noshot 0.1.6__py3-none-any.whl → 0.1.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +207 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +625 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +287 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +625 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +83 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +625 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +117 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +210 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +137 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +129 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +179 -0
- {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/METADATA +2 -2
- noshot-0.1.8.dist-info/RECORD +24 -0
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +0 -112
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +0 -111
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +0 -115
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +0 -123
- noshot/data/ML TS XAI/AIDS/10. ANOVA/2_ANOVA.csv +0 -769
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +0 -126
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Two Way ANOVA.ipynb +0 -138
- noshot/data/ML TS XAI/AIDS/10. ANOVA/reaction_time.csv +0 -5
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sample_data.csv +0 -16
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sleep_deprivation.csv +0 -4
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/3_Linear.csv +0 -4802
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +0 -113
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression.ipynb +0 -148
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/house_rate.csv +0 -22
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +0 -128
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression.ipynb +0 -145
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/default.csv +0 -1001
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/hours_scores_records.csv +0 -101
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +0 -256
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +0 -157
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +0 -178
- noshot/data/ML TS XAI/AIDS/3. Genetic Algorithm/Genetic.ipynb +0 -95
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +0 -74
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +0 -103
- noshot/data/ML TS XAI/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +0 -182
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +0 -120
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +0 -125
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/Random Sampling.ipynb +0 -73
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test Hash Function.ipynb +0 -141
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test.ipynb +0 -151
- noshot/data/ML TS XAI/AIDS/8. Z Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/1_heart.csv +0 -304
- noshot/data/ML TS XAI/AIDS/9. T Test/Independent T Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/9. T Test/Paired T Test.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test Hash Function.ipynb +0 -142
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test.ipynb +0 -158
- noshot/data/ML TS XAI/AIDS/9. T Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/iq_test.csv +0 -0
- noshot/data/ML TS XAI/AIDS/Others (AllinOne)/All In One.ipynb +0 -4581
- noshot/data/ML TS XAI/CN/1. Chat Application/chat.java +0 -81
- noshot/data/ML TS XAI/CN/1. Chat Application/output.png +0 -0
- noshot/data/ML TS XAI/CN/1. Chat Application/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +0 -65
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +0 -44
