noshot 0.1.6__py3-none-any.whl → 0.1.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (228) hide show
  1. noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +207 -0
  2. noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +626 -0
  3. noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +625 -0
  4. noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +287 -0
  5. noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +626 -0
  6. noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +625 -0
  7. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +83 -0
  8. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +626 -0
  9. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +625 -0
  10. noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +117 -0
  11. noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +210 -0
  12. noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +137 -0
  13. noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +179 -0
  14. noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +129 -0
  15. noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +179 -0
  16. {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/METADATA +2 -2
  17. noshot-0.1.8.dist-info/RECORD +24 -0
  18. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +0 -112
  19. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +0 -111
  20. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +0 -134
  21. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +0 -115
  22. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +0 -123
  23. noshot/data/ML TS XAI/AIDS/10. ANOVA/2_ANOVA.csv +0 -769
  24. noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +0 -126
  25. noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA.ipynb +0 -134
  26. noshot/data/ML TS XAI/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +0 -119
  27. noshot/data/ML TS XAI/AIDS/10. ANOVA/Two Way ANOVA.ipynb +0 -138
  28. noshot/data/ML TS XAI/AIDS/10. ANOVA/reaction_time.csv +0 -5
  29. noshot/data/ML TS XAI/AIDS/10. ANOVA/sample_data.csv +0 -16
  30. noshot/data/ML TS XAI/AIDS/10. ANOVA/sleep_deprivation.csv +0 -4
  31. noshot/data/ML TS XAI/AIDS/11. Linear Regression/3_Linear.csv +0 -4802
  32. noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +0 -113
  33. noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +0 -118
  34. noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression.ipynb +0 -148
  35. noshot/data/ML TS XAI/AIDS/11. Linear Regression/house_rate.csv +0 -22
  36. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +0 -128
  37. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression.ipynb +0 -145
  38. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/default.csv +0 -1001
  39. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/hours_scores_records.csv +0 -101
  40. noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +0 -256
  41. noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +0 -157
  42. noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +0 -178
  43. noshot/data/ML TS XAI/AIDS/3. Genetic Algorithm/Genetic.ipynb +0 -95
  44. noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +0 -74
  45. noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +0 -103
  46. noshot/data/ML TS XAI/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +0 -182
  47. noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +0 -120
  48. noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +0 -125
  49. noshot/data/ML TS XAI/AIDS/7. Random Sampling/Random Sampling.ipynb +0 -73
  50. noshot/data/ML TS XAI/AIDS/7. Random Sampling/height_weight_bmi.csv +0 -8389
  51. noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test Hash Function.ipynb +0 -141
  52. noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test.ipynb +0 -151
  53. noshot/data/ML TS XAI/AIDS/8. Z Test/height_weight_bmi.csv +0 -8389
  54. noshot/data/ML TS XAI/AIDS/9. T Test/1_heart.csv +0 -304
  55. noshot/data/ML TS XAI/AIDS/9. T Test/Independent T Test.ipynb +0 -119
  56. noshot/data/ML TS XAI/AIDS/9. T Test/Paired T Test.ipynb +0 -118
  57. noshot/data/ML TS XAI/AIDS/9. T Test/T Test Hash Function.ipynb +0 -142
  58. noshot/data/ML TS XAI/AIDS/9. T Test/T Test.ipynb +0 -158
  59. noshot/data/ML TS XAI/AIDS/9. T Test/height_weight_bmi.csv +0 -8389
  60. noshot/data/ML TS XAI/AIDS/9. T Test/iq_test.csv +0 -0
  61. noshot/data/ML TS XAI/AIDS/Others (AllinOne)/All In One.ipynb +0 -4581
