noshot 0.1.6__py3-none-any.whl → 0.1.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (228) hide show
  1. noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +207 -0
  2. noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +626 -0
  3. noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +625 -0
  4. noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +287 -0
  5. noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +626 -0
  6. noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +625 -0
  7. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +83 -0
  8. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +626 -0
  9. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +625 -0
  10. noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +117 -0
  11. noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +210 -0
  12. noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +137 -0
  13. noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +179 -0
  14. noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +129 -0
  15. noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +179 -0
  16. {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/METADATA +2 -2
  17. noshot-0.1.8.dist-info/RECORD +24 -0
  18. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +0 -112
  19. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +0 -111
  20. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +0 -134
  21. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +0 -115
  22. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +0 -123
  23. noshot/data/ML TS XAI/AIDS/10. ANOVA/2_ANOVA.csv +0 -769
  24. noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +0 -126
  25. noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA.ipynb +0 -134
  26. noshot/data/ML TS XAI/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +0 -119
  27. noshot/data/ML TS XAI/AIDS/10. ANOVA/Two Way ANOVA.ipynb +0 -138
  28. noshot/data/ML TS XAI/AIDS/10. ANOVA/reaction_time.csv +0 -5
  29. noshot/data/ML TS XAI/AIDS/10. ANOVA/sample_data.csv +0 -16
  30. noshot/data/ML TS XAI/AIDS/10. ANOVA/sleep_deprivation.csv +0 -4
  31. noshot/data/ML TS XAI/AIDS/11. Linear Regression/3_Linear.csv +0 -4802
  32. noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +0 -113
  33. noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +0 -118
  34. noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression.ipynb +0 -148
  35. noshot/data/ML TS XAI/AIDS/11. Linear Regression/house_rate.csv +0 -22
  36. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +0 -128
  37. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression.ipynb +0 -145
  38. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/default.csv +0 -1001
  39. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/hours_scores_records.csv +0 -101
  40. noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +0 -256
  41. noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +0 -157
  42. noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +0 -178
  43. noshot/data/ML TS XAI/AIDS/3. Genetic Algorithm/Genetic.ipynb +0 -95
  44. noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +0 -74
  45. noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +0 -103
  46. noshot/data/ML TS XAI/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +0 -182
  47. noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +0 -120
  48. noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +0 -125
  49. noshot/data/ML TS XAI/AIDS/7. Random Sampling/Random Sampling.ipynb +0 -73
  50. noshot/data/ML TS XAI/AIDS/7. Random Sampling/height_weight_bmi.csv +0 -8389
  51. noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test Hash Function.ipynb +0 -141
  52. noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test.ipynb +0 -151
  53. noshot/data/ML TS XAI/AIDS/8. Z Test/height_weight_bmi.csv +0 -8389
  54. noshot/data/ML TS XAI/AIDS/9. T Test/1_heart.csv +0 -304