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +0 -229
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/file_to_send.txt +0 -2
- noshot/data/ML TS XAI/CN/2. File Transfer/filetransfer.java +0 -119
- noshot/data/ML TS XAI/CN/2. File Transfer/output.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Client.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerImpl.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerIntf.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Server.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/rmi.java +0 -56
- noshot/data/ML TS XAI/CN/4. Wired Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.awk +0 -25
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.tcl +0 -81
- noshot/data/ML TS XAI/CN/5. Wireless Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.awk +0 -27
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.tcl +0 -153
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +0 -28
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +0 -78
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +0 -79
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +0 -163
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/DV.tcl +0 -111
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/LS.tcl +0 -106
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/analysis.awk +0 -36
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/analysis.awk +0 -20
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/broadcast.tcl +0 -76
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/multicast.tcl +0 -103
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/DHCP.java +0 -125
- noshot/data/ML TS XAI/CN/9. DHCP/output.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/procedure.png +0 -0
- noshot/data/ML TS XAI/NLP/NLP 1/1-Prereqs.py +0 -18
- noshot/data/ML TS XAI/NLP/NLP 1/2-Chi2test.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 1/2-T-test.py +0 -79
- noshot/data/ML TS XAI/NLP/NLP 1/3-WSD-nb.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/4-Hindle-Rooth.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/5-HMM-Trellis.py +0 -82
- noshot/data/ML TS XAI/NLP/NLP 1/6-HMM-Viterbi.py +0 -16
- noshot/data/ML TS XAI/NLP/NLP 1/7-PCFG-parsetree.py +0 -15
- noshot/data/ML TS XAI/NLP/NLP 1/Chi2test.ipynb +0 -285
- noshot/data/ML TS XAI/NLP/NLP 1/Hindle-Rooth.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 1/PCFG.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 1/Prereqs.ipynb +0 -131
- noshot/data/ML TS XAI/NLP/NLP 1/T test.ipynb +0 -252
- noshot/data/ML TS XAI/NLP/NLP 1/TFIDF BOW.ipynb +0 -171
- noshot/data/ML TS XAI/NLP/NLP 1/Trellis.ipynb +0 -244
- noshot/data/ML TS XAI/NLP/NLP 1/WSD.ipynb +0 -645
- noshot/data/ML TS XAI/NLP/NLP 1/Word2Vec.ipynb +0 -93
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +0 -370
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +0 -274
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +0 -905
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/test.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +0 -272
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +0 -549
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +0 -817
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +0 -231
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +0 -507
- noshot/data/ML TS XAI/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +0 -255
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +0 -159
- noshot/data/ML TS XAI/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +0 -282
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +0 -670
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +0 -613
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +0 -74
