noshot 0.1.6__py3-none-any.whl → 0.1.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (228) hide show
  1. noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +207 -0
  2. noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +626 -0
  3. noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +625 -0
  4. noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +287 -0
  5. noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +626 -0
  6. noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +625 -0
  7. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +83 -0
  8. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +626 -0
  9. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +625 -0
  10. noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +117 -0
  11. noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +210 -0
  12. noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +137 -0
  13. noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +179 -0
  14. noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +129 -0
  15. noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +179 -0
  16. {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/METADATA +2 -2
  17. noshot-0.1.8.dist-info/RECORD +24 -0
  18. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +0 -112
  19. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +0 -111
  20. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +0 -134
  21. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +0 -115
  22. noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +0 -123
  23. noshot/data/ML TS XAI/AIDS/10. ANOVA/2_ANOVA.csv +0 -769
  24. noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +0 -126
  25. noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA.ipynb +0 -134
  26. noshot/data/ML TS XAI/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +0 -119
  27. noshot/data/ML TS XAI/AIDS/10. ANOVA/Two Way ANOVA.ipynb +0 -138
  28. noshot/data/ML TS XAI/AIDS/10. ANOVA/reaction_time.csv +0 -5
  29. noshot/data/ML TS XAI/AIDS/10. ANOVA/sample_data.csv +0 -16
  30. noshot/data/ML TS XAI/AIDS/10. ANOVA/sleep_deprivation.csv +0 -4
  31. noshot/data/ML TS XAI/AIDS/11. Linear Regression/3_Linear.csv +0 -4802
  32. noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +0 -113
  33. noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +0 -118
  34. noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression.ipynb +0 -148
  35. noshot/data/ML TS XAI/AIDS/11. Linear Regression/house_rate.csv +0 -22
  36. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +0 -128
  37. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression.ipynb +0 -145
  38. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/default.csv +0 -1001
  39. noshot/data/ML TS XAI/AIDS/12. Logistic Regression/hours_scores_records.csv +0 -101
  40. noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +0 -256
  41. noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +0 -157
  42. noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +0 -178
  43. noshot/data/ML TS XAI/AIDS/3. Genetic Algorithm/Genetic.ipynb +0 -95
  44. noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +0 -74
  45. noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +0 -103
  46. noshot/data/ML TS XAI/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +0 -182
  47. noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +0 -120
  48. noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +0 -125
  49. noshot/data/ML TS XAI/AIDS/7. Random Sampling/Random Sampling.ipynb +0 -73
  50. noshot/data/ML TS XAI/AIDS/7. Random Sampling/height_weight_bmi.csv +0 -8389
  51. noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test Hash Function.ipynb +0 -141
  52. noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test.ipynb +0 -151
  53. noshot/data/ML TS XAI/AIDS/8. Z Test/height_weight_bmi.csv +0 -8389
  54. noshot/data/ML TS XAI/AIDS/9. T Test/1_heart.csv +0 -304
  55. noshot/data/ML TS XAI/AIDS/9. T Test/Independent T Test.ipynb +0 -119
  56. noshot/data/ML TS XAI/AIDS/9. T Test/Paired T Test.ipynb +0 -118
  57. noshot/data/ML TS XAI/AIDS/9. T Test/T Test Hash Function.ipynb +0 -142
  58. noshot/data/ML TS XAI/AIDS/9. T Test/T Test.ipynb +0 -158
  59. noshot/data/ML TS XAI/AIDS/9. T Test/height_weight_bmi.csv +0 -8389
  60. noshot/data/ML TS XAI/AIDS/9. T Test/iq_test.csv +0 -0
  61. noshot/data/ML TS XAI/AIDS/Others (AllinOne)/All In One.ipynb +0 -4581
  62. noshot/data/ML TS XAI/CN/1. Chat Application/chat.java +0 -81
  63. noshot/data/ML TS XAI/CN/1. Chat Application/output.png +0 -0
  64. noshot/data/ML TS XAI/CN/1. Chat Application/procedure.png +0 -0
