monai-weekly 1.5.dev2506__py3-none-any.whl → 1.5.dev2507__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (776) hide show
  1. monai/__init__.py +1 -1
  2. monai/_version.py +3 -3
  3. monai/apps/auto3dseg/transforms.py +1 -4
  4. monai/data/utils.py +6 -13
  5. monai/inferers/utils.py +1 -2
  6. monai/losses/dice.py +2 -14
  7. monai/losses/ds_loss.py +1 -3
  8. monai/networks/layers/simplelayers.py +2 -14
  9. monai/networks/utils.py +4 -16
  10. monai/transforms/compose.py +28 -11
  11. monai/transforms/croppad/array.py +1 -6
  12. monai/transforms/io/array.py +0 -1
  13. monai/transforms/transform.py +15 -6
  14. monai/transforms/utils.py +1 -2
  15. monai/utils/tf32.py +0 -10
  16. monai/visualize/class_activation_maps.py +5 -8
  17. {monai_weekly-1.5.dev2506.dist-info → monai_weekly-1.5.dev2507.dist-info}/METADATA +2 -2
  18. monai_weekly-1.5.dev2507.dist-info/RECORD +1181 -0
  19. {monai_weekly-1.5.dev2506.dist-info → monai_weekly-1.5.dev2507.dist-info}/top_level.txt +1 -0
  20. tests/apps/__init__.py +10 -0
  21. tests/apps/deepedit/__init__.py +10 -0
  22. tests/apps/deepedit/test_deepedit_transforms.py +314 -0
  23. tests/apps/deepgrow/__init__.py +10 -0
  24. tests/apps/deepgrow/test_deepgrow_dataset.py +109 -0
  25. tests/apps/deepgrow/transforms/__init__.py +10 -0
  26. tests/apps/deepgrow/transforms/test_deepgrow_interaction.py +97 -0
  27. tests/apps/deepgrow/transforms/test_deepgrow_transforms.py +556 -0
  28. tests/apps/detection/__init__.py +10 -0
  29. tests/apps/detection/metrics/__init__.py +10 -0
  30. tests/apps/detection/metrics/test_detection_coco_metrics.py +69 -0
  31. tests/apps/detection/networks/__init__.py +10 -0
  32. tests/apps/detection/networks/test_retinanet.py +210 -0
  33. tests/apps/detection/networks/test_retinanet_detector.py +203 -0
  34. tests/apps/detection/test_box_transform.py +370 -0
  35. tests/apps/detection/utils/__init__.py +10 -0
  36. tests/apps/detection/utils/test_anchor_box.py +88 -0
  37. tests/apps/detection/utils/test_atss_box_matcher.py +46 -0
  38. tests/apps/detection/utils/test_box_coder.py +43 -0
  39. tests/apps/detection/utils/test_detector_boxselector.py +67 -0
  40. tests/apps/detection/utils/test_detector_utils.py +96 -0
  41. tests/apps/detection/utils/test_hardnegsampler.py +54 -0
  42. tests/apps/nuclick/__init__.py +10 -0
  43. tests/apps/nuclick/test_nuclick_transforms.py +259 -0
  44. tests/apps/pathology/__init__.py +10 -0
  45. tests/apps/pathology/handlers/__init__.py +10 -0
  46. tests/apps/pathology/handlers/test_from_engine_hovernet.py +38 -0
  47. tests/apps/pathology/test_lesion_froc.py +333 -0
  48. tests/apps/pathology/test_pathology_prob_nms.py +55 -0
  49. tests/apps/pathology/test_prepare_batch_hovernet.py +70 -0
  50. tests/apps/pathology/test_sliding_window_hovernet_inference.py +303 -0
  51. tests/apps/pathology/transforms/__init__.py +10 -0
  52. tests/apps/pathology/transforms/post/__init__.py +10 -0
  53. tests/apps/pathology/transforms/post/test_generate_distance_map.py +51 -0
  54. tests/apps/pathology/transforms/post/test_generate_distance_mapd.py +70 -0
  55. tests/apps/pathology/transforms/post/test_generate_instance_border.py +49 -0
  56. tests/apps/pathology/transforms/post/test_generate_instance_borderd.py +59 -0
  57. tests/apps/pathology/transforms/post/test_generate_instance_centroid.py +53 -0
  58. tests/apps/pathology/transforms/post/test_generate_instance_centroidd.py +56 -0
  59. tests/apps/pathology/transforms/post/test_generate_instance_contour.py +58 -0
  60. tests/apps/pathology/transforms/post/test_generate_instance_contourd.py +61 -0
  61. tests/apps/pathology/transforms/post/test_generate_instance_type.py +51 -0
  62. tests/apps/pathology/transforms/post/test_generate_instance_typed.py +53 -0
  63. tests/apps/pathology/transforms/post/test_generate_succinct_contour.py +55 -0
  64. tests/apps/pathology/transforms/post/test_generate_succinct_contourd.py +57 -0
  65. tests/apps/pathology/transforms/post/test_generate_watershed_markers.py +53 -0
  66. tests/apps/pathology/transforms/post/test_generate_watershed_markersd.py +83 -0
  67. tests/apps/pathology/transforms/post/test_generate_watershed_mask.py +77 -0
  68. tests/apps/pathology/transforms/post/test_generate_watershed_maskd.py +77 -0
  69. tests/apps/pathology/transforms/post/test_hovernet_instance_map_post_processing.py +61 -0
  70. tests/apps/pathology/transforms/post/test_hovernet_instance_map_post_processingd.py +66 -0
  71. tests/apps/pathology/transforms/post/test_hovernet_nuclear_type_post_processing.py +66 -0
  72. tests/apps/pathology/transforms/post/test_watershed.py +60 -0
  73. tests/apps/pathology/transforms/post/test_watershedd.py +70 -0
  74. tests/apps/pathology/transforms/test_pathology_he_stain.py +230 -0
  75. tests/apps/pathology/transforms/test_pathology_he_stain_dict.py +225 -0
  76. tests/apps/reconstruction/__init__.py +10 -0
  77. tests/apps/reconstruction/nets/__init__.py +10 -0
  78. tests/apps/reconstruction/nets/test_recon_net_utils.py +82 -0
  79. tests/apps/reconstruction/test_complex_utils.py +77 -0
  80. tests/apps/reconstruction/test_fastmri_reader.py +82 -0
  81. tests/apps/reconstruction/test_mri_utils.py +37 -0
  82. tests/apps/reconstruction/transforms/__init__.py +10 -0
  83. tests/apps/reconstruction/transforms/test_kspace_mask.py +50 -0
  84. tests/apps/reconstruction/transforms/test_reference_based_normalize_intensity.py +77 -0
  85. tests/apps/reconstruction/transforms/test_reference_based_spatial_cropd.py +57 -0
  86. tests/apps/test_auto3dseg_bundlegen.py +156 -0
  87. tests/apps/test_check_hash.py +53 -0
  88. tests/apps/test_cross_validation.py +74 -0
  89. tests/apps/test_decathlondataset.py +93 -0
  90. tests/apps/test_download_and_extract.py +70 -0
  91. tests/apps/test_download_url_yandex.py +45 -0
  92. tests/apps/test_mednistdataset.py +72 -0
  93. tests/apps/test_mmar_download.py +154 -0
  94. tests/apps/test_tciadataset.py +123 -0
  95. tests/apps/vista3d/__init__.py +10 -0
  96. tests/apps/vista3d/test_point_based_window_inferer.py +77 -0
  97. tests/apps/vista3d/test_vista3d_sampler.py +100 -0
  98. tests/apps/vista3d/test_vista3d_transforms.py +94 -0
  99. tests/bundle/__init__.py +10 -0
  100. tests/bundle/test_bundle_ckpt_export.py +107 -0
  101. tests/bundle/test_bundle_download.py +435 -0
  102. tests/bundle/test_bundle_get_data.py +94 -0
  103. tests/bundle/test_bundle_push_to_hf_hub.py +41 -0
  104. tests/bundle/test_bundle_trt_export.py +147 -0
  105. tests/bundle/test_bundle_utils.py +149 -0
  106. tests/bundle/test_bundle_verify_metadata.py +66 -0
  107. tests/bundle/test_bundle_verify_net.py +76 -0
  108. tests/bundle/test_bundle_workflow.py +272 -0
  109. tests/bundle/test_component_locator.py +38 -0
  110. tests/bundle/test_config_item.py +138 -0
  111. tests/bundle/test_config_parser.py +392 -0
  112. tests/bundle/test_reference_resolver.py +114 -0
  113. tests/config/__init__.py +10 -0
  114. tests/config/test_cv2_dist.py +53 -0
  115. tests/engines/__init__.py +10 -0
  116. tests/engines/test_ensemble_evaluator.py +94 -0
  117. tests/engines/test_prepare_batch_default.py +76 -0
  118. tests/engines/test_prepare_batch_default_dist.py +76 -0
  119. tests/engines/test_prepare_batch_diffusion.py +104 -0
  120. tests/engines/test_prepare_batch_extra_input.py +80 -0
  121. tests/fl/__init__.py +10 -0
  122. tests/fl/monai_algo/__init__.py +10 -0
  123. tests/fl/monai_algo/test_fl_monai_algo.py +251 -0
  124. tests/fl/monai_algo/test_fl_monai_algo_dist.py +117 -0
  125. tests/fl/test_fl_monai_algo_stats.py +81 -0
  126. tests/fl/utils/__init__.py +10 -0
  127. tests/fl/utils/test_fl_exchange_object.py +63 -0
  128. tests/handlers/__init__.py +10 -0
  129. tests/handlers/test_handler_checkpoint_loader.py +182 -0
  130. tests/handlers/test_handler_checkpoint_saver.py +233 -0
  131. tests/handlers/test_handler_classification_saver.py +64 -0
  132. tests/handlers/test_handler_classification_saver_dist.py +77 -0
  133. tests/handlers/test_handler_clearml_image.py +65 -0
  134. tests/handlers/test_handler_clearml_stats.py +65 -0
  135. tests/handlers/test_handler_confusion_matrix.py +104 -0
  136. tests/handlers/test_handler_confusion_matrix_dist.py +70 -0
  137. tests/handlers/test_handler_decollate_batch.py +66 -0
  138. tests/handlers/test_handler_early_stop.py +68 -0
  139. tests/handlers/test_handler_garbage_collector.py +73 -0
  140. tests/handlers/test_handler_hausdorff_distance.py +111 -0
  141. tests/handlers/test_handler_ignite_metric.py +191 -0
  142. tests/handlers/test_handler_lr_scheduler.py +94 -0
  143. tests/handlers/test_handler_mean_dice.py +98 -0
  144. tests/handlers/test_handler_mean_iou.py +76 -0
  145. tests/handlers/test_handler_metrics_reloaded.py +149 -0
  146. tests/handlers/test_handler_metrics_saver.py +89 -0
  147. tests/handlers/test_handler_metrics_saver_dist.py +120 -0
  148. tests/handlers/test_handler_mlflow.py +296 -0
  149. tests/handlers/test_handler_nvtx.py +93 -0
  150. tests/handlers/test_handler_panoptic_quality.py +89 -0
  151. tests/handlers/test_handler_parameter_scheduler.py +136 -0
  152. tests/handlers/test_handler_post_processing.py +74 -0
  153. tests/handlers/test_handler_prob_map_producer.py +111 -0
  154. tests/handlers/test_handler_regression_metrics.py +160 -0
  155. tests/handlers/test_handler_regression_metrics_dist.py +245 -0
  156. tests/handlers/test_handler_rocauc.py +48 -0
  157. tests/handlers/test_handler_rocauc_dist.py +54 -0
  158. tests/handlers/test_handler_stats.py +281 -0
  159. tests/handlers/test_handler_surface_distance.py +113 -0
  160. tests/handlers/test_handler_tb_image.py +61 -0
  161. tests/handlers/test_handler_tb_stats.py +166 -0
  162. tests/handlers/test_handler_validation.py +59 -0
  163. tests/handlers/test_trt_compile.py +145 -0
  164. tests/handlers/test_write_metrics_reports.py +68 -0
  165. tests/inferers/__init__.py +10 -0
  166. tests/inferers/test_avg_merger.py +179 -0
  167. tests/inferers/test_controlnet_inferers.py +1310 -0
  168. tests/inferers/test_diffusion_inferer.py +236 -0
  169. tests/inferers/test_latent_diffusion_inferer.py +824 -0
  170. tests/inferers/test_patch_inferer.py +309 -0
  171. tests/inferers/test_saliency_inferer.py +55 -0
  172. tests/inferers/test_slice_inferer.py +57 -0
  173. tests/inferers/test_sliding_window_inference.py +377 -0
  174. tests/inferers/test_sliding_window_splitter.py +284 -0
  175. tests/inferers/test_wsi_sliding_window_splitter.py +249 -0
  176. tests/inferers/test_zarr_avg_merger.py +326 -0
  177. tests/integration/__init__.py +10 -0
  178. tests/integration/test_auto3dseg_ensemble.py +211 -0
  179. tests/integration/test_auto3dseg_hpo.py +189 -0
  180. tests/integration/test_deepedit_interaction.py +122 -0
  181. tests/integration/test_downsample_block.py +50 -0
  182. tests/integration/test_hovernet_nuclear_type_post_processingd.py +71 -0
  183. tests/integration/test_integration_autorunner.py +201 -0
  184. tests/integration/test_integration_bundle_run.py +240 -0
  185. tests/integration/test_integration_classification_2d.py +282 -0
  186. tests/integration/test_integration_determinism.py +95 -0
  187. tests/integration/test_integration_fast_train.py +231 -0
  188. tests/integration/test_integration_gpu_customization.py +159 -0