- noshot/data/ML TS XAI/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +0 -480
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +0 -445
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +0 -105
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +0 -87
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +0 -11
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +0 -201
- noshot/data/ML TS XAI/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 3/Backward-Procedure.ipynb +0 -597
- noshot/data/ML TS XAI/NLP/NLP 3/Bag_of.ipynb +0 -1422
- noshot/data/ML TS XAI/NLP/NLP 3/CYK-algorithm.ipynb +0 -1067
- noshot/data/ML TS XAI/NLP/NLP 3/Forward-Procedure.ipynb +0 -477
- noshot/data/ML TS XAI/NLP/NLP 3/LSTM.ipynb +0 -1290
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-4.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-5.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/abc.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 3/ex-1-nltk.ipynb +0 -711
- noshot/data/ML TS XAI/NLP/NLP 3/ex-2-nlp.ipynb +0 -267
- noshot/data/ML TS XAI/NLP/NLP 3/exp8&9.ipynb +0 -305
- noshot/data/ML TS XAI/NLP/NLP 3/hind.ipynb +0 -287
- noshot/data/ML TS XAI/NLP/NLP 3/lab66.ipynb +0 -752
- noshot/data/ML TS XAI/NLP/NLP 3/leb_3.ipynb +0 -612
- noshot/data/ML TS XAI/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_1.ipynb +0 -3008
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_2.ipynb +0 -3095
- noshot/data/ML TS XAI/NLP/NLP 3/nlplab-9.ipynb +0 -295
- noshot/data/ML TS XAI/NLP/NLP 3/nltk-ex-4.ipynb +0 -506
- noshot/data/ML TS XAI/NLP/NLP 3/text1.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/text2.txt +0 -8
- noshot/data/ML TS XAI/NLP/NLP 3/text3.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/translation-rnn.ipynb +0 -812
- noshot/data/ML TS XAI/NLP/NLP 3/word2vector.ipynb +0 -173
- noshot/data/ML TS XAI/NLP/NLP 4/Backward Procedure Algorithm.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 4/Chi Square Collocation.ipynb +0 -208
- noshot/data/ML TS XAI/NLP/NLP 4/Collocation (T test).ipynb +0 -188
- noshot/data/ML TS XAI/NLP/NLP 4/Experiment 1.ipynb +0 -437
- noshot/data/ML TS XAI/NLP/NLP 4/Forward Procedure Algorithm.ipynb +0 -132
- noshot/data/ML TS XAI/NLP/NLP 4/Hindle Rooth.ipynb +0 -414
- noshot/data/ML TS XAI/NLP/NLP 4/MachineTranslation.ipynb +0 -368
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +0 -86
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +0 -112
- noshot/data/ML TS XAI/NLP/NLP 4/PCFG Inside Probability.ipynb +0 -451
- noshot/data/ML TS XAI/NLP/NLP 4/Text Generation using LSTM.ipynb +0 -297
- noshot/data/ML TS XAI/NLP/NLP 4/Viterbi.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 4/Word Sense Disambiguation.ipynb +0 -335
- noshot/data/ML TS XAI/NLP/NLP 5/10.Text Generation using LSTM.ipynb +0 -316
- noshot/data/ML TS XAI/NLP/NLP 5/11.Machine Translation.ipynb +0 -868
- noshot/data/ML TS XAI/NLP/NLP 5/2.T and Chi2 Test.ipynb +0 -204
- noshot/data/ML TS XAI/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +0 -234
- noshot/data/ML TS XAI/NLP/NLP 5/4.Hinddle and Rooth.ipynb +0 -128
- noshot/data/ML TS XAI/NLP/NLP 5/5.Forward and Backward.ipynb +0 -149
- noshot/data/ML TS XAI/NLP/NLP 5/6.Viterbi.ipynb +0 -111
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG Parse Tree.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG using cyk.ipynb +0 -101
- noshot/data/ML TS XAI/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 5/9.Word2Vector.ipynb +0 -78
- noshot/data/ML TS XAI/NLP/NLP 5/NLP ALL In One.ipynb +0 -2619
- noshot/data/ML TS XAI/NLP/NLP 5/sample1.txt +0 -15
- noshot/data/ML TS XAI/NLP/NLP 5/sample2.txt +0 -4
- noshot/data/ML TS XAI/NLP/NLP 5/word2vec_model.bin +0 -0
- noshot/data/ML TS XAI/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +0 -312