  65. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +0 -65
  66. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +0 -44
  67. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
  68. noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
  69. noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +0 -229
  70. noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
  71. noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
  72. noshot/data/ML TS XAI/CN/2. File Transfer/file_to_send.txt +0 -2
  73. noshot/data/ML TS XAI/CN/2. File Transfer/filetransfer.java +0 -119
  74. noshot/data/ML TS XAI/CN/2. File Transfer/output.png +0 -0
  75. noshot/data/ML TS XAI/CN/2. File Transfer/procedure.png +0 -0
  76. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Client.class +0 -0
  77. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerImpl.class +0 -0
  78. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerIntf.class +0 -0
  79. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Server.class +0 -0
  80. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
  81. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
  82. noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/rmi.java +0 -56
  83. noshot/data/ML TS XAI/CN/4. Wired Network/output.png +0 -0
  84. noshot/data/ML TS XAI/CN/4. Wired Network/procedure.png +0 -0
  85. noshot/data/ML TS XAI/CN/4. Wired Network/wired.awk +0 -25
  86. noshot/data/ML TS XAI/CN/4. Wired Network/wired.tcl +0 -81
  87. noshot/data/ML TS XAI/CN/5. Wireless Network/output.png +0 -0
  88. noshot/data/ML TS XAI/CN/5. Wireless Network/procedure.png +0 -0
  89. noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.awk +0 -27
  90. noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.tcl +0 -153
  91. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +0 -27
  92. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
  93. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +0 -86
  94. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +0 -86
  95. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +0 -28
  96. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
  97. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +0 -78
  98. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +0 -79
  99. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +0 -27
  100. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +0 -163
  101. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
  102. noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
  103. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/DV.tcl +0 -111
  104. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/LS.tcl +0 -106
  105. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/analysis.awk +0 -36
  106. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/output.png +0 -0
  107. noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
  108. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/analysis.awk +0 -20
  109. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/broadcast.tcl +0 -76
  110. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/multicast.tcl +0 -103
  111. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/output.png +0 -0
  112. noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
  113. noshot/data/ML TS XAI/CN/9. DHCP/DHCP.java +0 -125
  114. noshot/data/ML TS XAI/CN/9. DHCP/output.png +0 -0
  115. noshot/data/ML TS XAI/CN/9. DHCP/procedure.png +0 -0
  116. noshot/data/ML TS XAI/NLP/NLP 1/1-Prereqs.py +0 -18
  117. noshot/data/ML TS XAI/NLP/NLP 1/2-Chi2test.py +0 -83
  118. noshot/data/ML TS XAI/NLP/NLP 1/2-T-test.py +0 -79
  119. noshot/data/ML TS XAI/NLP/NLP 1/3-WSD-nb.py +0 -53
  120. noshot/data/ML TS XAI/NLP/NLP 1/4-Hindle-Rooth.py +0 -53
  121. noshot/data/ML TS XAI/NLP/NLP 1/5-HMM-Trellis.py +0 -82
  122. noshot/data/ML TS XAI/NLP/NLP 1/6-HMM-Viterbi.py +0 -16
  123. noshot/data/ML TS XAI/NLP/NLP 1/7-PCFG-parsetree.py +0 -15
  124. noshot/data/ML TS XAI/NLP/NLP 1/Chi2test.ipynb +0 -285
  125. noshot/data/ML TS XAI/NLP/NLP 1/Hindle-Rooth.ipynb +0 -179
  126. noshot/data/ML TS XAI/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +0 -1461
  127. noshot/data/ML TS XAI/NLP/NLP 1/Lab 11 NMT.ipynb +0 -2307
  128. noshot/data/ML TS XAI/NLP/NLP 1/PCFG.ipynb +0 -134
  129. noshot/data/ML TS XAI/NLP/NLP 1/Prereqs.ipynb +0 -131
  130. noshot/data/ML TS XAI/NLP/NLP 1/T test.ipynb +0 -252
  131. noshot/data/ML TS XAI/NLP/NLP 1/TFIDF BOW.ipynb +0 -171
  132. noshot/data/ML TS XAI/NLP/NLP 1/Trellis.ipynb +0 -244
  133. noshot/data/ML TS XAI/NLP/NLP 1/WSD.ipynb +0 -645
  134. noshot/data/ML TS XAI/NLP/NLP 1/Word2Vec.ipynb +0 -93
  135. noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +0 -370