  189. tests/integration/test_integration_lazy_samples.py +219 -0
  190. tests/integration/test_integration_nnunetv2_runner.py +96 -0
  191. tests/integration/test_integration_segmentation_3d.py +304 -0
  192. tests/integration/test_integration_sliding_window.py +100 -0
  193. tests/integration/test_integration_stn.py +133 -0
  194. tests/integration/test_integration_unet_2d.py +67 -0
  195. tests/integration/test_integration_workers.py +61 -0
  196. tests/integration/test_integration_workflows.py +365 -0
  197. tests/integration/test_integration_workflows_adversarial.py +173 -0
  198. tests/integration/test_integration_workflows_gan.py +158 -0
  199. tests/integration/test_loader_semaphore.py +48 -0
  200. tests/integration/test_mapping_filed.py +122 -0
  201. tests/integration/test_meta_affine.py +183 -0
  202. tests/integration/test_metatensor_integration.py +114 -0
  203. tests/integration/test_module_list.py +76 -0
  204. tests/integration/test_one_of.py +283 -0
  205. tests/integration/test_pad_collation.py +124 -0
  206. tests/integration/test_reg_loss_integration.py +107 -0
  207. tests/integration/test_retinanet_predict_utils.py +154 -0
  208. tests/integration/test_seg_loss_integration.py +159 -0
  209. tests/integration/test_spatial_combine_transforms.py +185 -0
  210. tests/integration/test_testtimeaugmentation.py +186 -0
  211. tests/integration/test_vis_gradbased.py +69 -0
  212. tests/integration/test_vista3d_utils.py +159 -0
  213. tests/losses/__init__.py +10 -0
  214. tests/losses/deform/__init__.py +10 -0
  215. tests/losses/deform/test_bending_energy.py +88 -0
  216. tests/losses/deform/test_diffusion_loss.py +117 -0
  217. tests/losses/image_dissimilarity/__init__.py +10 -0
  218. tests/losses/image_dissimilarity/test_global_mutual_information_loss.py +150 -0
  219. tests/losses/image_dissimilarity/test_local_normalized_cross_correlation_loss.py +162 -0
  220. tests/losses/test_adversarial_loss.py +94 -0
  221. tests/losses/test_barlow_twins_loss.py +109 -0
  222. tests/losses/test_cldice_loss.py +51 -0
  223. tests/losses/test_contrastive_loss.py +86 -0
  224. tests/losses/test_dice_ce_loss.py +123 -0
  225. tests/losses/test_dice_focal_loss.py +124 -0
  226. tests/losses/test_dice_loss.py +227 -0
  227. tests/losses/test_ds_loss.py +189 -0
  228. tests/losses/test_focal_loss.py +379 -0
  229. tests/losses/test_generalized_dice_focal_loss.py +85 -0
  230. tests/losses/test_generalized_dice_loss.py +221 -0
  231. tests/losses/test_generalized_wasserstein_dice_loss.py +234 -0
  232. tests/losses/test_giou_loss.py +62 -0
  233. tests/losses/test_hausdorff_loss.py +264 -0
  234. tests/losses/test_masked_dice_loss.py +152 -0
  235. tests/losses/test_masked_loss.py +87 -0
  236. tests/losses/test_multi_scale.py +86 -0
  237. tests/losses/test_nacl_loss.py +167 -0
  238. tests/losses/test_perceptual_loss.py +122 -0
  239. tests/losses/test_spectral_loss.py +86 -0
  240. tests/losses/test_ssim_loss.py +59 -0
  241. tests/losses/test_sure_loss.py +72 -0
  242. tests/losses/test_tversky_loss.py +198 -0
  243. tests/losses/test_unified_focal_loss.py +66 -0
  244. tests/metrics/__init__.py +10 -0
  245. tests/metrics/test_compute_confusion_matrix.py +294 -0
  246. tests/metrics/test_compute_f_beta.py +80 -0
  247. tests/metrics/test_compute_fid_metric.py +40 -0
  248. tests/metrics/test_compute_froc.py +143 -0
  249. tests/metrics/test_compute_generalized_dice.py +240 -0
  250. tests/metrics/test_compute_meandice.py +306 -0
  251. tests/metrics/test_compute_meaniou.py +223 -0
  252. tests/metrics/test_compute_mmd_metric.py +56 -0
  253. tests/metrics/test_compute_multiscalessim_metric.py +83 -0
  254. tests/metrics/test_compute_panoptic_quality.py +113 -0
  255. tests/metrics/test_compute_regression_metrics.py +196 -0
  256. tests/metrics/test_compute_roc_auc.py +155 -0
  257. tests/metrics/test_compute_variance.py +147 -0
  258. tests/metrics/test_cumulative.py +63 -0
  259. tests/metrics/test_cumulative_average.py +74 -0
  260. tests/metrics/test_cumulative_average_dist.py +48 -0
  261. tests/metrics/test_hausdorff_distance.py +209 -0
  262. tests/metrics/test_label_quality_score.py +134 -0
  263. tests/metrics/test_loss_metric.py +57 -0
  264. tests/metrics/test_metrics_reloaded.py +96 -0
  265. tests/metrics/test_ssim_metric.py +78 -0
  266. tests/metrics/test_surface_dice.py +416 -0
  267. tests/metrics/test_surface_distance.py +186 -0
  268. tests/networks/__init__.py +10 -0
  269. tests/networks/blocks/__init__.py +10 -0
  270. tests/networks/blocks/dints_block/__init__.py +10 -0
  271. tests/networks/blocks/dints_block/test_acn_block.py +41 -0
  272. tests/networks/blocks/dints_block/test_factorized_increase.py +37 -0
  273. tests/networks/blocks/dints_block/test_factorized_reduce.py +37 -0
  274. tests/networks/blocks/dints_block/test_p3d_block.py +78 -0
  275. tests/networks/blocks/test_adn.py +86 -0
  276. tests/networks/blocks/test_convolutions.py +156 -0
  277. tests/networks/blocks/test_crf_cpu.py +513 -0
  278. tests/networks/blocks/test_crf_cuda.py +528 -0
  279. tests/networks/blocks/test_crossattention.py +185 -0
  280. tests/networks/blocks/test_denseblock.py +105 -0
  281. tests/networks/blocks/test_dynunet_block.py +116 -0
  282. tests/networks/blocks/test_fpn_block.py +88 -0
  283. tests/networks/blocks/test_localnet_block.py +121 -0
  284. tests/networks/blocks/test_mlp.py +78 -0
  285. tests/networks/blocks/test_patchembedding.py +212 -0
  286. tests/networks/blocks/test_regunet_block.py +103 -0
  287. tests/networks/blocks/test_se_block.py +85 -0
  288. tests/networks/blocks/test_se_blocks.py +78 -0
  289. tests/networks/blocks/test_segresnet_block.py +57 -0
  290. tests/networks/blocks/test_selfattention.py +232 -0
  291. tests/networks/blocks/test_simple_aspp.py +87 -0
  292. tests/networks/blocks/test_spatialattention.py +55 -0
  293. tests/networks/blocks/test_subpixel_upsample.py +87 -0
  294. tests/networks/blocks/test_text_encoding.py +49 -0
  295. tests/networks/blocks/test_transformerblock.py +90 -0
  296. tests/networks/blocks/test_unetr_block.py +158 -0
  297. tests/networks/blocks/test_upsample_block.py +134 -0
  298. tests/networks/blocks/warp/__init__.py +10 -0
  299. tests/networks/blocks/warp/test_dvf2ddf.py +72 -0
  300. tests/networks/blocks/warp/test_warp.py +250 -0
  301. tests/networks/layers/__init__.py +10 -0
  302. tests/networks/layers/filtering/__init__.py +10 -0
  303. tests/networks/layers/filtering/test_bilateral_approx_cpu.py +399 -0
  304. tests/networks/layers/filtering/test_bilateral_approx_cuda.py +404 -0
  305. tests/networks/layers/filtering/test_bilateral_precise.py +437 -0
  306. tests/networks/layers/filtering/test_phl_cpu.py +259 -0
  307. tests/networks/layers/filtering/test_phl_cuda.py +167 -0
  308. tests/networks/layers/filtering/test_trainable_bilateral.py +474 -0
  309. tests/networks/layers/filtering/test_trainable_joint_bilateral.py +609 -0
  310. tests/networks/layers/test_affine_transform.py +385 -0
  311. tests/networks/layers/test_apply_filter.py +89 -0
  312. tests/networks/layers/test_channel_pad.py +51 -0
  313. tests/networks/layers/test_conjugate_gradient.py +56 -0
  314. tests/networks/layers/test_drop_path.py +46 -0
  315. tests/networks/layers/test_gaussian.py +317 -0
  316. tests/networks/layers/test_gaussian_filter.py +206 -0
  317. tests/networks/layers/test_get_layers.py +65 -0
  318. tests/networks/layers/test_gmm.py +314 -0
  319. tests/networks/layers/test_grid_pull.py +93 -0
  320. tests/networks/layers/test_hilbert_transform.py +131 -0
  321. tests/networks/layers/test_lltm.py +62 -0
  322. tests/networks/layers/test_median_filter.py +52 -0
  323. tests/networks/layers/test_polyval.py +55 -0
  324. tests/networks/layers/test_preset_filters.py +136 -0
  325. tests/networks/layers/test_savitzky_golay_filter.py +141 -0
  326. tests/networks/layers/test_separable_filter.py +87 -0
  327. tests/networks/layers/test_skip_connection.py +48 -0
  328. tests/networks/layers/test_vector_quantizer.py +89 -0
  329. tests/networks/layers/test_weight_init.py +50 -0
  330. tests/networks/nets/__init__.py +10 -0
  331. tests/networks/nets/dints/__init__.py +10 -0
  332. tests/networks/nets/dints/test_dints_cell.py +110 -0
  333. tests/networks/nets/dints/test_dints_mixop.py +84 -0
  334. tests/networks/nets/regunet/__init__.py +10 -0
  335. tests/networks/nets/regunet/test_localnet.py +86 -0
  336. tests/networks/nets/regunet/test_regunet.py +88 -0
  337. tests/networks/nets/test_ahnet.py +224 -0
  338. tests/networks/nets/test_attentionunet.py +88 -0
  339. tests/networks/nets/test_autoencoder.py +95 -0
  340. tests/networks/nets/test_autoencoderkl.py +337 -0
  341. tests/networks/nets/test_basic_unet.py +102 -0
  342. tests/networks/nets/test_basic_unetplusplus.py +109 -0
  343. tests/networks/nets/test_bundle_init_bundle.py +55 -0
  344. tests/networks/nets/test_cell_sam_wrapper.py +58 -0
  345. tests/networks/nets/test_controlnet.py +215 -0
  346. tests/networks/nets/test_daf3d.py +62 -0
  347. tests/networks/nets/test_densenet.py +121 -0
  348. tests/networks/nets/test_diffusion_model_unet.py +585 -0
  349. tests/networks/nets/test_dints_network.py +168 -0
  350. tests/networks/nets/test_discriminator.py +59 -0
  351. tests/networks/nets/test_dynunet.py +181 -0
  352. tests/networks/nets/test_efficientnet.py +400 -0
  353. tests/networks/nets/test_flexible_unet.py +341 -0
  354. tests/networks/nets/test_fullyconnectednet.py +69 -0
  355. tests/networks/nets/test_generator.py +59 -0
  356. tests/networks/nets/test_globalnet.py +103 -0
  357. tests/networks/nets/test_highresnet.py +67 -0
  358. tests/networks/nets/test_hovernet.py +218 -0
  359. tests/networks/nets/test_mednext.py +122 -0
  360. tests/networks/nets/test_milmodel.py +92 -0
  361. tests/networks/nets/test_net_adapter.py +68 -0
  362. tests/networks/nets/test_network_consistency.py +86 -0
  363. tests/networks/nets/test_patch_gan_dicriminator.py +179 -0
  364. tests/networks/nets/test_quicknat.py +57 -0
  365. tests/networks/nets/test_resnet.py +340 -0
  366. tests/networks/nets/test_segresnet.py +120 -0
  367. tests/networks/nets/test_segresnet_ds.py +156 -0
  368. tests/networks/nets/test_senet.py +151 -0
  369. tests/networks/nets/test_spade_autoencoderkl.py +295 -0
  370. tests/networks/nets/test_spade_diffusion_model_unet.py +574 -0
  371. tests/networks/nets/test_spade_vaegan.py +140 -0
  372. tests/networks/nets/test_swin_unetr.py +139 -0
  373. tests/networks/nets/test_torchvision_fc_model.py +201 -0
  374. tests/networks/nets/test_transchex.py +84 -0
  375. tests/networks/nets/test_transformer.py +108 -0
  376. tests/networks/nets/test_unet.py +208 -0
  377. tests/networks/nets/test_unetr.py +137 -0
  378. tests/networks/nets/test_varautoencoder.py +127 -0
  379. tests/networks/nets/test_vista3d.py +84 -0
  380. tests/networks/nets/test_vit.py +139 -0
  381. tests/networks/nets/test_vitautoenc.py +112 -0
  382. tests/networks/nets/test_vnet.py +81 -0
  383. tests/networks/nets/test_voxelmorph.py +280 -0
  384. tests/networks/nets/test_vqvae.py +274 -0
  385. tests/networks/nets/test_vqvaetransformer_inferer.py +295 -0
  386. tests/networks/schedulers/__init__.py +10 -0
  387. tests/networks/schedulers/test_scheduler_ddim.py +83 -0