  55. noshot/data/ML TS XAI/AIDS/9. T Test/Independent T Test.ipynb +0 -119
  56. noshot/data/ML TS XAI/AIDS/9. T Test/Paired T Test.ipynb +0 -118
  57. noshot/data/ML TS XAI/AIDS/9. T Test/T Test Hash Function.ipynb +0 -142
  58. noshot/data/ML TS XAI/AIDS/9. T Test/T Test.ipynb +0 -158
  59. noshot/data/ML TS XAI/AIDS/9. T Test/height_weight_bmi.csv +0 -8389
  60. noshot/data/ML TS XAI/AIDS/9. T Test/iq_test.csv +0 -0
  61. noshot/data/ML TS XAI/AIDS/Others (AllinOne)/All In One.ipynb +0 -4581
  62. noshot/data/ML TS XAI/CN/1. Chat Application/chat.java +0 -81
  63. noshot/data/ML TS XAI/CN/1. Chat Application/output.png +0 -0
  64. noshot/data/ML TS XAI/CN/1. Chat Application/procedure.png +0 -0
  65. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +0 -65
  66. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +0 -44
  67. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
  68. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
  69. noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +0 -229
  70. noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
  71. noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
  72. noshot/data/ML TS XAI/CN/2. File Transfer/file_to_send.txt +0 -2
  73. noshot/data/ML TS XAI/CN/2. File Transfer/filetransfer.java +0 -119
  74. noshot/data/ML TS XAI/CN/2. File Transfer/output.png +0 -0
  75. noshot/data/ML TS XAI/CN/2. File Transfer/procedure.png +0 -0
  76. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Client.class +0 -0
  77. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerImpl.class +0 -0
  78. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerIntf.class +0 -0
  79. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Server.class +0 -0
  80. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
  81. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
  82. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/rmi.java +0 -56
  83. noshot/data/ML TS XAI/CN/4. Wired Network/output.png +0 -0
  84. noshot/data/ML TS XAI/CN/4. Wired Network/procedure.png +0 -0
  85. noshot/data/ML TS XAI/CN/4. Wired Network/wired.awk +0 -25
  86. noshot/data/ML TS XAI/CN/4. Wired Network/wired.tcl +0 -81
  87. noshot/data/ML TS XAI/CN/5. Wireless Network/output.png +0 -0
  88. noshot/data/ML TS XAI/CN/5. Wireless Network/procedure.png +0 -0
  89. noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.awk +0 -27
  90. noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.tcl +0 -153
  91. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +0 -27
  92. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
  93. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +0 -86
  94. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +0 -86
  95. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +0 -28
  96. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
  97. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +0 -78
  98. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +0 -79
  99. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +0 -27
  100. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +0 -163
  101. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
  102. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
  103. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/DV.tcl +0 -111
  104. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/LS.tcl +0 -106
  105. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/analysis.awk +0 -36
  106. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/output.png +0 -0
  107. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
  108. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/analysis.awk +0 -20
  109. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/broadcast.tcl +0 -76
  110. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/multicast.tcl +0 -103
  111. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/output.png +0 -0
  112. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
