noshot 0.1.6__py3-none-any.whl → 0.1.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +207 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +625 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +287 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +625 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +83 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +625 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +117 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +210 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +137 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +129 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +179 -0
- {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/METADATA +2 -2
- noshot-0.1.8.dist-info/RECORD +24 -0
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(A) Breadth First Search.ipynb +0 -112
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(B) Depth First Search.ipynb +0 -111
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(C) Uniform Cost Search.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(D) Depth Limites Search.ipynb +0 -115
- noshot/data/ML TS XAI/AIDS/1. Implement Basic Search Strategies/(E) Iterative Deepening DFS.ipynb +0 -123
- noshot/data/ML TS XAI/AIDS/10. ANOVA/2_ANOVA.csv +0 -769
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA (Repeated Measure).ipynb +0 -126
- noshot/data/ML TS XAI/AIDS/10. ANOVA/One Way ANOVA.ipynb +0 -134
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Sample 1 Way ANOVA Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/10. ANOVA/Two Way ANOVA.ipynb +0 -138
- noshot/data/ML TS XAI/AIDS/10. ANOVA/reaction_time.csv +0 -5
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sample_data.csv +0 -16
- noshot/data/ML TS XAI/AIDS/10. ANOVA/sleep_deprivation.csv +0 -4
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/3_Linear.csv +0 -4802
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression LAB.ipynb +0 -113
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression New- sklearn.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/Linear Regression.ipynb +0 -148
- noshot/data/ML TS XAI/AIDS/11. Linear Regression/house_rate.csv +0 -22
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression New- sklearn.ipynb +0 -128
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/Logistic Regression.ipynb +0 -145
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/default.csv +0 -1001
- noshot/data/ML TS XAI/AIDS/12. Logistic Regression/hours_scores_records.csv +0 -101
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(A) Astar.ipynb +0 -256
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(B) IDAstar.ipynb +0 -157
- noshot/data/ML TS XAI/AIDS/2. Implement A Star And MA Star/(C) SMAstar.ipynb +0 -178
- noshot/data/ML TS XAI/AIDS/3. Genetic Algorithm/Genetic.ipynb +0 -95
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Simulated Annealing.ipynb +0 -74
- noshot/data/ML TS XAI/AIDS/4. Simulated Annealing/Sudoku Simulated Annealing.ipynb +0 -103
- noshot/data/ML TS XAI/AIDS/5. Alpha Beta Pruning/AlphaBetaPruning.ipynb +0 -182
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(A) CSP House Allocation.ipynb +0 -120
- noshot/data/ML TS XAI/AIDS/6. Consraint Satisfaction Problems (CSP)/(B) CSP Map Coloring.ipynb +0 -125
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/Random Sampling.ipynb +0 -73
- noshot/data/ML TS XAI/AIDS/7. Random Sampling/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test Hash Function.ipynb +0 -141
- noshot/data/ML TS XAI/AIDS/8. Z Test/Z Test.ipynb +0 -151
- noshot/data/ML TS XAI/AIDS/8. Z Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/1_heart.csv +0 -304
- noshot/data/ML TS XAI/AIDS/9. T Test/Independent T Test.ipynb +0 -119
- noshot/data/ML TS XAI/AIDS/9. T Test/Paired T Test.ipynb +0 -118
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test Hash Function.ipynb +0 -142
- noshot/data/ML TS XAI/AIDS/9. T Test/T Test.ipynb +0 -158
