melage 0.0.65__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- melage/__init__.py +16 -0
- melage/cli.py +4 -0
- melage/graphics/GLGraphicsItem.py +286 -0
- melage/graphics/GLViewWidget.py +595 -0
- melage/graphics/Transform3D.py +55 -0
- melage/graphics/__init__.py +8 -0
- melage/graphics/functions.py +101 -0
- melage/graphics/items/GLAxisItem.py +149 -0
- melage/graphics/items/GLGridItem.py +178 -0
- melage/graphics/items/GLPolygonItem.py +77 -0
- melage/graphics/items/GLScatterPlotItem.py +135 -0
- melage/graphics/items/GLVolumeItem.py +280 -0
- melage/graphics/items/GLVolumeItem_b.py +237 -0
- melage/graphics/items/__init__.py +0 -0
- melage/graphics/shaders.py +202 -0
- melage/main.py +270 -0
- melage/requirements22.txt +25 -0
- melage/requirements_old.txt +28 -0
- melage/resource/0circle.png +0 -0
- melage/resource/0circle_faded.png +0 -0
- melage/resource/3d.png +0 -0
- melage/resource/3d.psd +0 -0
- melage/resource/3dFaded.png +0 -0
- melage/resource/Eraser.png +0 -0
- melage/resource/EraserFaded.png +0 -0
- melage/resource/EraserX.png +0 -0
- melage/resource/EraserXFaded.png +0 -0
- melage/resource/Eraser_icon.svg +79 -0
- melage/resource/Hand.png +0 -0
- melage/resource/HandIcons_0.png +0 -0
- melage/resource/Hand_IX.png +0 -0
- melage/resource/Hand_IXFaded.png +0 -0
- melage/resource/Handsqueezed.png +0 -0
- melage/resource/Handwriting (copy).png +0 -0
- melage/resource/Handwriting.png +0 -0
- melage/resource/HandwritingMinus.png +0 -0
- melage/resource/HandwritingMinusX.png +0 -0
- melage/resource/HandwritingPlus.png +0 -0
- melage/resource/HandwritingPlusX.png +0 -0
- melage/resource/Move_icon.svg +8 -0
- melage/resource/PngItem_2422924.png +0 -0
- melage/resource/about.png +0 -0
- melage/resource/about_logo.png +0 -0
- melage/resource/about_logo0.png +0 -0
- melage/resource/action_check.png +0 -0
- melage/resource/action_check_OFF.png +0 -0
- melage/resource/arrow).png +0 -0
- melage/resource/arrow.png +0 -0
- melage/resource/arrowFaded.png +0 -0
- melage/resource/arrow_org.png +0 -0
- melage/resource/arrow_org.png.png +0 -0
- melage/resource/arrows.png +0 -0
- melage/resource/authors.mp4 +0 -0
- melage/resource/box.png +0 -0
- melage/resource/check-image-icon-0.jpg +0 -0
- melage/resource/circle.png +0 -0
- melage/resource/circle_faded.png +0 -0
- melage/resource/circle_or.png +0 -0
- melage/resource/close.png +0 -0
- melage/resource/close_bg.png +0 -0
- melage/resource/color/Simple.txt +18 -0
- melage/resource/color/Tissue.txt +24 -0
- melage/resource/color/Tissue12.txt +27 -0
- melage/resource/color/albert_LUT.txt +102 -0
- melage/resource/color/mcrib_LUT.txt +102 -0
- melage/resource/color/pediatric1.txt +29 -0
- melage/resource/color/pediatric1_old.txt +27 -0
- melage/resource/color/pediatric2.txt +87 -0
- melage/resource/color/pediatric3.txt +29 -0
- melage/resource/color/pediatrics (copy).csv +103 -0
- melage/resource/color/tissue_seg.txt +4 -0
- melage/resource/contour.png +0 -0
- melage/resource/contour.svg +2 -0
- melage/resource/contourFaded.png +0 -0
- melage/resource/contourX.png +0 -0
- melage/resource/contourXFaded.png +0 -0
- melage/resource/dti.png +0 -0
- melage/resource/dti0.png +0 -0
- melage/resource/dti222.png +0 -0
