noshot 0.1.6__py3-none-any.whl → 0.1.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +207 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +625 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +287 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +625 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +83 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +625 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +117 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +210 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +137 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +129 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +179 -0
- {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/METADATA +2 -2
- noshot-0.1.8.dist-info/RECORD +24 -0
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +0 -112
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +0 -111
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +0 -115
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +0 -123
- noshot/data/ML TS XAI/AIDS/10. ANOVA/2_ANOVA.csv +0 -769
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +0 -126
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Two Way ANOVA.ipynb +0 -138
- noshot/data/ML TS XAI/AIDS/10. ANOVA/reaction_time.csv +0 -5
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sample_data.csv +0 -16
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sleep_deprivation.csv +0 -4
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/3_Linear.csv +0 -4802
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +0 -113
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression.ipynb +0 -148
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/house_rate.csv +0 -22
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +0 -128
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression.ipynb +0 -145
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/default.csv +0 -1001
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/hours_scores_records.csv +0 -101
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +0 -256
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +0 -157
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +0 -178
- noshot/data/ML TS XAI/AIDS/3. Genetic Algorithm/Genetic.ipynb +0 -95
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +0 -74
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +0 -103
- noshot/data/ML TS XAI/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +0 -182
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +0 -120
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +0 -125
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/Random Sampling.ipynb +0 -73
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test Hash Function.ipynb +0 -141
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test.ipynb +0 -151
- noshot/data/ML TS XAI/AIDS/8. Z Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/1_heart.csv +0 -304
- noshot/data/ML TS XAI/AIDS/9. T Test/Independent T Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/9. T Test/Paired T Test.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test Hash Function.ipynb +0 -142
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test.ipynb +0 -158
- noshot/data/ML TS XAI/AIDS/9. T Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/iq_test.csv +0 -0
- noshot/data/ML TS XAI/AIDS/Others (AllinOne)/All In One.ipynb +0 -4581
- noshot/data/ML TS XAI/CN/1. Chat Application/chat.java +0 -81
- noshot/data/ML TS XAI/CN/1. Chat Application/output.png +0 -0
- noshot/data/ML TS XAI/CN/1. Chat Application/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +0 -65
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +0 -44
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +0 -229
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/file_to_send.txt +0 -2
- noshot/data/ML TS XAI/CN/2. File Transfer/filetransfer.java +0 -119
- noshot/data/ML TS XAI/CN/2. File Transfer/output.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Client.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerImpl.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerIntf.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Server.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/rmi.java +0 -56
- noshot/data/ML TS XAI/CN/4. Wired Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.awk +0 -25
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.tcl +0 -81
- noshot/data/ML TS XAI/CN/5. Wireless Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.awk +0 -27
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.tcl +0 -153
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +0 -28
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +0 -78
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +0 -79
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +0 -163
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/DV.tcl +0 -111
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/LS.tcl +0 -106
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/analysis.awk +0 -36
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/analysis.awk +0 -20
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/broadcast.tcl +0 -76
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/multicast.tcl +0 -103
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/DHCP.java +0 -125