- noshot/data/ML TS XAI/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 6/3. Naive Bayes WSD.ipynb +0 -199
- noshot/data/ML TS XAI/NLP/NLP 6/4. Hinddle and Rooth.ipynb +0 -151
- noshot/data/ML TS XAI/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +0 -164
- noshot/data/ML TS XAI/NLP/NLP 6/7. PCFG using CYK.ipynb +0 -383
- noshot/data/ML TS XAI/NLP/NLP 6/8. BOW and TF-IDF.ipynb +0 -252
- noshot/data/ML TS XAI/Ubuntu CN Lab.iso +0 -0
- noshot-0.1.6.dist-info/RECORD +0 -216
- {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/LICENSE.txt +0 -0
- {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/WHEEL +0 -0
- {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/top_level.txt +0 -0
@@ -1,549 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "markdown",
|
5
|
-
"id": "0c125b29",
|
6
|
-
"metadata": {},
|
7
|
-
"source": [
|
8
|
-
"# Exp 3\n",
|
9
|
-
"\n",
|
10
|
-
"**To do**:\n",
|
11
|
-
" Parse tree for ambiguous sentence.\n",
|
12
|
-
"\n",
|
13
|
-
"Code credits - **Hari Kishan, Geeks for Geeks**"
|
14
|
-
]
|
15
|
-
},
|
16
|
-
{
|
17
|
-
"cell_type": "code",
|
18
|
-
"execution_count": 14,
|
19
|
-
"id": "693a6ba6",
|
20
|
-
"metadata": {},
|
21
|
-
"outputs": [
|
22
|
-
{
|
23
|
-
"name": "stdout",
|
24
|
-
"output_type": "stream",
|
25
|
-
"text": [
|
26
|
-
" s \n",
|
27
|
-
" | \n",
|
28
|
-
" vp \n",
|
29
|
-
" ________|____ \n",
|
30
|
-
" | np \n",
|
31
|
-
" | ________|_____ \n",
|
32
|
-
" | | np \n",
|
33
|
-
" | | | \n",
|
34
|
-
" | | np \n",
|
35
|
-
" | | _____|____ \n",
|
36
|
-
" | | np | \n",
|
37
|
-
" | | | | \n",
|
38
|
-
" v d n n \n",
|
39
|
-
" | | | | \n",
|
40
|
-
"Book the dinner flight\n",
|
41
|
-
"\n"
|
42
|
-
]
|
43
|
-
}
|
44
|
-
],
|
45
|
-
"source": [
|
46
|
-
"from nltk import *\n",
|
47
|
-
"n1=Tree('np',[Tree('np',[Tree('n',['dinner'])]),Tree('n',['flight'])])\n",
|
48
|
-
"np=Tree('np',[Tree('d',['the']),Tree('np',[n1])])\n",
|
49
|
-
"vp=Tree('vp',[Tree('v',['Book']),np])\n",
|
50
|
-
"tree=Tree('s',[vp])\n",
|
51
|
-
"tree.pretty_print()"
|
52
|
-
]
|
53
|
-
},
|
54
|
-
{
|
55
|
-
"cell_type": "code",
|
56
|
-
"execution_count": 7,
|
57
|
-
"id": "9ae808bd",
|
58
|
-
"metadata": {},
|
59
|
-
"outputs": [
|
60
|
-
{
|
61
|
-
"name": "stdout",
|
62
|
-
"output_type": "stream",
|
63
|
-
"text": [
|
64
|
-
" s \n",
|
65
|
-
" | \n",
|
66
|
-
" vp \n",
|
67
|
-
" ____|_______________ \n",
|
68
|
-
" | | np \n",
|
69
|
-
" | | | \n",
|
70
|
-
" | np np \n",
|
71
|
-
" | ___|____ | \n",
|
72
|
-
" v d np np \n",
|
73
|
-
" | | | | \n",
|
74
|
-
"Book the dinner flight\n",
|
75
|
-
"\n"
|
76
|
-
]
|
77
|
-
}
|
78
|
-
],
|
79
|
-
"source": [
|
80
|
-
"from nltk import *\n",
|
81
|
-
"np2=Tree('np',[Tree('np',[Tree('np',['flight'])])])\n",
|
82
|
-
"np1=Tree('np',[Tree('d',['the']), Tree('np',['dinner'])])\n",
|
83
|
-
"vp=Tree('vp',[Tree('v',['Book']),np1,np2])\n",
|
84
|
-
"tree=Tree('s',[vp])\n",
|
85
|
-
"tree.pretty_print()"
|
86
|
-
]
|
87
|
-
},
|
88
|
-
{
|
89
|
-
"cell_type": "code",
|
90
|
-
"execution_count": 12,
|
91
|
-
"id": "b926774a",
|
92
|
-
"metadata": {},
|
93
|
-
"outputs": [
|
94
|
-
{
|
95
|
-
"name": "stdout",
|
96
|
-
"output_type": "stream",
|
97
|
-
"text": [
|
98
|
-
"Total number of unique words: 92\n",
|
99
|
-
"\n",
|
100
|
-
"Word frequencies:\n",
|
101
|
-
"After 1\n",
|
102
|
-
"graduating 1\n",
|
103
|
-
"of 9\n",
|
104
|
-
"a 6\n",
|
105
|
-
"Madras 1\n",
|
106
|
-
"Institute 1\n",
|
107
|
-
"Technology 1\n",
|
108
|
-
"in 2\n",
|
109
|
-
"1960 1\n",
|
110
|
-
", 7\n",
|
111
|
-
"Kalam 2\n",
|
112
|
-
"Aeronautical 1\n",
|
113
|
-
"Development 3\n",
|
114
|
-
"Establishment 1\n",
|
115
|
-
"the 7\n",
|
116
|
-
"Defence 2\n",
|
117
|
-
"Research 2\n",