  136. noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +0 -6
  137. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +0 -274
  138. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +0 -905
  139. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/test.txt +0 -1
  140. noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +0 -272
  141. noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +0 -332
  142. noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +0 -549
  143. noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +0 -1
  144. noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +0 -817
  145. noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +0 -332
  146. noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +0 -231
  147. noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +0 -507
  148. noshot/data/ML TS XAI/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +0 -134
  149. noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +0 -255
  150. noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +0 -159
  151. noshot/data/ML TS XAI/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +0 -282
  152. noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +0 -670
  153. noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +0 -613
  154. noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +0 -74
  155. noshot/data/ML TS XAI/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +0 -480
  156. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +0 -445
  157. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +0 -105
  158. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +0 -87
  159. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +0 -11
  160. noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +0 -83
  161. noshot/data/ML TS XAI/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +0 -201
  162. noshot/data/ML TS XAI/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +0 -185
  163. noshot/data/ML TS XAI/NLP/NLP 3/Backward-Procedure.ipynb +0 -597
  164. noshot/data/ML TS XAI/NLP/NLP 3/Bag_of.ipynb +0 -1422
  165. noshot/data/ML TS XAI/NLP/NLP 3/CYK-algorithm.ipynb +0 -1067
  166. noshot/data/ML TS XAI/NLP/NLP 3/Forward-Procedure.ipynb +0 -477
  167. noshot/data/ML TS XAI/NLP/NLP 3/LSTM.ipynb +0 -1290
  168. noshot/data/ML TS XAI/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +0 -1461
  169. noshot/data/ML TS XAI/NLP/NLP 3/Lab 11 NMT.ipynb +0 -2307
  170. noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-4.ipynb +0 -216
  171. noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-5.ipynb +0 -216
  172. noshot/data/ML TS XAI/NLP/NLP 3/abc.txt +0 -6
  173. noshot/data/ML TS XAI/NLP/NLP 3/ex-1-nltk.ipynb +0 -711
  174. noshot/data/ML TS XAI/NLP/NLP 3/ex-2-nlp.ipynb +0 -267
  175. noshot/data/ML TS XAI/NLP/NLP 3/exp8&9.ipynb +0 -305
  176. noshot/data/ML TS XAI/NLP/NLP 3/hind.ipynb +0 -287
  177. noshot/data/ML TS XAI/NLP/NLP 3/lab66.ipynb +0 -752
  178. noshot/data/ML TS XAI/NLP/NLP 3/leb_3.ipynb +0 -612
  179. noshot/data/ML TS XAI/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
  180. noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_1.ipynb +0 -3008
  181. noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_2.ipynb +0 -3095
  182. noshot/data/ML TS XAI/NLP/NLP 3/nlplab-9.ipynb +0 -295
  183. noshot/data/ML TS XAI/NLP/NLP 3/nltk-ex-4.ipynb +0 -506
  184. noshot/data/ML TS XAI/NLP/NLP 3/text1.txt +0 -48
  185. noshot/data/ML TS XAI/NLP/NLP 3/text2.txt +0 -8
  186. noshot/data/ML TS XAI/NLP/NLP 3/text3.txt +0 -48
  187. noshot/data/ML TS XAI/NLP/NLP 3/translation-rnn.ipynb +0 -812
  188. noshot/data/ML TS XAI/NLP/NLP 3/word2vector.ipynb +0 -173
  189. noshot/data/ML TS XAI/NLP/NLP 4/Backward Procedure Algorithm.ipynb +0 -179
  190. noshot/data/ML TS XAI/NLP/NLP 4/Chi Square Collocation.ipynb +0 -208
  191. noshot/data/ML TS XAI/NLP/NLP 4/Collocation (T test).ipynb +0 -188
  192. noshot/data/ML TS XAI/NLP/NLP 4/Experiment 1.ipynb +0 -437
  193. noshot/data/ML TS XAI/NLP/NLP 4/Forward Procedure Algorithm.ipynb +0 -132
  194. noshot/data/ML TS XAI/NLP/NLP 4/Hindle Rooth.ipynb +0 -414
  195. noshot/data/ML TS XAI/NLP/NLP 4/MachineTranslation.ipynb +0 -368
  196. noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +0 -86
  197. noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +0 -112
  198. noshot/data/ML TS XAI/NLP/NLP 4/PCFG Inside Probability.ipynb +0 -451
  199. noshot/data/ML TS XAI/NLP/NLP 4/Text Generation using LSTM.ipynb +0 -297
  200. noshot/data/ML TS XAI/NLP/NLP 4/Viterbi.ipynb +0 -310
  201. noshot/data/ML TS XAI/NLP/NLP 4/Word Sense Disambiguation.ipynb +0 -335