- melage/resource/dti_or.png +0 -0
- melage/resource/eco.png +0 -0
- melage/resource/eco22.png +0 -0
- melage/resource/eco_old.png +0 -0
- melage/resource/eco_or.png +0 -0
- melage/resource/eco_or2.png +0 -0
- melage/resource/eco_seg.png +0 -0
- melage/resource/eco_seg_old.png +0 -0
- melage/resource/export.png +0 -0
- melage/resource/hand-grab-icon-10.jpg +0 -0
- melage/resource/hand-grab-icon-25.jpg +0 -0
- melage/resource/info.png +0 -0
- melage/resource/line.png +0 -0
- melage/resource/linefaded.png +0 -0
- melage/resource/load.png +0 -0
- melage/resource/main.ico +0 -0
- melage/resource/manual_images/3D_rightc.png +0 -0
- melage/resource/manual_images/3D_rightc_goto.png +0 -0
- melage/resource/manual_images/3D_rightc_paint.png +0 -0
- melage/resource/manual_images/3D_rightc_paint_draw1.png +0 -0
- melage/resource/manual_images/3D_rightc_paint_draw2.png +0 -0
- melage/resource/manual_images/3D_rightc_paint_render.png +0 -0
- melage/resource/manual_images/3D_rightc_paint_render2.png +0 -0
- melage/resource/manual_images/3D_rightc_paint_render3.png +0 -0
- melage/resource/manual_images/3D_rightc_paint_render4.png +0 -0
- melage/resource/manual_images/3D_rightc_paint_render5.png +0 -0
- melage/resource/manual_images/3D_rightc_paint_render6.png +0 -0
- melage/resource/manual_images/3D_rightc_seg.png +0 -0
- melage/resource/manual_images/exit_toolbar.png +0 -0
- melage/resource/manual_images/load_image_file.png +0 -0
- melage/resource/manual_images/load_image_file_openp.png +0 -0
- melage/resource/manual_images/main_page.png +0 -0
- melage/resource/manual_images/menu_file.png +0 -0
- melage/resource/manual_images/menu_file_export.png +0 -0
- melage/resource/manual_images/menu_file_import.png +0 -0
- melage/resource/manual_images/menu_file_settings.png +0 -0
- melage/resource/manual_images/menu_file_ss.png +0 -0
- melage/resource/manual_images/open_save_load.png +0 -0
- melage/resource/manual_images/panning_toolbar.png +0 -0
- melage/resource/manual_images/segmentation_toolbar.png +0 -0
- melage/resource/manual_images/tab_mri.png +0 -0
- melage/resource/manual_images/tab_us.png +0 -0
- melage/resource/manual_images/tabs.png +0 -0
- melage/resource/manual_images/toolbar_tools.png +0 -0
- melage/resource/manual_images/tools_basic.png +0 -0
- melage/resource/manual_images/tools_bet.png +0 -0
- melage/resource/manual_images/tools_cs.png +0 -0
- melage/resource/manual_images/tools_deepbet.png +0 -0
- melage/resource/manual_images/tools_imageinfo.png +0 -0
- melage/resource/manual_images/tools_maskO.png +0 -0
- melage/resource/manual_images/tools_masking.png +0 -0
- melage/resource/manual_images/tools_n4b.png +0 -0
- melage/resource/manual_images/tools_resize.png +0 -0
- melage/resource/manual_images/tools_ruler.png +0 -0
- melage/resource/manual_images/tools_seg.png +0 -0
- melage/resource/manual_images/tools_threshold.png +0 -0
- melage/resource/manual_images/tools_tools.png +0 -0
- melage/resource/manual_images/widget_color.png +0 -0
- melage/resource/manual_images/widget_color_add.png +0 -0
- melage/resource/manual_images/widget_color_add2.png +0 -0
- melage/resource/manual_images/widget_color_additional.png +0 -0
- melage/resource/manual_images/widget_images.png +0 -0