  388. tests/networks/schedulers/test_scheduler_ddpm.py +104 -0
  389. tests/networks/schedulers/test_scheduler_pndm.py +108 -0
  390. tests/networks/test_bundle_onnx_export.py +71 -0
  391. tests/networks/test_convert_to_onnx.py +106 -0
  392. tests/networks/test_convert_to_torchscript.py +46 -0
  393. tests/networks/test_convert_to_trt.py +79 -0
  394. tests/networks/test_save_state.py +73 -0
  395. tests/networks/test_to_onehot.py +63 -0
  396. tests/networks/test_varnet.py +63 -0
  397. tests/networks/utils/__init__.py +10 -0
  398. tests/networks/utils/test_copy_model_state.py +187 -0
  399. tests/networks/utils/test_eval_mode.py +34 -0
  400. tests/networks/utils/test_freeze_layers.py +61 -0
  401. tests/networks/utils/test_replace_module.py +98 -0
  402. tests/networks/utils/test_train_mode.py +34 -0
  403. tests/optimizers/__init__.py +10 -0
  404. tests/optimizers/test_generate_param_groups.py +105 -0
  405. tests/optimizers/test_lr_finder.py +108 -0
  406. tests/optimizers/test_lr_scheduler.py +71 -0
  407. tests/optimizers/test_optim_novograd.py +100 -0
  408. tests/profile_subclass/__init__.py +10 -0
  409. tests/profile_subclass/cprofile_profiling.py +29 -0
  410. tests/profile_subclass/min_classes.py +30 -0
  411. tests/profile_subclass/profiling.py +73 -0
  412. tests/profile_subclass/pyspy_profiling.py +41 -0
  413. tests/transforms/__init__.py +10 -0
  414. tests/transforms/compose/__init__.py +10 -0
  415. tests/transforms/compose/test_compose.py +758 -0
  416. tests/transforms/compose/test_some_of.py +258 -0
  417. tests/transforms/croppad/__init__.py +10 -0
  418. tests/transforms/croppad/test_rand_weighted_crop.py +224 -0
  419. tests/transforms/croppad/test_rand_weighted_cropd.py +182 -0
  420. tests/transforms/functional/__init__.py +10 -0
  421. tests/transforms/functional/test_apply.py +75 -0
  422. tests/transforms/functional/test_resample.py +50 -0
  423. tests/transforms/intensity/__init__.py +10 -0
  424. tests/transforms/intensity/test_compute_ho_ver_maps.py +75 -0
  425. tests/transforms/intensity/test_compute_ho_ver_maps_d.py +79 -0
  426. tests/transforms/intensity/test_foreground_mask.py +98 -0
  427. tests/transforms/intensity/test_foreground_maskd.py +106 -0
  428. tests/transforms/intensity/test_rand_histogram_shiftd.py +76 -0
  429. tests/transforms/intensity/test_scale_intensity_range_percentiles.py +96 -0
  430. tests/transforms/intensity/test_scale_intensity_range_percentilesd.py +100 -0
  431. tests/transforms/inverse/__init__.py +10 -0
  432. tests/transforms/inverse/test_inverse_array.py +76 -0
  433. tests/transforms/inverse/test_traceable_transform.py +59 -0
  434. tests/transforms/post/__init__.py +10 -0
  435. tests/transforms/post/test_label_filterd.py +78 -0
  436. tests/transforms/post/test_probnms.py +72 -0
  437. tests/transforms/post/test_probnmsd.py +79 -0
  438. tests/transforms/post/test_remove_small_objects.py +102 -0
  439. tests/transforms/spatial/__init__.py +10 -0
  440. tests/transforms/spatial/test_convert_box_points.py +119 -0
  441. tests/transforms/spatial/test_grid_patch.py +134 -0
  442. tests/transforms/spatial/test_grid_patchd.py +102 -0
  443. tests/transforms/spatial/test_rand_grid_patch.py +150 -0
  444. tests/transforms/spatial/test_rand_grid_patchd.py +117 -0
  445. tests/transforms/spatial/test_spatial_resampled.py +124 -0
  446. tests/transforms/test_activations.py +120 -0
  447. tests/transforms/test_activationsd.py +64 -0
  448. tests/transforms/test_adaptors.py +160 -0
  449. tests/transforms/test_add_coordinate_channels.py +53 -0
  450. tests/transforms/test_add_coordinate_channelsd.py +67 -0
  451. tests/transforms/test_add_extreme_points_channel.py +80 -0
  452. tests/transforms/test_add_extreme_points_channeld.py +77 -0
  453. tests/transforms/test_adjust_contrast.py +70 -0
  454. tests/transforms/test_adjust_contrastd.py +64 -0
  455. tests/transforms/test_affine.py +245 -0
  456. tests/transforms/test_affine_grid.py +152 -0
  457. tests/transforms/test_affined.py +190 -0
  458. tests/transforms/test_as_channel_last.py +38 -0
  459. tests/transforms/test_as_channel_lastd.py +44 -0
  460. tests/transforms/test_as_discrete.py +81 -0
  461. tests/transforms/test_as_discreted.py +82 -0
  462. tests/transforms/test_border_pad.py +49 -0
  463. tests/transforms/test_border_padd.py +45 -0
  464. tests/transforms/test_bounding_rect.py +54 -0
  465. tests/transforms/test_bounding_rectd.py +53 -0
  466. tests/transforms/test_cast_to_type.py +63 -0
  467. tests/transforms/test_cast_to_typed.py +74 -0
  468. tests/transforms/test_center_scale_crop.py +55 -0
  469. tests/transforms/test_center_scale_cropd.py +56 -0
  470. tests/transforms/test_center_spatial_crop.py +56 -0
  471. tests/transforms/test_center_spatial_cropd.py +63 -0
  472. tests/transforms/test_classes_to_indices.py +93 -0
  473. tests/transforms/test_classes_to_indicesd.py +110 -0
  474. tests/transforms/test_clip_intensity_percentiles.py +196 -0
  475. tests/transforms/test_clip_intensity_percentilesd.py +193 -0
  476. tests/transforms/test_compose_get_number_conversions.py +127 -0
  477. tests/transforms/test_concat_itemsd.py +82 -0
  478. tests/transforms/test_convert_to_multi_channel.py +59 -0
  479. tests/transforms/test_convert_to_multi_channeld.py +37 -0
  480. tests/transforms/test_copy_itemsd.py +86 -0
  481. tests/transforms/test_create_grid_and_affine.py +274 -0
  482. tests/transforms/test_crop_foreground.py +164 -0
  483. tests/transforms/test_crop_foregroundd.py +205 -0
  484. tests/transforms/test_cucim_dict_transform.py +142 -0
  485. tests/transforms/test_cucim_transform.py +141 -0
  486. tests/transforms/test_data_stats.py +221 -0
  487. tests/transforms/test_data_statsd.py +249 -0
  488. tests/transforms/test_delete_itemsd.py +58 -0
  489. tests/transforms/test_detect_envelope.py +159 -0
  490. tests/transforms/test_distance_transform_edt.py +202 -0
  491. tests/transforms/test_divisible_pad.py +49 -0
  492. tests/transforms/test_divisible_padd.py +42 -0
  493. tests/transforms/test_ensure_channel_first.py +113 -0
  494. tests/transforms/test_ensure_channel_firstd.py +85 -0
  495. tests/transforms/test_ensure_type.py +94 -0
  496. tests/transforms/test_ensure_typed.py +110 -0
  497. tests/transforms/test_fg_bg_to_indices.py +83 -0
  498. tests/transforms/test_fg_bg_to_indicesd.py +78 -0
  499. tests/transforms/test_fill_holes.py +207 -0
  500. tests/transforms/test_fill_holesd.py +209 -0
  501. tests/transforms/test_flatten_sub_keysd.py +64 -0
  502. tests/transforms/test_flip.py +83 -0
  503. tests/transforms/test_flipd.py +90 -0
  504. tests/transforms/test_fourier.py +70 -0
  505. tests/transforms/test_gaussian_sharpen.py +92 -0
  506. tests/transforms/test_gaussian_sharpend.py +92 -0
  507. tests/transforms/test_gaussian_smooth.py +96 -0
  508. tests/transforms/test_gaussian_smoothd.py +96 -0
  509. tests/transforms/test_generate_label_classes_crop_centers.py +71 -0
  510. tests/transforms/test_generate_pos_neg_label_crop_centers.py +76 -0
  511. tests/transforms/test_generate_spatial_bounding_box.py +114 -0
  512. tests/transforms/test_get_extreme_points.py +57 -0
  513. tests/transforms/test_gibbs_noise.py +75 -0
  514. tests/transforms/test_gibbs_noised.py +88 -0
  515. tests/transforms/test_grid_distortion.py +113 -0
  516. tests/transforms/test_grid_distortiond.py +87 -0
  517. tests/transforms/test_grid_split.py +88 -0
  518. tests/transforms/test_grid_splitd.py +96 -0
  519. tests/transforms/test_histogram_normalize.py +59 -0
  520. tests/transforms/test_histogram_normalized.py +59 -0
  521. tests/transforms/test_image_filter.py +259 -0
  522. tests/transforms/test_intensity_stats.py +73 -0
  523. tests/transforms/test_intensity_statsd.py +90 -0
  524. tests/transforms/test_inverse.py +521 -0
  525. tests/transforms/test_inverse_collation.py +147 -0
  526. tests/transforms/test_invert.py +105 -0
  527. tests/transforms/test_invertd.py +142 -0
  528. tests/transforms/test_k_space_spike_noise.py +81 -0
  529. tests/transforms/test_k_space_spike_noised.py +98 -0
  530. tests/transforms/test_keep_largest_connected_component.py +419 -0
  531. tests/transforms/test_keep_largest_connected_componentd.py +348 -0
  532. tests/transforms/test_label_filter.py +78 -0
  533. tests/transforms/test_label_to_contour.py +179 -0
  534. tests/transforms/test_label_to_contourd.py +182 -0
  535. tests/transforms/test_label_to_mask.py +69 -0
  536. tests/transforms/test_label_to_maskd.py +70 -0
  537. tests/transforms/test_load_image.py +502 -0
  538. tests/transforms/test_load_imaged.py +198 -0
  539. tests/transforms/test_load_spacing_orientation.py +149 -0
  540. tests/transforms/test_map_and_generate_sampling_centers.py +86 -0
  541. tests/transforms/test_map_binary_to_indices.py +75 -0
  542. tests/transforms/test_map_classes_to_indices.py +135 -0
  543. tests/transforms/test_map_label_value.py +89 -0
  544. tests/transforms/test_map_label_valued.py +85 -0
  545. tests/transforms/test_map_transform.py +45 -0
  546. tests/transforms/test_mask_intensity.py +74 -0
  547. tests/transforms/test_mask_intensityd.py +68 -0
  548. tests/transforms/test_mean_ensemble.py +77 -0
  549. tests/transforms/test_mean_ensembled.py +91 -0
  550. tests/transforms/test_median_smooth.py +41 -0
  551. tests/transforms/test_median_smoothd.py +65 -0
  552. tests/transforms/test_morphological_ops.py +101 -0
  553. tests/transforms/test_nifti_endianness.py +107 -0
  554. tests/transforms/test_normalize_intensity.py +143 -0
  555. tests/transforms/test_normalize_intensityd.py +81 -0
  556. tests/transforms/test_nvtx_decorator.py +289 -0
  557. tests/transforms/test_nvtx_transform.py +143 -0
  558. tests/transforms/test_orientation.py +247 -0
  559. tests/transforms/test_orientationd.py +112 -0
  560. tests/transforms/test_rand_adjust_contrast.py +45 -0
  561. tests/transforms/test_rand_adjust_contrastd.py +44 -0
  562. tests/transforms/test_rand_affine.py +201 -0
  563. tests/transforms/test_rand_affine_grid.py +212 -0
  564. tests/transforms/test_rand_affined.py +281 -0
  565. tests/transforms/test_rand_axis_flip.py +50 -0
  566. tests/transforms/test_rand_axis_flipd.py +50 -0
  567. tests/transforms/test_rand_bias_field.py +69 -0
  568. tests/transforms/test_rand_bias_fieldd.py +65 -0
  569. tests/transforms/test_rand_coarse_dropout.py +110 -0
  570. tests/transforms/test_rand_coarse_dropoutd.py +107 -0
  571. tests/transforms/test_rand_coarse_shuffle.py +65 -0
  572. tests/transforms/test_rand_coarse_shuffled.py +59 -0
  573. tests/transforms/test_rand_crop_by_label_classes.py +170 -0
  574. tests/transforms/test_rand_crop_by_label_classesd.py +159 -0
  575. tests/transforms/test_rand_crop_by_pos_neg_label.py +152 -0
  576. tests/transforms/test_rand_crop_by_pos_neg_labeld.py +172 -0
  577. tests/transforms/test_rand_cucim_dict_transform.py +162 -0
  578. tests/transforms/test_rand_cucim_transform.py +162 -0
  579. tests/transforms/test_rand_deform_grid.py +138 -0
  580. tests/transforms/test_rand_elastic_2d.py +127 -0
  581. tests/transforms/test_rand_elastic_3d.py +104 -0
  582. tests/transforms/test_rand_elasticd_2d.py +177 -0
  583. tests/transforms/test_rand_elasticd_3d.py +156 -0
  584. tests/transforms/test_rand_flip.py +60 -0
  585. tests/transforms/test_rand_flipd.py +55 -0
  586. tests/transforms/test_rand_gaussian_noise.py +48 -0