  202. noshot/data/ML TS XAI/NLP/NLP 5/10.Text Generation using LSTM.ipynb +0 -316
  203. noshot/data/ML TS XAI/NLP/NLP 5/11.Machine Translation.ipynb +0 -868
  204. noshot/data/ML TS XAI/NLP/NLP 5/2.T and Chi2 Test.ipynb +0 -204
  205. noshot/data/ML TS XAI/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +0 -234
  206. noshot/data/ML TS XAI/NLP/NLP 5/4.Hinddle and Rooth.ipynb +0 -128
  207. noshot/data/ML TS XAI/NLP/NLP 5/5.Forward and Backward.ipynb +0 -149
  208. noshot/data/ML TS XAI/NLP/NLP 5/6.Viterbi.ipynb +0 -111
  209. noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG Parse Tree.ipynb +0 -134
  210. noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG using cyk.ipynb +0 -101
  211. noshot/data/ML TS XAI/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +0 -310
  212. noshot/data/ML TS XAI/NLP/NLP 5/9.Word2Vector.ipynb +0 -78
  213. noshot/data/ML TS XAI/NLP/NLP 5/NLP ALL In One.ipynb +0 -2619
  214. noshot/data/ML TS XAI/NLP/NLP 5/sample1.txt +0 -15
  215. noshot/data/ML TS XAI/NLP/NLP 5/sample2.txt +0 -4
  216. noshot/data/ML TS XAI/NLP/NLP 5/word2vec_model.bin +0 -0
  217. noshot/data/ML TS XAI/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +0 -312
  218. noshot/data/ML TS XAI/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +0 -185
  219. noshot/data/ML TS XAI/NLP/NLP 6/3. Naive Bayes WSD.ipynb +0 -199
  220. noshot/data/ML TS XAI/NLP/NLP 6/4. Hinddle and Rooth.ipynb +0 -151
  221. noshot/data/ML TS XAI/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +0 -164
  222. noshot/data/ML TS XAI/NLP/NLP 6/7. PCFG using CYK.ipynb +0 -383
  223. noshot/data/ML TS XAI/NLP/NLP 6/8. BOW and TF-IDF.ipynb +0 -252
  224. noshot/data/ML TS XAI/Ubuntu CN Lab.iso +0 -0
  225. noshot-0.1.6.dist-info/RECORD +0 -216
  226. {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/LICENSE.txt +0 -0
  227. {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/WHEEL +0 -0
  228. {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/top_level.txt +0 -0
@@ -1,255 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "id": "3be05c09",
6
- "metadata": {},
7
- "source": [
8
- "# Hidden Markov Model - Forward and backward algorithm\n",
9
- "\n",
10
- "\"Code credits: [**V Tarun Thothadri**](https://github.com/TarunThothadri)\""
11
- ]
12
- },
13
- {
14
- "cell_type": "code",
15
- "execution_count": 1,
16
- "id": "96e855aa",
17
- "metadata": {},
18
- "outputs": [
19
- {
20
- "name": "stdout",
21
- "output_type": "stream",
22
- "text": [
23
- "Enter no of states : 2\n",
24
- "Enter state 1 : cp\n",
25
- "Enter initial probability of the state 1 : 1.0\n",
26
- "Enter state 2 : ip\n",
27
- "Enter initial probability of the state 2 : 0.0\n",
28
- "Enter stp from cp to cp : 0.7\n",
29
- "Enter stp from cp to ip : 0.3\n",
30
- "Enter stp from ip to cp : 0.5\n",
31
- "Enter stp from ip to ip : 0.5\n",
32
- "Enter no of observations : 3\n",
33
- "Enter observation 1 : lem\n",
34
- "Enter observation 2 : ice\n",
35
- "Enter observation 3 : cola\n",
36
- "Enter probability of getting lem from cp : 0.3\n",
37
- "Enter probability of getting ice from cp : 0.1\n",
38
- "Enter probability of getting cola from cp : 0.6\n",
39
- "Enter probability of getting lem from ip : 0.2\n",
40
- "Enter probability of getting ice from ip : 0.7\n",
41
- "Enter probability of getting cola from ip : 0.1\n",
42
- "['cp', 'ip']\n",
43
- "[1.0, 0.0]\n",
44
- "[[0.7, 0.3], [0.5, 0.5]]\n",
45
- "['lem', 'ice', 'cola']\n",
46
- "[[0.3, 0.1, 0.6], [0.2, 0.7, 0.1]]\n"
47
- ]
48
- }
49
- ],
50
- "source": [
51
- "'''states = ['cp','ip']\n",
52
- "ls = len(states)\n",
53
- "\n",
54
- "#Initial Probability\n",
55
- "ip = [1.0,0.0]\n",
56
- "\n",
57
- "#State transition probability\n",
58
- "stp = [[0.7,0.3],\n",
59
- " [0.5,0.5]]\n",
60
- "\n",
61
- "#Observations\n",
62
- "op = ['lem','ice','cola']\n",
63
- "lop = len(op)\n",
64
- "\n",
65
- "#Obs probablity\n",
66
- "opp = [[0.3,0.1,0.6],\n",
67
- " [0.2,0.7,0.1]]'''\n",
68
- "\n",
69
- "states = []\n",
70
- "ip = []\n",
71
- "stp = []\n",
72
- "op = []\n",
73
- "opp = []\n",
74
- "\n",
75
- "ls = int(input(\"Enter no of states : \"))\n",
76
- "\n",
77
- "for i in range(ls):\n",
78
- " states.append(input(f\"Enter state {i+1} : \"))\n",
79
- " ip.append(float(input(f\"Enter initial probability of the state {i+1} : \")))\n",
80
- "\n",
81
- "for i in range(ls):\n",
82
- " sp_row = []\n",
83
- " for j in range(ls):\n",
84
- " sp = float(input(f\"Enter stp from {states[i]} to {states[j]} : \"))\n",
85
- " sp_row.append(sp)\n",
86
- " stp.append(sp_row)\n",
87
- " \n",
88
- "lop = int(input(\"Enter no of observations : \"))\n",
89
- "\n",
90
- "for i in range(lop):\n",
91
- " op.append(input(f\"Enter observation {i+1} : \"))\n",