- melage/resource/manual_images/widget_images2.png +0 -0
- melage/resource/manual_images/widget_images3.png +0 -0
- melage/resource/manual_images/widget_marker.png +0 -0
- melage/resource/manual_images/widget_mri.png +0 -0
- melage/resource/manual_images/widget_mri2.png +0 -0
- melage/resource/manual_images/widget_segintensity.png +0 -0
- melage/resource/manual_images/widget_tab_mutualview.png +0 -0
- melage/resource/manual_images/widget_tab_mutualview2.png +0 -0
- melage/resource/manual_images/widget_table.png +0 -0
- melage/resource/manual_images/widget_table2.png +0 -0
- melage/resource/manual_images/widget_us.png +0 -0
- melage/resource/melage_top.ico +0 -0
- melage/resource/melage_top.png +0 -0
- melage/resource/melage_top0.png +0 -0
- melage/resource/melage_top1.png +0 -0
- melage/resource/melage_top4.png +0 -0
- melage/resource/mri (copy).png +0 -0
- melage/resource/mri.png +0 -0
- melage/resource/mri0.png +0 -0
- melage/resource/mri000.png +0 -0
- melage/resource/mri22.png +0 -0
- melage/resource/mri_big.png +0 -0
- melage/resource/mri_old.png +0 -0
- melage/resource/mri_seg.png +0 -0
- melage/resource/mri_seg_old.png +0 -0
- melage/resource/new.png +0 -0
- melage/resource/open.png +0 -0
- melage/resource/open2.png +0 -0
- melage/resource/pan.png +0 -0
- melage/resource/pencil.png +0 -0
- melage/resource/pencilFaded.png +0 -0
- melage/resource/points.png +0 -0
- melage/resource/pointsFaded.png +0 -0
- melage/resource/rotate.png +0 -0
- melage/resource/ruler.png +0 -0
- melage/resource/rulerFaded.png +0 -0
- melage/resource/s.png +0 -0
- melage/resource/s.psd +0 -0
- melage/resource/save.png +0 -0
- melage/resource/saveas.png +0 -0
- melage/resource/seg_mri.png +0 -0
- melage/resource/seg_mri2.png +0 -0
- melage/resource/settings.png +0 -0
- melage/resource/synch.png +0 -0
- melage/resource/synchFaded.png +0 -0
- melage/resource/theme/rc/.keep +1 -0
- melage/resource/theme/rc/arrow_down.png +0 -0
- melage/resource/theme/rc/arrow_down@2x.png +0 -0
- melage/resource/theme/rc/arrow_down_disabled.png +0 -0
- melage/resource/theme/rc/arrow_down_disabled@2x.png +0 -0
- melage/resource/theme/rc/arrow_down_focus.png +0 -0
- melage/resource/theme/rc/arrow_down_focus@2x.png +0 -0
- melage/resource/theme/rc/arrow_down_pressed.png +0 -0
- melage/resource/theme/rc/arrow_down_pressed@2x.png +0 -0
- melage/resource/theme/rc/arrow_left.png +0 -0
- melage/resource/theme/rc/arrow_left@2x.png +0 -0
- melage/resource/theme/rc/arrow_left_disabled.png +0 -0
- melage/resource/theme/rc/arrow_left_disabled@2x.png +0 -0
- melage/resource/theme/rc/arrow_left_focus.png +0 -0
- melage/resource/theme/rc/arrow_left_focus@2x.png +0 -0
- melage/resource/theme/rc/arrow_left_pressed.png +0 -0
- melage/resource/theme/rc/arrow_left_pressed@2x.png +0 -0
- melage/resource/theme/rc/arrow_right.png +0 -0
- melage/resource/theme/rc/arrow_right@2x.png +0 -0
- melage/resource/theme/rc/arrow_right_disabled.png +0 -0
- melage/resource/theme/rc/arrow_right_disabled@2x.png +0 -0
- melage/resource/theme/rc/arrow_right_focus.png +0 -0
- melage/resource/theme/rc/arrow_right_focus@2x.png +0 -0
- melage/resource/theme/rc/arrow_right_pressed.png +0 -0
- melage/resource/theme/rc/arrow_right_pressed@2x.png +0 -0