  587. tests/transforms/test_rand_gaussian_noised.py +54 -0
  588. tests/transforms/test_rand_gaussian_sharpen.py +140 -0
  589. tests/transforms/test_rand_gaussian_sharpend.py +143 -0
  590. tests/transforms/test_rand_gaussian_smooth.py +98 -0
  591. tests/transforms/test_rand_gaussian_smoothd.py +98 -0
  592. tests/transforms/test_rand_gibbs_noise.py +103 -0
  593. tests/transforms/test_rand_gibbs_noised.py +117 -0
  594. tests/transforms/test_rand_grid_distortion.py +99 -0
  595. tests/transforms/test_rand_grid_distortiond.py +90 -0
  596. tests/transforms/test_rand_histogram_shift.py +92 -0
  597. tests/transforms/test_rand_k_space_spike_noise.py +92 -0
  598. tests/transforms/test_rand_k_space_spike_noised.py +76 -0
  599. tests/transforms/test_rand_rician_noise.py +52 -0
  600. tests/transforms/test_rand_rician_noised.py +52 -0
  601. tests/transforms/test_rand_rotate.py +166 -0
  602. tests/transforms/test_rand_rotate90.py +100 -0
  603. tests/transforms/test_rand_rotate90d.py +112 -0
  604. tests/transforms/test_rand_rotated.py +187 -0
  605. tests/transforms/test_rand_scale_crop.py +78 -0
  606. tests/transforms/test_rand_scale_cropd.py +98 -0
  607. tests/transforms/test_rand_scale_intensity.py +54 -0
  608. tests/transforms/test_rand_scale_intensity_fixed_mean.py +41 -0
  609. tests/transforms/test_rand_scale_intensity_fixed_meand.py +41 -0
  610. tests/transforms/test_rand_scale_intensityd.py +53 -0
  611. tests/transforms/test_rand_shift_intensity.py +52 -0
  612. tests/transforms/test_rand_shift_intensityd.py +67 -0
  613. tests/transforms/test_rand_simulate_low_resolution.py +83 -0
  614. tests/transforms/test_rand_simulate_low_resolutiond.py +73 -0
  615. tests/transforms/test_rand_spatial_crop.py +107 -0
  616. tests/transforms/test_rand_spatial_crop_samples.py +128 -0
  617. tests/transforms/test_rand_spatial_crop_samplesd.py +147 -0
  618. tests/transforms/test_rand_spatial_cropd.py +112 -0
  619. tests/transforms/test_rand_std_shift_intensity.py +43 -0
  620. tests/transforms/test_rand_std_shift_intensityd.py +38 -0
  621. tests/transforms/test_rand_zoom.py +105 -0
  622. tests/transforms/test_rand_zoomd.py +108 -0
  623. tests/transforms/test_randidentity.py +49 -0
  624. tests/transforms/test_random_order.py +144 -0
  625. tests/transforms/test_randtorchvisiond.py +65 -0
  626. tests/transforms/test_regularization.py +139 -0
  627. tests/transforms/test_remove_repeated_channel.py +34 -0
  628. tests/transforms/test_remove_repeated_channeld.py +44 -0
  629. tests/transforms/test_repeat_channel.py +34 -0
  630. tests/transforms/test_repeat_channeld.py +41 -0
  631. tests/transforms/test_resample_backends.py +65 -0
  632. tests/transforms/test_resample_to_match.py +110 -0
  633. tests/transforms/test_resample_to_matchd.py +93 -0
  634. tests/transforms/test_resampler.py +165 -0
  635. tests/transforms/test_resize.py +140 -0
  636. tests/transforms/test_resize_with_pad_or_crop.py +91 -0
  637. tests/transforms/test_resize_with_pad_or_cropd.py +86 -0
  638. tests/transforms/test_resized.py +163 -0
  639. tests/transforms/test_rotate.py +160 -0
  640. tests/transforms/test_rotate90.py +212 -0
  641. tests/transforms/test_rotate90d.py +106 -0
  642. tests/transforms/test_rotated.py +179 -0
  643. tests/transforms/test_save_classificationd.py +109 -0
  644. tests/transforms/test_save_image.py +80 -0
  645. tests/transforms/test_save_imaged.py +130 -0
  646. tests/transforms/test_savitzky_golay_smooth.py +73 -0
  647. tests/transforms/test_savitzky_golay_smoothd.py +73 -0
  648. tests/transforms/test_scale_intensity.py +76 -0
  649. tests/transforms/test_scale_intensity_fixed_mean.py +94 -0
  650. tests/transforms/test_scale_intensity_range.py +41 -0
  651. tests/transforms/test_scale_intensity_ranged.py +40 -0
  652. tests/transforms/test_scale_intensityd.py +57 -0
  653. tests/transforms/test_select_itemsd.py +41 -0
  654. tests/transforms/test_shift_intensity.py +31 -0
  655. tests/transforms/test_shift_intensityd.py +44 -0
  656. tests/transforms/test_signal_continuouswavelet.py +44 -0
  657. tests/transforms/test_signal_fillempty.py +52 -0
  658. tests/transforms/test_signal_fillemptyd.py +60 -0
  659. tests/transforms/test_signal_rand_add_gaussiannoise.py +50 -0
  660. tests/transforms/test_signal_rand_add_sine.py +52 -0
  661. tests/transforms/test_signal_rand_add_sine_partial.py +50 -0
  662. tests/transforms/test_signal_rand_add_squarepulse.py +58 -0
  663. tests/transforms/test_signal_rand_add_squarepulse_partial.py +62 -0
  664. tests/transforms/test_signal_rand_drop.py +50 -0
  665. tests/transforms/test_signal_rand_scale.py +52 -0
  666. tests/transforms/test_signal_rand_shift.py +55 -0
  667. tests/transforms/test_signal_remove_frequency.py +71 -0
  668. tests/transforms/test_smooth_field.py +177 -0
  669. tests/transforms/test_sobel_gradient.py +189 -0
  670. tests/transforms/test_sobel_gradientd.py +212 -0
  671. tests/transforms/test_spacing.py +381 -0
  672. tests/transforms/test_spacingd.py +178 -0
  673. tests/transforms/test_spatial_crop.py +82 -0
  674. tests/transforms/test_spatial_cropd.py +74 -0
  675. tests/transforms/test_spatial_pad.py +57 -0
  676. tests/transforms/test_spatial_padd.py +43 -0
  677. tests/transforms/test_spatial_resample.py +235 -0
  678. tests/transforms/test_squeezedim.py +62 -0
  679. tests/transforms/test_squeezedimd.py +98 -0
  680. tests/transforms/test_std_shift_intensity.py +76 -0
  681. tests/transforms/test_std_shift_intensityd.py +74 -0
  682. tests/transforms/test_threshold_intensity.py +38 -0
  683. tests/transforms/test_threshold_intensityd.py +58 -0
  684. tests/transforms/test_to_contiguous.py +47 -0
  685. tests/transforms/test_to_cupy.py +112 -0
  686. tests/transforms/test_to_cupyd.py +76 -0
  687. tests/transforms/test_to_device.py +42 -0
  688. tests/transforms/test_to_deviced.py +37 -0
  689. tests/transforms/test_to_numpy.py +85 -0
  690. tests/transforms/test_to_numpyd.py +68 -0
  691. tests/transforms/test_to_pil.py +52 -0
  692. tests/transforms/test_to_pild.py +50 -0
  693. tests/transforms/test_to_tensor.py +60 -0
  694. tests/transforms/test_to_tensord.py +71 -0
  695. tests/transforms/test_torchvision.py +66 -0
  696. tests/transforms/test_torchvisiond.py +63 -0
  697. tests/transforms/test_transform.py +62 -0
  698. tests/transforms/test_transpose.py +41 -0
  699. tests/transforms/test_transposed.py +52 -0
  700. tests/transforms/test_ultrasound_confidence_map_transform.py +711 -0
  701. tests/transforms/test_utils_pytorch_numpy_unification.py +90 -0
  702. tests/transforms/test_vote_ensemble.py +84 -0
  703. tests/transforms/test_vote_ensembled.py +107 -0
  704. tests/transforms/test_with_allow_missing_keys.py +76 -0
  705. tests/transforms/test_zoom.py +120 -0
  706. tests/transforms/test_zoomd.py +94 -0
  707. tests/transforms/transform/__init__.py +10 -0
  708. tests/transforms/transform/test_randomizable.py +52 -0
  709. tests/transforms/transform/test_randomizable_transform_type.py +37 -0
  710. tests/transforms/utility/__init__.py +10 -0
  711. tests/transforms/utility/test_apply_transform_to_points.py +81 -0
  712. tests/transforms/utility/test_apply_transform_to_pointsd.py +185 -0
  713. tests/transforms/utility/test_identity.py +29 -0
  714. tests/transforms/utility/test_identityd.py +30 -0
  715. tests/transforms/utility/test_lambda.py +71 -0
  716. tests/transforms/utility/test_lambdad.py +83 -0
  717. tests/transforms/utility/test_rand_lambda.py +87 -0
  718. tests/transforms/utility/test_rand_lambdad.py +77 -0
  719. tests/transforms/utility/test_simulatedelay.py +36 -0
  720. tests/transforms/utility/test_simulatedelayd.py +36 -0
  721. tests/transforms/utility/test_splitdim.py +52 -0
  722. tests/transforms/utility/test_splitdimd.py +96 -0
  723. tests/transforms/utils/__init__.py +10 -0
  724. tests/transforms/utils/test_correct_crop_centers.py +36 -0
  725. tests/transforms/utils/test_get_unique_labels.py +45 -0
  726. tests/transforms/utils/test_print_transform_backends.py +29 -0
  727. tests/transforms/utils/test_soft_clip.py +125 -0
  728. tests/utils/__init__.py +10 -0
  729. tests/utils/enums/__init__.py +10 -0
  730. tests/utils/enums/test_hovernet_loss.py +190 -0
  731. tests/utils/enums/test_ordering.py +289 -0
  732. tests/utils/enums/test_wsireader.py +663 -0
  733. tests/utils/misc/__init__.py +10 -0
  734. tests/utils/misc/test_ensure_tuple.py +53 -0
  735. tests/utils/misc/test_monai_env_vars.py +44 -0
  736. tests/utils/misc/test_monai_utils_misc.py +103 -0
  737. tests/utils/misc/test_str2bool.py +34 -0
  738. tests/utils/misc/test_str2list.py +33 -0
  739. tests/utils/test_alias.py +44 -0
  740. tests/utils/test_component_store.py +73 -0
  741. tests/utils/test_deprecated.py +455 -0
  742. tests/utils/test_enum_bound_interp.py +75 -0
  743. tests/utils/test_evenly_divisible_all_gather_dist.py +50 -0
  744. tests/utils/test_get_package_version.py +34 -0
  745. tests/utils/test_handler_logfile.py +84 -0
  746. tests/utils/test_handler_metric_logger.py +62 -0
  747. tests/utils/test_list_to_dict.py +43 -0
  748. tests/utils/test_look_up_option.py +87 -0
  749. tests/utils/test_optional_import.py +80 -0
  750. tests/utils/test_pad_mode.py +39 -0
  751. tests/utils/test_profiling.py +208 -0
  752. tests/utils/test_rankfilter_dist.py +77 -0
  753. tests/utils/test_require_pkg.py +83 -0
  754. tests/utils/test_sample_slices.py +43 -0
  755. tests/utils/test_set_determinism.py +74 -0
  756. tests/utils/test_squeeze_unsqueeze.py +71 -0
  757. tests/utils/test_state_cacher.py +67 -0
  758. tests/utils/test_torchscript_utils.py +113 -0
  759. tests/utils/test_version.py +91 -0
  760. tests/utils/test_version_after.py +65 -0
  761. tests/utils/type_conversion/__init__.py +10 -0
  762. tests/utils/type_conversion/test_convert_data_type.py +152 -0
  763. tests/utils/type_conversion/test_get_equivalent_dtype.py +65 -0
  764. tests/utils/type_conversion/test_safe_dtype_range.py +99 -0
  765. tests/visualize/__init__.py +10 -0
  766. tests/visualize/test_img2tensorboard.py +46 -0
  767. tests/visualize/test_occlusion_sensitivity.py +128 -0
  768. tests/visualize/test_plot_2d_or_3d_image.py +74 -0
  769. tests/visualize/test_vis_cam.py +98 -0
  770. tests/visualize/test_vis_gradcam.py +211 -0
  771. tests/visualize/utils/__init__.py +10 -0
  772. tests/visualize/utils/test_blend_images.py +63 -0
  773. tests/visualize/utils/test_matshow3d.py +133 -0
  774. monai_weekly-1.5.dev2506.dist-info/RECORD +0 -427
  775. {monai_weekly-1.5.dev2506.dist-info → monai_weekly-1.5.dev2507.dist-info}/LICENSE +0 -0
  776. {monai_weekly-1.5.dev2506.dist-info → monai_weekly-1.5.dev2507.dist-info}/WHEEL +0 -0
@@ -0,0 +1,1310 @@
1
+ # Copyright (c) MONAI Consortium
2
+ # Licensed under the Apache License, Version 2.0 (the "License");
3
+ # you may not use this file except in compliance with the License.
4
+ # You may obtain a copy of the License at
5
+ # http://www.apache.org/licenses/LICENSE-2.0
6
+ # Unless required by applicable law or agreed to in writing, software
7
+ # distributed under the License is distributed on an "AS IS" BASIS,
8
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
9
+ # See the License for the specific language governing permissions and
10
+ # limitations under the License.