92
- "\n",
93
- "for i in range(ls):\n",
94
- " opp_row = []\n",
95
- " for j in range(lop):\n",
96
- " opp_row.append(float(input(f\"Enter probability of getting {op[j]} from {states[i]} : \")))\n",
97
- " \n",
98
- " opp.append(opp_row)\n",
99
- " \n",
100
- "print(states)\n",
101
- "print(ip)\n",
102
- "print(stp)\n",
103
- "print(op)\n",
104
- "print(opp)"
105
- ]
106
- },
107
- {
108
- "cell_type": "markdown",
109
- "id": "ac0d52fe",
110
- "metadata": {},
111
- "source": [
112
- "Forward Algorithm"
113
- ]
114
- },
115
- {
116
- "cell_type": "code",
117
- "execution_count": 2,
118
- "id": "aad5d765",
119
- "metadata": {},
120
- "outputs": [],
121
- "source": [
122
- "def forward_alg():\n",
123
- " alpha = []\n",
124
- " for _ in range(len(op)+1):\n",
125
- " alpha.append([0,0])\n",
126
- "\n",
127
- " '''alpha[0][0] = 1.0\n",
128
- " alpha[0][1] = 0.0\n",
129
- " #print(alpha)'''\n",
130
- " \n",
131
- " for i in range(len(alpha)):\n",
132
- " if i == 0:\n",
133
- " alpha[i][0] = ip[0]\n",
134
- " alpha[i][1] = ip[1]\n",
135
- " continue\n",
136
- " \n",
137
- " alpha[i][0] = float(float(stp[0][0]*opp[0][i-1]*alpha[i-1][0]) + float(stp[1][0]*opp[1][i-1]*alpha[i-1][1]))\n",
138
- "\n",
139
- " alpha[i][1] = float(float(stp[1][1]*opp[1][i-1]*alpha[i-1][1]) + float(stp[0][1]*opp[0][i-1]*alpha[i-1][0]))\n",
140
- "\n",
141
- " return alpha"
142
- ]
143
- },
144
- {
145
- "cell_type": "code",
146
- "execution_count": 3,
147
- "id": "7612f052",
148
- "metadata": {},
149
- "outputs": [
150
- {
151
- "name": "stdout",
152
- "output_type": "stream",
153
- "text": [
154
- "[1.0, 0.0]\n",
155
- "[0.21, 0.09]\n",
156
- "[0.0462, 0.0378]\n",
157
- "[0.021293999999999997, 0.010206]\n",
158
- "\n",
159
- "Probability of whole sequence : 0.0315\n"
160
- ]
161
- }
162
- ],
163
- "source": [
164
- "alpha = forward_alg()\n",
165
- "pos_alpha = 0.0\n",
166
- "for i in alpha:\n",
167
- " pos_alpha = sum(i)\n",
168
- " print(i)\n",
169
- " \n",
170
- "print(\"\\nProbability of whole sequence : \",pos_alpha)"
171
- ]
172
- },
173
- {
174
- "cell_type": "markdown",
175
- "id": "70482230",
176
- "metadata": {},
177
- "source": [
178
- "Backward Algorithm"
179
- ]
180
- },
181
- {
182
- "cell_type": "code",
183
- "execution_count": 4,
184
- "id": "445612f0",
185
- "metadata": {},
186
- "outputs": [],
187
- "source": [
188
- "def backward_alg():\n",
189
- " beta = []\n",
190
- " for _ in range(len(op)+1):\n",
191
- " beta.append([0.0,0.0])\n",
192
- "\n",
193
- " beta[len(op)][0] = 1.0\n",
194
- " beta[len(op)][1] = 1.0\n",
195
- " #print(beta)\n",
196
- "\n",
197
- " for i in range(len(op)-1,-1,-1):\n",
198
- " \n",
199
- " beta[i][0] = float(float(stp[0][0]*opp[0][i]*beta[i+1][0]) + float(stp[0][1]*opp[0][i]*beta[i+1][1]))\n",
200
- "\n",
201
- " beta[i][1] = float(float(stp[1][1]*opp[1][i]*beta[i+1][1]) + float(stp[1][0]*opp[1][i]*beta[i+1][0]))\n",
202
- "\n",
203
- " return beta"
204
- ]
205
- },
206
- {
207
- "cell_type": "code",
208
- "execution_count": 5,
209
- "id": "6986b179",
210
- "metadata": {},
211
- "outputs": [
212
- {
213
- "name": "stdout",
214
- "output_type": "stream",
215
- "text": [
216
- "[0.0315, 0.029]\n",
217
- "[0.045, 0.245]\n",
218
- "[0.6, 0.1]\n",
219
- "[1.0, 1.0]\n",
220
- "\n",
221
- "Probability of whole sequence : 0.0315\n"
222
- ]
223
- }
224
- ],
225
- "source": [
226
- "beta = backward_alg()\n",
227
- "for i in beta:\n",
228
- " print(i)\n",
229
- " \n",
230
- "print(\"\\nProbability of whole sequence : \",beta[0][0]*ip[0] + beta[0][1]*ip[1])"
231
- ]
232
- }
233
- ],
234
- "metadata": {
235
- "kernelspec": {
236
- "display_name": "Python 3 (ipykernel)",
237
- "language": "python",
238
- "name": "python3"
239
- },
240
- "language_info": {
241
- "codemirror_mode": {
242
- "name": "ipython",
243
- "version": 3
244
- },
245
- "file_extension": ".py",
246
- "mimetype": "text/x-python",
247
- "name": "python",
248
- "nbconvert_exporter": "python",
249
- "pygments_lexer": "ipython3",
250
- "version": "3.11.5"
251
- }
252
- },
253
- "nbformat": 4,
254
- "nbformat_minor": 5
255
- }
@@ -1,159 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "id": "3be05c09",
6
- "metadata": {
7
- "id": "3be05c09"
8
- },
9
- "source": [
10
- "# Viterbi Algorithm\n",
11
- "\n",
12
- "Implement the Viterbi algorithm to find the probability of a word sequence, and infer the best tag sequence using Hidden Markov Model."
13
- ]
14
- },
15
- {
16
- "cell_type": "code",
17
- "source": [
18
- "def viterbi_algorithm(op):\n",
19
- " delta = []\n",
20
- " psi = []\n",
21
- "\n",
22
- " # Initialize the delta and psi matrices\n",
23
- " for _ in range(len(op)):\n",
24
- " delta.append([0.0, 0.0])\n",
25