- noshot/data/ML TS XAI/AIDS/9. T Test/height_weight_bmi.csv +0 -8389
- noshot/data/ML TS XAI/AIDS/9. T Test/iq_test.csv +0 -0
- noshot/data/ML TS XAI/AIDS/Others (AllinOne)/All In One.ipynb +0 -4581
- noshot/data/ML TS XAI/CN/1. Chat Application/chat.java +0 -81
- noshot/data/ML TS XAI/CN/1. Chat Application/output.png +0 -0
- noshot/data/ML TS XAI/CN/1. Chat Application/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/LAN.tcl +0 -65
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/analysis.awk +0 -44
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/output.png +0 -0
- noshot/data/ML TS XAI/CN/10. Ethernet LAN IEEE 802.3/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/complexdcf.tcl +0 -229
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/output.png +0 -0
- noshot/data/ML TS XAI/CN/11. Wireless LAN IEEE 802.11/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/file_to_send.txt +0 -2
- noshot/data/ML TS XAI/CN/2. File Transfer/filetransfer.java +0 -119
- noshot/data/ML TS XAI/CN/2. File Transfer/output.png +0 -0
- noshot/data/ML TS XAI/CN/2. File Transfer/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Client.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerImpl.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/MyServerIntf.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/Server.class +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/output.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/3. RMI (Remote Method Invocation)/rmi.java +0 -56
- noshot/data/ML TS XAI/CN/4. Wired Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.awk +0 -25
- noshot/data/ML TS XAI/CN/4. Wired Network/wired.tcl +0 -81
- noshot/data/ML TS XAI/CN/5. Wireless Network/output.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.awk +0 -27
- noshot/data/ML TS XAI/CN/5. Wireless Network/wireless.tcl +0 -153
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/sack.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Sack And Vegas/vegas.tcl +0 -86
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/analysis.awk +0 -28
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/reno.tcl +0 -78
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Congestion Control/Tahoe And Reno/tahoe.tcl +0 -79
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/analysis.awk +0 -27
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/flow.tcl +0 -163
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/TCP Flow Control/output.png +0 -0
- noshot/data/ML TS XAI/CN/6. TCP Flow And Congestion Control/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/DV.tcl +0 -111
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/LS.tcl +0 -106
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/analysis.awk +0 -36
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/7. Link State And Distance Vector Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/analysis.awk +0 -20
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/broadcast.tcl +0 -76
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/multicast.tcl +0 -103
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/output.png +0 -0
- noshot/data/ML TS XAI/CN/8. Multicast And Broadcast Routing/procedure.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/DHCP.java +0 -125
- noshot/data/ML TS XAI/CN/9. DHCP/output.png +0 -0
- noshot/data/ML TS XAI/CN/9. DHCP/procedure.png +0 -0
- noshot/data/ML TS XAI/NLP/NLP 1/1-Prereqs.py +0 -18
- noshot/data/ML TS XAI/NLP/NLP 1/2-Chi2test.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 1/2-T-test.py +0 -79
- noshot/data/ML TS XAI/NLP/NLP 1/3-WSD-nb.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/4-Hindle-Rooth.py +0 -53
- noshot/data/ML TS XAI/NLP/NLP 1/5-HMM-Trellis.py +0 -82
- noshot/data/ML TS XAI/NLP/NLP 1/6-HMM-Viterbi.py +0 -16
- noshot/data/ML TS XAI/NLP/NLP 1/7-PCFG-parsetree.py +0 -15
- noshot/data/ML TS XAI/NLP/NLP 1/Chi2test.ipynb +0 -285