  113. noshot/data/ML TS XAI/CN/9. DHCP/DHCP.java +0 -125
  114. noshot/data/ML TS XAI/CN/9. DHCP/output.png +0 -0
  115. noshot/data/ML TS XAI/CN/9. DHCP/procedure.png +0 -0
  116. noshot/data/ML TS XAI/NLP/NLP 1/1-Prereqs.py +0 -18
  117. noshot/data/ML TS XAI/NLP/NLP 1/2-Chi2test.py +0 -83
  118. noshot/data/ML TS XAI/NLP/NLP 1/2-T-test.py +0 -79
  119. noshot/data/ML TS XAI/NLP/NLP 1/3-WSD-nb.py +0 -53
  120. noshot/data/ML TS XAI/NLP/NLP 1/4-Hindle-Rooth.py +0 -53
  121. noshot/data/ML TS XAI/NLP/NLP 1/5-HMM-Trellis.py +0 -82
  122. noshot/data/ML TS XAI/NLP/NLP 1/6-HMM-Viterbi.py +0 -16
  123. noshot/data/ML TS XAI/NLP/NLP 1/7-PCFG-parsetree.py +0 -15
  124. noshot/data/ML TS XAI/NLP/NLP 1/Chi2test.ipynb +0 -285
  125. noshot/data/ML TS XAI/NLP/NLP 1/Hindle-Rooth.ipynb +0 -179
  126. noshot/data/ML TS XAI/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +0 -1461
  127. noshot/data/ML TS XAI/NLP/NLP 1/Lab 11 NMT.ipynb +0 -2307
  128. noshot/data/ML TS XAI/NLP/NLP 1/PCFG.ipynb +0 -134
  129. noshot/data/ML TS XAI/NLP/NLP 1/Prereqs.ipynb +0 -131
  130. noshot/data/ML TS XAI/NLP/NLP 1/T test.ipynb +0 -252
  131. noshot/data/ML TS XAI/NLP/NLP 1/TFIDF BOW.ipynb +0 -171
  132. noshot/data/ML TS XAI/NLP/NLP 1/Trellis.ipynb +0 -244
  133. noshot/data/ML TS XAI/NLP/NLP 1/WSD.ipynb +0 -645
  134. noshot/data/ML TS XAI/NLP/NLP 1/Word2Vec.ipynb +0 -93
  135. noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +0 -370
  136. noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +0 -6
  137. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +0 -274
  138. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +0 -905
  139. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/test.txt +0 -1
  140. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +0 -272
  141. noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +0 -332
  142. noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +0 -549
  143. noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +0 -1
  144. noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +0 -817
  145. noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +0 -332
  146. noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +0 -231
  147. noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +0 -507
  148. noshot/data/ML TS XAI/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +0 -134
  149. noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +0 -255
  150. noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +0 -159
  151. noshot/data/ML TS XAI/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +0 -282
  152. noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +0 -670
  153. noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +0 -613
  154. noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +0 -74
  155. noshot/data/ML TS XAI/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +0 -480
  156. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +0 -445
  157. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +0 -105
  158. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +0 -87
  159. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +0 -11
  160. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +0 -83
  161. noshot/data/ML TS XAI/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +0 -201
  162. noshot/data/ML TS XAI/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +0 -185
  163. noshot/data/ML TS XAI/NLP/NLP 3/Backward-Procedure.ipynb +0 -597
  164. noshot/data/ML TS XAI/NLP/NLP 3/Bag_of.ipynb +0 -1422
  165. noshot/data/ML TS XAI/NLP/NLP 3/CYK-algorithm.ipynb +0 -1067
  166. noshot/data/ML TS XAI/NLP/NLP 3/Forward-Procedure.ipynb +0 -477
  167. noshot/data/ML TS XAI/NLP/NLP 3/LSTM.ipynb +0 -1290
  168. noshot/data/ML TS XAI/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +0 -1461
  169. noshot/data/ML TS XAI/NLP/NLP 3/Lab 11 NMT.ipynb +0 -2307
  170. noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-4.ipynb +0 -216