- noshot/data/ML TS XAI/CN/9. DHCP/output.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/procedure.png +0 -0
- noshot/data/ML TS XAI/NLP/NLP 1/1-Prereqs.py +0 -18
- noshot/data/ML TS XAI/NLP/NLP 1/2-Chi2test.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 1/2-T-test.py +0 -79
- noshot/data/ML TS XAI/NLP/NLP 1/3-WSD-nb.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/4-Hindle-Rooth.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/5-HMM-Trellis.py +0 -82
- noshot/data/ML TS XAI/NLP/NLP 1/6-HMM-Viterbi.py +0 -16
- noshot/data/ML TS XAI/NLP/NLP 1/7-PCFG-parsetree.py +0 -15
- noshot/data/ML TS XAI/NLP/NLP 1/Chi2test.ipynb +0 -285
- noshot/data/ML TS XAI/NLP/NLP 1/Hindle-Rooth.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 1/PCFG.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 1/Prereqs.ipynb +0 -131
- noshot/data/ML TS XAI/NLP/NLP 1/T test.ipynb +0 -252
- noshot/data/ML TS XAI/NLP/NLP 1/TFIDF BOW.ipynb +0 -171
- noshot/data/ML TS XAI/NLP/NLP 1/Trellis.ipynb +0 -244
- noshot/data/ML TS XAI/NLP/NLP 1/WSD.ipynb +0 -645
- noshot/data/ML TS XAI/NLP/NLP 1/Word2Vec.ipynb +0 -93
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +0 -370
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +0 -274
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +0 -905
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/test.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +0 -272
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +0 -549
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +0 -817
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +0 -231
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +0 -507
- noshot/data/ML TS XAI/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +0 -255
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +0 -159
- noshot/data/ML TS XAI/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +0 -282
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +0 -670
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +0 -613
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +0 -74
- noshot/data/ML TS XAI/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +0 -480
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +0 -445
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +0 -105
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +0 -87
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +0 -11
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +0 -201
- noshot/data/ML TS XAI/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 3/Backward-Procedure.ipynb +0 -597
- noshot/data/ML TS XAI/NLP/NLP 3/Bag_of.ipynb +0 -1422
- noshot/data/ML TS XAI/NLP/NLP 3/CYK-algorithm.ipynb +0 -1067
- noshot/data/ML TS XAI/NLP/NLP 3/Forward-Procedure.ipynb +0 -477
- noshot/data/ML TS XAI/NLP/NLP 3/LSTM.ipynb +0 -1290
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-4.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-5.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/abc.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 3/ex-1-nltk.ipynb +0 -711
- noshot/data/ML TS XAI/NLP/NLP 3/ex-2-nlp.ipynb +0 -267
- noshot/data/ML TS XAI/NLP/NLP 3/exp8&9.ipynb +0 -305
- noshot/data/ML TS XAI/NLP/NLP 3/hind.ipynb +0 -287
- noshot/data/ML TS XAI/NLP/NLP 3/lab66.ipynb +0 -752
- noshot/data/ML TS XAI/NLP/NLP 3/leb_3.ipynb +0 -612
- noshot/data/ML TS XAI/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_1.ipynb +0 -3008
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_2.ipynb +0 -3095
- noshot/data/ML TS XAI/NLP/NLP 3/nlplab-9.ipynb +0 -295
- noshot/data/ML TS XAI/NLP/NLP 3/nltk-ex-4.ipynb +0 -506
- noshot/data/ML TS XAI/NLP/NLP 3/text1.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/text2.txt +0 -8
- noshot/data/ML TS XAI/NLP/NLP 3/text3.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/translation-rnn.ipynb +0 -812
- noshot/data/ML TS XAI/NLP/NLP 3/word2vector.ipynb +0 -173
- noshot/data/ML TS XAI/NLP/NLP 4/Backward Procedure Algorithm.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 4/Chi Square Collocation.ipynb +0 -208
- noshot/data/ML TS XAI/NLP/NLP 4/Collocation (T test).ipynb +0 -188
- noshot/data/ML TS XAI/NLP/NLP 4/Experiment 1.ipynb +0 -437
- noshot/data/ML TS XAI/NLP/NLP 4/Forward Procedure Algorithm.ipynb +0 -132
- noshot/data/ML TS XAI/NLP/NLP 4/Hindle Rooth.ipynb +0 -414
- noshot/data/ML TS XAI/NLP/NLP 4/MachineTranslation.ipynb +0 -368
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +0 -86
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +0 -112
- noshot/data/ML TS XAI/NLP/NLP 4/PCFG Inside Probability.ipynb +0 -451
- noshot/data/ML TS XAI/NLP/NLP 4/Text Generation using LSTM.ipynb +0 -297
- noshot/data/ML TS XAI/NLP/NLP 4/Viterbi.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 4/Word Sense Disambiguation.ipynb +0 -335
- noshot/data/ML TS XAI/NLP/NLP 5/10.Text Generation using LSTM.ipynb +0 -316
- noshot/data/ML TS XAI/NLP/NLP 5/11.Machine Translation.ipynb +0 -868
- noshot/data/ML TS XAI/NLP/NLP 5/2.T and Chi2 Test.ipynb +0 -204
- noshot/data/ML TS XAI/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +0 -234
- noshot/data/ML TS XAI/NLP/NLP 5/4.Hinddle and Rooth.ipynb +0 -128
- noshot/data/ML TS XAI/NLP/NLP 5/5.Forward and Backward.ipynb +0 -149
- noshot/data/ML TS XAI/NLP/NLP 5/6.Viterbi.ipynb +0 -111