- noshot/data/ML TS XAI/NLP/NLP 1/Hindle-Rooth.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 1/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 1/PCFG.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 1/Prereqs.ipynb +0 -131
- noshot/data/ML TS XAI/NLP/NLP 1/T test.ipynb +0 -252
- noshot/data/ML TS XAI/NLP/NLP 1/TFIDF BOW.ipynb +0 -171
- noshot/data/ML TS XAI/NLP/NLP 1/Trellis.ipynb +0 -244
- noshot/data/ML TS XAI/NLP/NLP 1/WSD.ipynb +0 -645
- noshot/data/ML TS XAI/NLP/NLP 1/Word2Vec.ipynb +0 -93
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/tokenizer.ipynb +0 -370
- noshot/data/ML TS XAI/NLP/NLP 2/Lab01(tokenizer)/training_tokenizer.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/exp0.ipynb +0 -274
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/lab2.ipynb +0 -905
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/test.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab02(stemming)/tokenizing.ipynb +0 -272
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/lab3.ipynb +0 -549
- noshot/data/ML TS XAI/NLP/NLP 2/Lab03(parse-tree)/nlp.txt +0 -1
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/Lab4-NLP-Exp-2.ipynb +0 -817
- noshot/data/ML TS XAI/NLP/NLP 2/Lab04(collocation)/collocation.ipynb +0 -332
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/NLP-Lab-5-Exp3.ipynb +0 -231
- noshot/data/ML TS XAI/NLP/NLP 2/Lab05(WSD)/word-sense-disambiguation.ipynb +0 -507
- noshot/data/ML TS XAI/NLP/NLP 2/Lab06(additional-exercise)/lab6.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP Exp 4.ipynb +0 -255
- noshot/data/ML TS XAI/NLP/NLP 2/Lab07(HMM,Viterbi)/NLP_Exp_5.ipynb +0 -159
- noshot/data/ML TS XAI/NLP/NLP 2/Lab08(PCFG)/PCFG.ipynb +0 -282
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/Lab 9 - MLP classifier.ipynb +0 -670
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/MLP-alternative-code.ipynb +0 -613
- noshot/data/ML TS XAI/NLP/NLP 2/Lab09-Hindle-rooth&MLP/hindle-rooth-algorithm.ipynb +0 -74
- noshot/data/ML TS XAI/NLP/NLP 2/Lab10(LSTM)/Lab_10_Text_generator_using_LSTM.ipynb +0 -480
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Machine-translation.ipynb +0 -445
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/Viterbi-PCFG.ipynb +0 -105
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/corpora_tools.py +0 -87
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/data_utils.py +0 -11
- noshot/data/ML TS XAI/NLP/NLP 2/Lab11(Viterbi-PCFG,Machine-translation)/train_translator.py +0 -83
- noshot/data/ML TS XAI/NLP/NLP 2/Lab12(Information-Extraction)/Information_Extraction.ipynb +0 -201
- noshot/data/ML TS XAI/NLP/NLP 3/Backtrack-without-Verbitri.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 3/Backward-Procedure.ipynb +0 -597
- noshot/data/ML TS XAI/NLP/NLP 3/Bag_of.ipynb +0 -1422
- noshot/data/ML TS XAI/NLP/NLP 3/CYK-algorithm.ipynb +0 -1067
- noshot/data/ML TS XAI/NLP/NLP 3/Forward-Procedure.ipynb +0 -477
- noshot/data/ML TS XAI/NLP/NLP 3/LSTM.ipynb +0 -1290
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 10 - Text generator using LSTM.ipynb +0 -1461
- noshot/data/ML TS XAI/NLP/NLP 3/Lab 11 NMT.ipynb +0 -2307
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-4.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/NLP-LAB-5.ipynb +0 -216
- noshot/data/ML TS XAI/NLP/NLP 3/abc.txt +0 -6
- noshot/data/ML TS XAI/NLP/NLP 3/ex-1-nltk.ipynb +0 -711
- noshot/data/ML TS XAI/NLP/NLP 3/ex-2-nlp.ipynb +0 -267
- noshot/data/ML TS XAI/NLP/NLP 3/exp8&9.ipynb +0 -305
- noshot/data/ML TS XAI/NLP/NLP 3/hind.ipynb +0 -287
- noshot/data/ML TS XAI/NLP/NLP 3/lab66.ipynb +0 -752
- noshot/data/ML TS XAI/NLP/NLP 3/leb_3.ipynb +0 -612
- noshot/data/ML TS XAI/NLP/NLP 3/naive_bayes_classifier.pkl +0 -0
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_1.ipynb +0 -3008
- noshot/data/ML TS XAI/NLP/NLP 3/nlp_leb_2.ipynb +0 -3095
- noshot/data/ML TS XAI/NLP/NLP 3/nlplab-9.ipynb +0 -295
- noshot/data/ML TS XAI/NLP/NLP 3/nltk-ex-4.ipynb +0 -506
- noshot/data/ML TS XAI/NLP/NLP 3/text1.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/text2.txt +0 -8