11
+
12
+ from __future__ import annotations
13
+
14
+ import unittest
15
+ from unittest import skipUnless
16
+
17
+ import torch
18
+ from parameterized import parameterized
19
+
20
+ from monai.inferers import ControlNetDiffusionInferer, ControlNetLatentDiffusionInferer
21
+ from monai.networks.nets import (
22
+ VQVAE,
23
+ AutoencoderKL,
24
+ ControlNet,
25
+ DiffusionModelUNet,
26
+ SPADEAutoencoderKL,
27
+ SPADEDiffusionModelUNet,
28
+ )
29
+ from monai.networks.schedulers import DDIMScheduler, DDPMScheduler
30
+ from monai.utils import optional_import
31
+
32
+ _, has_scipy = optional_import("scipy")
33
+ _, has_einops = optional_import("einops")
34
+
35
+
36
+ CNDM_TEST_CASES = [
37
+ [
38
+ {
39
+ "spatial_dims": 2,
40
+ "in_channels": 1,
41
+ "out_channels": 1,
42
+ "channels": [8],
43
+ "norm_num_groups": 8,
44
+ "attention_levels": [True],
45
+ "num_res_blocks": 1,
46
+ "num_head_channels": 8,
47
+ },
48
+ {
49
+ "spatial_dims": 2,
50
+ "in_channels": 1,
51
+ "channels": [8],
52
+ "attention_levels": [True],
53
+ "norm_num_groups": 8,
54
+ "num_res_blocks": 1,
55
+ "num_head_channels": 8,
56
+ "conditioning_embedding_num_channels": [16],
57
+ "conditioning_embedding_in_channels": 1,
58
+ },
59
+ (2, 1, 8, 8),
60
+ ],
61
+ [
62
+ {
63
+ "spatial_dims": 3,
64
+ "in_channels": 1,
65
+ "out_channels": 1,
66
+ "channels": [8],
67
+ "norm_num_groups": 8,
68
+ "attention_levels": [True],
69
+ "num_res_blocks": 1,
70
+ "num_head_channels": 8,
71
+ },
72
+ {
73
+ "spatial_dims": 3,
74
+ "in_channels": 1,
75
+ "channels": [8],
76
+ "attention_levels": [True],
77
+ "num_res_blocks": 1,
78
+ "norm_num_groups": 8,
79
+ "num_head_channels": 8,
80
+ "conditioning_embedding_num_channels": [16],
81
+ "conditioning_embedding_in_channels": 1,
82
+ },
83
+ (2, 1, 8, 8, 8),
84
+ ],
85
+ ]
86
+ LATENT_CNDM_TEST_CASES = [
87
+ [
88
+ "AutoencoderKL",
89
+ {
90
+ "spatial_dims": 2,
91
+ "in_channels": 1,
92
+ "out_channels": 1,
93
+ "channels": (4, 4),
94
+ "latent_channels": 3,
95
+ "attention_levels": [False, False],
96
+ "num_res_blocks": 1,
97
+ "with_encoder_nonlocal_attn": False,
98
+ "with_decoder_nonlocal_attn": False,
99
+ "norm_num_groups": 4,
100
+ },
101
+ "DiffusionModelUNet",
102
+ {
103
+ "spatial_dims": 2,
104
+ "in_channels": 3,
105
+ "out_channels": 3,
106
+ "channels": [4, 4],
107
+ "norm_num_groups": 4,
108
+ "attention_levels": [False, False],
109
+ "num_res_blocks": 1,
110
+ "num_head_channels": 4,
111
+ },
112
+ {
113
+ "spatial_dims": 2,
114
+ "in_channels": 3,
115
+ "channels": [4, 4],
116
+ "attention_levels": [False, False],
117
+ "num_res_blocks": 1,
118
+ "norm_num_groups": 4,
119
+ "num_head_channels": 4,
120
+ "conditioning_embedding_num_channels": [16],
121
+ "conditioning_embedding_in_channels": 1,
122
+ },
123
+ (1, 1, 8, 8),
124
+ (1, 3, 4, 4),
125
+ ],
126
+ [
127
+ "VQVAE",
128
+ {
129
+ "spatial_dims": 2,
130
+ "in_channels": 1,
131
+ "out_channels": 1,
132
+ "channels": [4, 4],
133
+ "num_res_layers": 1,
134
+ "num_res_channels": [4, 4],
135
+ "downsample_parameters": ((2, 4, 1, 1), (2, 4, 1, 1)),
136
+ "upsample_parameters": ((2, 4, 1, 1, 0), (2, 4, 1, 1, 0)),
137
+ "num_embeddings": 16,
138
+ "embedding_dim": 3,
139
+ },
140
+ "DiffusionModelUNet",
141
+ {
142
+ "spatial_dims": 2,
143
+ "in_channels": 3,
144
+ "out_channels": 3,
145
+ "channels": [8, 8],
146
+ "norm_num_groups": 8,
147
+ "attention_levels": [False, False],
148
+ "num_res_blocks": 1,
149
+ "num_head_channels": 8,
150
+ },
151
+ {
152
+ "spatial_dims": 2,
153
+ "in_channels": 3,
154
+ "channels": [8, 8],
155
+ "attention_levels": [False, False],
156
+ "num_res_blocks": 1,
157
+ "norm_num_groups": 8,
158
+ "num_head_channels": 8,
159
+ "conditioning_embedding_num_channels": [16],
160
+ "conditioning_embedding_in_channels": 1,
161
+ },
162
+ (1, 1, 16, 16),
163
+ (1, 3, 4, 4),
164
+ ],
165
+ [
166
+ "VQVAE",
167
+ {
168
+ "spatial_dims": 3,
169
+ "in_channels": 1,
170
+ "out_channels": 1,
171
+ "channels": [4, 4],
172
+ "num_res_layers": 1,
173
+ "num_res_channels": [4, 4],
174
+ "downsample_parameters": ((2, 4, 1, 1), (2, 4, 1, 1)),
175
+ "upsample_parameters": ((2, 4, 1, 1, 0), (2, 4, 1, 1, 0)),
176
+ "num_embeddings": 16,
177
+ "embedding_dim": 3,
178
+ },
179
+ "DiffusionModelUNet",
180
+ {
181
+ "spatial_dims": 3,
182
+ "in_channels": 3,
183
+ "out_channels": 3,
184
+ "channels": [8, 8],
185
+ "norm_num_groups": 8,
186
+ "attention_levels": [False, False],
187
+ "num_res_blocks": 1,
188
+ "num_head_channels": 8,
189
+ },
190
+ {
191
+ "spatial_dims": 3,
192
+ "in_channels": 3,
193
+ "channels": [8, 8],
194
+ "attention_levels": [False, False],
195
+ "num_res_blocks": 1,
196
+ "norm_num_groups": 8,
197
+ "num_head_channels": 8,
198
+ "conditioning_embedding_num_channels": [16],
199
+ "conditioning_embedding_in_channels": 1,
200
+ },
201
+ (1, 1, 16, 16, 16),
202
+ (1, 3, 4, 4, 4),
203
+ ],
204
+ ]
205
+ LATENT_CNDM_TEST_CASES_DIFF_SHAPES = [
206
+ [
207
+ "AutoencoderKL",
208
+ {
209
+ "spatial_dims": 2,
210
+ "in_channels": 1,
211
+ "out_channels": 1,
212
+ "channels": (4, 4),
213
+ "latent_channels": 3,
214
+ "attention_levels": [False, False],
215
+ "num_res_blocks": 1,
216
+ "with_encoder_nonlocal_attn": False,
217
+ "with_decoder_nonlocal_attn": False,
218
+ "norm_num_groups": 4,
219
+ },
220
+ "DiffusionModelUNet",
221
+ {
222
+ "spatial_dims": 2,
223
+ "in_channels": 3,
224
+ "out_channels": 3,
225
+ "channels": [4, 4],
226
+ "norm_num_groups": 4,
227
+ "attention_levels": [False, False],
228
+ "num_res_blocks": 1,
229
+ "num_head_channels": 4,
230
+ },
231
+ {
232
+ "spatial_dims": 2,
233
+ "in_channels": 3,
234
+ "channels": [4, 4],
235
+ "attention_levels": [False, False],
236
+ "num_res_blocks": 1,
237
+ "norm_num_groups": 4,
238
+ "num_head_channels": 4,
239
+ "conditioning_embedding_num_channels": [16],
240
+ "conditioning_embedding_in_channels": 1,
241
+ },
242
+ (1, 1, 12, 12),
243
+ (1, 3, 8, 8),
244
+ ],
245
+ [
246
+ "VQVAE",
247
+ {
248
+ "spatial_dims": 2,
249
+ "in_channels": 1,
250
+ "out_channels": 1,
251
+ "channels": [4, 4],
252
+ "num_res_layers": 1,
253
+ "num_res_channels": [4, 4],
254
+ "downsample_parameters": ((2, 4, 1, 1), (2, 4, 1, 1)),
255
+ "upsample_parameters": ((2, 4, 1, 1, 0), (2, 4, 1, 1, 0)),
256
+ "num_embeddings": 16,
257
+ "embedding_dim": 3,
258
+ },
259
+ "DiffusionModelUNet",
260
+ {
261
+ "spatial_dims": 2,
262
+ "in_channels": 3,
263
+ "out_channels": 3,
264
+ "channels": [8, 8],
265
+ "norm_num_groups": 8,
266
+ "attention_levels": [False, False],
267
+ "num_res_blocks": 1,
268
+ "num_head_channels": 8,
269
+ },
270
+ {
271
+ "spatial_dims": 2,
272
+ "in_channels": 3,
273
+ "channels": [8, 8],
274
+ "attention_levels": [False, False],
275
+ "num_res_blocks": 1,
276
+ "norm_num_groups": 8,
277
+ "num_head_channels": 8,
278
+ "conditioning_embedding_num_channels": [16],
279
+ "conditioning_embedding_in_channels": 1,
280
+ },
281
+ (1, 1, 12, 12),
282
+ (1, 3, 8, 8),
283
+ ],
284
+ [
285
+ "VQVAE",
286
+ {
287
+ "spatial_dims": 3,
288
+ "in_channels": 1,
289
+ "out_channels": 1,
290
+ "channels": [4, 4],
291
+ "num_res_layers": 1,
292
+ "num_res_channels": [4, 4],
293
+ "downsample_parameters": ((2, 4, 1, 1), (2, 4, 1, 1)),
294
+ "upsample_parameters": ((2, 4, 1, 1, 0), (2, 4, 1, 1, 0)),
295
+ "num_embeddings": 16,
296
+ "embedding_dim": 3,
297
+ },
298
+ "DiffusionModelUNet",
299
+ {
300
+ "spatial_dims": 3,
301
+ "in_channels": 3,
302
+ "out_channels": 3,
303
+ "channels": [8, 8],
304
+ "norm_num_groups": 8,
305
+ "attention_levels": [False, False],
306
+ "num_res_blocks": 1,
307
+ "num_head_channels": 8,
308
+ },
309
+ {
310
+ "spatial_dims": 3,
311
+ "in_channels": 3,
312
+ "channels": [8, 8],
313
+ "attention_levels": [False, False],
314
+ "num_res_blocks": 1,
315
+ "norm_num_groups": 8,
316
+ "num_head_channels": 8,
317
+ "conditioning_embedding_num_channels": [16],
318
+ "conditioning_embedding_in_channels": 1,
319
+ },
320
+ (1, 1, 12, 12, 12),
321
+ (1, 3, 8, 8, 8),
322
+ ],
323
+ [
324
+ "SPADEAutoencoderKL",
325
+ {
326
+ "spatial_dims": 2,
327
+ "label_nc": 3,
328
+ "in_channels": 1,
329
+ "out_channels": 1,
330
+ "channels": (4, 4),
331
+ "latent_channels": 3,
332
+ "attention_levels": [False, False],
333
+ "num_res_blocks": 1,
334
+ "with_encoder_nonlocal_attn": False,
335
+ "with_decoder_nonlocal_attn": False,
336
+ "norm_num_groups": 4,
337
+ },
338
+ "DiffusionModelUNet",
339
+ {
340
+ "spatial_dims": 2,
341
+ "in_channels": 3,
342
+ "out_channels": 3,
343
+ "channels": [4, 4],
344
+ "norm_num_groups": 4,
345
+ "attention_levels": [False, False],
346
+ "num_res_blocks": 1,
347
+ "num_head_channels": 4,
348
+ },
349
+ {
350
+ "spatial_dims": 2,
351
+ "in_channels": 3,
352
+ "channels": [4, 4],
353
+ "attention_levels": [False, False],
354