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG Parse Tree.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG using cyk.ipynb +0 -101
- noshot/data/ML TS XAI/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 5/9.Word2Vector.ipynb +0 -78
- noshot/data/ML TS XAI/NLP/NLP 5/NLP ALL In One.ipynb +0 -2619
- noshot/data/ML TS XAI/NLP/NLP 5/sample1.txt +0 -15
- noshot/data/ML TS XAI/NLP/NLP 5/sample2.txt +0 -4
- noshot/data/ML TS XAI/NLP/NLP 5/word2vec_model.bin +0 -0
- noshot/data/ML TS XAI/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +0 -312
- noshot/data/ML TS XAI/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 6/3. Naive Bayes WSD.ipynb +0 -199
- noshot/data/ML TS XAI/NLP/NLP 6/4. Hinddle and Rooth.ipynb +0 -151
- noshot/data/ML TS XAI/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +0 -164
- noshot/data/ML TS XAI/NLP/NLP 6/7. PCFG using CYK.ipynb +0 -383
- noshot/data/ML TS XAI/NLP/NLP 6/8. BOW and TF-IDF.ipynb +0 -252
- noshot/data/ML TS XAI/Ubuntu CN Lab.iso +0 -0
- noshot-0.1.6.dist-info/RECORD +0 -216
- {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/LICENSE.txt +0 -0
- {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/WHEEL +0 -0
- {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/top_level.txt +0 -0
@@ -1,612 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": 1,
|
6
|
-
"id": "514c7e1f-e91a-4b98-8474-8d5578ccba97",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [
|
9
|
-
{
|
10
|
-
"name": "stderr",
|
11
|
-
"output_type": "stream",
|
12
|
-
"text": [
|
13
|
-
"[nltk_data] Downloading package punkt to\n",
|
14
|
-
"[nltk_data] C:\\Users\\admin\\AppData\\Roaming\\nltk_data...\n",
|
15
|
-
"[nltk_data] Package punkt is already up-to-date!\n",
|
16
|
-
"[nltk_data] Downloading package stopwords to\n",
|
17
|
-
"[nltk_data] C:\\Users\\admin\\AppData\\Roaming\\nltk_data...\n",
|
18
|
-
"[nltk_data] Package stopwords is already up-to-date!\n",
|
19
|
-
"[nltk_data] Downloading package wordnet to\n",
|
20
|
-
"[nltk_data] C:\\Users\\admin\\AppData\\Roaming\\nltk_data...\n",
|
21
|
-
"[nltk_data] Package wordnet is already up-to-date!\n"
|
22
|
-
]
|
23
|
-
},
|
24
|
-
{
|
25
|
-
"name": "stdout",
|
26
|
-
"output_type": "stream",
|
27
|
-
"text": [
|
28
|
-
"Accuracy: 1.00\n",
|
29
|
-
"Most Informative Features\n",
|
30
|
-
" beautiful = None financ : river = 1.7 : 1.0\n",
|
31
|
-
" cash = None river : financ = 1.7 : 1.0\n",
|
32
|
-
" deposit = None river : financ = 1.7 : 1.0\n",
|
33
|
-
" he = None river : financ = 1.7 : 1.0\n",
|
34
|
-
" money = None river : financ = 1.7 : 1.0\n",
|
35
|
-
" sat = None financ : river = 1.7 : 1.0\n",
|
36
|
-
" the = None financ : river = 1.7 : 1.0\n",
|
37
|
-
" went = None river : financ = 1.7 : 1.0\n",
|
38
|
-
" withdrew = None river : financ = 1.7 : 1.0\n",
|
39
|
-
" bank = True financ : river = 1.0 : 1.0\n",
|
40
|
-
"The predicted sense for 'He likes to fish by the bank' is 'finance'\n"
|
41
|
-
]
|
42
|
-
}
|
43
|
-
],
|
44
|
-
"source": [
|
45
|
-
"import nltk\n",
|
46
|
-
"from nltk.classify import NaiveBayesClassifier\n",
|
47
|
-
"from nltk.corpus import stopwords\n",
|
48
|
-
"from nltk import word_tokenize, WordNetLemmatizer\n",
|
49
|
-
"from nltk.classify.util import accuracy\n",
|
50
|
-
"import random\n",
|
51
|
-
"\n",
|
52
|
-
"# Download necessary NLTK data files\n",
|
53
|
-
"nltk.download('punkt')\n",
|
54
|
-
"nltk.download('stopwords')\n",
|
55
|
-
"nltk.download('wordnet')\n",
|
56
|
-
"\n",
|
57
|
-
"# Initialize WordNetLemmatizer\n",
|
58
|
-
"lemmatizer = WordNetLemmatizer()\n",
|
59
|
-
"\n",
|
60
|
-
"# Sample training data with contexts and senses\n",
|
61
|
-
"data = [\n",
|
62
|
-
" (\"The bank of the river was beautiful\", \"river\"),\n",
|
63
|
-
" (\"He went to the bank to deposit money\", \"finance\"),\n",
|
64
|
-
" (\"She sat on the river bank\", \"river\"),\n",
|
65
|
-
" (\"He is working at the financial bank\", \"finance\"),\n",
|
66
|
-
" (\"The boat was near the river bank\", \"river\"),\n",
|
67
|
-
" (\"She withdrew cash from the bank\", \"finance\")\n",
|
68
|
-
"]\n",
|
69
|
-
"\n",
|
70
|
-
"# Preprocessing function to extract features\n",
|
71
|
-
"def extract_features(sentence):\n",
|
72
|
-
" stop_words = set(stopwords.words('english'))\n",
|
73
|
-
" words = word_tokenize(sentence)\n",
|
74
|
-
" words = [lemmatizer.lemmatize(word.lower()) for word in words if word.isalpha() and word not in stop_words]\n",
|
75
|
-
" return {word: True for word in words}\n",
|
76
|
-
"\n",
|
77
|
-
"# Create feature sets for training\n",
|
78
|
-
"feature_sets = [(extract_features(context), sense) for (context, sense) in data]\n",
|
79
|
-
"\n",
|
80
|
-
"# Shuffle and split the data into training and test sets\n",
|
81
|
-
"random.shuffle(feature_sets)\n",
|
82
|
-
"train_set, test_set = feature_sets[:4], feature_sets[4:]\n",
|
83
|
-
"\n",
|
84
|
-
"# Train the Naïve Bayes classifier\n",
|
85
|
-
"classifier = NaiveBayesClassifier.train(train_set)\n",
|
86
|
-
"\n",
|
87
|
-
"# Evaluate the classifier\n",
|
88
|
-
"print(f'Accuracy: {accuracy(classifier, test_set):.2f}')\n",
|
89
|
-
"classifier.show_most_informative_features()\n",
|
90
|
-
"\n",
|
91
|
-
"# Sample prediction\n",
|
92
|
-
"new_context = \"He likes to fish by the bank\"\n",
|
93
|
-
"features = extract_features(new_context)\n",
|
94
|
-
"predicted_sense = classifier.classify(features)\n",