- noshot/data/ML TS XAI/NLP/NLP 3/text3.txt +0 -48
- noshot/data/ML TS XAI/NLP/NLP 3/translation-rnn.ipynb +0 -812
- noshot/data/ML TS XAI/NLP/NLP 3/word2vector.ipynb +0 -173
- noshot/data/ML TS XAI/NLP/NLP 4/Backward Procedure Algorithm.ipynb +0 -179
- noshot/data/ML TS XAI/NLP/NLP 4/Chi Square Collocation.ipynb +0 -208
- noshot/data/ML TS XAI/NLP/NLP 4/Collocation (T test).ipynb +0 -188
- noshot/data/ML TS XAI/NLP/NLP 4/Experiment 1.ipynb +0 -437
- noshot/data/ML TS XAI/NLP/NLP 4/Forward Procedure Algorithm.ipynb +0 -132
- noshot/data/ML TS XAI/NLP/NLP 4/Hindle Rooth.ipynb +0 -414
- noshot/data/ML TS XAI/NLP/NLP 4/MachineTranslation.ipynb +0 -368
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using MLPClassifier.ipynb +0 -86
- noshot/data/ML TS XAI/NLP/NLP 4/Multi Layer Perceptron using Tensorflow.ipynb +0 -112
- noshot/data/ML TS XAI/NLP/NLP 4/PCFG Inside Probability.ipynb +0 -451
- noshot/data/ML TS XAI/NLP/NLP 4/Text Generation using LSTM.ipynb +0 -297
- noshot/data/ML TS XAI/NLP/NLP 4/Viterbi.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 4/Word Sense Disambiguation.ipynb +0 -335
- noshot/data/ML TS XAI/NLP/NLP 5/10.Text Generation using LSTM.ipynb +0 -316
- noshot/data/ML TS XAI/NLP/NLP 5/11.Machine Translation.ipynb +0 -868
- noshot/data/ML TS XAI/NLP/NLP 5/2.T and Chi2 Test.ipynb +0 -204
- noshot/data/ML TS XAI/NLP/NLP 5/3.Word Sense Diambiguation.ipynb +0 -234
- noshot/data/ML TS XAI/NLP/NLP 5/4.Hinddle and Rooth.ipynb +0 -128
- noshot/data/ML TS XAI/NLP/NLP 5/5.Forward and Backward.ipynb +0 -149
- noshot/data/ML TS XAI/NLP/NLP 5/6.Viterbi.ipynb +0 -111
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG Parse Tree.ipynb +0 -134
- noshot/data/ML TS XAI/NLP/NLP 5/7.PCFG using cyk.ipynb +0 -101
- noshot/data/ML TS XAI/NLP/NLP 5/8.Bag of words and TF-IDF.ipynb +0 -310
- noshot/data/ML TS XAI/NLP/NLP 5/9.Word2Vector.ipynb +0 -78
- noshot/data/ML TS XAI/NLP/NLP 5/NLP ALL In One.ipynb +0 -2619
- noshot/data/ML TS XAI/NLP/NLP 5/sample1.txt +0 -15
- noshot/data/ML TS XAI/NLP/NLP 5/sample2.txt +0 -4
- noshot/data/ML TS XAI/NLP/NLP 5/word2vec_model.bin +0 -0
- noshot/data/ML TS XAI/NLP/NLP 6/1. Tokenize, Tagging, NER, Parse Tree.ipynb +0 -312
- noshot/data/ML TS XAI/NLP/NLP 6/2. T Test and Chi2 Test.ipynb +0 -185
- noshot/data/ML TS XAI/NLP/NLP 6/3. Naive Bayes WSD.ipynb +0 -199
- noshot/data/ML TS XAI/NLP/NLP 6/4. Hinddle and Rooth.ipynb +0 -151
- noshot/data/ML TS XAI/NLP/NLP 6/5 and 6 FWD, BWD, Viterbi.ipynb +0 -164
- noshot/data/ML TS XAI/NLP/NLP 6/7. PCFG using CYK.ipynb +0 -383
- noshot/data/ML TS XAI/NLP/NLP 6/8. BOW and TF-IDF.ipynb +0 -252
- noshot/data/ML TS XAI/Ubuntu CN Lab.iso +0 -0
- noshot-0.1.6.dist-info/RECORD +0 -216
- {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/LICENSE.txt +0 -0
- {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/WHEEL +0 -0
- {noshot-0.1.6.dist-info → noshot-0.1.8.dist-info}/top_level.txt +0 -0
@@ -1,480 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": 2,
|
6
|
-
"id": "ab178016",
|
7
|
-
"metadata": {
|
8
|
-
"id": "ab178016"
|
9
|
-
},
|
10
|
-
"outputs": [
|
11
|
-
{
|
12
|
-
"name": "stderr",
|
13
|
-
"output_type": "stream",
|
14
|
-
"text": [
|
15
|
-
"2023-11-01 13:49:31.029384: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.\n",
|
16
|
-
"2023-11-01 13:49:33.145555: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:9342] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
|
17
|
-
"2023-11-01 13:49:33.145680: E tensorflow/compiler/xla/stream_executor/cuda/cuda_fft.cc:609] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
|
18
|
-
"2023-11-01 13:49:33.151894: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:1518] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
|
19
|
-
"2023-11-01 13:49:34.451107: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.\n",
|
20
|
-
"2023-11-01 13:49:34.453035: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
|
21
|
-
"To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