|
118
|
-
"and 2\n",
|
119
|
-
"Organisation 1\n",
|
120
|
-
"( 2\n",
|
121
|
-
"by 4\n",
|
122
|
-
"Press 1\n",
|
123
|
-
"Information 1\n",
|
124
|
-
"Bureau 1\n",
|
125
|
-
"Government 1\n",
|
126
|
-
"India 1\n",
|
127
|
-
") 2\n",
|
128
|
-
"as 2\n",
|
129
|
-
"scientist 1\n",
|
130
|
-
"after 1\n",
|
131
|
-
"becoming 1\n",
|
132
|
-
"member 1\n",
|
133
|
-
"& 1\n",
|
134
|
-
"Service 1\n",
|
135
|
-
"DRDS 1\n",
|
136
|
-
". 1\n",
|
137
|
-
"He 1\n",
|
138
|
-
"started 1\n",
|
139
|
-
"his 2\n",
|
140
|
-
"career 1\n",
|
141
|
-
"designing 1\n",
|
142
|
-
"small 1\n",
|
143
|
-
"hovercraft 1\n",
|
144
|
-
"but 1\n",
|
145
|
-
"remained 1\n",
|
146
|
-
"unconvinced 1\n",
|
147
|
-
"choice 1\n",
|
148
|
-
"job 1\n",
|
149
|
-
"at 1\n",
|
150
|
-
"DRDO.alam 1\n",
|
151
|
-
"was 1\n",
|
152
|
-
"invited 1\n",
|
153
|
-
"Raja 1\n",
|
154
|
-
"Ramanna 1\n",
|
155
|
-
"to 2\n",
|
156
|
-
"witness 1\n",
|
157
|
-
"country 1\n",
|
158
|
-
"'s 1\n",
|
159
|
-
"first 1\n",
|
160
|
-
"nuclear 1\n",
|
161
|
-
"test 1\n",
|
162
|
-
"Smiling 1\n",
|
163
|
-
"Buddha 1\n",
|
164
|
-
"representative 1\n",
|
165
|
-
"TBRL 1\n",
|
166
|
-
"even 1\n",
|
167
|
-
"though 1\n",
|
168
|
-
"he 1\n",
|
169
|
-
"had 1\n",
|
170
|
-
"not 1\n",
|
171
|
-
"participated 1\n",
|
172
|
-
"its 1\n",
|
173
|
-
"development. 1\n",
|
174
|
-
"In 1\n",
|
175
|
-
"1970s 1\n",
|
176
|
-
"also 1\n",
|
177
|
-
"directed 1\n",
|
178
|
-
"two 1\n",
|
179
|
-
"projects 1\n",
|
180
|
-
"Project 2\n",
|
181
|
-
"Devil 1\n",
|
182
|
-
"Valiant 1\n",
|
183
|
-
"which 1\n",
|
184
|
-
"sought 1\n",
|
185
|
-
"develop 1\n",
|
186
|
-
"ballistic 1\n",
|
187
|
-
"missiles 1\n",
|
188
|
-
"from 1\n",
|
189
|
-
"technology 1\n",
|
190
|
-
"successful 1\n",
|
191
|
-
"SLV 1\n",
|
192
|
-
"programme 1\n",
|
193
|
-
"\n",
|
194
|
-
"Total number of unique pairs: 125\n",
|
195
|
-
"Joint probabilities:\n",
|
196
|
-
"After graduating 1\n",
|
197
|
-
"graduating of 1\n",
|
198
|
-
"of a 3\n",
|
199
|
-
"a Madras 1\n",
|
200
|
-
"Madras Institute 1\n",
|
201
|
-
"Institute of 1\n",
|
202
|
-
"of Technology 1\n",
|
203
|
-
"Technology in 1\n",
|
204
|
-
"in 1960 1\n",
|
205
|
-
"1960 , 1\n",
|
206
|
-
", Kalam 2\n",
|
207
|
-
"Kalam of 1\n",
|
208
|
-
"a Aeronautical 1\n",
|
209
|
-
"Aeronautical Development 1\n",
|
210
|
-
"Development Establishment 1\n",
|
211
|
-
"Establishment of 1\n",
|
212
|
-
"of the 3\n",
|
213
|
-
"the Defence 2\n",
|
214
|
-
"Defence Research 2\n",
|
215
|
-
"Research and 1\n",
|
216
|
-
"and Development 1\n",
|
217
|
-
"Development Organisation 1\n",
|
218
|
-
"Organisation ( 1\n",
|
219
|
-
"( by 1\n",
|
220
|
-
"by Press 1\n",
|
221
|
-
"Press Information 1\n",
|
222
|
-
"Information Bureau 1\n",
|
223
|
-
"Bureau , 1\n",
|
224
|
-
", Government 1\n",
|
225
|
-
"Government of 1\n",
|
226
|
-
"of India 1\n",
|
227
|
-
"India ) 1\n",
|
228
|
-
") as 1\n",
|
229
|
-
"as a 1\n",
|
230
|
-
"a scientist 1\n",
|
231
|
-
"scientist after 1\n",
|
232
|
-
"after becoming 1\n",
|
233
|
-
"becoming a 1\n",
|
234
|
-
"a member 1\n",
|
235
|
-
"member of 1\n",
|
236
|
-
"Research & 1\n",
|
237
|
-
"& Development 1\n",
|
238
|
-
"Development Service 1\n",
|
239
|
-
"Service ( 1\n",
|
240
|
-
"( DRDS 1\n",
|
241
|
-
"DRDS ) 1\n",
|
242
|
-
") . 1\n",
|
243
|
-
". He 1\n",
|
244
|
-
"He started 1\n",
|
245
|
-
"started his 1\n",
|
246
|
-
"his career 1\n",
|
247
|
-
"career by 1\n",
|
248
|
-
"by designing 1\n",
|
249
|
-
"designing a 1\n",
|
250
|
-
"a small 1\n",
|
251
|
-
"small hovercraft 1\n",
|
252
|
-
"hovercraft , 1\n",
|
253
|
-
", but 1\n",
|
254
|
-
"but remained 1\n",
|
255
|
-
"remained unconvinced 1\n",
|
256
|
-
"unconvinced by 1\n",
|
257
|
-
"by his 1\n",
|
258
|
-
"his choice 1\n",
|
259
|
-