|
95
|
-
"print(f\"The predicted sense for '{new_context}' is '{predicted_sense}'\")\n"
|
96
|
-
]
|
97
|
-
},
|
98
|
-
{
|
99
|
-
"cell_type": "code",
|
100
|
-
"execution_count": 3,
|
101
|
-
"id": "6fd6f22f-4ca9-48a7-a783-bbd49af2eaa2",
|
102
|
-
"metadata": {},
|
103
|
-
"outputs": [
|
104
|
-
{
|
105
|
-
"name": "stdout",
|
106
|
-
"output_type": "stream",
|
107
|
-
"text": [
|
108
|
-
"Accuracy: 1.00\n",
|
109
|
-
"Most Informative Features\n",
|
110
|
-
" he = None river : financ = 1.4 : 1.0\n",
|
111
|
-
" she = None river : financ = 1.3 : 1.0\n",
|
112
|
-
" account = None river : financ = 1.2 : 1.0\n",
|
113
|
-
" along = None financ : river = 1.2 : 1.0\n",
|
114
|
-
" financial = None river : financ = 1.2 : 1.0\n",
|
115
|
-
" new = None river : financ = 1.2 : 1.0\n",
|
116
|
-
" picnic = None financ : river = 1.2 : 1.0\n",
|
117
|
-
" service = None river : financ = 1.2 : 1.0\n",
|
118
|
-
" beauty = None financ : river = 1.1 : 1.0\n",
|
119
|
-
" customer = None river : financ = 1.1 : 1.0\n",
|
120
|
-
"The predicted sense for 'He likes to fish by the bank' is 'finance'\n"
|
121
|
-
]
|
122
|
-
},
|
123
|
-
{
|
124
|
-
"name": "stderr",
|
125
|
-
"output_type": "stream",
|
126
|
-
"text": [
|
127
|
-
"[nltk_data] Downloading package punkt to\n",
|
128
|
-
"[nltk_data] C:\\Users\\admin\\AppData\\Roaming\\nltk_data...\n",
|
129
|
-
"[nltk_data] Package punkt is already up-to-date!\n",
|
130
|
-
"[nltk_data] Downloading package stopwords to\n",
|
131
|
-
"[nltk_data] C:\\Users\\admin\\AppData\\Roaming\\nltk_data...\n",
|
132
|
-
"[nltk_data] Package stopwords is already up-to-date!\n",
|
133
|
-
"[nltk_data] Downloading package wordnet to\n",
|
134
|
-
"[nltk_data] C:\\Users\\admin\\AppData\\Roaming\\nltk_data...\n",
|
135
|
-
"[nltk_data] Package wordnet is already up-to-date!\n"
|
136
|
-
]
|
137
|
-
}
|
138
|
-
],
|
139
|
-
"source": [
|
140
|
-
"import nltk\n",
|
141
|
-
"from nltk.classify import NaiveBayesClassifier\n",
|
142
|
-
"from nltk.corpus import stopwords\n",
|
143
|
-
"from nltk import word_tokenize, WordNetLemmatizer\n",
|
144
|
-
"from nltk.classify.util import accuracy\n",
|
145
|
-
"import random\n",
|
146
|
-
"\n",
|
147
|
-
"# Download necessary NLTK data files\n",
|
148
|
-
"nltk.download('punkt')\n",
|
149
|
-
"nltk.download('stopwords')\n",
|
150
|
-
"nltk.download('wordnet')\n",
|
151
|
-
"\n",
|
152
|
-
"# Initialize WordNetLemmatizer\n",
|
153
|
-
"lemmatizer = WordNetLemmatizer()\n",
|
154
|
-
"\n",
|
155
|
-
"# Preprocessing function to extract features\n",
|
156
|
-
"def extract_features(sentence):\n",
|
157
|
-
" stop_words = set(stopwords.words('english'))\n",
|
158
|
-
" words = word_tokenize(sentence)\n",
|
159
|
-
" words = [lemmatizer.lemmatize(word.lower()) for word in words if word.isalpha() and word not in stop_words]\n",
|
160
|
-
" return {word: True for word in words}\n",
|
161
|
-
"\n",
|
162
|
-
"# Read the training data from the file\n",
|
163
|
-
"training_data = []\n",
|
164
|
-
"with open(\"E://126156048/leb_3/training_set.txt\", 'r') as file:\n",
|
165
|
-
" for line in file:\n",
|
166
|
-
" context, sense = line.strip().split('\\t')\n",
|
167
|
-
" training_data.append((context, sense))\n",
|
168
|
-
"\n",
|
169
|
-
"# Create feature sets for training\n",
|
170
|
-
"feature_sets = [(extract_features(context), sense) for (context, sense) in training_data]\n",
|
171
|
-
"\n",
|
172
|
-
"# Shuffle and split the data into training and test sets\n",
|
173
|
-
"random.shuffle(feature_sets)\n",
|
174
|
-
"train_set, test_set = feature_sets, feature_sets[:100]\n",
|
175
|
-
"\n",
|
176
|
-
"# Train the Naïve Bayes classifier\n",
|
177
|
-
"classifier = NaiveBayesClassifier.train(train_set)\n",
|
178
|
-
"\n",
|
179
|
-
"# Evaluate the classifier\n",
|
180
|
-
"print(f'Accuracy: {accuracy(classifier, test_set):.2f}')\n",
|
181
|
-
"classifier.show_most_informative_features()\n",
|
182
|
-
"\n",
|
183
|
-
"# Sample prediction\n",
|
184
|
-
"new_context = \"He likes to fish by the bank\"\n",
|
185
|
-
"features = extract_features(new_context)\n",
|
186
|
-
"predicted_sense = classifier.classify(features)\n",
|
187
|
-
"print(f\"The predicted sense for '{new_context}' is '{predicted_sense}'\")\n"
|
188
|
-
]
|
189
|
-
},
|
190
|
-
{
|
191
|
-
"cell_type": "code",
|
192
|
-
"execution_count": 4,
|
193
|
-
"id": "69a75873-c66e-4a92-9352-1f142b08d42e",
|
194
|
-
"metadata": {},
|
195
|
-
"outputs": [
|
196
|
-
{
|
197
|
-
"name": "stdout",
|
198
|
-
"output_type": "stream",
|
199
|
-
"text": [
|
200
|
-
"Accuracy with bigrams: 1.00\n",
|
201
|
-
"Most Informative Features\n",
|
202
|
-
" the_bank = None river : financ = 1.5 : 1.0\n",
|
203
|
-
" he = None river : financ = 1.4 : 1.0\n",
|
204
|
-
" account = None river : financ = 1.3 : 1.0\n",
|
205
|
-
" she = None river : financ = 1.3 : 1.0\n",
|
206
|
-
" along = None financ : river = 1.2 : 1.0\n",
|
207
|
-
" along_river = None financ : river = 1.2 : 1.0\n",
|
208
|
-
" the_river = None financ : river = 1.2 : 1.0\n",
|
209
|
-
" bank_offer = None river : financ = 1.2 : 1.0\n",
|
210
|
-
" beauty = None financ : river = 1.2 : 1.0\n",
|
211
|
-
" financial = None river : financ = 1.2 : 1.0\n",
|
212
|
-
"The predicted sense for 'He likes to fish by the bank' with bigrams is 'finance'\n"
|
213
|
-
]
|
214
|
-
}
|
215
|
-
],
|
216
|
-
"source": [
|
217
|