  171. noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-5.ipynb +0 -216
  172. noshot/data/ML TS XAI/NLP/NLP 3/abc.txt +0 -6
  173. noshot/data/ML TS XAI/NLP/NLP 3/ex-1-nltk.ipynb +0 -711
  174. noshot/data/ML TS XAI/NLP/NLP 3/ex-2-nlp.ipynb +0 -267
  175. noshot/data/ML TS XAI/NLP/NLP 3/exp8&9.ipynb +0 -305
  176. noshot/data/ML TS XAI/NLP/NLP 3/hind.ipynb +0 -287
  177. noshot/data/ML TS XAI/NLP/NLP 3/lab66.ipynb +0 -752
  178. noshot/data/ML TS XAI/NLP/NLP 3/leb_3.ipynb +0 -612
  179. noshot/data/ML TS XAI/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
  180. noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_1.ipynb +0 -3008
  181. noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_2.ipynb +0 -3095
  182. noshot/data/ML TS XAI/NLP/NLP 3/nlplab-9.ipynb +0 -295
  183. noshot/data/ML TS XAI/NLP/NLP 3/nltk-ex-4.ipynb +0 -506
  184. noshot/data/ML TS XAI/NLP/NLP 3/text1.txt +0 -48
  185. noshot/data/ML TS XAI/NLP/NLP 3/text2.txt +0 -8
  186. noshot/data/ML TS XAI/NLP/NLP 3/text3.txt +0 -48
  187. noshot/data/ML TS XAI/NLP/NLP 3/translation-rnn.ipynb +0 -812
  188. noshot/data/ML TS XAI/NLP/NLP 3/word2vector.ipynb +0 -173
  189. noshot/data/ML TS XAI/NLP/NLP 4/Backward Procedure Algorithm.ipynb +0 -179
  190. noshot/data/ML TS XAI/NLP/NLP 4/Chi Square Collocation.ipynb +0 -208
  191. noshot/data/ML TS XAI/NLP/NLP 4/Collocation (T test).ipynb +0 -188
  192. noshot/data/ML TS XAI/NLP/NLP 4/Experiment 1.ipynb +0 -437
  193. noshot/data/ML TS XAI/NLP/NLP 4/Forward Procedure Algorithm.ipynb +0 -132
  194. noshot/data/ML TS XAI/NLP/NLP 4/Hindle Rooth.ipynb +0 -414
  195. noshot/data/ML TS XAI/NLP/NLP 4/MachineTranslation.ipynb +0 -368
  196. noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +0 -86
  197. noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +0 -112
  198. noshot/data/ML TS XAI/NLP/NLP 4/PCFG Inside Probability.ipynb +0 -451
  199. noshot/data/ML TS XAI/NLP/NLP 4/Text Generation using LSTM.ipynb +0 -297
  200. noshot/data/ML TS XAI/NLP/NLP 4/Viterbi.ipynb +0 -310
  201. noshot/data/ML TS XAI/NLP/NLP 4/Word Sense Disambiguation.ipynb +0 -335
  202. noshot/data/ML TS XAI/NLP/NLP 5/10.Text Generation using LSTM.ipynb +0 -316
  203. noshot/data/ML TS XAI/NLP/NLP 5/11.Machine Translation.ipynb +0 -868
  204. noshot/data/ML TS XAI/NLP/NLP 5/2.T and Chi2 Test.ipynb +0 -204
  205. noshot/data/ML TS XAI/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +0 -234
  206. noshot/data/ML TS XAI/NLP/NLP 5/4.Hinddle and Rooth.ipynb +0 -128
  207. noshot/data/ML TS XAI/NLP/NLP 5/5.Forward and Backward.ipynb +0 -149
  208. noshot/data/ML TS XAI/NLP/NLP 5/6.Viterbi.ipynb +0 -111
  209. noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG Parse Tree.ipynb +0 -134
  210. noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG using cyk.ipynb +0 -101
  211. noshot/data/ML TS XAI/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +0 -310
  212. noshot/data/ML TS XAI/NLP/NLP 5/9.Word2Vector.ipynb +0 -78
  213. noshot/data/ML TS XAI/NLP/NLP 5/NLP ALL In One.ipynb +0 -2619
  214. noshot/data/ML TS XAI/NLP/NLP 5/sample1.txt +0 -15
  215. noshot/data/ML TS XAI/NLP/NLP 5/sample2.txt +0 -4
  216. noshot/data/ML TS XAI/NLP/NLP 5/word2vec_model.bin +0 -0
  217. noshot/data/ML TS XAI/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +0 -312
  218. noshot/data/ML TS XAI/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +0 -185
  219. noshot/data/ML TS XAI/NLP/NLP 6/3. Naive Bayes WSD.ipynb +0 -199
  220. noshot/data/ML TS XAI/NLP/NLP 6/4. Hinddle and Rooth.ipynb +0 -151
  221. noshot/data/ML TS XAI/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +0 -164
  222. noshot/data/ML TS XAI/NLP/NLP 6/7. PCFG using CYK.ipynb +0 -383
  223. noshot/data/ML TS XAI/NLP/NLP 6/8. BOW and TF-IDF.ipynb +0 -252
  224. noshot/data/ML TS XAI/Ubuntu CN Lab.iso +0 -0
  225. noshot-0.1.6.dist-info/RECORD +0 -216
  226. {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/LICENSE.txt +0 -0