- melage/resource/theme/rc/arrow_up.png +0 -0
- melage/resource/theme/rc/arrow_up@2x.png +0 -0
- melage/resource/theme/rc/arrow_up_disabled.png +0 -0
- melage/resource/theme/rc/arrow_up_disabled@2x.png +0 -0
- melage/resource/theme/rc/arrow_up_focus.png +0 -0
- melage/resource/theme/rc/arrow_up_focus@2x.png +0 -0
- melage/resource/theme/rc/arrow_up_pressed.png +0 -0
- melage/resource/theme/rc/arrow_up_pressed@2x.png +0 -0
- melage/resource/theme/rc/base_icon.png +0 -0
- melage/resource/theme/rc/base_icon@2x.png +0 -0
- melage/resource/theme/rc/base_icon_disabled.png +0 -0
- melage/resource/theme/rc/base_icon_disabled@2x.png +0 -0
- melage/resource/theme/rc/base_icon_focus.png +0 -0
- melage/resource/theme/rc/base_icon_focus@2x.png +0 -0
- melage/resource/theme/rc/base_icon_pressed.png +0 -0
- melage/resource/theme/rc/base_icon_pressed@2x.png +0 -0
- melage/resource/theme/rc/branch_closed.png +0 -0
- melage/resource/theme/rc/branch_closed@2x.png +0 -0
- melage/resource/theme/rc/branch_closed_disabled.png +0 -0
- melage/resource/theme/rc/branch_closed_disabled@2x.png +0 -0
- melage/resource/theme/rc/branch_closed_focus.png +0 -0
- melage/resource/theme/rc/branch_closed_focus@2x.png +0 -0
- melage/resource/theme/rc/branch_closed_pressed.png +0 -0
- melage/resource/theme/rc/branch_closed_pressed@2x.png +0 -0
- melage/resource/theme/rc/branch_end.png +0 -0
- melage/resource/theme/rc/branch_end@2x.png +0 -0
- melage/resource/theme/rc/branch_end_disabled.png +0 -0
- melage/resource/theme/rc/branch_end_disabled@2x.png +0 -0
- melage/resource/theme/rc/branch_end_focus.png +0 -0
- melage/resource/theme/rc/branch_end_focus@2x.png +0 -0
- melage/resource/theme/rc/branch_end_pressed.png +0 -0
- melage/resource/theme/rc/branch_end_pressed@2x.png +0 -0
- melage/resource/theme/rc/branch_line.png +0 -0
- melage/resource/theme/rc/branch_line@2x.png +0 -0
- melage/resource/theme/rc/branch_line_disabled.png +0 -0
- melage/resource/theme/rc/branch_line_disabled@2x.png +0 -0
- melage/resource/theme/rc/branch_line_focus.png +0 -0
- melage/resource/theme/rc/branch_line_focus@2x.png +0 -0
- melage/resource/theme/rc/branch_line_pressed.png +0 -0
- melage/resource/theme/rc/branch_line_pressed@2x.png +0 -0
- melage/resource/theme/rc/branch_more.png +0 -0
- melage/resource/theme/rc/branch_more@2x.png +0 -0
- melage/resource/theme/rc/branch_more_disabled.png +0 -0
- melage/resource/theme/rc/branch_more_disabled@2x.png +0 -0
- melage/resource/theme/rc/branch_more_focus.png +0 -0
- melage/resource/theme/rc/branch_more_focus@2x.png +0 -0
- melage/resource/theme/rc/branch_more_pressed.png +0 -0
- melage/resource/theme/rc/branch_more_pressed@2x.png +0 -0
- melage/resource/theme/rc/branch_open.png +0 -0
- melage/resource/theme/rc/branch_open@2x.png +0 -0
- melage/resource/theme/rc/branch_open_disabled.png +0 -0
- melage/resource/theme/rc/branch_open_disabled@2x.png +0 -0
- melage/resource/theme/rc/branch_open_focus.png +0 -0
- melage/resource/theme/rc/branch_open_focus@2x.png +0 -0
- melage/resource/theme/rc/branch_open_pressed.png +0 -0
- melage/resource/theme/rc/branch_open_pressed@2x.png +0 -0
- melage/resource/theme/rc/checkbox_checked.png +0 -0
- melage/resource/theme/rc/checkbox_checked0.png +0 -0