-
"from nltk import bigrams\n",
|
218
|
-
"\n",
|
219
|
-
"def extract_features_with_bigrams(sentence):\n",
|
220
|
-
" stop_words = set(stopwords.words('english'))\n",
|
221
|
-
" words = word_tokenize(sentence)\n",
|
222
|
-
" words = [lemmatizer.lemmatize(word.lower()) for word in words if word.isalpha() and word not in stop_words]\n",
|
223
|
-
" word_features = {word: True for word in words}\n",
|
224
|
-
" bigram_features = {f\"{bigram[0]}_{bigram[1]}\": True for bigram in bigrams(words)}\n",
|
225
|
-
" return {**word_features, **bigram_features}\n",
|
226
|
-
"\n",
|
227
|
-
"# Create feature sets with bigrams\n",
|
228
|
-
"feature_sets_with_bigrams = [(extract_features_with_bigrams(context), sense) for (context, sense) in training_data]\n",
|
229
|
-
"\n",
|
230
|
-
"# Shuffle and split the data into training and test sets\n",
|
231
|
-
"random.shuffle(feature_sets_with_bigrams)\n",
|
232
|
-
"train_set, test_set = feature_sets_with_bigrams[:40], feature_sets_with_bigrams[40:]\n",
|
233
|
-
"\n",
|
234
|
-
"# Train the Naïve Bayes classifier with bigrams\n",
|
235
|
-
"classifier_with_bigrams = NaiveBayesClassifier.train(train_set)\n",
|
236
|
-
"\n",
|
237
|
-
"# Evaluate the classifier\n",
|
238
|
-
"print(f'Accuracy with bigrams: {accuracy(classifier_with_bigrams, test_set):.2f}')\n",
|
239
|
-
"classifier_with_bigrams.show_most_informative_features()\n",
|
240
|
-
"\n",
|
241
|
-
"# Sample prediction\n",
|
242
|
-
"features_with_bigrams = extract_features_with_bigrams(new_context)\n",
|
243
|
-
"predicted_sense_with_bigrams = classifier_with_bigrams.classify(features_with_bigrams)\n",
|
244
|
-
"print(f\"The predicted sense for '{new_context}' with bigrams is '{predicted_sense_with_bigrams}'\")\n"
|
245
|
-
]
|
246
|
-
},
|
247
|
-
{
|
248
|
-
"cell_type": "code",
|
249
|
-
"execution_count": 5,
|
250
|
-
"id": "2645e42f-4b96-41d9-919c-02945700c2e8",
|
251
|
-
"metadata": {},
|
252
|
-
"outputs": [
|
253
|
-
{
|
254
|
-
"name": "stdout",
|
255
|
-
"output_type": "stream",
|
256
|
-
"text": [
|
257
|
-
"Accuracy with POS: 1.00\n",
|
258
|
-
"Most Informative Features\n",
|
259
|
-
" river = None financ : river = 5.3 : 1.0\n",
|
260
|
-
" river_bank = None financ : river = 5.3 : 1.0\n",
|
261
|
-
" account = None river : financ = 1.3 : 1.0\n",
|
262
|
-
" bank_provided = True river : financ = 1.2 : 1.0\n",
|
263
|
-
" financial = None river : financ = 1.2 : 1.0\n",
|
264
|
-
" new = None river : financ = 1.2 : 1.0\n",
|
265
|
-
" provided = True river : financ = 1.2 : 1.0\n",
|
266
|
-
" service = None river : financ = 1.2 : 1.0\n",
|
267
|
-
" beauty = None financ : river = 1.2 : 1.0\n",
|
268
|
-
" enjoyed = None financ : river = 1.2 : 1.0\n",
|
269
|
-
"The predicted sense for 'He likes to fish by the bank' with POS is 'finance'\n"
|
270
|
-
]
|
271
|
-
}
|
272
|
-
],
|
273
|
-
"source": [
|
274
|
-
"from nltk import pos_tag\n",
|
275
|
-
"\n",
|
276
|
-
"def extract_features_with_pos(sentence):\n",
|
277
|
-
" stop_words = set(stopwords.words('english'))\n",
|
278
|
-
" words = word_tokenize(sentence)\n",
|
279
|
-
" words = [lemmatizer.lemmatize(word.lower()) for word in words if word.isalpha() and word not in stop_words]\n",
|
280
|
-
" pos_tags = pos_tag(words)\n",
|
281
|
-
" \n",
|
282
|
-
" # Consider only nouns, verbs, and adjectives for feature extraction\n",
|
283
|
-
" relevant_words = [word for word, pos in pos_tags if pos.startswith('N') or pos.startswith('V') or pos.startswith('J')]\n",
|
284
|
-
" \n",
|
285
|
-
" word_features = {word: True for word in relevant_words}\n",
|
286
|
-
" bigram_features = {f\"{bigram[0]}_{bigram[1]}\": True for bigram in bigrams(relevant_words)}\n",
|
287
|
-
" \n",
|
288
|
-
" return {**word_features, **bigram_features}\n",
|
289
|
-
"\n",
|
290
|
-
"# Create feature sets with POS\n",
|
291
|
-
"feature_sets_with_pos = [(extract_features_with_pos(context), sense) for (context, sense) in training_data]\n",
|
292
|
-
"\n",
|
293
|
-
"# Shuffle and split the data into training and test sets\n",
|
294
|
-
"random.shuffle(feature_sets_with_pos)\n",
|
295
|
-
"train_set, test_set = feature_sets_with_pos[:40], feature_sets_with_pos[40:]\n",
|
296
|
-
"\n",
|
297
|
-
"# Train the Naïve Bayes classifier with POS features\n",
|
298
|
-
"classifier_with_pos = NaiveBayesClassifier.train(train_set)\n",
|
299
|
-
"\n",
|
300
|
-
"# Evaluate the classifier\n",
|
301
|
-
"print(f'Accuracy with POS: {accuracy(classifier_with_pos, test_set):.2f}')\n",
|
302
|
-
"classifier_with_pos.show_most_informative_features()\n",
|
303
|
-
"\n",
|
304
|
-
"# Sample prediction\n",
|
305
|
-
"features_with_pos = extract_features_with_pos(new_context)\n",
|
306
|
-
"predicted_sense_with_pos = classifier_with_pos.classify(features_with_pos)\n",
|
307
|
-
"print(f\"The predicted sense for '{new_context}' with POS is '{predicted_sense_with_pos}'\")\n"
|
308
|
-
]
|
309
|
-
},
|
310
|
-
{
|
311
|
-
"cell_type": "code",
|
312
|
-
"execution_count": 12,
|
313
|
-
"id": "eec05832-1967-48f2-8d85-a326c88a5350",
|
314
|
-
"metadata": {},
|
315
|
-
"outputs": [
|
316
|
-
{
|
317
|
-
"name": "stdout",
|
318
|
-
"output_type": "stream",
|
319
|
-
"text": [
|
320
|
-
"Accuracy with POS and contextual features: 1.00\n",
|
321
|
-
"Most Informative Features\n",
|
322
|
-
" river_NN = None financ : river = 2.8 : 1.0\n",
|
323
|
-