  62. noshot/data/ML TS XAI/CN/1. Chat Application/chat.java +0 -81
  63. noshot/data/ML TS XAI/CN/1. Chat Application/output.png +0 -0
  64. noshot/data/ML TS XAI/CN/1. Chat Application/procedure.png +0 -0
  65. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +0 -65
  66. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +0 -44
  67. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
  68. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
  69. noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +0 -229
  70. noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
  71. noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
  72. noshot/data/ML TS XAI/CN/2. File Transfer/file_to_send.txt +0 -2
  73. noshot/data/ML TS XAI/CN/2. File Transfer/filetransfer.java +0 -119
  74. noshot/data/ML TS XAI/CN/2. File Transfer/output.png +0 -0
  75. noshot/data/ML TS XAI/CN/2. File Transfer/procedure.png +0 -0
  76. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Client.class +0 -0
  77. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerImpl.class +0 -0
  78. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerIntf.class +0 -0
  79. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Server.class +0 -0
  80. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
  81. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
  82. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/rmi.java +0 -56
  83. noshot/data/ML TS XAI/CN/4. Wired Network/output.png +0 -0
  84. noshot/data/ML TS XAI/CN/4. Wired Network/procedure.png +0 -0
  85. noshot/data/ML TS XAI/CN/4. Wired Network/wired.awk +0 -25
  86. noshot/data/ML TS XAI/CN/4. Wired Network/wired.tcl +0 -81
  87. noshot/data/ML TS XAI/CN/5. Wireless Network/output.png +0 -0
  88. noshot/data/ML TS XAI/CN/5. Wireless Network/procedure.png +0 -0
  89. noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.awk +0 -27
  90. noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.tcl +0 -153
  91. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +0 -27
  92. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
  93. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +0 -86
  94. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +0 -86
  95. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +0 -28
  96. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
  97. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +0 -78
  98. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +0 -79
  99. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +0 -27
  100. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +0 -163
  101. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
  102. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
  103. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/DV.tcl +0 -111
  104. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/LS.tcl +0 -106
  105. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/analysis.awk +0 -36
  106. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/output.png +0 -0
  107. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
  108. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/analysis.awk +0 -20
  109. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/broadcast.tcl +0 -76
  110. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/multicast.tcl +0 -103
  111. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/output.png +0 -0
  112. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
  113. noshot/data/ML TS XAI/CN/9. DHCP/DHCP.java +0 -125
  114. noshot/data/ML TS XAI/CN/9. DHCP/output.png +0 -0
  115. noshot/data/ML TS XAI/CN/9. DHCP/procedure.png +0 -0
  116. noshot/data/ML TS XAI/NLP/NLP 1/1-Prereqs.py +0 -18
  117. noshot/data/ML TS XAI/NLP/NLP 1/2-Chi2test.py +0 -83
  118. noshot/data/ML TS XAI/NLP/NLP 1/2-T-test.py +0 -79
  119. noshot/data/ML TS XAI/NLP/NLP 1/3-WSD-nb.py +0 -53
  120. noshot/data/ML TS XAI/NLP/NLP 1/4-Hindle-Rooth.py +0 -53
  121. noshot/data/ML TS XAI/NLP/NLP 1/5-HMM-Trellis.py +0 -82
  122. noshot/data/ML TS XAI/NLP/NLP 1/6-HMM-Viterbi.py +0 -16
  123. noshot/data/ML TS XAI/NLP/NLP 1/7-PCFG-parsetree.py +0 -15
  124. noshot/data/ML TS XAI/NLP/NLP 1/Chi2test.ipynb +0 -285
  125. noshot/data/ML TS XAI/NLP/NLP 1/Hindle-Rooth.ipynb +0 -179
  126. noshot/data/ML TS XAI/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +0 -1461
  127. noshot/data/ML TS XAI/NLP/NLP 1/Lab 11 NMT.ipynb +0 -2307