- " psi.append([0, 0])\n",
26
- "\n",
27
- " # Initialization step\n",
28
- " for i in range(len(states)):\n",
29
- " delta[0][i] = ip[i] * opp[i][0]\n",
30
- "\n",
31
- " # Recursion step\n",
32
- " for t in range(1, len(op)):\n",
33
- " for j in range(len(states)):\n",
34
- " max_prob = 0.0\n",
35
- " max_state = 0\n",
36
- "\n",
37
- " for i in range(len(states)):\n",
38
- " prob = delta[t - 1][i] * stp[i][j] * opp[j][t]\n",
39
- " if prob > max_prob:\n",
40
- " max_prob = prob\n",
41
- " max_state = i\n",
42
- "\n",
43
- " delta[t][j] = max_prob\n",
44
- " psi[t][j] = max_state\n",
45
- "\n",
46
- " # Termination step\n",
47
- " best_path_prob = max(delta[-1])\n",
48
- " best_last_state = delta[-1].index(best_path_prob)\n",
49
- "\n",
50
- " # Backtrack to find the best tag sequence\n",
51
- " best_path = [best_last_state]\n",
52
- " for t in range(len(op) - 1, 0, -1):\n",
53
- " best_last_state = psi[t][best_last_state]\n",
54
- " best_path.insert(0, best_last_state)\n",
55
- "\n",
56
- " return best_path, best_path_prob\n",
57
- "\n",
58
- "states = []\n",
59
- "ip = []\n",
60
- "stp = []\n",
61
- "op = []\n",
62
- "opp = []\n",
63
- "\n",
64
- "ls = int(input(\"Enter no of states : \"))\n",
65
- "\n",
66
- "for i in range(ls):\n",
67
- " states.append(input(f\"Enter state {i+1} : \"))\n",
68
- " ip.append(float(input(f\"Enter initial probability of state {states[i]} : \")))\n",
69
- "\n",
70
- "for i in range(ls):\n",
71
- " sp_row = []\n",
72
- " for j in range(ls):\n",
73
- " sp = float(input(f\"Enter transition probability from {states[i]} to {states[j]} : \"))\n",
74
- " sp_row.append(sp)\n",
75
- " stp.append(sp_row)\n",
76
- "\n",
77
- "lop = int(input(\"Enter no of observations : \"))\n",
78
- "\n",
79
- "for i in range(lop):\n",
80
- " op.append(input(f\"Enter observation {i+1} : \"))\n",
81
- "\n",
82
- "for i in range(ls):\n",
83
- " opp_row = []\n",
84
- " for j in range(lop):\n",
85
- " opp_row.append(float(input(f\"Enter emission probability of {op[j]} from {states[i]} : \")))\n",
86
- " opp.append(opp_row)\n",
87
- "\n",
88
- "# Call the Viterbi algorithm\n",
89
- "best_tag_sequence, probability = viterbi_algorithm(op)\n",
90
- "\n",
91
- "# Print the best tag sequence and its probability\n",
92
- "print(\"Best Tag Sequence:\", [states[i] for i in best_tag_sequence])\n",
93
- "print(\"Probability of the Best Tag Sequence:\", probability)\n"
94
- ],
95
- "metadata": {
96
- "id": "V6IoC75H-5GT",
97
- "outputId": "b00142d5-6731-4420-a6e7-8f1b0d2b3f71",
98
- "colab": {
99
- "base_uri": "https://localhost:8080/"
100
- }
101
- },
102
- "id": "V6IoC75H-5GT",
103
- "execution_count": 2,
104
- "outputs": [
105
- {
106
- "output_type": "stream",
107
- "name": "stdout",
108
- "text": [
109
- "Enter no of states : 2\n",
110
- "Enter state 1 : cp\n",
111
- "Enter initial probability of state cp : 1.0\n",
112
- "Enter state 2 : ip\n",
113
- "Enter initial probability of state ip : 0.0\n",
114
- "Enter transition probability from cp to cp : 0.7\n",
115
- "Enter transition probability from cp to ip : 0.3\n",
116
- "Enter transition probability from ip to cp : 0.5\n",
117
- "Enter transition probability from ip to ip : 0.5\n",
118
- "Enter no of observations : 3\n",
119
- "Enter observation 1 : lem\n",
120
- "Enter observation 2 : ice\n",
121
- "Enter observation 3 : cola\n",
122
- "Enter emission probability of lem from cp : 0.3\n",
123
- "Enter emission probability of ice from cp : 0.1\n",
124
- "Enter emission probability of cola from cp : 0.6\n",
125
- "Enter emission probability of lem from ip : 0.2\n",
126
- "Enter emission probability of ice from ip : 0.7\n",
127
- "Enter emission probability of cola from ip : 0.1\n",
128
- "Best Tag Sequence: ['cp', 'ip', 'cp']\n",
129
- "Probability of the Best Tag Sequence: 0.0189\n"
130
- ]
131
- }
132
- ]
133
- }
134
- ],
135
- "metadata": {
136
- "kernelspec": {
137
- "display_name": "Python 3 (ipykernel)",
138
- "language": "python",
139
- "name": "python3"
140
- },
141
- "language_info": {
142
- "codemirror_mode": {
143
- "name": "ipython",
144
- "version": 3
145
- },
146
- "file_extension": ".py",
147
- "mimetype": "text/x-python",
148
- "name": "python",
149
- "nbconvert_exporter": "python",
150
- "pygments_lexer": "ipython3",
151
- "version": "3.11.5"
152
- },
153
- "colab": {
154
- "provenance": []
155
- }
156
- },
157
- "nbformat": 4,
158
- "nbformat_minor": 5
159
- }
@@ -1,282 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "metadata": {
6
- "id": "hwHembMnuehB"
7
- },
8
- "source": [
9
- "## PCFG\n",
10
- "\n",
11
- "Implement the Probabilistic Context Free Grammar (PCFG) and find the inside probability of a word sequence using the CYK algorithm."