|
22
|
-
"2023-11-01 13:49:39.145697: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n"
|
23
|
-
]
|
24
|
-
}
|
25
|
-
],
|
26
|
-
"source": [
|
27
|
-
"# keras module for building LSTM\n",
|
28
|
-
"from keras_preprocessing.sequence import pad_sequences\n",
|
29
|
-
"from keras.layers import Embedding, LSTM, Dense, Dropout\n",
|
30
|
-
"from keras.preprocessing.text import Tokenizer\n",
|
31
|
-
"from keras.callbacks import EarlyStopping\n",
|
32
|
-
"from keras.models import Sequential\n",
|
33
|
-
"import keras.utils as ku\n",
|
34
|
-
"\n",
|
35
|
-
"# set seeds for reproducability\n",
|
36
|
-
"import tensorflow\n",
|
37
|
-
"tensorflow.random.set_seed(2)\n",
|
38
|
-
"\n",
|
39
|
-
"import pandas as pd\n",
|
40
|
-
"import numpy as np\n",
|
41
|
-
"import string, os\n",
|
42
|
-
"\n",
|
43
|
-
"import warnings\n",
|
44
|
-
"warnings.filterwarnings(\"ignore\")\n",
|
45
|
-
"warnings.simplefilter(action='ignore', category=FutureWarning)"
|
46
|
-
]
|
47
|
-
},
|
48
|
-
{
|
49
|
-
"cell_type": "code",
|
50
|
-
"execution_count": 3,
|
51
|
-
"id": "c1475d1b",
|
52
|
-
"metadata": {
|
53
|
-
"id": "c1475d1b",
|
54
|
-
"outputId": "6b1e36ce-a1e5-45a9-e117-31e18b86c6d7"
|
55
|
-
},
|
56
|
-
"outputs": [
|
57
|
-
{
|
58
|
-
"data": {
|
59
|
-
"text/plain": [
|
60
|
-
"831"
|
61
|
-
]
|
62
|
-
},
|
63
|
-
"execution_count": 3,
|
64
|
-
"metadata": {},
|
65
|
-
"output_type": "execute_result"
|
66
|
-
}
|
67
|
-
],
|
68
|
-
"source": [
|
69
|
-
"\n",
|
70
|
-
"all_headlines = []\n",
|
71
|
-
"article_df = pd.read_csv('ArticlesApril2017.csv')\n",
|
72
|
-
"all_headlines.extend(list(article_df.headline.values))\n",
|
73
|
-
"all_headlines = [h for h in all_headlines if h != \"Unknown\"]\n",
|
74
|
-
"len(all_headlines)\n"
|
75
|
-
]
|
76
|
-
},
|
77
|
-
{
|
78
|
-
"cell_type": "code",
|
79
|
-
"execution_count": 4,
|
80
|
-
"id": "d272dc69",
|
81
|
-
"metadata": {
|
82
|
-
"id": "d272dc69",
|
83
|
-
"outputId": "288dee58-7dcc-4ea4-b0aa-c71438b485be"
|
84
|
-
},
|
85
|
-
"outputs": [
|
86
|
-
{
|
87
|
-
"data": {
|
88
|
-
"text/plain": [
|
89
|
-
"['finding an expansive view of a forgotten people in niger',\n",
|
90
|
-
" 'and now the dreaded trump curse',\n",
|
91
|
-
" 'venezuelas descent into dictatorship',\n",
|
92
|
-
" 'stain permeates basketball blue blood',\n",
|
93
|
-
" 'taking things for granted',\n",
|
94
|
-
" 'the caged beast awakens',\n",
|
95
|
-
" 'an everunfolding story',\n",
|
96
|
-
" 'oreilly thrives as settlements add up',\n",
|
97
|
-
" 'mouse infestation',\n",
|
98
|
-
" 'divide in gop now threatens trump tax plan']"
|
99
|
-
]
|
100
|
-
},
|
101
|
-
"execution_count": 4,
|
102
|
-
"metadata": {},
|
103
|
-
"output_type": "execute_result"
|
104
|
-
}
|
105
|
-
],
|
106
|
-
"source": [
|
107
|
-
"def clean_text(txt):\n",
|
108
|
-
" txt = \"\".join(v for v in txt if v not in string.punctuation).lower()\n",
|
109
|
-
" txt = txt.encode(\"utf8\").decode(\"ascii\",'ignore')\n",
|
110
|
-
" return txt\n",
|
111
|
-
"\n",
|
112
|
-
"corpus = [clean_text(x) for x in all_headlines]\n",
|
113
|
-
"corpus[:10]\n"
|
114
|
-
]
|
115
|
-
},
|
116
|
-
{
|
117
|
-
"cell_type": "code",
|
118
|
-
"execution_count": 5,
|
119
|
-
"id": "d5f40739",
|
120
|
-
"metadata": {
|
121
|
-
"id": "d5f40739",
|
122
|
-
"outputId": "336a5531-034e-47c9-885e-70bf9998a915"
|
123
|
-
},
|
124
|
-
"outputs": [
|
125
|
-
{
|
126
|
-
"data": {
|
127
|
-
"text/plain": [
|
128
|
-
"[[169, 17],\n",
|
129
|
-
" [169, 17, 665],\n",
|
130
|
-
" [169, 17, 665, 367],\n",
|
131
|
-
" [169, 17, 665, 367, 4],\n",
|
132
|
-
" [169, 17, 665, 367, 4, 2],\n",
|
133
|
-
" [169, 17, 665, 367, 4, 2, 666],\n",
|
134
|
-
" [169, 17, 665, 367, 4, 2, 666, 170],\n",
|
135
|
-
" [169, 17, 665, 367, 4, 2, 666, 170, 5],\n",
|
136
|
-
" [169, 17, 665, 367, 4, 2, 666, 170, 5, 667],\n",
|
137
|
-
" [6, 80]]"
|
138
|
-
]
|
139
|
-
},
|
140
|
-
"execution_count": 5,
|
141
|
-
"metadata": {},
|
142
|
-
"output_type": "execute_result"
|
143
|
-
}
|
144
|
-
],
|