+ "num_res_blocks": 1,
355
+ "norm_num_groups": 4,
356
+ "num_head_channels": 4,
357
+ "conditioning_embedding_num_channels": [16],
358
+ "conditioning_embedding_in_channels": 1,
359
+ },
360
+ (1, 1, 8, 8),
361
+ (1, 3, 4, 4),
362
+ ],
363
+ [
364
+ "AutoencoderKL",
365
+ {
366
+ "spatial_dims": 2,
367
+ "in_channels": 1,
368
+ "out_channels": 1,
369
+ "channels": (4, 4),
370
+ "latent_channels": 3,
371
+ "attention_levels": [False, False],
372
+ "num_res_blocks": 1,
373
+ "with_encoder_nonlocal_attn": False,
374
+ "with_decoder_nonlocal_attn": False,
375
+ "norm_num_groups": 4,
376
+ },
377
+ "SPADEDiffusionModelUNet",
378
+ {
379
+ "spatial_dims": 2,
380
+ "label_nc": 3,
381
+ "in_channels": 3,
382
+ "out_channels": 3,
383
+ "channels": [4, 4],
384
+ "norm_num_groups": 4,
385
+ "attention_levels": [False, False],
386
+ "num_res_blocks": 1,
387
+ "num_head_channels": 4,
388
+ },
389
+ {
390
+ "spatial_dims": 2,
391
+ "in_channels": 3,
392
+ "channels": [4, 4],
393
+ "attention_levels": [False, False],
394
+ "num_res_blocks": 1,
395
+ "norm_num_groups": 4,
396
+ "num_head_channels": 4,
397
+ "conditioning_embedding_num_channels": [16],
398
+ "conditioning_embedding_in_channels": 1,
399
+ },
400
+ (1, 1, 8, 8),
401
+ (1, 3, 4, 4),
402
+ ],
403
+ [
404
+ "SPADEAutoencoderKL",
405
+ {
406
+ "spatial_dims": 2,
407
+ "label_nc": 3,
408
+ "in_channels": 1,
409
+ "out_channels": 1,
410
+ "channels": (4, 4),
411
+ "latent_channels": 3,
412
+ "attention_levels": [False, False],
413
+ "num_res_blocks": 1,
414
+ "with_encoder_nonlocal_attn": False,
415
+ "with_decoder_nonlocal_attn": False,
416
+ "norm_num_groups": 4,
417
+ },
418
+ "SPADEDiffusionModelUNet",
419
+ {
420
+ "spatial_dims": 2,
421
+ "label_nc": 3,
422
+ "in_channels": 3,
423
+ "out_channels": 3,
424
+ "channels": [4, 4],
425
+ "norm_num_groups": 4,
426
+ "attention_levels": [False, False],
427
+ "num_res_blocks": 1,
428
+ "num_head_channels": 4,
429
+ },
430
+ {
431
+ "spatial_dims": 2,
432
+ "in_channels": 3,
433
+ "channels": [4, 4],
434
+ "attention_levels": [False, False],
435
+ "num_res_blocks": 1,
436
+ "norm_num_groups": 4,
437
+ "num_head_channels": 4,
438
+ "conditioning_embedding_num_channels": [16],
439
+ "conditioning_embedding_in_channels": 1,
440
+ },
441
+ (1, 1, 8, 8),
442
+ (1, 3, 4, 4),
443
+ ],
444
+ ]
445
+
446
+
447
+ class ControlNetTestDiffusionSamplingInferer(unittest.TestCase):
448
+ @parameterized.expand(CNDM_TEST_CASES)
449
+ @skipUnless(has_einops, "Requires einops")
450
+ def test_call(self, model_params, controlnet_params, input_shape):
451
+ model = DiffusionModelUNet(**model_params)
452
+ controlnet = ControlNet(**controlnet_params)
453
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
454
+ model.to(device)
455
+ model.eval()
456
+ controlnet.to(device)
457
+ controlnet.eval()
458
+ input = torch.randn(input_shape).to(device)
459
+ mask = torch.randn(input_shape).to(device)
460
+ noise = torch.randn(input_shape).to(device)
461
+ scheduler = DDPMScheduler(num_train_timesteps=10)
462
+ inferer = ControlNetDiffusionInferer(scheduler=scheduler)
463
+ scheduler.set_timesteps(num_inference_steps=10)
464
+ timesteps = torch.randint(0, scheduler.num_train_timesteps, (input_shape[0],), device=input.device).long()
465
+ sample = inferer(
466
+ inputs=input, noise=noise, diffusion_model=model, controlnet=controlnet, timesteps=timesteps, cn_cond=mask
467
+ )
468
+ self.assertEqual(sample.shape, input_shape)
469
+
470
+ @parameterized.expand(CNDM_TEST_CASES)
471
+ @skipUnless(has_einops, "Requires einops")
472
+ def test_sample_intermediates(self, model_params, controlnet_params, input_shape):
473
+ model = DiffusionModelUNet(**model_params)
474
+ controlnet = ControlNet(**controlnet_params)
475
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
476
+ model.to(device)
477
+ model.eval()
478
+ controlnet.to(device)
479
+ controlnet.eval()
480
+ noise = torch.randn(input_shape).to(device)
481
+ mask = torch.randn(input_shape).to(device)
482
+ scheduler = DDPMScheduler(num_train_timesteps=10)
483
+ inferer = ControlNetDiffusionInferer(scheduler=scheduler)
484
+ scheduler.set_timesteps(num_inference_steps=10)
485
+ sample, intermediates = inferer.sample(
486
+ input_noise=noise,
487
+ diffusion_model=model,
488
+ scheduler=scheduler,
489
+ controlnet=controlnet,
490
+ cn_cond=mask,
491
+ save_intermediates=True,
492
+ intermediate_steps=1,
493
+ )
494
+ self.assertEqual(len(intermediates), 10)
495
+
496
+ @parameterized.expand(CNDM_TEST_CASES)
497
+ @skipUnless(has_einops, "Requires einops")
498
+ def test_ddpm_sampler(self, model_params, controlnet_params, input_shape):
499
+ model = DiffusionModelUNet(**model_params)
500
+ controlnet = ControlNet(**controlnet_params)
501
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
502
+ model.to(device)
503
+ model.eval()
504
+ controlnet.to(device)
505
+ controlnet.eval()
506
+ mask = torch.randn(input_shape).to(device)
507
+ noise = torch.randn(input_shape).to(device)
508
+ scheduler = DDPMScheduler(num_train_timesteps=1000)
509
+ inferer = ControlNetDiffusionInferer(scheduler=scheduler)
510
+ scheduler.set_timesteps(num_inference_steps=10)
511
+ sample, intermediates = inferer.sample(
512
+ input_noise=noise,
513
+ diffusion_model=model,
514
+ scheduler=scheduler,
515
+ controlnet=controlnet,
516
+ cn_cond=mask,
517
+ save_intermediates=True,
518
+ intermediate_steps=1,
519
+ )
520
+ self.assertEqual(len(intermediates), 10)
521
+
522
+ @parameterized.expand(CNDM_TEST_CASES)
523
+ @skipUnless(has_einops, "Requires einops")
524
+ def test_ddim_sampler(self, model_params, controlnet_params, input_shape):
525
+ model = DiffusionModelUNet(**model_params)
526
+ controlnet = ControlNet(**controlnet_params)
527
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
528
+ model.to(device)
529
+ model.eval()
530
+ controlnet.to(device)
531
+ controlnet.eval()
532
+ mask = torch.randn(input_shape).to(device)
533
+ noise = torch.randn(input_shape).to(device)
534
+ scheduler = DDIMScheduler(num_train_timesteps=1000)
535
+ inferer = ControlNetDiffusionInferer(scheduler=scheduler)
536
+ scheduler.set_timesteps(num_inference_steps=10)
537
+ sample, intermediates = inferer.sample(
538
+ input_noise=noise,
539
+ diffusion_model=model,
540
+ scheduler=scheduler,
541
+ controlnet=controlnet,
542
+ cn_cond=mask,
543
+ save_intermediates=True,
544
+ intermediate_steps=1,
545
+ )
546
+ self.assertEqual(len(intermediates), 10)
547
+
548
+ @parameterized.expand(CNDM_TEST_CASES)
549
+ @skipUnless(has_einops, "Requires einops")
550
+ def test_sampler_conditioned(self, model_params, controlnet_params, input_shape):
551
+ model_params["with_conditioning"] = True
552
+ model_params["cross_attention_dim"] = 3
553
+ model = DiffusionModelUNet(**model_params)
554
+ controlnet = ControlNet(**controlnet_params)
555
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
556
+ model.to(device)
557
+ model.eval()
558
+ controlnet.to(device)
559
+ controlnet.eval()
560
+ mask = torch.randn(input_shape).to(device)
561
+ noise = torch.randn(input_shape).to(device)
562
+ scheduler = DDIMScheduler(num_train_timesteps=1000)
563
+ inferer = ControlNetDiffusionInferer(scheduler=scheduler)
564
+ scheduler.set_timesteps(num_inference_steps=10)
565
+ conditioning = torch.randn([input_shape[0], 1, 3]).to(device)
566
+ sample, intermediates = inferer.sample(
567
+ input_noise=noise,
568
+ diffusion_model=model,
569
+ controlnet=controlnet,
570
+ cn_cond=mask,
571
+ scheduler=scheduler,
572
+ save_intermediates=True,
573
+ intermediate_steps=1,
574
+ conditioning=conditioning,
575
+ )
576
+ self.assertEqual(len(intermediates), 10)
577
+
578
+ @parameterized.expand(CNDM_TEST_CASES)
579
+ @skipUnless(has_einops, "Requires einops")
580
+ def test_get_likelihood(self, model_params, controlnet_params, input_shape):
581
+ model = DiffusionModelUNet(**model_params)
582
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
583
+ model.to(device)
584
+ model.eval()
585
+ controlnet = ControlNet(**controlnet_params)
586
+ controlnet.to(device)
587
+ controlnet.eval()
588
+ input = torch.randn(input_shape).to(device)
589
+ mask = torch.randn(input_shape).to(device)
590
+ scheduler = DDPMScheduler(num_train_timesteps=10)
591
+ inferer = ControlNetDiffusionInferer(scheduler=scheduler)
592
+ scheduler.set_timesteps(num_inference_steps=10)
593
+ likelihood, intermediates = inferer.get_likelihood(
594
+ inputs=input,
595
+ diffusion_model=model,
596
+ scheduler=scheduler,
597
+ controlnet=controlnet,
598
+ cn_cond=mask,
599
+ save_intermediates=True,
600
+ )
601
+ self.assertEqual(intermediates[0].shape, input.shape)
602
+ self.assertEqual(likelihood.shape[0], input.shape[0])
603
+
604
+ @unittest.skipUnless(has_scipy, "Requires scipy library.")