  227. {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/WHEEL +0 -0
  228. {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/top_level.txt +0 -0
@@ -1,549 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "id": "0c125b29",
6
- "metadata": {},
7
- "source": [
8
- "# Exp 3\n",
9
- "\n",
10
- "**To do**:\n",
11
- " Parse tree for ambiguous sentence.\n",
12
- "\n",
13
- "Code credits - **Hari Kishan, Geeks for Geeks**"
14
- ]
15
- },
16
- {
17
- "cell_type": "code",
18
- "execution_count": 14,
19
- "id": "693a6ba6",
20
- "metadata": {},
21
- "outputs": [
22
- {
23
- "name": "stdout",
24
- "output_type": "stream",
25
- "text": [
26
- " s \n",
27
- " | \n",
28
- " vp \n",
29
- " ________|____ \n",
30
- " | np \n",
31
- " | ________|_____ \n",
32
- " | | np \n",
33
- " | | | \n",
34
- " | | np \n",
35
- " | | _____|____ \n",
36
- " | | np | \n",
37
- " | | | | \n",
38
- " v d n n \n",
39
- " | | | | \n",
40
- "Book the dinner flight\n",
41
- "\n"
42
- ]
43
- }
44
- ],
45
- "source": [
46
- "from nltk import *\n",
47
- "n1=Tree('np',[Tree('np',[Tree('n',['dinner'])]),Tree('n',['flight'])])\n",
48
- "np=Tree('np',[Tree('d',['the']),Tree('np',[n1])])\n",
49
- "vp=Tree('vp',[Tree('v',['Book']),np])\n",
50
- "tree=Tree('s',[vp])\n",
51
- "tree.pretty_print()"
52
- ]
53
- },
54
- {
55
- "cell_type": "code",
56
- "execution_count": 7,
57
- "id": "9ae808bd",
58
- "metadata": {},
59
- "outputs": [
60
- {
61
- "name": "stdout",
62
- "output_type": "stream",
63
- "text": [
64
- " s \n",
65
- " | \n",
66
- " vp \n",
67
- " ____|_______________ \n",
68
- " | | np \n",
69
- " | | | \n",
70
- " | np np \n",
71
- " | ___|____ | \n",
72
- " v d np np \n",
73
- " | | | | \n",
74
- "Book the dinner flight\n",
75
- "\n"
76
- ]
77
- }
78
- ],
79
- "source": [
80
- "from nltk import *\n",
81
- "np2=Tree('np',[Tree('np',[Tree('np',['flight'])])])\n",
82
- "np1=Tree('np',[Tree('d',['the']), Tree('np',['dinner'])])\n",
83
- "vp=Tree('vp',[Tree('v',['Book']),np1,np2])\n",
84
- "tree=Tree('s',[vp])\n",
85
- "tree.pretty_print()"
86
- ]
87
- },
88
- {
89
- "cell_type": "code",
90
- "execution_count": 12,
91
- "id": "b926774a",
92
- "metadata": {},
93
- "outputs": [
94
- {
95
- "name": "stdout",
96
- "output_type": "stream",
97
- "text": [
98
- "Total number of unique words: 92\n",
99
- "\n",
100
- "Word frequencies:\n",
101
- "After 1\n",
102
- "graduating 1\n",
103
- "of 9\n",
104
- "a 6\n",
105
- "Madras 1\n",
106
- "Institute 1\n",
107
- "Technology 1\n",
108
- "in 2\n",
109
- "1960 1\n",
110
- ", 7\n",
111
- "Kalam 2\n",
112
- "Aeronautical 1\n",
113
- "Development 3\n",
114
- "Establishment 1\n",
115
- "the 7\n",
116
- "Defence 2\n",
117
- "Research 2\n",
118
- "and 2\n",
119
- "Organisation 1\n",
120
- "( 2\n",
121
- "by 4\n",
122
- "Press 1\n",
123
- "Information 1\n",
124
- "Bureau 1\n",
125
- "Government 1\n",
126
- "India 1\n",
127
- ") 2\n",
128
- "as 2\n",
129
- "scientist 1\n",
130
- "after 1\n",
131
- "becoming 1\n",
132
- "member 1\n",
133
- "& 1\n",
134
- "Service 1\n",
135
- "DRDS 1\n",
136
- ". 1\n",
137
- "He 1\n",
138
- "started 1\n",
139
- "his 2\n",
140
- "career 1\n",
141
- "designing 1\n",
142
- "small 1\n",
143
- "hovercraft 1\n",
144
- "but 1\n",
145
- "remained 1\n",
146
- "unconvinced 1\n",
147
- "choice 1\n",
148
- "job 1\n",
149
- "at 1\n",
150
- "DRDO.alam 1\n",
151
- "was 1\n",
152
- "invited 1\n",
153
- "Raja 1\n",
154
- "Ramanna 1\n",
155
- "to 2\n",
156
- "witness 1\n",
157
- "country 1\n",
158
- "'s 1\n",
159
- "first 1\n",
160
- "nuclear 1\n",
161
- "test 1\n",
162
- "Smiling 1\n",
163
- "Buddha 1\n",
164
- "representative 1\n",
165
- "TBRL 1\n",
166
- "even 1\n",
167
- "though 1\n",
168
- "he 1\n",
169
- "had 1\n",
170
- "not 1\n",
171
- "participated 1\n",
172
- "its 1\n",
173
- "development. 1\n",
174
- "In 1\n",
175
- "1970s 1\n",
176
- "also 1\n",
177
- "directed 1\n",
178
- "two 1\n",
179
- "projects 1\n",
180
- "Project 2\n",
181
- "Devil 1\n",
182
- "Valiant 1\n",
183
- "which 1\n",
184