145
|
-
"source": [
|
146
|
-
"tokenizer = Tokenizer()\n",
|
147
|
-
"\n",
|
148
|
-
"def get_sequence_of_tokens(corpus):\n",
|
149
|
-
" ## tokenization\n",
|
150
|
-
" tokenizer.fit_on_texts(corpus)\n",
|
151
|
-
" total_words = len(tokenizer.word_index) + 1\n",
|
152
|
-
"\n",
|
153
|
-
" ## convert data to sequence of tokens\n",
|
154
|
-
" input_sequences = []\n",
|
155
|
-
" for line in corpus:\n",
|
156
|
-
" token_list = tokenizer.texts_to_sequences([line])[0]\n",
|
157
|
-
" for i in range(1, len(token_list)):\n",
|
158
|
-
" n_gram_sequence = token_list[:i+1]\n",
|
159
|
-
" input_sequences.append(n_gram_sequence)\n",
|
160
|
-
" return input_sequences, total_words\n",
|
161
|
-
"\n",
|
162
|
-
"inp_sequences, total_words = get_sequence_of_tokens(corpus)\n",
|
163
|
-
"inp_sequences[:10]\n"
|
164
|
-
]
|
165
|
-
},
|
166
|
-
{
|
167
|
-
"cell_type": "code",
|
168
|
-
"execution_count": 6,
|
169
|
-
"id": "c4c05b1d",
|
170
|
-
"metadata": {
|
171
|
-
"id": "c4c05b1d"
|
172
|
-
},
|
173
|
-
"outputs": [],
|
174
|
-
"source": [
|
175
|
-
"def generate_padded_sequences(input_sequences):\n",
|
176
|
-
" max_sequence_len = max([len(x) for x in input_sequences])\n",
|
177
|
-
" input_sequences = np.array(pad_sequences(input_sequences, maxlen=max_sequence_len, padding='pre'))\n",
|
178
|
-
"\n",
|
179
|
-
" predictors, label = input_sequences[:,:-1],input_sequences[:,-1]\n",
|
180
|
-
" label = ku.to_categorical(label, num_classes=total_words)\n",
|
181
|
-
" return predictors, label, max_sequence_len\n",
|
182
|
-
"\n",
|
183
|
-
"predictors, label, max_sequence_len = generate_padded_sequences(inp_sequences)\n"
|
184
|
-
]
|
185
|
-
},
|
186
|
-
{
|
187
|
-
"cell_type": "code",
|
188
|
-
"execution_count": 7,
|
189
|
-
"id": "f8ad0539",
|
190
|
-
"metadata": {
|
191
|
-
"id": "f8ad0539",
|
192
|
-
"outputId": "42efafee-02b8-46e6-ef00-91a7629ceebe"
|
193
|
-
},
|
194
|
-
"outputs": [
|
195
|
-
{
|
196
|
-
"name": "stdout",
|
197
|
-
"output_type": "stream",
|
198
|
-
"text": [
|
199
|
-
"Model: \"sequential\"\n",
|
200
|
-
"_________________________________________________________________\n",
|
201
|
-
" Layer (type) Output Shape Param # \n",
|
202
|
-
"=================================================================\n",
|
203
|
-
" embedding (Embedding) (None, 18, 10) 24220 \n",
|
204
|
-
" \n",
|
205
|
-
" lstm (LSTM) (None, 100) 44400 \n",
|
206
|
-
" \n",
|
207
|
-
" dropout (Dropout) (None, 100) 0 \n",
|
208
|
-
" \n",
|
209
|
-
" dense (Dense) (None, 2422) 244622 \n",
|
210
|
-
" \n",
|
211
|
-
"=================================================================\n",
|
212
|
-
"Total params: 313242 (1.19 MB)\n",
|
213
|
-
"Trainable params: 313242 (1.19 MB)\n",
|
214
|
-
"Non-trainable params: 0 (0.00 Byte)\n",
|
215
|
-
"_________________________________________________________________\n"
|
216
|
-
]
|
217
|
-
}
|
218
|
-
],
|
219
|
-
"source": [
|
220
|
-
"def create_model(max_sequence_len, total_words):\n",
|
221
|
-
" input_len = max_sequence_len - 1\n",
|
222
|
-
" model = Sequential()\n",
|
223
|
-
"\n",
|
224
|
-
" # Add Input Embedding Layer\n",
|
225
|
-
" model.add(Embedding(total_words, 10, input_length=input_len))\n",
|
226
|
-
"\n",
|
227
|
-
" # Add Hidden Layer 1 - LSTM Layer\n",
|
228
|
-
" model.add(LSTM(100))\n",
|
229
|
-
" model.add(Dropout(0.1))\n",
|
230
|
-
"\n",
|
231
|
-
" # Add Output Layer\n",
|
232
|
-
" model.add(Dense(total_words, activation='softmax'))\n",
|
233
|
-
"\n",
|
234
|
-
" model.compile(loss='categorical_crossentropy', optimizer='adam')\n",
|
235
|
-
"\n",
|
236
|
-
" return model\n",
|
237
|
-
"\n",
|
238
|
-
"model = create_model(max_sequence_len, total_words)\n",
|
239
|
-
"model.summary()\n"
|
240
|
-
]
|
241
|
-
},
|
242
|
-
{
|
243
|
-
"cell_type": "code",
|
244
|
-
"execution_count": 8,
|
245
|
-
"id": "a1fe10c4",
|
246
|
-
"metadata": {
|
247
|
-
"id": "a1fe10c4",
|
248
|
-
"outputId": "01dab848-fc9a-43f6-ba9f-019187b12b96"
|
249
|
-
},
|
250
|
-
"outputs": [
|
251
|
-
