n",
|
223
|
-
"endNode.calculateValue(hash_bag,None)\n",
|
224
|
-
"\n",
|
225
|
-
"print(\"End node probability :\",endNode.state_prob)"
|
226
|
-
]
|
227
|
-
},
|
228
|
-
{
|
229
|
-
"cell_type": "markdown",
|
230
|
-
"id": "38445c61",
|
231
|
-
"metadata": {
|
232
|
-
"id": "38445c61"
|
233
|
-
},
|
234
|
-
"source": [
|
235
|
-
"### BackTracking"
|
236
|
-
]
|
237
|
-
},
|
238
|
-
{
|
239
|
-
"cell_type": "code",
|
240
|
-
"execution_count": null,
|
241
|
-
"id": "5664699f",
|
242
|
-
"metadata": {
|
243
|
-
"id": "5664699f",
|
244
|
-
"outputId": "7923918b-4403-466f-e6a3-a01bc7b580d5"
|
245
|
-
},
|
246
|
-
"outputs": [
|
247
|
-
{
|
248
|
-
"name": "stdout",
|
249
|
-
"output_type": "stream",
|
250
|
-
"text": [
|
251
|
-
"Order : ['start', 'NP', 'NP', 'NP', 'end']\n",
|
252
|
-
"Order values : [1, 0.7, 0.19599999999999998, 0.08231999999999999, 0.0049391999999999995]\n"
|
253
|
-
]
|
254
|
-
}
|
255
|
-
],
|
256
|
-
"source": [
|
257
|
-
"a=endNode\n",
|
258
|
-
"finalOrder = []\n",
|
259
|
-
"finalOrderValues = []\n",
|
260
|
-
"while True:\n",
|
261
|
-
" finalOrder.append(a.name)\n",
|
262
|
-
" finalOrderValues.append(a.state_prob)\n",
|
263
|
-
" if a.name == \"start\":\n",
|
264
|
-
" break\n",
|
265
|
-
" else:\n",
|
266
|
-
" a = a.preferred\n",
|
267
|
-
" \n",
|
268
|
-
"finalOrder = finalOrder[::-1]\n",
|
269
|
-
"finalOrderValues = finalOrderValues[::-1]\n",
|
270
|
-
" \n",
|
271
|
-
"print (\"Order :\",finalOrder)\n",
|
272
|
-
"print (\"Order values :\",finalOrderValues)"
|
273
|
-
]
|
274
|
-
},
|
275
|
-
{
|
276
|
-
"cell_type": "code",
|
277
|
-
"execution_count": null,
|
278
|
-
"id": "8ff2857e",
|
279
|
-
"metadata": {
|
280
|
-
"id": "8ff2857e"
|
281
|
-
},
|
282
|
-
"outputs": [],
|
283
|
-
"source": []
|
284
|
-
}
|
285
|
-
],
|
286
|
-
"metadata": {
|
287
|
-
"kernelspec": {
|
288
|
-
"display_name": "Python 3",
|
289
|
-
"language": "python",
|
290
|
-
"name": "python3"
|
291
|
-
},
|
292
|
-
"language_info": {
|
293
|
-
"codemirror_mode": {
|
294
|
-
"name": "ipython",
|
295
|
-
"version": 3
|
296
|
-
},
|
297
|
-
"file_extension": ".py",
|
298
|
-
"mimetype": "text/x-python",
|
299
|
-
"name": "python",
|
300
|
-
"nbconvert_exporter": "python",
|
301
|
-
"pygments_lexer": "ipython3",
|
302
|
-
"version": "3.8.8"
|
303
|
-
},
|
304
|
-
"colab": {
|
305
|
-
"provenance": []
|
306
|
-
}
|
307
|
-
},
|
308
|
-
"nbformat": 4,
|
309
|
-
"nbformat_minor": 5
|
310
|
-
}
|