- "sought 1\n",
185
- "develop 1\n",
186
- "ballistic 1\n",
187
- "missiles 1\n",
188
- "from 1\n",
189
- "technology 1\n",
190
- "successful 1\n",
191
- "SLV 1\n",
192
- "programme 1\n",
193
- "\n",
194
- "Total number of unique pairs: 125\n",
195
- "Joint probabilities:\n",
196
- "After graduating 1\n",
197
- "graduating of 1\n",
198
- "of a 3\n",
199
- "a Madras 1\n",
200
- "Madras Institute 1\n",
201
- "Institute of 1\n",
202
- "of Technology 1\n",
203
- "Technology in 1\n",
204
- "in 1960 1\n",
205
- "1960 , 1\n",
206
- ", Kalam 2\n",
207
- "Kalam of 1\n",
208
- "a Aeronautical 1\n",
209
- "Aeronautical Development 1\n",
210
- "Development Establishment 1\n",
211
- "Establishment of 1\n",
212
- "of the 3\n",
213
- "the Defence 2\n",
214
- "Defence Research 2\n",
215
- "Research and 1\n",
216
- "and Development 1\n",
217
- "Development Organisation 1\n",
218
- "Organisation ( 1\n",
219
- "( by 1\n",
220
- "by Press 1\n",
221
- "Press Information 1\n",
222
- "Information Bureau 1\n",
223
- "Bureau , 1\n",
224
- ", Government 1\n",
225
- "Government of 1\n",
226
- "of India 1\n",
227
- "India ) 1\n",
228
- ") as 1\n",
229
- "as a 1\n",
230
- "a scientist 1\n",
231
- "scientist after 1\n",
232
- "after becoming 1\n",
233
- "becoming a 1\n",
234
- "a member 1\n",
235
- "member of 1\n",
236
- "Research & 1\n",
237
- "& Development 1\n",
238
- "Development Service 1\n",
239
- "Service ( 1\n",
240
- "( DRDS 1\n",
241
- "DRDS ) 1\n",
242
- ") . 1\n",
243
- ". He 1\n",
244
- "He started 1\n",
245
- "started his 1\n",
246
- "his career 1\n",
247
- "career by 1\n",
248
- "by designing 1\n",
249
- "designing a 1\n",
250
- "a small 1\n",
251
- "small hovercraft 1\n",
252
- "hovercraft , 1\n",
253
- ", but 1\n",
254
- "but remained 1\n",
255
- "remained unconvinced 1\n",
256
- "unconvinced by 1\n",
257
- "by his 1\n",
258
- "his choice 1\n",
259
- "choice of 1\n",
260
- "a job 1\n",
261
- "job at 1\n",
262
- "at DRDO.alam 1\n",
263
- "DRDO.alam was 1\n",
264
- "was invited 1\n",
265
- "invited by 1\n",
266
- "by Raja 1\n",
267
- "Raja Ramanna 1\n",
268
- "Ramanna to 1\n",
269
- "to witness 1\n",
270
- "witness the 1\n",
271
- "the country 1\n",
272
- "country 's 1\n",
273
- "'s first 1\n",
274
- "first nuclear 1\n",
275
- "nuclear test 1\n",
276
- "test Smiling 1\n",
277
- "Smiling Buddha 1\n",
278
- "Buddha as 1\n",
279
- "as the 1\n",
280
- "the representative 1\n",
281
- "representative of 1\n",
282
- "of TBRL 1\n",
283
- "TBRL , 1\n",
284
- ", even 1\n",
285
- "even though 1\n",
286
- "though he 1\n",
287
- "he had 1\n",
288
- "had not 1\n",
289
- "not participated 1\n",
290
- "participated in 1\n",
291
- "in its 1\n",
292
- "its development. 1\n",
293
- "development. In 1\n",
294
- "In the 1\n",
295
- "the 1970s 1\n",
296
- "1970s , 1\n",
297
- "Kalam also 1\n",
298
- "also directed 1\n",
299
- "directed two 1\n",
300
- "two projects 1\n",
301
- "projects , 1\n",
302
- ", Project 1\n",
303
- "Project Devil 1\n",
304
- "Devil and 1\n",
305
- "and Project 1\n",
306
- "Project Valiant 1\n",
307
- "Valiant , 1\n",
308
- ", which 1\n",
309
- "which sought 1\n",
310
- "sought to 1\n",
311
- "to develop 1\n",
312
- "develop ballistic 1\n",
313
- "ballistic missiles 1\n",
314
- "missiles from 1\n",
315
- "from the 1\n",
316
- "the technology 1\n",
317
- "technology of 1\n",
318
- "the successful 1\n",
319
- "successful SLV 1\n",
320
- "SLV programme 1\n",
321
- "\n",
322
- "The pair with the max frequency: of a\n",
323
- "ORGANIZATION --> MadrasInstitute\n",
324
- "GPE --> Technology\n",
325
- "PERSON --> Kalam\n",
326
- "ORGANIZATION --> AeronauticalDevelopment\n",
327
- "ORGANIZATION --> DefenceResearch\n",
328
- "ORGANIZATION --> DevelopmentOrganisation\n",
329
- "PERSON --> PressInformationBureau\n",
330
- "GPE --> India\n",
331
- "ORGANIZATION --> Defence\n",
332
- "ORGANIZATION --> DevelopmentService\n",
333
- "ORGANIZATION --> DRDS\n",
334
- "PERSON --> RajaRamanna\n",
335
- "PERSON --> Buddha\n",
336