- melage/resource/theme/rc/checkbox_checked@2x.png +0 -0
- melage/resource/theme/rc/checkbox_checked@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_checked@2x000.png.png +0 -0
- melage/resource/theme/rc/checkbox_checked_disabled.png +0 -0
- melage/resource/theme/rc/checkbox_checked_disabled0.png +0 -0
- melage/resource/theme/rc/checkbox_checked_disabled@2x.png +0 -0
- melage/resource/theme/rc/checkbox_checked_disabled@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_checked_focus.png +0 -0
- melage/resource/theme/rc/checkbox_checked_focus0.png +0 -0
- melage/resource/theme/rc/checkbox_checked_focus@2x.png +0 -0
- melage/resource/theme/rc/checkbox_checked_focus@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_checked_pressed.png +0 -0
- melage/resource/theme/rc/checkbox_checked_pressed0.png +0 -0
- melage/resource/theme/rc/checkbox_checked_pressed@2x.png +0 -0
- melage/resource/theme/rc/checkbox_checked_pressed@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate@2x.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_disabled.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_disabled@2x.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_focus.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_focus@2x.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_pressed.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_pressed@2x.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked@2x.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked@2x00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled@2x.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled@2x00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus@2x.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus@2x00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed@2x.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed@2x00.png +0 -0
- melage/resource/theme/rc/line_horizontal.png +0 -0
- melage/resource/theme/rc/line_horizontal@2x.png +0 -0
- melage/resource/theme/rc/line_horizontal_disabled.png +0 -0
- melage/resource/theme/rc/line_horizontal_disabled@2x.png +0 -0
- melage/resource/theme/rc/line_horizontal_focus.png +0 -0
- melage/resource/theme/rc/line_horizontal_focus@2x.png +0 -0
- melage/resource/theme/rc/line_horizontal_pressed.png +0 -0
- melage/resource/theme/rc/line_horizontal_pressed@2x.png +0 -0
- melage/resource/theme/rc/line_vertical.png +0 -0
- melage/resource/theme/rc/line_vertical@2x.png +0 -0
- melage/resource/theme/rc/line_vertical_disabled.png +0 -0
- melage/resource/theme/rc/line_vertical_disabled@2x.png +0 -0
- melage/resource/theme/rc/line_vertical_focus.png +0 -0
- melage/resource/theme/rc/line_vertical_focus@2x.png +0 -0
- melage/resource/theme/rc/line_vertical_pressed.png +0 -0
- melage/resource/theme/rc/line_vertical_pressed@2x.png +0 -0
- melage/resource/theme/rc/radio_checked.png +0 -0
- melage/resource/theme/rc/radio_checked@2x.png +0 -0
- melage/resource/theme/rc/radio_checked_disabled.png +0 -0
- melage/resource/theme/rc/radio_checked_disabled@2x.png +0 -0
- melage/resource/theme/rc/radio_checked_focus.png +0 -0
- melage/resource/theme/rc/radio_checked_focus@2x.png +0 -0
- melage/resource/theme/rc/radio_checked_pressed.png +0 -0