605
+ def test_normal_cdf(self):
606
+ from scipy.stats import norm
607
+
608
+ scheduler = DDPMScheduler(num_train_timesteps=10)
609
+ inferer = ControlNetDiffusionInferer(scheduler=scheduler)
610
+ x = torch.linspace(-10, 10, 20)
611
+ cdf_approx = inferer._approx_standard_normal_cdf(x)
612
+ cdf_true = norm.cdf(x)
613
+ torch.testing.assert_allclose(cdf_approx, cdf_true, atol=1e-3, rtol=1e-5)
614
+
615
+ @parameterized.expand(CNDM_TEST_CASES)
616
+ @skipUnless(has_einops, "Requires einops")
617
+ def test_sampler_conditioned_concat(self, model_params, controlnet_params, input_shape):
618
+ # copy the model_params dict to prevent from modifying test cases
619
+ model_params = model_params.copy()
620
+ n_concat_channel = 2
621
+ model_params["in_channels"] = model_params["in_channels"] + n_concat_channel
622
+ model_params["cross_attention_dim"] = None
623
+ model_params["with_conditioning"] = False
624
+ model = DiffusionModelUNet(**model_params)
625
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
626
+ model.to(device)
627
+ model.eval()
628
+ controlnet = ControlNet(**controlnet_params)
629
+ controlnet.to(device)
630
+ controlnet.eval()
631
+ noise = torch.randn(input_shape).to(device)
632
+ mask = torch.randn(input_shape).to(device)
633
+ conditioning_shape = list(input_shape)
634
+ conditioning_shape[1] = n_concat_channel
635
+ conditioning = torch.randn(conditioning_shape).to(device)
636
+ scheduler = DDIMScheduler(num_train_timesteps=1000)
637
+ inferer = ControlNetDiffusionInferer(scheduler=scheduler)
638
+ scheduler.set_timesteps(num_inference_steps=10)
639
+ sample, intermediates = inferer.sample(
640
+ input_noise=noise,
641
+ diffusion_model=model,
642
+ controlnet=controlnet,
643
+ cn_cond=mask,
644
+ scheduler=scheduler,
645
+ save_intermediates=True,
646
+ intermediate_steps=1,
647
+ conditioning=conditioning,
648
+ mode="concat",
649
+ )
650
+ self.assertEqual(len(intermediates), 10)
651
+
652
+
653
+ class LatentControlNetTestDiffusionSamplingInferer(unittest.TestCase):
654
+ @parameterized.expand(LATENT_CNDM_TEST_CASES)
655
+ @skipUnless(has_einops, "Requires einops")
656
+ def test_prediction_shape(
657
+ self,
658
+ ae_model_type,
659
+ autoencoder_params,
660
+ dm_model_type,
661
+ stage_2_params,
662
+ controlnet_params,
663
+ input_shape,
664
+ latent_shape,
665
+ ):
666
+ stage_1 = None
667
+
668
+ if ae_model_type == "AutoencoderKL":
669
+ stage_1 = AutoencoderKL(**autoencoder_params)
670
+ if ae_model_type == "VQVAE":
671
+ stage_1 = VQVAE(**autoencoder_params)
672
+ if dm_model_type == "SPADEDiffusionModelUNet":
673
+ stage_2 = SPADEDiffusionModelUNet(**stage_2_params)
674
+ else:
675
+ stage_2 = DiffusionModelUNet(**stage_2_params)
676
+ controlnet = ControlNet(**controlnet_params)
677
+
678
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
679
+ stage_1.to(device)
680
+ stage_2.to(device)
681
+ controlnet.to(device)
682
+ stage_1.eval()
683
+ stage_2.eval()
684
+ controlnet.eval()
685
+
686
+ input = torch.randn(input_shape).to(device)
687
+ mask = torch.randn(input_shape).to(device)
688
+ noise = torch.randn(latent_shape).to(device)
689
+ scheduler = DDPMScheduler(num_train_timesteps=10)
690
+ inferer = ControlNetLatentDiffusionInferer(scheduler=scheduler, scale_factor=1.0)
691
+ scheduler.set_timesteps(num_inference_steps=10)
692
+ timesteps = torch.randint(0, scheduler.num_train_timesteps, (input_shape[0],), device=input.device).long()
693
+
694
+ if dm_model_type == "SPADEDiffusionModelUNet":
695
+ input_shape_seg = list(input_shape)
696
+ if "label_nc" in stage_2_params.keys():
697
+ input_shape_seg[1] = stage_2_params["label_nc"]
698
+ else:
699
+ input_shape_seg[1] = autoencoder_params["label_nc"]
700
+ input_seg = torch.randn(input_shape_seg).to(device)
701
+ prediction = inferer(
702
+ inputs=input,
703
+ autoencoder_model=stage_1,
704
+ diffusion_model=stage_2,
705
+ controlnet=controlnet,
706
+ cn_cond=mask,
707
+ seg=input_seg,
708
+ noise=noise,
709
+ timesteps=timesteps,
710
+ )
711
+ else:
712
+ prediction = inferer(
713
+ inputs=input,
714
+ autoencoder_model=stage_1,
715
+ diffusion_model=stage_2,
716
+ noise=noise,
717
+ timesteps=timesteps,
718
+ controlnet=controlnet,
719
+ cn_cond=mask,
720
+ )
721
+ self.assertEqual(prediction.shape, latent_shape)
722
+
723
+ @parameterized.expand(LATENT_CNDM_TEST_CASES)
724
+ @skipUnless(has_einops, "Requires einops")
725
+ def test_sample_shape(
726
+ self,
727
+ ae_model_type,
728
+ autoencoder_params,
729
+ dm_model_type,
730
+ stage_2_params,
731
+ controlnet_params,
732
+ input_shape,
733
+ latent_shape,
734
+ ):
735
+ stage_1 = None
736
+
737
+ if ae_model_type == "AutoencoderKL":
738
+ stage_1 = AutoencoderKL(**autoencoder_params)
739
+ if ae_model_type == "VQVAE":
740
+ stage_1 = VQVAE(**autoencoder_params)
741
+ if dm_model_type == "SPADEDiffusionModelUNet":
742
+ stage_2 = SPADEDiffusionModelUNet(**stage_2_params)
743
+ else:
744
+ stage_2 = DiffusionModelUNet(**stage_2_params)
745
+ controlnet = ControlNet(**controlnet_params)
746
+
747
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
748
+ stage_1.to(device)
749
+ stage_2.to(device)
750
+ controlnet.to(device)
751
+ stage_1.eval()
752
+ stage_2.eval()
753
+ controlnet.eval()
754
+
755
+ noise = torch.randn(latent_shape).to(device)
756
+ mask = torch.randn(input_shape).to(device)
757
+ scheduler = DDPMScheduler(num_train_timesteps=10)
758
+ inferer = ControlNetLatentDiffusionInferer(scheduler=scheduler, scale_factor=1.0)
759
+ scheduler.set_timesteps(num_inference_steps=10)
760
+
761
+ if ae_model_type == "SPADEAutoencoderKL" or dm_model_type == "SPADEDiffusionModelUNet":
762
+ input_shape_seg = list(input_shape)
763
+ if "label_nc" in stage_2_params.keys():
764
+ input_shape_seg[1] = stage_2_params["label_nc"]
765
+ else:
766
+ input_shape_seg[1] = autoencoder_params["label_nc"]
767
+ input_seg = torch.randn(input_shape_seg).to(device)
768
+ sample = inferer.sample(
769
+ input_noise=noise,
770
+ autoencoder_model=stage_1,
771
+ diffusion_model=stage_2,
772
+ controlnet=controlnet,
773
+ cn_cond=mask,
774
+ scheduler=scheduler,
775
+ seg=input_seg,
776
+ )
777
+ else:
778
+ sample = inferer.sample(
779
+ input_noise=noise,
780
+ autoencoder_model=stage_1,
781
+ diffusion_model=stage_2,
782
+ scheduler=scheduler,
783
+ controlnet=controlnet,
784
+ cn_cond=mask,
785
+ )
786
+ self.assertEqual(sample.shape, input_shape)
787
+
788
+ @parameterized.expand(LATENT_CNDM_TEST_CASES)
789
+ @skipUnless(has_einops, "Requires einops")
790
+ def test_sample_intermediates(
791
+ self,
792
+ ae_model_type,
793
+ autoencoder_params,
794
+ dm_model_type,
795
+ stage_2_params,
796
+ controlnet_params,
797
+ input_shape,
798
+ latent_shape,
799
+ ):
800
+ stage_1 = None
801
+
802
+ if ae_model_type == "AutoencoderKL":
803
+ stage_1 = AutoencoderKL(**autoencoder_params)
804
+ if ae_model_type == "VQVAE":
805
+ stage_1 = VQVAE(**autoencoder_params)
806
+ if ae_model_type == "SPADEAutoencoderKL":
807
+ stage_1 = SPADEAutoencoderKL(**autoencoder_params)
808
+ if dm_model_type == "SPADEDiffusionModelUNet":
809
+ stage_2 = SPADEDiffusionModelUNet(**stage_2_params)
810
+ else:
811
+ stage_2 = DiffusionModelUNet(**stage_2_params)
812
+ controlnet = ControlNet(**controlnet_params)
813
+
814
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
815
+ stage_1.to(device)
816
+ stage_2.to(device)
817
+ controlnet.to(device)
818
+ stage_1.eval()
819
+ stage_2.eval()
820
+ controlnet.eval()
821
+
822
+ noise = torch.randn(latent_shape).to(device)
823
+ mask = torch.randn(input_shape).to(device)
824
+ scheduler = DDPMScheduler(num_train_timesteps=10)
825
+ inferer = ControlNetLatentDiffusionInferer(scheduler=scheduler, scale_factor=1.0)
826
+ scheduler.set_timesteps(num_inference_steps=10)
827
+
828
+ if ae_model_type == "SPADEAutoencoderKL" or dm_model_type == "SPADEDiffusionModelUNet":
829
+ input_shape_seg = list(input_shape)
830
+ if "label_nc" in stage_2_params.keys():
831
+ input_shape_seg[1] = stage_2_params["label_nc"]
832
+ else:
833
+ input_shape_seg[1] = autoencoder_params["label_nc"]
834
+ input_seg = torch.randn(input_shape_seg).to(device)
835
+ sample = inferer.sample(
836
+ input_noise=noise,
837
+ autoencoder_model=stage_1,
838
+ diffusion_model=stage_2,
839
+ scheduler=scheduler,
840
+ seg=input_seg,
841
+ controlnet=controlnet,
842
+ cn_cond=mask,
843
+ )
844
+
845
+ # TODO: this isn't correct, should the above produce intermediates as well?
846
+ # This test has always passed so is this branch not being used?
847
+ intermediates = None
848
+ else:
849
+ sample, intermediates = inferer.sample(
850
+ input_noise=noise,
851
+ autoencoder_model=stage_1,
852
+ diffusion_model=stage_2,
853
+ scheduler=scheduler,
854
+ save_intermediates=True,
855
+ intermediate_steps=1,
856
+ controlnet=controlnet,
857
+ cn_cond=mask,
858
+ )
859
+
860
+ self.assertEqual(len(intermediates), 10)
861
+ self.assertEqual(intermediates[0].shape, input_shape)
862
+
863
+ @parameterized.expand(LATENT_CNDM_TEST_CASES)
864
+ @skipUnless(has_einops, "Requires einops")
865
+ def test_get_likelihoods(
866
+ self,
867
+ ae_model_type,
868
+ autoencoder_params,
869
+ dm_model_type,
870
+ stage_2_params,
871
+ controlnet_params,
872
+ input_shape,
873
+ latent_shape,
874
+ ):
875
+ stage_1 = None
876
+
877
+ if ae_model_type == "AutoencoderKL":
878
+ stage_1 = AutoencoderKL(**autoencoder_params)
879
+ if ae_model_type == "VQVAE":
880
+ stage_1 = VQVAE(**autoencoder_params)
881
+ if ae_model_type == "SPADEAutoencoderKL":
882
+ stage_1 = SPADEAutoencoderKL(**autoencoder_params)
883
+ if dm_model_type == "SPADEDiffusionModelUNet":
884
+ stage_2 = SPADEDiffusionModelUNet(**stage_2_params)
885
+ else:
886
+ stage_2 = DiffusionModelUNet(**stage_2_params)
887
+ controlnet = ControlNet(**controlnet_params)
888
+
889
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
890
+ stage_1.to(device)
891
+ stage_2.to(device)
892
+ controlnet.to(device)
893
+ stage_1.eval()
894
+ stage_2.eval()
895
+ controlnet.eval()
896
+
897
+ input = torch.randn(input_shape).to(device)
898
+ mask = torch.randn(input_shape).to(device)
899
+ scheduler = DDPMScheduler(num_train_timesteps=10)
900
+ inferer = ControlNetLatentDiffusionInferer(scheduler=scheduler, scale_factor=1.0)
901
+ scheduler.set_timesteps(num_inference_steps=10)
902
+
903
+ if dm_model_type == "SPADEDiffusionModelUNet":
904
+ input_shape_seg = list(input_shape)
905
+ if "label_nc" in stage_2_params.keys():
906
+ input_shape_seg[1] = stage_2_params["label_nc"]
907
+ else:
908
+ input_shape_seg[1] = autoencoder_params["label_nc"]
909
+ input_seg = torch.randn(input_shape_seg).to(device)
910
+ sample, intermediates = inferer.get_likelihood(
911
+ inputs=input,
912
+ autoencoder_model=stage_1,
913
+ diffusion_model=stage_2,
914
+ controlnet=controlnet,
915
+ cn_cond=mask,
916
+ scheduler=scheduler,
917
+ save_intermediates=True,
918
+ seg=input_seg,
919
+ )
920
+ else:
921
+ sample, intermediates = inferer.get_likelihood(
922
+ inputs=input,
923
+ autoencoder_model=stage_1,
924
+ diffusion_model=stage_2,
925
+ scheduler=scheduler,
926
+ controlnet=controlnet,
927
+ cn_cond=mask,
928
+ save_intermediates=True,
929
+ )
930
+ self.assertEqual(len(intermediates), 10)
931
+ self.assertEqual(intermediates[0].shape, latent_shape)
932
+
933
+ @parameterized.expand(LATENT_CNDM_TEST_CASES)
934
+ @skipUnless(has_einops, "Requires einops")
935
+ def test_resample_likelihoods(
936
+ self,
937
+ ae_model_type,
938
+ autoencoder_params,
939
+ dm_model_type,
940
+ stage_2_params,
941
+ controlnet_params,
942
+ input_shape,
943
+ latent_shape,
944
+ ):
945
+ stage_1 = None
946
+
947
+ if ae_model_type == "AutoencoderKL":
948
+ stage_1 = AutoencoderKL(**autoencoder_params)
949
+ if ae_model_type == "VQVAE":
950
+ stage_1 = VQVAE(**autoencoder_params)
951
+ if ae_model_type == "SPADEAutoencoderKL":
952
+ stage_1 = SPADEAutoencoderKL(**autoencoder_params)
953
+ if dm_model_type == "SPADEDiffusionModelUNet":
954
+ stage_2 = SPADEDiffusionModelUNet(**stage_2_params)
955