"choice of 1\n",
|
260
|
-
"a job 1\n",
|
261
|
-
"job at 1\n",
|
262
|
-
"at DRDO.alam 1\n",
|
263
|
-
"DRDO.alam was 1\n",
|
264
|
-
"was invited 1\n",
|
265
|
-
"invited by 1\n",
|
266
|
-
"by Raja 1\n",
|
267
|
-
"Raja Ramanna 1\n",
|
268
|
-
"Ramanna to 1\n",
|
269
|
-
"to witness 1\n",
|
270
|
-
"witness the 1\n",
|
271
|
-
"the country 1\n",
|
272
|
-
"country 's 1\n",
|
273
|
-
"'s first 1\n",
|
274
|
-
"first nuclear 1\n",
|
275
|
-
"nuclear test 1\n",
|
276
|
-
"test Smiling 1\n",
|
277
|
-
"Smiling Buddha 1\n",
|
278
|
-
"Buddha as 1\n",
|
279
|
-
"as the 1\n",
|
280
|
-
"the representative 1\n",
|
281
|
-
"representative of 1\n",
|
282
|
-
"of TBRL 1\n",
|
283
|
-
"TBRL , 1\n",
|
284
|
-
", even 1\n",
|
285
|
-
"even though 1\n",
|
286
|
-
"though he 1\n",
|
287
|
-
"he had 1\n",
|
288
|
-
"had not 1\n",
|
289
|
-
"not participated 1\n",
|
290
|
-
"participated in 1\n",
|
291
|
-
"in its 1\n",
|
292
|
-
"its development. 1\n",
|
293
|
-
"development. In 1\n",
|
294
|
-
"In the 1\n",
|
295
|
-
"the 1970s 1\n",
|
296
|
-
"1970s , 1\n",
|
297
|
-
"Kalam also 1\n",
|
298
|
-
"also directed 1\n",
|
299
|
-
"directed two 1\n",
|
300
|
-
"two projects 1\n",
|
301
|
-
"projects , 1\n",
|
302
|
-
", Project 1\n",
|
303
|
-
"Project Devil 1\n",
|
304
|
-
"Devil and 1\n",
|
305
|
-
"and Project 1\n",
|
306
|
-
"Project Valiant 1\n",
|
307
|
-
"Valiant , 1\n",
|
308
|
-
", which 1\n",
|
309
|
-
"which sought 1\n",
|
310
|
-
"sought to 1\n",
|
311
|
-
"to develop 1\n",
|
312
|
-
"develop ballistic 1\n",
|
313
|
-
"ballistic missiles 1\n",
|
314
|
-
"missiles from 1\n",
|
315
|
-
"from the 1\n",
|
316
|
-
"the technology 1\n",
|
317
|
-
"technology of 1\n",
|
318
|
-
"the successful 1\n",
|
319
|
-
"successful SLV 1\n",
|
320
|
-
"SLV programme 1\n",
|
321
|
-
"\n",
|
322
|
-
"The pair with the max frequency: of a\n",
|
323
|
-
"ORGANIZATION --> MadrasInstitute\n",
|
324
|
-
"GPE --> Technology\n",
|
325
|
-
"PERSON --> Kalam\n",
|
326
|
-
"ORGANIZATION --> AeronauticalDevelopment\n",
|
327
|
-
"ORGANIZATION --> DefenceResearch\n",
|
328
|
-
"ORGANIZATION --> DevelopmentOrganisation\n",
|
329
|
-
"PERSON --> PressInformationBureau\n",
|
330
|
-
"GPE --> India\n",
|
331
|
-
"ORGANIZATION --> Defence\n",
|
332
|
-
"ORGANIZATION --> DevelopmentService\n",
|
333
|
-
"ORGANIZATION --> DRDS\n",
|
334
|
-
"PERSON --> RajaRamanna\n",
|
335
|
-
"PERSON --> Buddha\n",
|
336
|
-
"ORGANIZATION --> TBRL\n",
|
337
|
-
"PERSON --> Kalam\n",
|
338
|
-
"PERSON --> ProjectDevil\n",
|
339
|
-
"PERSON --> ProjectValiant\n",
|
340
|
-
"ORGANIZATION --> SLV\n"
|
341
|
-
]
|
342
|
-
}
|
343
|
-
],
|
344
|
-
"source": [
|
345
|
-
"from collections import Counter\n",
|
346
|
-
"from nltk.tokenize import TreebankWordTokenizer\n",
|
347
|
-
"\n",
|
348
|
-
"# Read the text file\n",
|
349
|
-
"with open(\"nlp.txt\") as f:\n",
|
350
|
-
" text = f.read()\n",
|
351
|
-
"\n",
|
352
|
-
"# Tokenize the text\n",
|
353
|
-
"tokenizer = TreebankWordTokenizer()\n",
|
354
|
-
"tokens = tokenizer.tokenize(text)\n",
|
355
|
-
"\n",
|
356
|
-
"# Display total number of unique words\n",
|
357
|
-
"unique_words = set(tokens)\n",
|
358
|
-
"total_unique_words = len(unique_words)\n",
|
359
|
-
"print(\"Total number of unique words:\", total_unique_words)\n",
|
360
|
-
"\n",
|
361
|
-
"# Frequency of each word without duplicate entries\n",
|
362
|
-
"word_frequency = Counter(tokens)\n",
|
363
|
-
"print(\"\\nWord frequencies:\")\n",
|
364
|
-
"for word, freq in word_frequency.items():\n",
|
365
|
-
" print(word, freq)\n",
|
366
|
-
"\n",
|
367
|
-
"# Joint probability of each word\n",
|
368
|
-
"joint_probabilities = Counter(zip(tokens, tokens[1:]))\n",
|
369
|
-
"total_pairs = len(joint_probabilities)\n",
|
370
|
-