  128. noshot/data/ML TS XAI/NLP/NLP 1/PCFG.ipynb +0 -134
  129. noshot/data/ML TS XAI/NLP/NLP 1/Prereqs.ipynb +0 -131
  130. noshot/data/ML TS XAI/NLP/NLP 1/T test.ipynb +0 -252
  131. noshot/data/ML TS XAI/NLP/NLP 1/TFIDF BOW.ipynb +0 -171
  132. noshot/data/ML TS XAI/NLP/NLP 1/Trellis.ipynb +0 -244
  133. noshot/data/ML TS XAI/NLP/NLP 1/WSD.ipynb +0 -645
  134. noshot/data/ML TS XAI/NLP/NLP 1/Word2Vec.ipynb +0 -93
  135. noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +0 -370
  136. noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +0 -6
  137. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +0 -274
  138. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +0 -905
  139. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/test.txt +0 -1
  140. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +0 -272
  141. noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +0 -332
  142. noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +0 -549
  143. noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +0 -1
  144. noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +0 -817
  145. noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +0 -332
  146. noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +0 -231
  147. noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +0 -507
  148. noshot/data/ML TS XAI/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +0 -134
  149. noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +0 -255
  150. noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +0 -159
  151. noshot/data/ML TS XAI/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +0 -282
  152. noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +0 -670
  153. noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +0 -613
  154. noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +0 -74
  155. noshot/data/ML TS XAI/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +0 -480
  156. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +0 -445
  157. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +0 -105
  158. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +0 -87
  159. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +0 -11
  160. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +0 -83
  161. noshot/data/ML TS XAI/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +0 -201
  162. noshot/data/ML TS XAI/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +0 -185
  163. noshot/data/ML TS XAI/NLP/NLP 3/Backward-Procedure.ipynb +0 -597
  164. noshot/data/ML TS XAI/NLP/NLP 3/Bag_of.ipynb +0 -1422
  165. noshot/data/ML TS XAI/NLP/NLP 3/CYK-algorithm.ipynb +0 -1067
  166. noshot/data/ML TS XAI/NLP/NLP 3/Forward-Procedure.ipynb +0 -477
  167. noshot/data/ML TS XAI/NLP/NLP 3/LSTM.ipynb +0 -1290
  168. noshot/data/ML TS XAI/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +0 -1461
  169. noshot/data/ML TS XAI/NLP/NLP 3/Lab 11 NMT.ipynb +0 -2307
  170. noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-4.ipynb +0 -216
  171. noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-5.ipynb +0 -216
  172. noshot/data/ML TS XAI/NLP/NLP 3/abc.txt +0 -6
  173. noshot/data/ML TS XAI/NLP/NLP 3/ex-1-nltk.ipynb +0 -711
  174. noshot/data/ML TS XAI/NLP/NLP 3/ex-2-nlp.ipynb +0 -267
  175. noshot/data/ML TS XAI/NLP/NLP 3/exp8&9.ipynb +0 -305
  176. noshot/data/ML TS XAI/NLP/NLP 3/hind.ipynb +0 -287
  177. noshot/data/ML TS XAI/NLP/NLP 3/lab66.ipynb +0 -752
  178. noshot/data/ML TS XAI/NLP/NLP 3/leb_3.ipynb +0 -612
  179. noshot/data/ML TS XAI/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
  180. noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_1.ipynb +0 -3008
  181. noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_2.ipynb +0 -3095
  182. noshot/data/ML TS XAI/NLP/NLP 3/nlplab-9.ipynb +0 -295
  183. noshot/data/ML TS XAI/NLP/NLP 3/nltk-ex-4.ipynb +0 -506
  184. noshot/data/ML TS XAI/NLP/NLP 3/text1.txt +0 -48
  185. noshot/data/ML TS XAI/NLP/NLP 3/text2.txt +0 -8
  186. noshot/data/ML TS XAI/NLP/NLP 3/text3.txt +0 -48
  187. noshot/data/ML TS XAI/NLP/NLP 3/translation-rnn.ipynb +0 -812
  188. noshot/data/ML TS XAI/NLP/NLP 3/word2vector.ipynb +0 -173
  189. noshot/data/ML TS XAI/NLP/NLP 4/Backward Procedure Algorithm.ipynb +0 -179
  190. noshot/data/ML TS XAI/NLP/NLP 4/Chi Square Collocation.ipynb +0 -208
  191. noshot/data/ML TS XAI/NLP/NLP 4/Collocation (T test).ipynb +0 -188