" the_DT = True river : financ = 1.4 : 1.0\n",
|
324
|
-
" contains_loan = False river : financ = 1.3 : 1.0\n",
|
325
|
-
" loan = None river : financ = 1.3 : 1.0\n",
|
326
|
-
" loan_NN = None river : financ = 1.3 : 1.0\n",
|
327
|
-
" the_DT = None financ : river = 1.3 : 1.0\n",
|
328
|
-
" along = None financ : river = 1.3 : 1.0\n",
|
329
|
-
" along_RB = None financ : river = 1.3 : 1.0\n",
|
330
|
-
" along_river = None financ : river = 1.3 : 1.0\n",
|
331
|
-
" river_JJ = None financ : river = 1.3 : 1.0\n",
|
332
|
-
"The predicted sense for 'He likes to fish by the bank.' with POS and contextual features is 'river'\n"
|
333
|
-
]
|
334
|
-
},
|
335
|
-
{
|
336
|
-
"name": "stderr",
|
337
|
-
"output_type": "stream",
|
338
|
-
"text": [
|
339
|
-
"[nltk_data] Downloading package averaged_perceptron_tagger to\n",
|
340
|
-
"[nltk_data] C:\\Users\\admin\\AppData\\Roaming\\nltk_data...\n",
|
341
|
-
"[nltk_data] Package averaged_perceptron_tagger is already up-to-\n",
|
342
|
-
"[nltk_data] date!\n",
|
343
|
-
"[nltk_data] Downloading package punkt to\n",
|
344
|
-
"[nltk_data] C:\\Users\\admin\\AppData\\Roaming\\nltk_data...\n",
|
345
|
-
"[nltk_data] Package punkt is already up-to-date!\n",
|
346
|
-
"[nltk_data] Downloading package wordnet to\n",
|
347
|
-
"[nltk_data] C:\\Users\\admin\\AppData\\Roaming\\nltk_data...\n",
|
348
|
-
"[nltk_data] Package wordnet is already up-to-date!\n",
|
349
|
-
"[nltk_data] Downloading package stopwords to\n",
|
350
|
-
"[nltk_data] C:\\Users\\admin\\AppData\\Roaming\\nltk_data...\n",
|
351
|
-
"[nltk_data] Package stopwords is already up-to-date!\n"
|
352
|
-
]
|
353
|
-
}
|
354
|
-
],
|
355
|
-
"source": [
|
356
|
-
"import random\n",
|
357
|
-
"from nltk import NaiveBayesClassifier, pos_tag, word_tokenize\n",
|
358
|
-
"from nltk.corpus import stopwords\n",
|
359
|
-
"from nltk.stem import WordNetLemmatizer\n",
|
360
|
-
"from nltk import bigrams\n",
|
361
|
-
"from nltk.classify import accuracy\n",
|
362
|
-
"import nltk\n",
|
363
|
-
"\n",
|
364
|
-
"nltk.download('averaged_perceptron_tagger')\n",
|
365
|
-
"nltk.download('punkt')\n",
|
366
|
-
"nltk.download('wordnet')\n",
|
367
|
-
"nltk.download('stopwords')\n",
|
368
|
-
"\n",
|
369
|
-
"# Updated and expanded training data with additional examples\n",
|
370
|
-
"expanded_training_data = [\n",
|
371
|
-
" # River sense\n",
|
372
|
-
" (\"The children played by the river bank.\", \"river\"),\n",
|
373
|
-
" (\"They set up a picnic by the river bank.\", \"river\"),\n",
|
374
|
-
" (\"We spent the afternoon walking along the river bank.\", \"river\"),\n",
|
375
|
-
" (\"He enjoys kayaking near the river bank every weekend.\", \"river\"),\n",
|
376
|
-
" (\"The river bank was bustling with people fishing.\", \"river\"),\n",
|
377
|
-
" (\"The river flooded and covered the bank with water.\", \"river\"),\n",
|
378
|
-
" (\"We followed the river bank trail through the forest.\", \"river\"),\n",
|
379
|
-
" (\"The boat was anchored by the river bank.\", \"river\"),\n",
|
380
|
-
" (\"The river bank was a perfect spot for our tent.\", \"river\"),\n",
|
381
|
-
" (\"Wildflowers grew along the river bank.\", \"river\"),\n",
|
382
|
-
" (\"The river bank had eroded after the heavy rains.\", \"river\"),\n",
|
383
|
-
" \n",
|
384
|
-
" # Finance sense\n",
|
385
|
-
" (\"I went to the bank to deposit a check.\", \"finance\"),\n",
|
386
|
-
" (\"The bank approved my loan application.\", \"finance\"),\n",
|
387
|
-
" (\"She worked as a teller at the local bank.\", \"finance\"),\n",
|
388
|
-
" (\"They offer excellent financial services at this bank.\", \"finance\"),\n",
|
389
|
-
" (\"You can open an account at any bank in town.\", \"finance\"),\n",
|
390
|
-
" (\"The bank charges high interest rates on loans.\", \"finance\"),\n",
|
391
|
-
" (\"Our local bank has a great mobile app.\", \"finance\"),\n",
|
392
|
-
" (\"He withdrew cash from the bank.\", \"finance\"),\n",
|
393
|
-
" (\"She has a meeting with the bank manager.\", \"finance\"),\n",
|
394
|
-
" (\"The bank is closed on public holidays.\", \"finance\"),\n",
|
395
|
-
" (\"They are opening a new bank branch downtown.\", \"finance\"),\n",
|
396
|
-
" (\"She visited the bank to discuss her investment portfolio.\", \"finance\"),\n",
|
397
|
-
" (\"The bank provided a financial report for the last quarter.\", \"finance\"),\n",
|
398
|
-
" (\"The bank's new policy on loans is quite strict.\", \"finance\"),\n",
|
399
|
-
" (\"He worked in a bank before starting his own business.\", \"finance\"),\n",
|
400
|
-
" (\"The bank approved a loan application yesterday.\", \"finance\"),\n",
|
401
|
-
"]\n",
|
402
|
-
"\n",
|
403
|
-
"lemmatizer = WordNetLemmatizer()\n",
|
404
|
-
"\n",
|
405
|
-
"def extract_features_with_pos(sentence):\n",
|
406
|
-
" stop_words = set(stopwords.words('english'))\n",
|
407
|
-
" words = word_tokenize(sentence)\n",
|
408
|
-
" words = [lemmatizer.lemmatize(word.lower()) for word in words if word.isalpha() and word not in stop_words]\n",
|
409
|
-
" pos_tags = pos_tag(words)\n",
|
410
|
-
" \n",
|
411
|
-
" relevant_words = [word for word, pos in pos_tags if pos.startswith('N') or pos.startswith('V') or pos.startswith('J') or pos.startswith('R')]\n",
|
412
|
-
" \n",
|
413
|
-
" word_features = {word: True for word in relevant_words}\n",
|
414
|
-
" bigram_features = {f\"{bigram[0]}_{bigram[1]}\": True for bigram in bigrams(relevant_words)}\n",