- melage/resource/theme/rc/radio_checked_pressed@2x.png +0 -0
- melage/resource/theme/rc/radio_unchecked.png +0 -0
- melage/resource/theme/rc/radio_unchecked@2x.png +0 -0
- melage/resource/theme/rc/radio_unchecked_disabled.png +0 -0
- melage/resource/theme/rc/radio_unchecked_disabled@2x.png +0 -0
- melage/resource/theme/rc/radio_unchecked_focus.png +0 -0
- melage/resource/theme/rc/radio_unchecked_focus@2x.png +0 -0
- melage/resource/theme/rc/radio_unchecked_pressed.png +0 -0
- melage/resource/theme/rc/radio_unchecked_pressed@2x.png +0 -0
- melage/resource/theme/rc/toolbar_move_horizontal.png +0 -0
- melage/resource/theme/rc/toolbar_move_horizontal@2x.png +0 -0
- melage/resource/theme/rc/toolbar_move_horizontal_disabled.png +0 -0
- melage/resource/theme/rc/toolbar_move_horizontal_disabled@2x.png +0 -0
- melage/resource/theme/rc/toolbar_move_horizontal_focus.png +0 -0
- melage/resource/theme/rc/toolbar_move_horizontal_focus@2x.png +0 -0
- melage/resource/theme/rc/toolbar_move_horizontal_pressed.png +0 -0
- melage/resource/theme/rc/toolbar_move_horizontal_pressed@2x.png +0 -0
- melage/resource/theme/rc/toolbar_move_vertical.png +0 -0
- melage/resource/theme/rc/toolbar_move_vertical@2x.png +0 -0
- melage/resource/theme/rc/toolbar_move_vertical_disabled.png +0 -0
- melage/resource/theme/rc/toolbar_move_vertical_disabled@2x.png +0 -0
- melage/resource/theme/rc/toolbar_move_vertical_focus.png +0 -0
- melage/resource/theme/rc/toolbar_move_vertical_focus@2x.png +0 -0
- melage/resource/theme/rc/toolbar_move_vertical_pressed.png +0 -0
- melage/resource/theme/rc/toolbar_move_vertical_pressed@2x.png +0 -0
- melage/resource/theme/rc/toolbar_separator_horizontal.png +0 -0
- melage/resource/theme/rc/toolbar_separator_horizontal@2x.png +0 -0
- melage/resource/theme/rc/toolbar_separator_horizontal_disabled.png +0 -0
- melage/resource/theme/rc/toolbar_separator_horizontal_disabled@2x.png +0 -0
- melage/resource/theme/rc/toolbar_separator_horizontal_focus.png +0 -0
- melage/resource/theme/rc/toolbar_separator_horizontal_focus@2x.png +0 -0
- melage/resource/theme/rc/toolbar_separator_horizontal_pressed.png +0 -0
- melage/resource/theme/rc/toolbar_separator_horizontal_pressed@2x.png +0 -0
- melage/resource/theme/rc/toolbar_separator_vertical.png +0 -0
- melage/resource/theme/rc/toolbar_separator_vertical@2x.png +0 -0
- melage/resource/theme/rc/toolbar_separator_vertical_disabled.png +0 -0
- melage/resource/theme/rc/toolbar_separator_vertical_disabled@2x.png +0 -0
- melage/resource/theme/rc/toolbar_separator_vertical_focus.png +0 -0
- melage/resource/theme/rc/toolbar_separator_vertical_focus@2x.png +0 -0
- melage/resource/theme/rc/toolbar_separator_vertical_pressed.png +0 -0
- melage/resource/theme/rc/toolbar_separator_vertical_pressed@2x.png +0 -0
- melage/resource/theme/rc/transparent.png +0 -0
- melage/resource/theme/rc/transparent@2x.png +0 -0
- melage/resource/theme/rc/transparent_disabled.png +0 -0
- melage/resource/theme/rc/transparent_disabled@2x.png +0 -0
- melage/resource/theme/rc/transparent_focus.png +0 -0
- melage/resource/theme/rc/transparent_focus@2x.png +0 -0
- melage/resource/theme/rc/transparent_pressed.png +0 -0
- melage/resource/theme/rc/transparent_pressed@2x.png +0 -0
- melage/resource/theme/rc/window_close.png +0 -0