  192. noshot/data/ML TS XAI/NLP/NLP 4/Experiment 1.ipynb +0 -437
  193. noshot/data/ML TS XAI/NLP/NLP 4/Forward Procedure Algorithm.ipynb +0 -132
  194. noshot/data/ML TS XAI/NLP/NLP 4/Hindle Rooth.ipynb +0 -414
  195. noshot/data/ML TS XAI/NLP/NLP 4/MachineTranslation.ipynb +0 -368
  196. noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +0 -86
  197. noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +0 -112
  198. noshot/data/ML TS XAI/NLP/NLP 4/PCFG Inside Probability.ipynb +0 -451
  199. noshot/data/ML TS XAI/NLP/NLP 4/Text Generation using LSTM.ipynb +0 -297
  200. noshot/data/ML TS XAI/NLP/NLP 4/Viterbi.ipynb +0 -310
  201. noshot/data/ML TS XAI/NLP/NLP 4/Word Sense Disambiguation.ipynb +0 -335
  202. noshot/data/ML TS XAI/NLP/NLP 5/10.Text Generation using LSTM.ipynb +0 -316
  203. noshot/data/ML TS XAI/NLP/NLP 5/11.Machine Translation.ipynb +0 -868
  204. noshot/data/ML TS XAI/NLP/NLP 5/2.T and Chi2 Test.ipynb +0 -204
  205. noshot/data/ML TS XAI/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +0 -234
  206. noshot/data/ML TS XAI/NLP/NLP 5/4.Hinddle and Rooth.ipynb +0 -128
  207. noshot/data/ML TS XAI/NLP/NLP 5/5.Forward and Backward.ipynb +0 -149
  208. noshot/data/ML TS XAI/NLP/NLP 5/6.Viterbi.ipynb +0 -111
  209. noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG Parse Tree.ipynb +0 -134
  210. noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG using cyk.ipynb +0 -101
  211. noshot/data/ML TS XAI/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +0 -310
  212. noshot/data/ML TS XAI/NLP/NLP 5/9.Word2Vector.ipynb +0 -78
  213. noshot/data/ML TS XAI/NLP/NLP 5/NLP ALL In One.ipynb +0 -2619
  214. noshot/data/ML TS XAI/NLP/NLP 5/sample1.txt +0 -15
  215. noshot/data/ML TS XAI/NLP/NLP 5/sample2.txt +0 -4
  216. noshot/data/ML TS XAI/NLP/NLP 5/word2vec_model.bin +0 -0
  217. noshot/data/ML TS XAI/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +0 -312
  218. noshot/data/ML TS XAI/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +0 -185
  219. noshot/data/ML TS XAI/NLP/NLP 6/3. Naive Bayes WSD.ipynb +0 -199
  220. noshot/data/ML TS XAI/NLP/NLP 6/4. Hinddle and Rooth.ipynb +0 -151
  221. noshot/data/ML TS XAI/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +0 -164
  222. noshot/data/ML TS XAI/NLP/NLP 6/7. PCFG using CYK.ipynb +0 -383
  223. noshot/data/ML TS XAI/NLP/NLP 6/8. BOW and TF-IDF.ipynb +0 -252
  224. noshot/data/ML TS XAI/Ubuntu CN Lab.iso +0 -0
  225. noshot-0.1.6.dist-info/RECORD +0 -216
  226. {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/LICENSE.txt +0 -0
  227. {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/WHEEL +0 -0
  228. {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/top_level.txt +0 -0
@@ -1,125 +0,0 @@
1
- /*
2
- How to run
3
- ==========
4
- save the file as DHCP.java (filename can be anything)
5
- Command Prompt 1 (go to the location the file is saved)
6
- javac *.java
7
- java Server
8
-
9
- Command Prompt 2 (go to the location the file is saved)
10
- java Client
11
- */
12
-
13
- import java.io.*;
14
- import java.net.*;
15
- import java.util.*;
16
-
17
- class Server{
18
- static int SERVER_PORT = 4900;
19
- static String SERVER_IP = "127.0.0.1"; // Change to your server's IP
20
- static String IP_ALLOCATIONS_FILE = "ip_allocations.txt";
21
- static List<String> availableIpAddresses = new ArrayList<>();
22
- static Map<String, String> ipAllocations = new HashMap<>();
23
-
24
- public static void main(String[] args){
25
- loadIpAllocations(); // Load IP allocations from file (if available)
26
- initializeIpAddresses();
27
-
28
- try{
29
- DatagramSocket socket = new DatagramSocket(SERVER_PORT);
30
- while(true){
31
- byte[] receiveData = new byte[1024];
32
- DatagramPacket receivePacket = new DatagramPacket(receiveData, receiveData.length);
33
- socket.receive(receivePacket);
34
-
35
- InetAddress clientAddress = receivePacket.getAddress();
36
- String macAddress = extractMacAddress(receiveData);
37
- String allocatedIp = allocateIpAddress(macAddress);
38
-
39
- byte[] responseData = createDHCPResponse(macAddress, allocatedIp);
40
- DatagramPacket responsePacket = new DatagramPacket(responseData, responseData.length, clientAddress, receivePacket.getPort());
41
- socket.send(responsePacket);
42
-
43
- System.out.println("Allocated IP " + allocatedIp + " to client with MAC " + macAddress);
44
- saveIpAllocations();
45
- }
46
- }catch(Exception e){
47
- e.printStackTrace();}