{
|
252
|
-
"name": "stdout",
|
253
|
-
"output_type": "stream",
|
254
|
-
"text": [
|
255
|
-
"Epoch 1/100\n",
|
256
|
-
"Epoch 2/100\n",
|
257
|
-
"Epoch 3/100\n",
|
258
|
-
"Epoch 4/100\n",
|
259
|
-
"Epoch 5/100\n",
|
260
|
-
"Epoch 6/100\n",
|
261
|
-
"Epoch 7/100\n",
|
262
|
-
"Epoch 8/100\n",
|
263
|
-
"Epoch 9/100\n",
|
264
|
-
"Epoch 10/100\n",
|
265
|
-
"Epoch 11/100\n",
|
266
|
-
"Epoch 12/100\n",
|
267
|
-
"Epoch 13/100\n",
|
268
|
-
"Epoch 14/100\n",
|
269
|
-
"Epoch 15/100\n",
|
270
|
-
"Epoch 16/100\n",
|
271
|
-
"Epoch 17/100\n",
|
272
|
-
"Epoch 18/100\n",
|
273
|
-
"Epoch 19/100\n",
|
274
|
-
"Epoch 20/100\n",
|
275
|
-
"Epoch 21/100\n",
|
276
|
-
"Epoch 22/100\n",
|
277
|
-
"Epoch 23/100\n",
|
278
|
-
"Epoch 24/100\n",
|
279
|
-
"Epoch 25/100\n",
|
280
|
-
"Epoch 26/100\n",
|
281
|
-
"Epoch 27/100\n",
|
282
|
-
"Epoch 28/100\n",
|
283
|
-
"Epoch 29/100\n",
|
284
|
-
"Epoch 30/100\n",
|
285
|
-
"Epoch 31/100\n",
|
286
|
-
"Epoch 32/100\n",
|
287
|
-
"Epoch 33/100\n",
|
288
|
-
"Epoch 34/100\n",
|
289
|
-
"Epoch 35/100\n",
|
290
|
-
"Epoch 36/100\n",
|
291
|
-
"Epoch 37/100\n",
|
292
|
-
"Epoch 38/100\n",
|
293
|
-
"Epoch 39/100\n",
|
294
|
-
"Epoch 40/100\n",
|
295
|
-
"Epoch 41/100\n",
|
296
|
-
"Epoch 42/100\n",
|
297
|
-
"Epoch 43/100\n",
|
298
|
-
"Epoch 44/100\n",
|
299
|
-
"Epoch 45/100\n",
|
300
|
-
"Epoch 46/100\n",
|
301
|
-
"Epoch 47/100\n",
|
302
|
-
"Epoch 48/100\n",
|
303
|
-
"Epoch 49/100\n",
|
304
|
-
"Epoch 50/100\n",
|
305
|
-
"Epoch 51/100\n",
|
306
|
-
"Epoch 52/100\n",
|
307
|
-
"Epoch 53/100\n",
|
308
|
-
"Epoch 54/100\n",
|
309
|
-
"Epoch 55/100\n",
|
310
|
-
"Epoch 56/100\n",
|
311
|
-
"Epoch 57/100\n",
|
312
|
-
"Epoch 58/100\n",
|
313
|
-
"Epoch 59/100\n",
|
314
|
-
"Epoch 60/100\n",
|
315
|
-
"Epoch 61/100\n",
|
316
|
-
"Epoch 62/100\n",
|
317
|
-
"Epoch 63/100\n",
|
318
|
-
"Epoch 64/100\n",
|
319
|
-
"Epoch 65/100\n",
|
320
|
-
"Epoch 66/100\n",
|
321
|
-
"Epoch 67/100\n",
|
322
|
-
"Epoch 68/100\n",
|
323
|
-
"Epoch 69/100\n",
|
324
|
-
"Epoch 70/100\n",
|
325
|
-
"Epoch 71/100\n",
|
326
|
-
"Epoch 72/100\n",
|
327
|
-
"Epoch 73/100\n",
|
328
|
-
"Epoch 74/100\n",
|
329
|
-
"Epoch 75/100\n",
|
330
|
-
"Epoch 76/100\n",
|
331
|
-
"Epoch 77/100\n",
|
332
|
-
"Epoch 78/100\n",
|
333
|
-
"Epoch 79/100\n",
|
334
|
-
"Epoch 80/100\n",
|
335
|
-
"Epoch 81/100\n",
|
336
|
-
"Epoch 82/100\n",
|
337
|
-
"Epoch 83/100\n",
|
338
|
-
"Epoch 84/100\n",
|
339
|
-
"Epoch 85/100\n",
|
340
|
-
"Epoch 86/100\n",
|
341
|
-
"Epoch 87/100\n",
|
342
|
-
"Epoch 88/100\n",
|
343
|
-
"Epoch 89/100\n",
|
344
|
-
"Epoch 90/100\n",
|
345
|
-
"Epoch 91/100\n",
|
346
|
-
"Epoch 92/100\n",
|
347
|
-
"Epoch 93/100\n",
|
348
|
-
"Epoch 94/100\n",
|
349
|
-
"Epoch 95/100\n",
|
350
|
-
"Epoch 96/100\n",
|
351
|
-
"Epoch 97/100\n",
|
352
|
-
"Epoch 98/100\n",
|
353
|
-
"Epoch 99/100\n",
|
354
|
-
"Epoch 100/100\n"
|
355
|
-
]
|
356
|
-
},
|
357
|
-
{
|
358
|
-
"data": {
|
359
|
-
"text/plain": [
|
360
|
-
"<keras.src.callbacks.History at 0x7f26142dd480>"
|
361
|
-
]
|
362
|
-
},
|
363
|
-
"execution_count": 8,
|
364
|
-
"metadata": {},
|
365
|
-
"output_type": "execute_result"
|
366
|
-
}
|
367
|
-
],
|
368
|
-
"source": [
|
369
|
-
"model.fit(predictors, label, epochs=100, verbose=5)"
|
370
|
-
]
|
371
|
-
},
|
372
|
-
{
|
373
|
-
"cell_type": "code",
|
374
|
-
"execution_count": 9,
|
375
|
-
"id": "a76a078d",
|
376
|
-
"metadata": {
|
377
|
-
"id": "a76a078d"
|
378
|
-
},
|
379
|
-
"outputs": [],
|
380
|
-
"source": [
|
381
|
-
"def generate_text(seed_text, next_words, model, max_sequence_len):\n",
|
382
|
-
" for _ in range(next_words):\n",
|
383
|
-
" token_list = tokenizer.texts_to_sequences([seed_text])[0]\n",
|
384
|
-
" token_list = pad_sequences([token_list], maxlen=max_sequence_len-1, padding='pre')\n",
|
385
|
-
"# predicted = model.predict_classes(token_list, verbose=0)\n",
|
386
|
-
" predict_x=model.predict(token_list)\n",
|
387
|
-
" classes_x=np.argmax(predict_x,axis=1)\n",
|
388
|
-
"\n",
|
389
|
-