- "ORGANIZATION --> TBRL\n",
337
- "PERSON --> Kalam\n",
338
- "PERSON --> ProjectDevil\n",
339
- "PERSON --> ProjectValiant\n",
340
- "ORGANIZATION --> SLV\n"
341
- ]
342
- }
343
- ],
344
- "source": [
345
- "from collections import Counter\n",
346
- "from nltk.tokenize import TreebankWordTokenizer\n",
347
- "\n",
348
- "# Read the text file\n",
349
- "with open(\"nlp.txt\") as f:\n",
350
- " text = f.read()\n",
351
- "\n",
352
- "# Tokenize the text\n",
353
- "tokenizer = TreebankWordTokenizer()\n",
354
- "tokens = tokenizer.tokenize(text)\n",
355
- "\n",
356
- "# Display total number of unique words\n",
357
- "unique_words = set(tokens)\n",
358
- "total_unique_words = len(unique_words)\n",
359
- "print(\"Total number of unique words:\", total_unique_words)\n",
360
- "\n",
361
- "# Frequency of each word without duplicate entries\n",
362
- "word_frequency = Counter(tokens)\n",
363
- "print(\"\\nWord frequencies:\")\n",
364
- "for word, freq in word_frequency.items():\n",
365
- " print(word, freq)\n",
366
- "\n",
367
- "# Joint probability of each word\n",
368
- "joint_probabilities = Counter(zip(tokens, tokens[1:]))\n",
369
- "total_pairs = len(joint_probabilities)\n",
370
- "print(\"\\nTotal number of unique pairs:\", total_pairs)\n",
371
- "print(\"Joint probabilities:\")\n",
372
- "for pair, freq in joint_probabilities.items():\n",
373
- " print(\" \".join(pair), freq)\n",
374
- "\n",
375
- "# The pair with the maximum frequency\n",
376
- "max_freq_pair = max(joint_probabilities, key=joint_probabilities.get)\n",
377
- "print(\"\\nThe pair with the max frequency:\", \" \".join(max_freq_pair))\n",
378
- " \n",
379
- "# Apply part-of-speech tagging to the tokens\n",
380
- "tagged = nltk.pos_tag(tokens)\n",
381
- " \n",
382
- "# Apply named entity recognition to the tagged words\n",
383
- "entities = nltk.chunk.ne_chunk(tagged)\n",
384
- "\n",
385
- "# Print the entities found in the text\n",
386
- "for entity in entities:\n",
387
- " if hasattr(entity, 'label') and entity.label() == 'ORGANIZATION':\n",
388
- " print(entity.label(),'-->', ''.join(c[0] for c in entity))\n",
389
- " elif hasattr(entity, 'label') and entity.label() == 'GPE':\n",
390
- " print(entity.label(), '-->',''.join(c[0] for c in entity))\n",
391
- " elif hasattr(entity, 'label') and entity.label() == 'PERSON':\n",
392
- " print(entity.label(), '-->',''.join(c[0] for c in entity))"
393
- ]
394
- },
395
- {
396
- "cell_type": "code",
397
- "execution_count": 13,
398
- "id": "1dae5fb5",
399
- "metadata": {},
400
- "outputs": [
401
- {
402
- "name": "stdout",
403
- "output_type": "stream",
404
- "text": [
405
- "ORGANIZATION --> MadrasInstitute\n",
406
- "GPE --> Technology\n",
407
- "ORGANIZATION --> AeronauticalDevelopment\n",
408
- "ORGANIZATION --> DefenceResearch\n",
409
- "ORGANIZATION --> DevelopmentOrganisation\n",
410
- "PERSON --> PressInformationBureau\n",
411
- "GPE --> India\n",
412
- "ORGANIZATION --> DefenceResearchDevelopmentService\n",
413
- "ORGANIZATION --> DRDOalam\n",
414
- "PERSON --> RajaRamanna\n",
415
- "PERSON --> Buddha\n",
416
- "ORGANIZATION --> TBRL\n",
417
- "PERSON --> Kalam\n",
418
- "PERSON --> ProjectDevil\n",
419
- "PERSON --> ProjectValiant\n",
420
- "ORGANIZATION --> SLV\n"
421
- ]
422
- }
423
- ],
424
- "source": [
425
- "import re\n",
426
- "import nltk\n",
427
- "from nltk.tokenize import TreebankWordTokenizer\n",
428
- "from nltk.stem import PorterStemmer\n",
429
- "f=open(\"nlp.txt\",'r')\n",
430
- "tk=TreebankWordTokenizer()\n",
431
- "new_string = re.sub(r'[^\\w\\s]', '', f.read())\n",
432
- "val=tk.tokenize(new_string)\n",
433
- "tagged=nltk.pos_tag(val)\n",
434
- "entities=nltk.chunk.ne_chunk(tagged)\n",
435
- "\n",
436
- "for entity in entities:\n",
437
- " if hasattr(entity, 'label') and entity.label() == 'ORGANIZATION':\n",
438
- " print(entity.label(),'-->', ''.join(c[0] for c in entity))\n",
439
- " elif hasattr(entity, 'label') and entity.label() == 'GPE':\n",
440