48
- }
49
-
50
- private static void initializeIpAddresses(){
51
- for(int i = 2; i <= 254; i++)
52
- availableIpAddresses.add("192.168.1." + i);
53
- }
54
-
55
- private static String extractMacAddress(byte[] data){
56
- return "00:11:22:33:44:55";
57
- }
58
-
59
- private static String allocateIpAddress(String macAddress){
60
- if(availableIpAddresses.isEmpty())
61
- return "No available IP addresses";
62
- Random random = new Random();
63
- int index = random.nextInt(availableIpAddresses.size());
64
- String allocatedIp = availableIpAddresses.remove(index);
65
- ipAllocations.put(macAddress, allocatedIp);
66
- return allocatedIp;
67
- }
68
-
69
- private static byte[] createDHCPResponse(String macAddress, String allocatedIp) {
70
- // Simulate creating a DHCP response with the allocated IP address
71
- // In a real implementation, you'd construct a proper DHCP packet
72
- return ("Allocated IP: " + allocatedIp).getBytes();
73
- }
74
-
75
- private static void saveIpAllocations() {
76
- try(ObjectOutputStream outputStream = new ObjectOutputStream(new FileOutputStream(IP_ALLOCATIONS_FILE))){
77
- outputStream.writeObject(ipAllocations);
78
- System.out.println("Saved IP allocations to " + IP_ALLOCATIONS_FILE);
79
- }catch (IOException e){
80
- e.printStackTrace();
81
- }
82
- }
83
-
84
- private static void loadIpAllocations() {
85
- try(ObjectInputStream inputStream = new ObjectInputStream(new FileInputStream(IP_ALLOCATIONS_FILE))){
86
- ipAllocations = (HashMap<String, String>) inputStream.readObject();
87
- System.out.println("Loaded IP allocations from " + IP_ALLOCATIONS_FILE);
88
- }catch(FileNotFoundException e){
89
- System.out.println(IP_ALLOCATIONS_FILE + " not found. Starting with an empty IP allocations map.");
90
- }catch(IOException | ClassNotFoundException e){
91
- e.printStackTrace();
92
- }
93
- }
94
- }
95
-
96
-
97
- class Client{
98
- static int SERVER_PORT = 4900;
99
- static String SERVER_IP = "127.0.0.1"; // Change to your server's IP
100
-
101
- public static void main(String[] args) {
102
- try{
103
- DatagramSocket socket = new DatagramSocket();
104
- InetAddress serverAddress = InetAddress.getByName(SERVER_IP);
105
-
106
- byte[] requestData = createDHCPRequest("00:11:22:33:44:55"); // Replace with your MAC address
107
- DatagramPacket requestPacket = new DatagramPacket(requestData, requestData.length, serverAddress, SERVER_PORT);
108
- socket.send(requestPacket);
109
-
110
- byte[] receiveData = new byte[1024];
111
- DatagramPacket receivePacket = new DatagramPacket(receiveData, receiveData.length);
112
- socket.receive(receivePacket);
113
-
114
- String response = new String(receivePacket.getData()).trim();
115
- System.out.println("Received DHCP Response: " + response);
116
- }catch(Exception e){
117
- e.printStackTrace();
118
- }
119
- }
120
-
121
- private static byte[] createDHCPRequest(String macAddress) {
122
- String request = "DHCP Request with MAC: " + macAddress;
123
- return request.getBytes();
124
- }
125
- }
Binary file
@@ -1,18 +0,0 @@
1
- import nltk
2
- import string
3
- from nltk.tokenize import word_tokenize
4
- from nltk.corpus import stopwords
5
-
6
- #tokenize
7
- sentence = "SASTRA University is a great place. It has amazing facilities!"
8
- words=nltk.word_tokenize(sentence)
9
- print(words)
10
-
11
- #stopwords removal
12
- stop_words = set(stopwords.words('english'))
13
- words_1=[word for word in words if word not in stop_words]
14
- print(words_1)
15
-
16
- #punctuation removal
17
- words_2= [word for word in words_1 if word not in string.punctuation]
18
- print(words_2)
@@ -1,83 +0,0 @@
1
- import nltk
2
- from collections import Counter
3
- from nltk.tokenize import word_tokenize
4
- from nltk.util import bigrams
5
- from nltk.corpus import stopwords
6
- import string
7
- stop_words=set(stopwords.words('english'))
8
-
9
- def bigram_fun(bigram_count,sentence):
10
- sentence=sentence.lower()
11
- tokens=word_tokenize(sentence)
12
- tokens_new=[token for token in tokens if token not in stop_words and token not in string.punctuation]
13
- bigram_list=list(bigrams(tokens_new))
14
- for bigram in bigram_list:
15
- bigram_count[bigram]=bigram_count.get(bigram,0)+1
16
-
17
- sentences = [
18
- "I love studying data science.",
19
- "Data science is an interesting field.",
20
- "Science requires data for analysis.",
21
- "Data is key in modern science.",
22
- "Data science helps in business decision-making."