"print(\"\\nTotal number of unique pairs:\", total_pairs)\n",
|
371
|
-
"print(\"Joint probabilities:\")\n",
|
372
|
-
"for pair, freq in joint_probabilities.items():\n",
|
373
|
-
" print(\" \".join(pair), freq)\n",
|
374
|
-
"\n",
|
375
|
-
"# The pair with the maximum frequency\n",
|
376
|
-
"max_freq_pair = max(joint_probabilities, key=joint_probabilities.get)\n",
|
377
|
-
"print(\"\\nThe pair with the max frequency:\", \" \".join(max_freq_pair))\n",
|
378
|
-
" \n",
|
379
|
-
"# Apply part-of-speech tagging to the tokens\n",
|
380
|
-
"tagged = nltk.pos_tag(tokens)\n",
|
381
|
-
" \n",
|
382
|
-
"# Apply named entity recognition to the tagged words\n",
|
383
|
-
"entities = nltk.chunk.ne_chunk(tagged)\n",
|
384
|
-
"\n",
|
385
|
-
"# Print the entities found in the text\n",
|
386
|
-
"for entity in entities:\n",
|
387
|
-
" if hasattr(entity, 'label') and entity.label() == 'ORGANIZATION':\n",
|
388
|
-
" print(entity.label(),'-->', ''.join(c[0] for c in entity))\n",
|
389
|
-
" elif hasattr(entity, 'label') and entity.label() == 'GPE':\n",
|
390
|
-
" print(entity.label(), '-->',''.join(c[0] for c in entity))\n",
|
391
|
-
" elif hasattr(entity, 'label') and entity.label() == 'PERSON':\n",
|
392
|
-
" print(entity.label(), '-->',''.join(c[0] for c in entity))"
|
393
|
-
]
|
394
|
-
},
|
395
|
-
{
|
396
|
-
"cell_type": "code",
|
397
|
-
"execution_count": 13,
|
398
|
-
"id": "1dae5fb5",
|
399
|
-
"metadata": {},
|
400
|
-
"outputs": [
|
401
|
-
{
|
402
|
-
"name": "stdout",
|
403
|
-
"output_type": "stream",
|
404
|
-
"text": [
|
405
|
-
"ORGANIZATION --> MadrasInstitute\n",
|
406
|
-
"GPE --> Technology\n",
|
407
|
-
"ORGANIZATION --> AeronauticalDevelopment\n",
|
408
|
-
"ORGANIZATION --> DefenceResearch\n",
|
409
|
-
"ORGANIZATION --> DevelopmentOrganisation\n",
|
410
|
-
"PERSON --> PressInformationBureau\n",
|
411
|
-
"GPE --> India\n",
|
412
|
-
"ORGANIZATION --> DefenceResearchDevelopmentService\n",
|
413
|
-
"ORGANIZATION --> DRDOalam\n",
|
414
|
-
"PERSON --> RajaRamanna\n",
|
415
|
-
"PERSON --> Buddha\n",
|
416
|
-
"ORGANIZATION --> TBRL\n",
|
417
|
-
"PERSON --> Kalam\n",
|
418
|
-
"PERSON --> ProjectDevil\n",
|
419
|
-
"PERSON --> ProjectValiant\n",
|
420
|
-
"ORGANIZATION --> SLV\n"
|
421
|
-
]
|
422
|
-
}
|
423
|
-
],
|
424
|
-
"source": [
|
425
|
-
"import re\n",
|
426
|
-
"import nltk\n",
|
427
|
-
"from nltk.tokenize import TreebankWordTokenizer\n",
|
428
|
-
"from nltk.stem import PorterStemmer\n",
|
429
|
-
"f=open(\"nlp.txt\",'r')\n",
|
430
|
-
"tk=TreebankWordTokenizer()\n",
|
431
|
-
"new_string = re.sub(r'[^\\w\\s]', '', f.read())\n",
|
432
|
-
"val=tk.tokenize(new_string)\n",
|
433
|
-
"tagged=nltk.pos_tag(val)\n",
|
434
|
-
"entities=nltk.chunk.ne_chunk(tagged)\n",
|
435
|
-
"\n",
|
436
|
-
"for entity in entities:\n",
|
437
|
-
" if hasattr(entity, 'label') and entity.label() == 'ORGANIZATION':\n",
|
438
|
-
" print(entity.label(),'-->', ''.join(c[0] for c in entity))\n",
|
439
|
-
" elif hasattr(entity, 'label') and entity.label() == 'GPE':\n",
|
440
|
-
" print(entity.label(), '-->',''.join(c[0] for c in entity))\n",
|
441
|
-
" elif hasattr(entity, 'label') and entity.label() == 'PERSON':\n",
|
442
|
-
" print(entity.label(), '-->',''.join(c[0] for c in entity))\n",
|
443
|
-
"f.close()"
|
444
|
-
]
|
445
|
-
},
|
446
|
-
{
|
447
|
-
"cell_type": "code",
|
448
|
-
"execution_count": 15,
|
449
|
-
"id": "6d384b4b",
|
450
|
-
"metadata": {},
|
451
|
-
"outputs": [
|
452
|
-
{
|
453
|
-
"data": {
|
454
|
-
"text/plain": [
|
455
|
-
"[('Allon', 'Bacuth'),\n",
|
456
|
-
" ('Ashteroth', 'Karnaim'),\n",
|
457
|
-
" ('Ben', 'Ammi'),\n",
|
458
|
-
" ('En', 'Mishpat'),\n",
|
459
|
-
" ('Jegar', 'Sahadutha'),\n",
|
460
|
-
" ('Salt', 'Sea'),\n",
|