+ else:
956
+ stage_2 = DiffusionModelUNet(**stage_2_params)
957
+ controlnet = ControlNet(**controlnet_params)
958
+
959
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
960
+ stage_1.to(device)
961
+ stage_2.to(device)
962
+ controlnet.to(device)
963
+ stage_1.eval()
964
+ stage_2.eval()
965
+ controlnet.eval()
966
+
967
+ input = torch.randn(input_shape).to(device)
968
+ mask = torch.randn(input_shape).to(device)
969
+ scheduler = DDPMScheduler(num_train_timesteps=10)
970
+ inferer = ControlNetLatentDiffusionInferer(scheduler=scheduler, scale_factor=1.0)
971
+ scheduler.set_timesteps(num_inference_steps=10)
972
+
973
+ if dm_model_type == "SPADEDiffusionModelUNet":
974
+ input_shape_seg = list(input_shape)
975
+ if "label_nc" in stage_2_params.keys():
976
+ input_shape_seg[1] = stage_2_params["label_nc"]
977
+ else:
978
+ input_shape_seg[1] = autoencoder_params["label_nc"]
979
+ input_seg = torch.randn(input_shape_seg).to(device)
980
+ sample, intermediates = inferer.get_likelihood(
981
+ inputs=input,
982
+ autoencoder_model=stage_1,
983
+ diffusion_model=stage_2,
984
+ scheduler=scheduler,
985
+ controlnet=controlnet,
986
+ cn_cond=mask,
987
+ save_intermediates=True,
988
+ resample_latent_likelihoods=True,
989
+ seg=input_seg,
990
+ )
991
+ else:
992
+ sample, intermediates = inferer.get_likelihood(
993
+ inputs=input,
994
+ autoencoder_model=stage_1,
995
+ diffusion_model=stage_2,
996
+ scheduler=scheduler,
997
+ controlnet=controlnet,
998
+ cn_cond=mask,
999
+ save_intermediates=True,
1000
+ resample_latent_likelihoods=True,
1001
+ )
1002
+ self.assertEqual(len(intermediates), 10)
1003
+ self.assertEqual(intermediates[0].shape[2:], input_shape[2:])
1004
+
1005
+ @parameterized.expand(LATENT_CNDM_TEST_CASES)
1006
+ @skipUnless(has_einops, "Requires einops")
1007
+ def test_prediction_shape_conditioned_concat(
1008
+ self,
1009
+ ae_model_type,
1010
+ autoencoder_params,
1011
+ dm_model_type,
1012
+ stage_2_params,
1013
+ controlnet_params,
1014
+ input_shape,
1015
+ latent_shape,
1016
+ ):
1017
+ stage_1 = None
1018
+
1019
+ if ae_model_type == "AutoencoderKL":
1020
+ stage_1 = AutoencoderKL(**autoencoder_params)
1021
+ if ae_model_type == "VQVAE":
1022
+ stage_1 = VQVAE(**autoencoder_params)
1023
+ if ae_model_type == "SPADEAutoencoderKL":
1024
+ stage_1 = SPADEAutoencoderKL(**autoencoder_params)
1025
+ stage_2_params = stage_2_params.copy()
1026
+ n_concat_channel = 3
1027
+ stage_2_params["in_channels"] = stage_2_params["in_channels"] + n_concat_channel
1028
+ if dm_model_type == "SPADEDiffusionModelUNet":
1029
+ stage_2 = SPADEDiffusionModelUNet(**stage_2_params)
1030
+ else:
1031
+ stage_2 = DiffusionModelUNet(**stage_2_params)
1032
+ controlnet = ControlNet(**controlnet_params)
1033
+
1034
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
1035
+ stage_1.to(device)
1036
+ stage_2.to(device)
1037
+ controlnet.to(device)
1038
+ stage_1.eval()
1039
+ stage_2.eval()
1040
+ controlnet.eval()
1041
+
1042
+ input = torch.randn(input_shape).to(device)
1043
+ mask = torch.randn(input_shape).to(device)
1044
+ noise = torch.randn(latent_shape).to(device)
1045
+ conditioning_shape = list(latent_shape)
1046
+ conditioning_shape[1] = n_concat_channel
1047
+ conditioning = torch.randn(conditioning_shape).to(device)
1048
+
1049
+ scheduler = DDPMScheduler(num_train_timesteps=10)
1050
+ inferer = ControlNetLatentDiffusionInferer(scheduler=scheduler, scale_factor=1.0)
1051
+ scheduler.set_timesteps(num_inference_steps=10)
1052
+
1053
+ timesteps = torch.randint(0, scheduler.num_train_timesteps, (input_shape[0],), device=input.device).long()
1054
+
1055
+ if dm_model_type == "SPADEDiffusionModelUNet":
1056
+ input_shape_seg = list(input_shape)
1057
+ if "label_nc" in stage_2_params.keys():
1058
+ input_shape_seg[1] = stage_2_params["label_nc"]
1059
+ else:
1060
+ input_shape_seg[1] = autoencoder_params["label_nc"]
1061
+ input_seg = torch.randn(input_shape_seg).to(device)
1062
+ prediction = inferer(
1063
+ inputs=input,
1064
+ autoencoder_model=stage_1,
1065
+ diffusion_model=stage_2,
1066
+ noise=noise,
1067
+ controlnet=controlnet,
1068
+ cn_cond=mask,
1069
+ timesteps=timesteps,
1070
+ condition=conditioning,
1071
+ mode="concat",
1072
+ seg=input_seg,
1073
+ )
1074
+ else:
1075
+ prediction = inferer(
1076
+ inputs=input,
1077
+ autoencoder_model=stage_1,
1078
+ diffusion_model=stage_2,
1079
+ noise=noise,
1080
+ controlnet=controlnet,
1081
+ cn_cond=mask,
1082
+ timesteps=timesteps,
1083
+ condition=conditioning,
1084
+ mode="concat",
1085
+ )
1086
+ self.assertEqual(prediction.shape, latent_shape)
1087
+
1088
+ @parameterized.expand(LATENT_CNDM_TEST_CASES)
1089
+ @skipUnless(has_einops, "Requires einops")
1090
+ def test_sample_shape_conditioned_concat(
1091
+ self,
1092
+ ae_model_type,
1093
+ autoencoder_params,
1094
+ dm_model_type,
1095
+ stage_2_params,
1096
+ controlnet_params,
1097
+ input_shape,
1098
+ latent_shape,
1099
+ ):
1100
+ stage_1 = None
1101
+
1102
+ if ae_model_type == "AutoencoderKL":
1103
+ stage_1 = AutoencoderKL(**autoencoder_params)
1104
+ if ae_model_type == "VQVAE":
1105
+ stage_1 = VQVAE(**autoencoder_params)
1106
+ if ae_model_type == "SPADEAutoencoderKL":
1107
+ stage_1 = SPADEAutoencoderKL(**autoencoder_params)
1108
+ stage_2_params = stage_2_params.copy()
1109
+ n_concat_channel = 3
1110
+ stage_2_params["in_channels"] = stage_2_params["in_channels"] + n_concat_channel
1111
+ if dm_model_type == "SPADEDiffusionModelUNet":
1112
+ stage_2 = SPADEDiffusionModelUNet(**stage_2_params)
1113
+ else:
1114
+ stage_2 = DiffusionModelUNet(**stage_2_params)
1115
+ controlnet = ControlNet(**controlnet_params)
1116
+
1117
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
1118
+ stage_1.to(device)
1119
+ stage_2.to(device)
1120
+ controlnet.to(device)
1121
+ stage_1.eval()
1122
+ stage_2.eval()
1123
+ controlnet.eval()
1124
+
1125
+ noise = torch.randn(latent_shape).to(device)
1126
+ mask = torch.randn(input_shape).to(device)
1127
+ conditioning_shape = list(latent_shape)
1128
+ conditioning_shape[1] = n_concat_channel
1129
+ conditioning = torch.randn(conditioning_shape).to(device)
1130
+
1131
+ scheduler = DDPMScheduler(num_train_timesteps=10)
1132
+ inferer = ControlNetLatentDiffusionInferer(scheduler=scheduler, scale_factor=1.0)
1133
+ scheduler.set_timesteps(num_inference_steps=10)
1134
+
1135
+ if dm_model_type == "SPADEDiffusionModelUNet":
1136
+ input_shape_seg = list(input_shape)
1137
+ if "label_nc" in stage_2_params.keys():
1138
+ input_shape_seg[1] = stage_2_params["label_nc"]
1139
+ else:
1140
+ input_shape_seg[1] = autoencoder_params["label_nc"]
1141
+ input_seg = torch.randn(input_shape_seg).to(device)
1142
+ sample = inferer.sample(
1143
+ input_noise=noise,
1144
+ autoencoder_model=stage_1,
1145
+ diffusion_model=stage_2,
1146
+ controlnet=controlnet,
1147
+ cn_cond=mask,
1148
+ scheduler=scheduler,
1149
+ conditioning=conditioning,
1150
+ mode="concat",
1151
+ seg=input_seg,
1152
+ )
1153
+ else:
1154
+ sample = inferer.sample(
1155
+ input_noise=noise,
1156
+ autoencoder_model=stage_1,
1157
+ diffusion_model=stage_2,
1158
+ controlnet=controlnet,
1159
+ cn_cond=mask,
1160
+ scheduler=scheduler,
1161
+ conditioning=conditioning,
1162
+ mode="concat",
1163
+ )
1164
+ self.assertEqual(sample.shape, input_shape)
1165
+
1166
+ @parameterized.expand(LATENT_CNDM_TEST_CASES_DIFF_SHAPES)
1167
+ @skipUnless(has_einops, "Requires einops")
1168
+ def test_sample_shape_different_latents(
1169
+ self,
1170
+ ae_model_type,
1171
+ autoencoder_params,
1172
+ dm_model_type,
1173
+ stage_2_params,
1174
+ controlnet_params,
1175
+ input_shape,
1176
+ latent_shape,
1177
+ ):
1178
+ stage_1 = None
1179
+
1180
+ if ae_model_type == "AutoencoderKL":
1181
+ stage_1 = AutoencoderKL(**autoencoder_params)
1182
+ if ae_model_type == "VQVAE":
1183
+ stage_1 = VQVAE(**autoencoder_params)
1184
+ if ae_model_type == "SPADEAutoencoderKL":
1185
+ stage_1 = SPADEAutoencoderKL(**autoencoder_params)
1186
+ if dm_model_type == "SPADEDiffusionModelUNet":
1187
+ stage_2 = SPADEDiffusionModelUNet(**stage_2_params)
1188
+ else:
1189
+ stage_2 = DiffusionModelUNet(**stage_2_params)
1190
+ controlnet = ControlNet(**controlnet_params)
1191
+
1192
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
1193
+ stage_1.to(device)
1194
+ stage_2.to(device)
1195
+ controlnet.to(device)
1196
+ stage_1.eval()
1197
+ stage_2.eval()
1198
+ controlnet.eval()
1199
+
1200
+ input = torch.randn(input_shape).to(device)
1201
+ noise = torch.randn(latent_shape).to(device)
1202
+ mask = torch.randn(input_shape).to(device)
1203
+ scheduler = DDPMScheduler(num_train_timesteps=10)
1204
+ # We infer the VAE shape
1205
+ autoencoder_latent_shape = [i // (2 ** (len(autoencoder_params["channels"]) - 1)) for i in input_shape[2:]]
1206
+ inferer = ControlNetLatentDiffusionInferer(
1207
+ scheduler=scheduler,
1208
+ scale_factor=1.0,
1209
+ ldm_latent_shape=list(latent_shape[2:]),
1210
+ autoencoder_latent_shape=autoencoder_latent_shape,
1211
+ )
1212
+ scheduler.set_timesteps(num_inference_steps=10)
1213
+
1214
+ timesteps = torch.randint(0, scheduler.num_train_timesteps, (input_shape[0],), device=input.device).long()
1215
+
1216
+ if dm_model_type == "SPADEDiffusionModelUNet":
1217
+ input_shape_seg = list(input_shape)
1218
+ if "label_nc" in stage_2_params.keys():
1219
+ input_shape_seg[1] = stage_2_params["label_nc"]
1220
+ else:
1221
+ input_shape_seg[1] = autoencoder_params["label_nc"]
1222
+ input_seg = torch.randn(input_shape_seg).to(device)
1223
+ prediction = inferer(
1224
+ inputs=input,
1225
+ autoencoder_model=stage_1,
1226
+ diffusion_model=stage_2,
1227
+ controlnet=controlnet,
1228
+ cn_cond=mask,
1229
+ noise=noise,
1230
+ timesteps=timesteps,
1231
+ seg=input_seg,
1232
+ )
1233
+ else:
1234
+ prediction = inferer(
1235
+ inputs=input,
1236
+ autoencoder_model=stage_1,
1237
+ diffusion_model=stage_2,
1238
+ noise=noise,
1239
+ controlnet=controlnet,
1240
+ cn_cond=mask,
1241
+ timesteps=timesteps,
1242
+ )
1243
+ self.assertEqual(prediction.shape, latent_shape)
1244
+
1245
+ @skipUnless(has_einops, "Requires einops")
1246
+ def test_incompatible_spade_setup(self):
1247
+ stage_1 = SPADEAutoencoderKL(
1248
+ spatial_dims=2,
1249
+ label_nc=6,
1250
+ in_channels=1,
1251
+ out_channels=1,
1252
+ channels=(4, 4),
1253
+ latent_channels=3,
1254
+ attention_levels=[False, False],
1255
+ num_res_blocks=1,
1256
+ with_encoder_nonlocal_attn=False,
1257
+ with_decoder_nonlocal_attn=False,
1258
+ norm_num_groups=4,
1259
+ )
1260
+ stage_2 = SPADEDiffusionModelUNet(
1261
+ spatial_dims=2,
1262
+ label_nc=3,
1263
+ in_channels=3,
1264
+ out_channels=3,
1265
+ channels=[4, 4],
1266
+ norm_num_groups=4,
1267
+ attention_levels=[False, False],
1268
+ num_res_blocks=1,
1269
+ num_head_channels=4,
1270
+ )
1271
+ controlnet = ControlNet(
1272
+ spatial_dims=2,
1273
+ in_channels=1,
1274
+ channels=[4, 4],
1275
+ norm_num_groups=4,
1276
+ attention_levels=[False, False],
1277
+ num_res_blocks=1,
1278
+ num_head_channels=4,
1279
+ conditioning_embedding_num_channels=[16],
1280
+ )
1281
+
1282
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
1283
+ stage_1.to(device)
1284
+ stage_2.to(device)
1285
+ controlnet.to(device)
1286
+ controlnet.to(device)
1287
+ stage_1.eval()
1288
+ stage_2.eval()
1289
+ controlnet.eval()
1290
+ noise = torch.randn((1, 3, 4, 4)).to(device)
1291
+ mask = torch.randn((1, 1, 4, 4)).to(device)
1292
+ input_seg = torch.randn((1, 3, 8, 8)).to(device)
1293
+ scheduler = DDPMScheduler(num_train_timesteps=10)
1294
+ inferer = ControlNetLatentDiffusionInferer(scheduler=scheduler, scale_factor=1.0)
1295
+ scheduler.set_timesteps(num_inference_steps=10)
1296
+
1297
+ with self.assertRaises(ValueError):
1298
+ _ = inferer.sample(
1299
+ input_noise=noise,
1300
+ autoencoder_model=stage_1,
1301
+ diffusion_model=stage_2,
1302
+ scheduler=scheduler,
1303
+ controlnet=controlnet,
1304
+ cn_cond=mask,
1305
+ seg=input_seg,
1306
+ )
1307
+
1308
+
1309
+ if __name__ == "__main__":
1310
+ unittest.main()