12
- ]
13
- },
14
- {
15
- "cell_type": "code",
16
- "execution_count": null,
17
- "metadata": {
18
- "colab": {
19
- "base_uri": "https://localhost:8080/"
20
- },
21
- "id": "fkukKpNbr9Fw",
22
- "outputId": "852fd759-7ec2-4dd4-c1fa-9db808e40805"
23
- },
24
- "outputs": [
25
- {
26
- "name": "stdout",
27
- "output_type": "stream",
28
- "text": [
29
- "Inside probability of S: 21.400000000000002\n",
30
- "Inside probability of NP: 18.479999999999997\n",
31
- "Inside probability of VP: 17.120000000000005\n",
32
- "Inside probability of Det: 0.0\n",
33
- "Inside probability of N: 0.0\n",
34
- "Inside probability of V: 0.0\n",
35
- "Total inside probability: 21.400000000000002\n"
36
- ]
37
- }
38
- ],
39
- "source": [
40
- "from collections import defaultdict\n",
41
- "from itertools import product\n",
42
- "\n",
43
- "def cyk_algorithm(words, pcfg_rules):\n",
44
- " n = len(words)\n",
45
- " table = [[defaultdict(float) for _ in range(n)] for _ in range(n)]\n",
46
- "\n",
47
- " # Initialization\n",
48
- " for i, word in enumerate(words):\n",
49
- " for nt, (prob, terminals) in pcfg_rules.items():\n",
50
- " if word in terminals:\n",
51
- " table[i][i][nt] = prob\n",
52
- "\n",
53
- " # CYK Algorithm\n",
54
- " for length in range(2, n + 1):\n",
55
- " for i in range(n - length + 1):\n",
56
- " j = i + length - 1\n",
57
- " for k in range(i, j):\n",
58
- " for A, (prob_A, _) in pcfg_rules.items():\n",
59
- " for B, (prob_B, _) in pcfg_rules.items():\n",
60
- " for C in table[i][k]:\n",
61
- " for D in table[k + 1][j]:\n",
62
- " prob = prob_A * prob_B * pcfg_rules[A][1].count(C) * pcfg_rules[B][1].count(D)\n",
63
- " table[i][j][A] += prob\n",
64
- "\n",
65
- " return table\n",
66
- "\n",
67
- "# Example PCFG rules (non-terminal -> (probability, [productions]))\n",
68
- "pcfg_rules = {\n",
69
- " 'S': (1.0, ['NP', 'VP']),\n",
70
- " 'NP': (0.7, ['Det', 'N']),\n",
71
- " 'VP': (0.8, ['V', 'NP']),\n",
72
- " 'Det': (1.0, ['the']),\n",
73
- " 'N': (0.6, ['cat', 'dog']),\n",
74
- " 'V': (0.9, ['chased'])\n",
75
- "}\n",
76
- "\n",
77
- "# Example input sentence\n",
78
- "words = ['the', 'cat', 'chased', 'the', 'dog']\n",
79
- "\n",
80
- "# Call CYK algorithm to get inside probabilities\n",
81
- "table = cyk_algorithm(words, pcfg_rules)\n",
82
- "\n",
83
- "# Inside probabilities for non-terminals in the top cell of the table\n",
84
- "inside_probabilities = table[0][-1]\n",
85
- "\n",
86
- "# Print inside probabilities\n",
87
- "for nt, prob in inside_probabilities.items():\n",
88
- " print(f'Inside probability of {nt}: {prob}')\n",
89
- "\n",
90
- "# Total inside probability (probability of the whole sentence)\n",
91
- "total_probability = inside_probabilities['S']\n",
92
- "print(f'Total inside probability: {total_probability}')\n"
93
- ]
94
- },
95
- {
96
- "cell_type": "code",
97
- "execution_count": 2,
98
- "metadata": {
99
- "colab": {
100
- "base_uri": "https://localhost:8080/"
101
- },
102
- "id": "BXiMT63eyUU1",
103
- "outputId": "9eca3bc3-303f-44ed-e836-e03789e9e1c0"
104
- },
105
- "outputs": [
106
- {
107
- "name": "stdout",
108
- "output_type": "stream",
109
- "text": [
110
- "Inside probability of S: 21.400000000000002\n",
111
- "Inside probability of NP: 18.479999999999997\n",
112
- "Inside probability of VP: 17.120000000000005\n",
113
- "Inside probability of Det: 0.0\n",
114
- "Inside probability of N: 0.0\n",
115
- "Inside probability of V: 0.0\n",
116
- "Total inside probability: 21.400000000000002\n"
117
- ]
118
- }
119
- ],
120
- "source": [
121
- "from collections import defaultdict\n",
122
- "from itertools import product\n",
123
- "\n",
124
- "def cyk_algorithm(words, pcfg_rules):\n",
125
- " n = len(words)\n",
126
- " table = [[defaultdict(float) for _ in range(n)] for _ in range(n)]\n",
127
- "\n",
128
- " # Initialization\n",
129
- " for i, word in enumerate(words):\n",
130
- " for nt, (prob, terminals) in pcfg_rules.items():\n",
131
- " if word in terminals:\n",
132
- " table[i][i][nt] = prob\n",
133
- "\n",
134
- " # CYK Algorithm\n",
135
- " for length in range(2, n + 1):\n",
136
- " for i in range(n - length + 1):\n",
137
- " j = i + length - 1\n",
138
- " for k in range(i, j):\n",
139
- " for A, (prob_A, _) in pcfg_rules.items():\n",
140
- " for B, (prob_B, _) in pcfg_rules.items():\n",
141
- " for C in table[i][k]:\n",
142
- " for D in table[k + 1][j]:\n",
143
- " prob = prob_A * prob_B * pcfg_rules[A][1].count(C) * pcfg_rules[B][1].count(D)\n",
144
- " table[i][j][A] += prob\n",
145
- "\n",
146
- " return table\n",