461
|
-
" ('Whoever', 'sheds'),\n",
|
462
|
-
" ('appoint', 'overseers'),\n",
|
463
|
-
" ('aromatic', 'resin'),\n",
|
464
|
-
" ('cutting', 'instrument')]"
|
465
|
-
]
|
466
|
-
},
|
467
|
-
"execution_count": 15,
|
468
|
-
"metadata": {},
|
469
|
-
"output_type": "execute_result"
|
470
|
-
}
|
471
|
-
],
|
472
|
-
"source": [
|
473
|
-
"import nltk\n",
|
474
|
-
"from nltk.collocations import *\n",
|
475
|
-
"bigram_measures = nltk.collocations.BigramAssocMeasures()\n",
|
476
|
-
"trigram_measures = nltk.collocations.TrigramAssocMeasures()\n",
|
477
|
-
"fourgram_measures = nltk.collocations.QuadgramAssocMeasures()\n",
|
478
|
-
"finder = BigramCollocationFinder.from_words(\n",
|
479
|
-
"nltk.corpus.genesis.words('english-web.txt'))\n",
|
480
|
-
"finder.nbest(bigram_measures.pmi, 10)"
|
481
|
-
]
|
482
|
-
},
|
483
|
-
{
|
484
|
-
"cell_type": "code",
|
485
|
-
"execution_count": 16,
|
486
|
-
"id": "662bc8cb",
|
487
|
-
"metadata": {},
|
488
|
-
"outputs": [
|
489
|
-
{
|
490
|
-
"data": {
|
491
|
-
"text/plain": [
|
492
|
-
"[('olive', 'leaf', 'plucked'),\n",
|
493
|
-
" ('rider', 'falls', 'backward'),\n",
|
494
|
-
" ('sewed', 'fig', 'leaves'),\n",
|
495
|
-
" ('yield', 'royal', 'dainties'),\n",
|
496
|
-
" ('during', 'mating', 'season'),\n",
|
497
|
-
" ('Salt', 'Sea', ').'),\n",
|
498
|
-
" ('Sea', ').', 'Twelve'),\n",
|
499
|
-
" ('Their', 'hearts', 'failed'),\n",
|
500
|
-
" ('Valley', ').', 'Melchizedek'),\n",
|
501
|
-
" ('doing', 'forced', 'labor')]"
|
502
|
-
]
|
503
|
-
},
|
504
|
-
"execution_count": 16,
|
505
|
-
"metadata": {},
|
506
|
-
"output_type": "execute_result"
|
507
|
-
}
|
508
|
-
],
|
509
|
-
"source": [
|
510
|
-
"import nltk\n",
|
511
|
-
"from nltk.collocations import *\n",
|
512
|
-
"bigram_measures = nltk.collocations.BigramAssocMeasures()\n",
|
513
|
-
"trigram_measures = nltk.collocations.TrigramAssocMeasures()\n",
|
514
|
-
"fourgram_measures = nltk.collocations.QuadgramAssocMeasures()\n",
|
515
|
-
"finder = TrigramCollocationFinder.from_words(nltk.corpus.genesis.words('english-web.txt'))\n",
|
516
|
-
"finder.nbest(bigram_measures.pmi, 10)"
|
517
|
-
]
|
518
|
-
},
|
519
|
-
{
|
520
|
-
"cell_type": "code",
|
521
|
-
"execution_count": null,
|
522
|
-
"id": "35309f2c",
|
523
|
-
"metadata": {},
|
524
|
-
"outputs": [],
|
525
|
-
"source": []
|
526
|
-
}
|
527
|
-
],
|
528
|
-
"metadata": {
|
529
|
-
"kernelspec": {
|
530
|
-
"display_name": "Python 3",
|
531
|
-
"language": "python",
|
532
|
-
"name": "python3"
|
533
|
-
},
|
534
|
-
"language_info": {
|
535
|
-
"codemirror_mode": {
|
536
|
-
"name": "ipython",
|
537
|
-
"version": 3
|
538
|
-
},
|
539
|
-
"file_extension": ".py",
|
540
|
-
"mimetype": "text/x-python",
|
541
|
-
"name": "python",
|
542
|
-
"nbconvert_exporter": "python",
|
543
|
-
"pygments_lexer": "ipython3",
|
544
|
-
"version": "3.8.8"
|
545
|
-
}
|
546
|
-
},
|
547
|
-
"nbformat": 4,
|
548
|
-
"nbformat_minor": 5
|
549
|
-
}
|
@@ -1 +0,0 @@
|
|
1
|
-
After graduating of a Madras Institute of Technology in 1960, Kalam of a Aeronautical Development Establishment of the Defence Research and Development Organisation (by Press Information Bureau, Government of India) as a scientist after becoming a member of the Defence Research & Development Service (DRDS). He started his career by designing a small hovercraft, but remained unconvinced by his choice of a job at DRDO.alam was invited by Raja Ramanna to witness the country's first nuclear test Smiling Buddha as the representative of TBRL, even though he had not participated in its development. In the 1970s, Kalam also directed two projects, Project Devil and Project Valiant, which sought to develop ballistic missiles from the technology of the successful SLV programme
|