|
415
|
-
" pos_features = {f\"{word}_{pos}\": True for word, pos in pos_tags}\n",
|
416
|
-
" \n",
|
417
|
-
" # Additional contextual features\n",
|
418
|
-
" context_features = {\n",
|
419
|
-
" 'contains_fish': 'fish' in words,\n",
|
420
|
-
" 'contains_deposit': 'deposit' in words,\n",
|
421
|
-
" 'contains_loan': 'loan' in words,\n",
|
422
|
-
" 'contains_bank': 'bank' in words,\n",
|
423
|
-
" }\n",
|
424
|
-
" \n",
|
425
|
-
" return {**word_features, **bigram_features, **pos_features, **context_features}\n",
|
426
|
-
"\n",
|
427
|
-
"# Create feature sets with POS and additional features\n",
|
428
|
-
"feature_sets_with_pos = [(extract_features_with_pos(context), sense) for (context, sense) in expanded_training_data]\n",
|
429
|
-
"\n",
|
430
|
-
"# Shuffle and split the data into training and test sets\n",
|
431
|
-
"random.shuffle(feature_sets_with_pos)\n",
|
432
|
-
"train_set, test_set = feature_sets_with_pos[:24], feature_sets_with_pos[24:]\n",
|
433
|
-
"\n",
|
434
|
-
"# Train the Naïve Bayes classifier with POS and contextual features\n",
|
435
|
-
"classifier_with_pos = NaiveBayesClassifier.train(train_set)\n",
|
436
|
-
"\n",
|
437
|
-
"# Evaluate the classifier\n",
|
438
|
-
"print(f'Accuracy with POS and contextual features: {accuracy(classifier_with_pos, test_set):.2f}')\n",
|
439
|
-
"classifier_with_pos.show_most_informative_features()\n",
|
440
|
-
"\n",
|
441
|
-
"# Sample prediction\n",
|
442
|
-
"new_context = \"He likes to fish by the bank.\"\n",
|
443
|
-
"features_with_pos = extract_features_with_pos(new_context)\n",
|
444
|
-
"predicted_sense_with_pos = classifier_with_pos.classify(features_with_pos)\n",
|
445
|
-
"print(f\"The predicted sense for '{new_context}' with POS and contextual features is '{predicted_sense_with_pos}'\")"
|
446
|
-
]
|
447
|
-
},
|
448
|
-
{
|
449
|
-
"cell_type": "code",
|
450
|
-
"execution_count": 13,
|
451
|
-
"id": "d51a4cd6-1689-4b25-b256-83e7dc29aa6c",
|
452
|
-
"metadata": {},
|
453
|
-
"outputs": [
|
454
|
-
{
|
455
|
-
"name": "stdout",
|
456
|
-
"output_type": "stream",
|
457
|
-
"text": [
|
458
|
-
"Accuracy with POS and contextual features: 1.00\n",
|
459
|
-
"Most Informative Features\n",
|
460
|
-
" river_bank = None financ : river = 6.5 : 1.0\n",
|
461
|
-
" river_NN = None financ : river = 3.9 : 1.0\n",
|
462
|
-
" the_DT = True river : financ = 1.9 : 1.0\n",
|
463
|
-
" the_DT = None financ : river = 1.9 : 1.0\n",
|
464
|
-
" contains_loan = False river : financ = 1.3 : 1.0\n",
|
465
|
-
" loan = None river : financ = 1.3 : 1.0\n",
|
466
|
-
" loan_NN = None river : financ = 1.3 : 1.0\n",
|
467
|
-
" we_PRP = None financ : river = 1.3 : 1.0\n",
|
468
|
-
" she_PRP = None river : financ = 1.2 : 1.0\n",
|
469
|
-
" afternoon = None financ : river = 1.1 : 1.0\n",
|
470
|
-
"The predicted sense for 'He likes to fish by the bank.' with POS and contextual features is 'finance'\n"
|
471
|
-
]
|
472
|
-
},
|
473
|
-
{
|
474
|
-
"name": "stderr",
|
475
|
-
"output_type": "stream",
|
476
|
-
"text": [
|
477
|
-
"[nltk_data] Downloading package averaged_perceptron_tagger to\n",
|
478
|
-
"[nltk_data] C:\\Users\\admin\\AppData\\Roaming\\nltk_data...\n",
|
479
|
-
"[nltk_data] Package averaged_perceptron_tagger is already up-to-\n",
|
480
|
-
"[nltk_data] date!\n",
|
481
|
-
"[nltk_data] Downloading package punkt to\n",
|
482
|
-
"[nltk_data] C:\\Users\\admin\\AppData\\Roaming\\nltk_data...\n",
|
483
|
-
"[nltk_data] Package punkt is already up-to-date!\n",
|
484
|
-
"[nltk_data] Downloading package wordnet to\n",
|
485
|
-
"[nltk_data] C:\\Users\\admin\\AppData\\Roaming\\nltk_data...\n",
|
486
|
-
"[nltk_data] Package wordnet is already up-to-date!\n",
|
487
|
-
"[nltk_data] Downloading package stopwords to\n",
|
488
|
-
"[nltk_data] C:\\Users\\admin\\AppData\\Roaming\\nltk_data...\n",
|
489
|
-
"[nltk_data] Package stopwords is already up-to-date!\n"
|
490
|
-
]
|
491
|
-
}
|
492
|
-
],
|
493
|
-
"source": [
|
494
|
-
"import random\n",
|
495
|
-
"from nltk import NaiveBayesClassifier, pos_tag, word_tokenize\n",
|
496
|
-
"from nltk.corpus import stopwords\n",
|
497
|
-
"from nltk.stem import WordNetLemmatizer\n",
|
498
|
-
"from nltk import bigrams\n",
|
499
|
-
"from nltk.classify import accuracy\n",
|
500
|
-
"import nltk\n",
|
501
|
-
"\n",
|
502
|
-
"nltk.download('averaged_perceptron_tagger')\n",
|
503
|
-
"nltk.download('punkt')\n",
|
504
|
-
"nltk.download('wordnet')\n",
|
505
|
-
"nltk.download('stopwords')\n",
|
506
|
-
"\n",
|
507
|
-
"# Load training data from a text file\n",
|
508
|
-
"def load_training_data(file_path):\n",
|
509
|
-
" with open(file_path, 'r') as file:\n",
|
510
|
-
" lines = file.readlines()\n",
|
511
|
-
" data = [(line.rsplit(' ', 1)[0], line.rsplit(' ', 1)[1].strip()) for line in lines]\n",
|
512
|
-
" return data\n",
|
513
|
-
"\n",
|
514
|
-
"# Example file path (adjust as needed)\n",
|
515
|
-
"file_path = 'E://126156048/leb_3/training_set.txt'\n",
|
516
|
-
"training_data = load_training_data(file_path)\n",
|
517
|
-
"\n",
|
518
|
-
"lemmatizer = WordNetLemmatizer()\n",
|
519
|
-
"\n",
|
520
|
-
"def extract_features_with_pos(sentence):\n",
|
521
|
-
" stop_words = set(stopwords.words('english'))\n",
|
522
|
-
" words = word_tokenize(sentence)\n",
|
523
|
-
" words = [lemmatizer.lemmatize(word.lower()) for word in words if word.isalpha() and word not in stop_words]\n",