23
- ]
24
-
25
- bigram_count={}
26
- for sentence in sentences:
27
- bigram_fun(bigram_count,sentence)
28
-
29
- word1=input("Enter the word1:")
30
- word2=input("Enter the word2:")
31
- # contingency matrix
32
- C = [[0, 0, 0], [0, 0, 0], [0, 0, 0]]
33
-
34
- # Updating contingency matrix based on word1 and word2
35
- for units in bigram_count:
36
- if units[0] == word1 and units[1] == word2:
37
- C[0][0] += bigram_count[units] # word1 and word2
38
- elif units[0] == word1 and units[1] != word2:
39
- C[0][1] += bigram_count[units] # word1 and not word2
40
- elif units[0] != word1 and units[1] == word2:
41
- C[1][0] += bigram_count[units] # not word1 and word2
42
- else:
43
- C[1][1] += bigram_count[units] # not word1 and not word2
44
-
45
- # total matrix
46
- # Updating contingency matrix based on word1 and word2
47
- C[0][2] = C[0][0] + C[0][1]
48
- C[1][2] = C[1][0] + C[1][1]
49
- C[2][0] = C[0][0] + C[1][0]
50
- C[2][1] = C[0][1] + C[1][1]
51
- tot = C[2][0] + C[2][1]
52
-
53
- print("Contingency matrix:")
54
- for row in C:
55
- print(" ".join(str(val) for val in row))
56
-
57
- # expected matrix
58
- E = [[0, 0], [0, 0]]
59
-
60
- # Calculate expected values based on contingency matrix and total occurrences
61
- E[0][0] = (C[0][2] * C[2][0]) / tot # expected occurrences of word1 and word2
62
- E[0][1] = (C[0][2] * C[2][1]) / tot # expected occurrences of word1 and not word2
63
- E[1][0] = (C[1][2] * C[2][0]) / tot # expected occurrences of not word1 and word2
64
- E[1][1] = (C[1][2] * C[2][1]) / tot # expected occurrences of neither word1 nor word2
65
-
66
- print("Expected matrix:")
67
- for row in E:
68
- print(" ".join(f"{val:.2f}" for val in row))
69
-
70
- obs_mat = [C[0][0], C[0][1], C[1][0], C[1][1]]
71
- exp_mat = [E[0][0], E[0][1], E[1][0], E[1][1]]
72
-
73
- chi2test=0
74
- for i in range(4):
75
- chi2test+=(obs_mat[i]-exp_mat[i])**2/exp_mat[i] #summation of O-E whole square by E
76
-
77
- cric_val=float(input("Enter critical value:"))
78
-
79
- if(chi2test>cric_val):
80
- print("Reject H0")
81
- else:
82
- print("Accept H0")
83
-
@@ -1,79 +0,0 @@
1
- import pandas as pd
2
- import string
3
- import numpy as np
4
- from nltk.corpus import stopwords
5
- from nltk.tokenize import word_tokenize
6
- from nltk.util import bigrams
7
-
8
-
9
- def unigram_fun(sentence):
10
- sentence=sentence.lower()
11
- tokens=word_tokenize(sentence)
12
- token_1=[token for token in tokens if token not in string.punctuation and token not in stop_words]
13
- return token_1
14
-
15
- def bigram_fun(sentence):
16
- sentence=sentence.lower()
17
- tokens=word_tokenize(sentence)
18
- token_1=[token for token in tokens if token not in string.punctuation and token not in stop_words]
19
- bigram_list=list(bigrams(token_1))
20
- return bigram_list
21
-
22
-
23
- df=pd.read_csv('sastralines.csv')
24
- df_new = df.iloc[:,0]
25
- df_new_list = df_new.tolist()
26
- stop_words=set(stopwords.words('english'))
27
- unigrams=[unigram_fun(sentence) for sentence in df_new_list]
28
- bigrams=[bigram_fun(sentence) for sentence in df_new_list]
29
- print(df_new_list)
30
-
31
- #Calculaing the length of the corpus
32
- N=0
33
- for line in df_new_list:
34
- N=N+len(line)
35
-
36
- print("The length of the corpus is:",N)
37
-
38
-
39
- #unigram_dict
40
- unigram_dict={}
41
- for line in unigrams:
42
- for word in line:
43
- unigram_dict[word]=0
44
- for line in unigrams:
45
- for word in line:
46
- unigram_dict[word]=unigram_dict[word]+1
47
-
48
- #bigram_dict
49
- bigram_dict={}
50
- for line in bigrams:
51
- for word in line:
52
- bigram_dict[word]=0
53
- for line in bigrams:
54
- for word in line:
55
- bigram_dict[word]=bigram_dict[word]+1
56
-
57
-
58
- a=input("Enter the 1st word:")
59
- b=input("Enter the 2nd word:")
60
- cv=float(input("Enter the critical value:"))
61
-
62
- #observerd mean
63
- O=(bigram_dict[(a,b)]/N)
64
-
65
- #Expected mean
66
- E=((unigram_dict[a]/N)*(unigram_dict[b]/N))