- melage/resource/theme/rc/window_close@2x.png +0 -0
- melage/resource/theme/rc/window_close_disabled.png +0 -0
- melage/resource/theme/rc/window_close_disabled@2x.png +0 -0
- melage/resource/theme/rc/window_close_focus.png +0 -0
- melage/resource/theme/rc/window_close_focus@2x.png +0 -0
- melage/resource/theme/rc/window_close_pressed.png +0 -0
- melage/resource/theme/rc/window_close_pressed@2x.png +0 -0
- melage/resource/theme/rc/window_grip.png +0 -0
- melage/resource/theme/rc/window_grip@2x.png +0 -0
- melage/resource/theme/rc/window_grip_disabled.png +0 -0
- melage/resource/theme/rc/window_grip_disabled@2x.png +0 -0
- melage/resource/theme/rc/window_grip_focus.png +0 -0
- melage/resource/theme/rc/window_grip_focus@2x.png +0 -0
- melage/resource/theme/rc/window_grip_pressed.png +0 -0
- melage/resource/theme/rc/window_grip_pressed@2x.png +0 -0
- melage/resource/theme/rc/window_minimize.png +0 -0
- melage/resource/theme/rc/window_minimize@2x.png +0 -0
- melage/resource/theme/rc/window_minimize_disabled.png +0 -0
- melage/resource/theme/rc/window_minimize_disabled@2x.png +0 -0
- melage/resource/theme/rc/window_minimize_focus.png +0 -0
- melage/resource/theme/rc/window_minimize_focus@2x.png +0 -0
- melage/resource/theme/rc/window_minimize_pressed.png +0 -0
- melage/resource/theme/rc/window_minimize_pressed@2x.png +0 -0
- melage/resource/theme/rc/window_undock.png +0 -0
- melage/resource/theme/rc/window_undock@2x.png +0 -0
- melage/resource/theme/rc/window_undock_disabled.png +0 -0
- melage/resource/theme/rc/window_undock_disabled@2x.png +0 -0
- melage/resource/theme/rc/window_undock_focus.png +0 -0
- melage/resource/theme/rc/window_undock_focus@2x.png +0 -0
- melage/resource/theme/rc/window_undock_pressed.png +0 -0
- melage/resource/theme/rc/window_undock_pressed@2x.png +0 -0
- melage/resource/theme/style.qss +2223 -0
- melage/resource/tract.png +0 -0
- melage/resource/view1.png +0 -0
- melage/resource/view1_eco.png +0 -0
- melage/resource/view1_mri.png +0 -0
- melage/resource/view1_seg.png +0 -0
- melage/resource/view2.png +0 -0
- melage/resource/view2_seg.png +0 -0
- melage/resource/w.png +0 -0
- melage/resource/zoom_in.png +0 -0
- melage/resource/zoom_inFaded.png +0 -0
- melage/resource/zoom_out.png +0 -0
- melage/resource/zoom_outFaded.png +0 -0
- melage/some_notes.txt +3 -0
- melage/utils/DispalyIm.py +2788 -0
- melage/utils/GMM.py +720 -0
- melage/utils/Shaders_120.py +257 -0
- melage/utils/Shaders_330.py +314 -0
- melage/utils/Shaders_bu.py +314 -0
- melage/utils/__init__0.py +7 -0
- melage/utils/brain_extraction_helper.py +234 -0
- melage/utils/custom_QScrollBar.py +61 -0
- melage/utils/glScientific.py +1554 -0
- melage/utils/glScientific_bc.py +1585 -0
- melage/utils/readData.py +1061 -0
- melage/utils/registration.py +512 -0
- melage/utils/source_folder.py +18 -0
- melage/utils/utils.py +3808 -0
- melage/version.txt +1 -0
- melage/widgets/ApplyMask.py +212 -0
- melage/widgets/ChangeSystem.py +152 -0
- melage/widgets/DeepLModels/InfantSegment/Unet.py +464 -0
- melage/widgets/DeepLModels/NPP/dataset/mri_dataset_affine.py +149 -0
- melage/widgets/DeepLModels/NPP/models/checkpoints/npp_v1.pth.py +0 -0
- melage/widgets/DeepLModels/NPP/models/losses.py +146 -0