- " print(entity.label(), '-->',''.join(c[0] for c in entity))\n",
441
- " elif hasattr(entity, 'label') and entity.label() == 'PERSON':\n",
442
- " print(entity.label(), '-->',''.join(c[0] for c in entity))\n",
443
- "f.close()"
444
- ]
445
- },
446
- {
447
- "cell_type": "code",
448
- "execution_count": 15,
449
- "id": "6d384b4b",
450
- "metadata": {},
451
- "outputs": [
452
- {
453
- "data": {
454
- "text/plain": [
455
- "[('Allon', 'Bacuth'),\n",
456
- " ('Ashteroth', 'Karnaim'),\n",
457
- " ('Ben', 'Ammi'),\n",
458
- " ('En', 'Mishpat'),\n",
459
- " ('Jegar', 'Sahadutha'),\n",
460
- " ('Salt', 'Sea'),\n",
461
- " ('Whoever', 'sheds'),\n",
462
- " ('appoint', 'overseers'),\n",
463
- " ('aromatic', 'resin'),\n",
464
- " ('cutting', 'instrument')]"
465
- ]
466
- },
467
- "execution_count": 15,
468
- "metadata": {},
469
- "output_type": "execute_result"
470
- }
471
- ],
472
- "source": [
473
- "import nltk\n",
474
- "from nltk.collocations import *\n",
475
- "bigram_measures = nltk.collocations.BigramAssocMeasures()\n",
476
- "trigram_measures = nltk.collocations.TrigramAssocMeasures()\n",
477
- "fourgram_measures = nltk.collocations.QuadgramAssocMeasures()\n",
478
- "finder = BigramCollocationFinder.from_words(\n",
479
- "nltk.corpus.genesis.words('english-web.txt'))\n",
480
- "finder.nbest(bigram_measures.pmi, 10)"
481
- ]
482
- },
483
- {
484
- "cell_type": "code",
485
- "execution_count": 16,
486
- "id": "662bc8cb",
487
- "metadata": {},
488
- "outputs": [
489
- {
490
- "data": {
491
- "text/plain": [
492
- "[('olive', 'leaf', 'plucked'),\n",
493
- " ('rider', 'falls', 'backward'),\n",
494
- " ('sewed', 'fig', 'leaves'),\n",
495
- " ('yield', 'royal', 'dainties'),\n",
496
- " ('during', 'mating', 'season'),\n",
497
- " ('Salt', 'Sea', ').'),\n",
498
- " ('Sea', ').', 'Twelve'),\n",
499
- " ('Their', 'hearts', 'failed'),\n",
500
- " ('Valley', ').', 'Melchizedek'),\n",
501
- " ('doing', 'forced', 'labor')]"
502
- ]
503
- },
504
- "execution_count": 16,
505
- "metadata": {},
506
- "output_type": "execute_result"
507
- }
508
- ],
509
- "source": [
510
- "import nltk\n",
511
- "from nltk.collocations import *\n",
512
- "bigram_measures = nltk.collocations.BigramAssocMeasures()\n",
513
- "trigram_measures = nltk.collocations.TrigramAssocMeasures()\n",
514
- "fourgram_measures = nltk.collocations.QuadgramAssocMeasures()\n",
515
- "finder = TrigramCollocationFinder.from_words(nltk.corpus.genesis.words('english-web.txt'))\n",
516
- "finder.nbest(bigram_measures.pmi, 10)"
517
- ]
518
- },
519
- {
520
- "cell_type": "code",
521
- "execution_count": null,
522
- "id": "35309f2c",
523
- "metadata": {},
524
- "outputs": [],
525
- "source": []
526
- }
527
- ],
528
- "metadata": {
529
- "kernelspec": {
530
- "display_name": "Python 3",
531
- "language": "python",
532
- "name": "python3"
533
- },
534
- "language_info": {
535
- "codemirror_mode": {
536
- "name": "ipython",
537
- "version": 3
538
- },
539
- "file_extension": ".py",
540
- "mimetype": "text/x-python",
541
- "name": "python",
542
- "nbconvert_exporter": "python",
543
- "pygments_lexer": "ipython3",
544
- "version": "3.8.8"
545
- }
546
- },
547
- "nbformat": 4,
548
- "nbformat_minor": 5
549
- }
@@ -1 +0,0 @@
1
- After graduating of a Madras Institute of Technology in 1960, Kalam of a Aeronautical Development Establishment of the Defence Research and Development Organisation (by Press Information Bureau, Government of India) as a scientist after becoming a member of the Defence Research & Development Service (DRDS). He started his career by designing a small hovercraft, but remained unconvinced by his choice of a job at DRDO.alam was invited by Raja Ramanna to witness the country's first nuclear test Smiling Buddha as the representative of TBRL, even though he had not participated in its development. In the 1970s, Kalam also directed two projects, Project Devil and Project Valiant, which sought to develop ballistic missiles from the technology of the successful SLV programme