67
-
68
- #variance
69
- variance=E
70
-
71
- ttest = (O-E)/np.sqrt((variance/N))
72
- print(ttest)
73
-
74
- if(ttest<cv):
75
- print("Accept H0")
76
- else:
77
- print("Reject H0")
78
-
79
- # Credit: Raghavender
@@ -1,53 +0,0 @@
1
- import pandas as pd
2
- import string
3
- import nltk
4
- import math
5
- from nltk.corpus import stopwords
6
- from nltk.tokenize import word_tokenize
7
- from collections import defaultdict
8
-
9
- # Load data
10
- df = pd.read_csv("Bank.csv")
11
- train_data = df.iloc[0:93, :]
12
- test_data = df.iloc[94:, :]
13
- stop_words = set(stopwords.words('english'))
14
-
15
- # Initialize counters
16
- fin_class = riv_class = 0
17
- fin_word_freq = defaultdict(int)
18
- riv_word_freq = defaultdict(int)
19
-
20
- # Preprocess and count word occurrences per class
21
- for _, row in train_data.iterrows():
22
- tokens = [word for word in word_tokenize(row['Sentence']) if word not in stop_words and word not in string.punctuation]
23
-
24
- if row['Class'] == 'Financial Institution':
25
- fin_class += 1
26
- for word in tokens:
27
- fin_word_freq[word] += 1
28
- elif row['Class'] == 'River Border':
29
- riv_class += 1
30
- for word in tokens:
31
- riv_word_freq[word] += 1
32
-
33
- # Calculate prior probabilities
34
- tot_class = fin_class + riv_class
35
- prior_fin_class = math.log2(fin_class / tot_class)
36
- prior_riv_class = math.log2(riv_class / tot_class)
37
-
38
- # Vocabulary size
39
- vocab = set(list(fin_word_freq.keys()) + list(riv_word_freq.keys()))
40
- V = len(vocab)
41
-
42
- # Test phase
43
- for _, row in test_data.iterrows():
44
- tokens = [word for word in word_tokenize(row['Sentence']) if word not in stop_words and word not in string.punctuation]
45
-
46
- score_fin = prior_fin_class
47
- score_riv = prior_riv_class
48
-
49
- for word in tokens:
50
- score_fin += math.log2(fin_word_freq[word] + 1) - math.log2(fin_class + V)
51
- score_riv += math.log2(riv_word_freq[word] + 1) - math.log2(riv_class + V)
52
-
53
- print("Sense is Financial Institution" if score_fin > score_riv else "Sense is River Border")
@@ -1,53 +0,0 @@
1
- import nltk
2
- import math
3
- import string
4
- from collections import defaultdict
5
- from nltk.tokenize import word_tokenize
6
- from nltk.corpus import stopwords
7
- from nltk import bigrams
8
-
9
- # Input for preposition, noun, and verb
10
- prep = input("Enter the preposition: ").lower()
11
- noun = input("Enter the noun: ").lower()
12
- verb = input("Enter the verb: ").lower()
13
-
14
- # Stopwords and punctuation setup
15
- stop_words = set(stopwords.words('english'))
16
-
17
- # Using defaultdict to avoid manual key checking
18
- unigram_dict = defaultdict(int)
19
- bigram_dict = defaultdict(int)
20
-
21
- # List of sentences to analyze
22
- sentences = [
23
- "Saw the phone with me.",
24
- "Went to the meeting yesterday.",
25
- "Told the man to wait.",
26
- "Gave the book to her.",
27
- "Saw the cat with her."
28
- ]
29
-
30
- # Processing each sentence
31
- for sentence in sentences:
32
- tokens = word_tokenize(sentence)
33
- tokens_cleaned = [token.lower() for token in tokens if token.lower() not in stop_words and token not in string.punctuation]
34
-
35
- # Counting unigrams
36
- for word in tokens_cleaned:
37
- unigram_dict[word] += 1
38
-
39
- # Counting bigrams
40
- for bg in bigrams(tokens_cleaned):
41
- bigram_dict[bg] += 1
42
-
43
- # Default values for unseen bigrams/unigrams
44
- p_noun_prep = bigram_dict[(noun, prep)] / unigram_dict[noun] if unigram_dict[noun] != 0 else 0
45
- p_verb_prep = bigram_dict[(verb, prep)] / unigram_dict[verb] if unigram_dict[verb] != 0 else 0
46
- p_0_n = 1 - p_noun_prep
47
-
48
- # Ensure that the log argument is valid
49
- if p_noun_prep > 0 and p_verb_prep * p_0_n > 0:
50
- lammbda = math.log2((p_verb_prep * p_0_n) / p_noun_prep)
51
- print("Attached with Verb." if lammbda >= 0 else "Attached with Noun.")
52
- else:
53
- print("No valid attachments.")