147
- "\n",
148
- "# Example PCFG rules (non-terminal -> (probability, [productions]))\n",
149
- "pcfg_rules = {\n",
150
- " 'S': (1.0, ['NP', 'VP']),\n",
151
- " 'NP': (0.7, ['Det', 'N']),\n",
152
- " 'VP': (0.8, ['V', 'NP']),\n",
153
- " 'Det': (1.0, ['the']),\n",
154
- " 'N': (0.6, ['cat', 'dog']),\n",
155
- " 'V': (0.9, ['chased'])\n",
156
- "}\n",
157
- "\n",
158
- "# New input sentence\n",
159
- "words = ['the', 'dog', 'chased', 'the', 'cat']\n",
160
- "\n",
161
- "# Call CYK algorithm to get inside probabilities\n",
162
- "table = cyk_algorithm(words, pcfg_rules)\n",
163
- "\n",
164
- "# Inside probabilities for non-terminals in the top cell of the table\n",
165
- "inside_probabilities = table[0][-1]\n",
166
- "\n",
167
- "# Print inside probabilities\n",
168
- "for nt, prob in inside_probabilities.items():\n",
169
- " print(f'Inside probability of {nt}: {prob}')\n",
170
- "\n",
171
- "# Total inside probability (probability of the whole sentence)\n",
172
- "total_probability = inside_probabilities['S']\n",
173
- "print(f'Total inside probability: {total_probability}')\n"
174
- ]
175
- },
176
- {
177
- "cell_type": "code",
178
- "execution_count": 3,
179
- "metadata": {
180
- "colab": {
181
- "base_uri": "https://localhost:8080/"
182
- },
183
- "id": "ORafeKQsyX08",
184
- "outputId": "a1f34a3a-ad0d-480e-c0b6-49e2fb46ae80"
185
- },
186
- "outputs": [
187
- {
188
- "name": "stdout",
189
- "output_type": "stream",
190
- "text": [
191
- "Inside probability of S: 19.599999999999998\n",
192
- "Inside probability of NP: 14.519999999999996\n",
193
- "Inside probability of VP: 13.72\n",
194
- "Inside probability of Det: 0.0\n",
195
- "Inside probability of N: 0.0\n",
196
- "Inside probability of V: 0.0\n",
197
- "Total inside probability: 19.599999999999998\n"
198
- ]
199
- }
200
- ],
201
- "source": [
202
- "from collections import defaultdict\n",
203
- "from itertools import product\n",
204
- "\n",
205
- "def cyk_algorithm(words, pcfg_rules):\n",
206
- " n = len(words)\n",
207
- " table = [[defaultdict(float) for _ in range(n)] for _ in range(n)]\n",
208
- "\n",
209
- " # Initialization\n",
210
- " for i, word in enumerate(words):\n",
211
- " for nt, (prob, terminals) in pcfg_rules.items():\n",
212
- " if word in terminals:\n",
213
- " table[i][i][nt] = prob\n",
214
- "\n",
215
- " # CYK Algorithm\n",
216
- " for length in range(2, n + 1):\n",
217
- " for i in range(n - length + 1):\n",
218
- " j = i + length - 1\n",
219
- " for k in range(i, j):\n",
220
- " for A, (prob_A, _) in pcfg_rules.items():\n",
221
- " for B, (prob_B, _) in pcfg_rules.items():\n",
222
- " for C in table[i][k]:\n",
223
- " for D in table[k + 1][j]:\n",
224
- " prob = prob_A * prob_B * pcfg_rules[A][1].count(C) * pcfg_rules[B][1].count(D)\n",
225
- " table[i][j][A] += prob\n",
226
- "\n",
227
- " return table\n",
228
- "\n",
229
- "# Different PCFG rules\n",
230
- "pcfg_rules = {\n",
231
- " 'S': (1.0, ['NP', 'VP']),\n",
232
- " 'NP': (0.6, ['Det', 'N']),\n",
233
- " 'VP': (0.7, ['V', 'NP']),\n",
234
- " 'Det': (1.0, ['the', 'a']),\n",
235
- " 'N': (0.5, ['cat', 'dog', 'bat']),\n",
236
- " 'V': (0.8, ['chased', 'caught'])\n",
237
- "}\n",
238
- "\n",
239
- "# Different input sentence\n",
240
- "words = ['the', 'cat', 'chased', 'a', 'bat']\n",
241
- "\n",
242
- "# Call CYK algorithm to get inside probabilities\n",
243
- "table = cyk_algorithm(words, pcfg_rules)\n",
244
- "\n",
245
- "# Inside probabilities for non-terminals in the top cell of the table\n",
246
- "inside_probabilities = table[0][-1]\n",
247
- "\n",
248
- "# Print inside probabilities\n",
249
- "for nt, prob in inside_probabilities.items():\n",
250
- " print(f'Inside probability of {nt}: {prob}')\n",
251
- "\n",
252
- "# Total inside probability (probability of the whole sentence)\n",
253
- "total_probability = inside_probabilities['S']\n",
254
- "print(f'Total inside probability: {total_probability}')\n"
255
- ]
256
- }
257
- ],
258
- "metadata": {
259
- "colab": {
260
- "provenance": []
261
- },
262
- "kernelspec": {
263
- "display_name": "Python 3 (ipykernel)",
264
- "language": "python",
265
- "name": "python3"
266
- },
267
- "language_info": {
268
- "codemirror_mode": {
269
- "name": "ipython",
270
- "version": 3
271
- },
272
- "file_extension": ".py",
273
- "mimetype": "text/x-python",
274
- "name": "python",
275
- "nbconvert_exporter": "python",
276
- "pygments_lexer": "ipython3",
277
- "version": "3.10.12"
278
- }
279
- },
280
- "nbformat": 4,
281
- "nbformat_minor": 4
282
- }