|
524
|
-
" pos_tags = pos_tag(words)\n",
|
525
|
-
" \n",
|
526
|
-
" relevant_words = [word for word, pos in pos_tags if pos.startswith('N') or pos.startswith('V') or pos.startswith('J') or pos.startswith('R')]\n",
|
527
|
-
" \n",
|
528
|
-
" word_features = {word: True for word in relevant_words}\n",
|
529
|
-
" bigram_features = {f\"{bigram[0]}_{bigram[1]}\": True for bigram in bigrams(relevant_words)}\n",
|
530
|
-
" pos_features = {f\"{word}_{pos}\": True for word, pos in pos_tags}\n",
|
531
|
-
" \n",
|
532
|
-
" # Additional contextual features\n",
|
533
|
-
" context_features = {\n",
|
534
|
-
" 'contains_fish': 'fish' in words,\n",
|
535
|
-
" 'contains_deposit': 'deposit' in words,\n",
|
536
|
-
" 'contains_loan': 'loan' in words,\n",
|
537
|
-
" 'contains_bank': 'bank' in words,\n",
|
538
|
-
" }\n",
|
539
|
-
" \n",
|
540
|
-
" return {**word_features, **bigram_features, **pos_features, **context_features}\n",
|
541
|
-
"\n",
|
542
|
-
"# Create feature sets with POS and additional features\n",
|
543
|
-
"feature_sets_with_pos = [(extract_features_with_pos(context), sense) for (context, sense) in training_data]\n",
|
544
|
-
"\n",
|
545
|
-
"# Shuffle and split the data into training and test sets\n",
|
546
|
-
"random.shuffle(feature_sets_with_pos)\n",
|
547
|
-
"train_set, test_set = feature_sets_with_pos[:24], feature_sets_with_pos[24:]\n",
|
548
|
-
"\n",
|
549
|
-
"# Train the Naïve Bayes classifier with POS and contextual features\n",
|
550
|
-
"classifier_with_pos = NaiveBayesClassifier.train(train_set)\n",
|
551
|
-
"\n",
|
552
|
-
"# Evaluate the classifier\n",
|
553
|
-
"print(f'Accuracy with POS and contextual features: {accuracy(classifier_with_pos, test_set):.2f}')\n",
|
554
|
-
"classifier_with_pos.show_most_informative_features()\n",
|
555
|
-
"\n",
|
556
|
-
"# Sample prediction\n",
|
557
|
-
"new_context = \"He likes to fish by the bank.\"\n",
|
558
|
-
"features_with_pos = extract_features_with_pos(new_context)\n",
|
559
|
-
"predicted_sense_with_pos = classifier_with_pos.classify(features_with_pos)\n",
|
560
|
-
"print(f\"The predicted sense for '{new_context}' with POS and contextual features is '{predicted_sense_with_pos}'\")"
|
561
|
-
]
|
562
|
-
},
|
563
|
-
{
|
564
|
-
"cell_type": "code",
|
565
|
-
"execution_count": 18,
|
566
|
-
"id": "c0316930-0a0d-4b99-9d4c-9857e8c30565",
|
567
|
-
"metadata": {},
|
568
|
-
"outputs": [
|
569
|
-
{
|
570
|
-
"name": "stdout",
|
571
|
-
"output_type": "stream",
|
572
|
-
"text": [
|
573
|
-
"[('The', 'children played by the river bank. river'), ('They', 'set up a picnic by the river bank. river'), ('We', 'spent the afternoon walking along the river bank. river'), ('He', 'enjoys kayaking near the river bank every weekend. river'), ('The', 'river bank was bustling with people fishing. river'), ('The', 'river flooded and covered the bank with water. river'), ('We', 'followed the river bank trail through the forest. river'), ('The', 'boat was anchored by the river bank. river'), ('The', 'river bank was a perfect spot for our tent. river'), ('Wildflowers', 'grew along the river bank. river'), ('The', 'river bank had eroded after the heavy rains. river'), ('I', 'went to the bank to deposit a check. finance'), ('The', 'bank approved my loan application. finance'), ('She', 'worked as a teller at the local bank. finance'), ('They', 'offer excellent financial services at this bank. finance'), ('You', 'can open an account at any bank in town. finance'), ('The', 'bank charges high interest rates on loans. finance'), ('Our', 'local bank has a great mobile app. finance'), ('He', 'withdrew cash from the bank. finance'), ('She', 'has a meeting with the bank manager. finance'), ('The', 'bank is closed on public holidays. finance'), ('They', 'are opening a new bank branch downtown. finance'), ('She', 'visited the bank to discuss her investment portfolio. finance'), ('The', 'bank provided a financial report for the last quarter. finance'), ('The', \"bank's new policy on loans is quite strict. finance\"), ('He', 'worked in a bank before starting his own business. finance'), ('The', 'bank approved a loan application yesterday. finance')]\n"
|
574
|
-
]
|
575
|
-
}
|
576
|
-
],
|
577
|
-
"source": [
|
578
|
-
"# Define the file path\n",
|
579
|
-
"file_path = 'E://126156048/leb_3/training_set.txt'\n",
|
580
|
-
"\n",
|
581
|
-
"# Open the file and read lines\n",
|
582
|
-
"with open(file_path, 'r') as file:\n",
|
583
|
-
" # Create a list of tuples from each line\n",
|
584
|
-
" data = [tuple(line.strip().split(' ', 1)) for line in file]\n",
|
585
|
-
"\n",
|
586
|
-
"# Print the result\n",
|
587
|
-
"print(data)"
|
588
|
-
]
|
589
|
-
}
|
590
|
-
],
|
591
|
-
"metadata": {
|
592
|
-
"kernelspec": {
|
593
|
-
"display_name": "Python 3 (ipykernel)",
|
594
|
-
"language": "python",
|
595
|
-
"name": "python3"
|
596
|
-
},
|
597
|
-
"language_info": {
|
598
|
-
"codemirror_mode": {
|
599
|
-
"name": "ipython",
|
600
|
-
"version": 3
|
601
|
-
},
|
602
|
-
"file_extension": ".py",
|
603
|
-
"mimetype": "text/x-python",
|
604
|
-
"name": "python",
|
605
|
-
"nbconvert_exporter": "python",
|
606
|
-
"pygments_lexer": "ipython3",
|
607
|
-
"version": "3.11.1"
|
608
|
-
}
|
609
|
-
},
|
610
|
-
"nbformat": 4,
|
611
|
-
"nbformat_minor": 5
|
612
|
-
}
|
Binary file
|