@@ -1,82 +0,0 @@
1
- emission_probs = {'A': {'K': 0.4, 'T': 0.5}, 'B': {'K': 0.3, 'T': 0.3}}
2
- alpha_a = 1
3
- alpha_b = 0
4
- alpha_A = [alpha_a]
5
- alpha_B = [alpha_b]
6
-
7
- visible_states = ['K', 'T','K'] # Update with the actual visible states
8
-
9
- for state in visible_states:
10
- old_alpha = alpha_a
11
- alpha_a = (alpha_a * 0.2 * emission_probs["A"][state]) + (alpha_b * 0.6 * emission_probs["B"][state])
12
- alpha_b = (old_alpha * 0.8 * emission_probs["A"][state]) + (alpha_b * 0.4 * emission_probs["B"][state])
13
- alpha_A.append(alpha_a)
14
- alpha_B.append(alpha_b)
15
-
16
- print(alpha_A)
17
- print(alpha_B)
18
-
19
- # B. BACKWARD PROCEDURE
20
- # Credit: Ahmed Baari
21
- # Backward
22
- emission_probs = {
23
- 'A': {'K': 0.4, 'T': 0.5},
24
- 'B': {'K': 0.3, 'T': 0.3}
25
- }
26
-
27
- b_A = 1
28
- b_B = 1
29
- beta_A = [b_A]
30
- beta_B = [b_B]
31
-
32
- for state in reversed(visible_states):
33
- old_bA = b_A
34
- old_bB = b_B
35
-
36
- b_A = (
37
- b_A * 0.2 * emission_probs["A"][state]
38
- ) + (
39
- b_B * 0.8 * emission_probs["A"][state]
40
- )
41
-
42
- b_B = (
43
- old_bA * 0.6 * emission_probs["B"][state]
44
- ) + (
45
- old_bB * 0.4 * emission_probs["B"][state]
46
- )
47
-
48
- beta_A.append(b_A)
49
- beta_B.append(b_B)
50
-
51
- beta_A, beta_B
52
-
53
-
54
- # C. BEST STATE SEQUENCE
55
- # Credit: Ahmed Baari
56
- gamma_A = []
57
- gamma_B = []
58
-
59
- # alpha * beta of A / that of A + that of B
60
-
61
- for i in range(3):
62
- g_A = (
63
- alpha_A[i] * beta_A[i]
64
- ) / (
65
- alpha_A[i]*beta_A[i] + alpha_B[i]*beta_B[i]
66
- )
67
- g_B = (
68
- alpha_B[i] * beta_B[i]
69
- ) / (
70
- alpha_B[i] * beta_B[i] + alpha_A[i] + beta_A[i]
71
- )
72
-
73
- gamma_A.append(g_A)
74
- gamma_B.append(g_B)
75
-
76
- for i in range(3):
77
- print(
78
- "A" if gamma_A[i] > gamma_B[i] else "B",
79
- end=" "
80
- )
81
-
82
- #
@@ -1,16 +0,0 @@
1
- emission_probs = {
2
- "CP": {"cola": 0.6, "ice_tea": 0.1, "lem": 0.3},
3
- "IP": {"cola": 0.1, "ice_tea": 0.7, "lem": 0.2}
4
- }
5
- alpha_a = 1
6
- alpha_b = 0
7
-
8
- for _ in range(3):
9
- state = input("Enter the state:")
10
- alpha_a = max(alpha_a * 0.7 * emission_probs["CP"][state],
11
- alpha_b * 0.5 * emission_probs["IP"][state])
12
-
13
- alpha_b = max(alpha_a * 0.3 * emission_probs["CP"][state],
14
- alpha_b * 0.5 * emission_probs["IP"][state])
15
- print(alpha_a, alpha_b)
16
- print("CP" if alpha_a > alpha_b else "IP")
@@ -1,15 +0,0 @@
1
- from nltk import PCFG, InsideChartParser
2
- grammar = PCFG.fromstring("""
3
- S -> NP VP [1.0]
4
- NP -> NP PP [0.4] | 'he' [0.1] | 'dessert' [0.3] | 'lunch' [0.1] | 'saw' [0.1]
5
- PP -> Pre NP [1.0]
6
- VP -> Verb NP [0.3] | VP PP [0.7]
7
- Pre -> 'with' [0.6] | 'in' [0.4]
8
- Verb -> 'ate' [0.7] | 'saw' [0.3]
9
- """)
10
- parser = InsideChartParser(grammar)
11
- tokens = "he saw lunch with dessert".split()
12
- for tree in parser.parse(tokens):
13
- tree.pretty_print()
14
- print("PROBABILITY: ",tree.prob())
15
- #tree.draw()