" output_word = \"\"\n",
|
390
|
-
" for word,index in tokenizer.word_index.items():\n",
|
391
|
-
" if index == classes_x:\n",
|
392
|
-
" output_word = word\n",
|
393
|
-
" break\n",
|
394
|
-
" seed_text += \" \"+output_word\n",
|
395
|
-
" return seed_text.title()\n"
|
396
|
-
]
|
397
|
-
},
|
398
|
-
{
|
399
|
-
"cell_type": "code",
|
400
|
-
"execution_count": 10,
|
401
|
-
"id": "d1c3679e",
|
402
|
-
"metadata": {
|
403
|
-
"id": "d1c3679e",
|
404
|
-
"outputId": "4814b0be-d18c-40bc-e827-6f3d119b2ea8"
|
405
|
-
},
|
406
|
-
"outputs": [
|
407
|
-
{
|
408
|
-
"name": "stdout",
|
409
|
-
"output_type": "stream",
|
410
|
-
"text": [
|
411
|
-
"1/1 [==============================] - 0s 380ms/step\n",
|
412
|
-
"1/1 [==============================] - 0s 15ms/step\n",
|
413
|
-
"1/1 [==============================] - 0s 14ms/step\n",
|
414
|
-
"1/1 [==============================] - 0s 14ms/step\n",
|
415
|
-
"1/1 [==============================] - 0s 14ms/step\n",
|
416
|
-
"United States Erode Shorelines Tasmania Shows What\n",
|
417
|
-
"1/1 [==============================] - 0s 14ms/step\n",
|
418
|
-
"1/1 [==============================] - 0s 15ms/step\n",
|
419
|
-
"1/1 [==============================] - 0s 15ms/step\n",
|
420
|
-
"1/1 [==============================] - 0s 14ms/step\n",
|
421
|
-
"Preident Trump Is Wimping Out On\n",
|
422
|
-
"1/1 [==============================] - 0s 14ms/step\n",
|
423
|
-
"1/1 [==============================] - 0s 14ms/step\n",
|
424
|
-
"1/1 [==============================] - 0s 14ms/step\n",
|
425
|
-
"1/1 [==============================] - 0s 15ms/step\n",
|
426
|
-
"Donald Trump Is May So Contagious\n",
|
427
|
-
"1/1 [==============================] - 0s 16ms/step\n",
|
428
|
-
"1/1 [==============================] - 0s 16ms/step\n",
|
429
|
-
"1/1 [==============================] - 0s 15ms/step\n",
|
430
|
-
"1/1 [==============================] - 0s 14ms/step\n",
|
431
|
-
"India And China Station Rail Mishap Spurs\n",
|
432
|
-
"1/1 [==============================] - 0s 15ms/step\n",
|
433
|
-
"1/1 [==============================] - 0s 15ms/step\n",
|
434
|
-
"1/1 [==============================] - 0s 16ms/step\n",
|
435
|
-
"1/1 [==============================] - 0s 15ms/step\n",
|
436
|
-
"New York Today A Holocaust Survivors\n",
|
437
|
-
"1/1 [==============================] - 0s 15ms/step\n",
|
438
|
-
"1/1 [==============================] - 0s 14ms/step\n",
|
439
|
-
"1/1 [==============================] - 0s 14ms/step\n",
|
440
|
-
"1/1 [==============================] - 0s 15ms/step\n",
|
441
|
-
"1/1 [==============================] - 0s 15ms/step\n",
|
442
|
-
"Science And Technology Knocking In The Original News\n"
|
443
|
-
]
|
444
|
-
}
|
445
|
-
],
|
446
|
-
"source": [
|
447
|
-
"print (generate_text(\"united states\", 5, model, max_sequence_len))\n",
|
448
|
-
"print (generate_text(\"preident trump\", 4, model, max_sequence_len))\n",
|
449
|
-
"print (generate_text(\"donald trump\", 4, model, max_sequence_len))\n",
|
450
|
-
"print (generate_text(\"india and china\", 4, model, max_sequence_len))\n",
|
451
|
-
"print (generate_text(\"new york\", 4, model, max_sequence_len))\n",
|
452
|
-
"print (generate_text(\"science and technology\", 5, model, max_sequence_len))"
|
453
|
-
]
|
454
|
-
}
|
455
|
-
],
|
456
|
-
"metadata": {
|
457
|
-
"colab": {
|
458
|
-
"provenance": []
|
459
|
-
},
|
460
|
-
"kernelspec": {
|
461
|
-
"display_name": "Python 3 (ipykernel)",
|
462
|
-
"language": "python",
|
463
|
-
"name": "python3"
|
464
|
-
},
|
465
|
-
"language_info": {
|
466
|
-
"codemirror_mode": {
|
467
|
-
"name": "ipython",
|
468
|
-
"version": 3
|
469
|
-
},
|
470
|
-
"file_extension": ".py",
|
471
|
-
"mimetype": "text/x-python",
|
472
|
-
"name": "python",
|
473
|
-
"nbconvert_exporter": "python",
|
474
|
-
"pygments_lexer": "ipython3",
|
475
|
-
"version": "3.10.12"
|
476
|
-
}
|
477
|
-
},
|
478
|
-
"nbformat": 4,
|
479
|
-
"nbformat_minor": 5
|
480
|
-
}
|