- melage/widgets/DeepLModels/NPP/models/model.py +272 -0
- melage/widgets/DeepLModels/NPP/models/utils.py +303 -0
- melage/widgets/DeepLModels/NPP/npp.py +116 -0
- melage/widgets/DeepLModels/NPP/requirements.txt +8 -0
- melage/widgets/DeepLModels/NPP/train/train.py +116 -0
- melage/widgets/DeepLModels/Unet3DAtt.py +657 -0
- melage/widgets/DeepLModels/Unet3D_basic.py +648 -0
- melage/widgets/DeepLModels/new_unet.py +652 -0
- melage/widgets/DeepLModels/new_unet_old.py +639 -0
- melage/widgets/DeepLModels/new_unet_old2.py +658 -0
- melage/widgets/HistImage.py +153 -0
- melage/widgets/ImageThresholding.py +222 -0
- melage/widgets/MaskOperations.py +147 -0
- melage/widgets/N4Dialog.py +241 -0
- melage/widgets/Segmentation/FCM.py +1553 -0
- melage/widgets/Segmentation/__init__.py +588 -0
- melage/widgets/Segmentation/utils.py +417 -0
- melage/widgets/SemiAutoSeg.py +666 -0
- melage/widgets/Synthstrip.py +141 -0
- melage/widgets/__init__0.py +5 -0
- melage/widgets/about.py +246 -0
- melage/widgets/activation.py +437 -0
- melage/widgets/activator.py +147 -0
- melage/widgets/be_dl.py +409 -0
- melage/widgets/be_dl_unet3d.py +441 -0
- melage/widgets/brain_extraction.py +855 -0
- melage/widgets/brain_extraction_dl.py +887 -0
- melage/widgets/brain_extraction_dl_bu.py +869 -0
- melage/widgets/colorwidget.py +100 -0
- melage/widgets/dockWidgets.py +2005 -0
- melage/widgets/enhanceImWidget.py +109 -0
- melage/widgets/fileDialog_widget.py +275 -0
- melage/widgets/iminfo.py +346 -0
- melage/widgets/mainwindow_widget.py +6775 -0
- melage/widgets/melageAbout.py +123 -0
- melage/widgets/openglWidgets.py +556 -0
- melage/widgets/registrationWidget.py +342 -0
- melage/widgets/repeat_widget.py +74 -0
- melage/widgets/screenshot_widget.py +138 -0
- melage/widgets/settings_widget.py +77 -0
- melage/widgets/tranformationWidget.py +275 -0
- melage-0.0.65.dist-info/METADATA +742 -0
- melage-0.0.65.dist-info/RECORD +501 -0
- melage-0.0.65.dist-info/WHEEL +5 -0
- melage-0.0.65.dist-info/entry_points.txt +2 -0
- melage-0.0.65.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,417 @@
|
|
|
1
|
+
from nibabel.affines import apply_affine
|
|
2
|
+
import numpy as np
|
|
3
|
+
from sklearn.linear_model import LinearRegression, BayesianRidge
|
|
4
|
+
from sklearn.ensemble import RandomForestRegressor
|
|
5
|
+
from sklearn.preprocessing import RobustScaler, StandardScaler
|
|
6
|
+
from scipy.special import softmax
|
|
7
|
+
import torch
|
|
8
|
+
import torch.nn.functional as F
|
|
9
|
+
from skimage.measure import label as label_connector
|
|
10
|
+
import nibabel as nib
|
|
11
|
+
from scipy.ndimage import binary_fill_holes
|
|
12
|
+
from scipy.ndimage import distance_transform_edt as edistance
|
|
13
|
+
from scipy.ndimage import distance_transform_cdt as chdistance
|
|
14
|
+
|
|
15
|
+
def compute_sdf(segmentation, distance_use='edt', bounded=True):
|
|
16
|
+
"""BY B
|
|
17
|
+
compute the signed distance map of binary mask
|
|
18
|
+
input: segmentation, shape = (batch_size, class, x, y, z)
|
|
19
|
+
output: the Signed Distance Map (SDM)
|
|
20
|
+
sdm(x) = 0; x in segmentation boundary
|
|
21
|
+
-inf|x-y|; x in segmentation
|
|
22
|
+
+inf|x-y|; x out of segmentation
|
|
23
|
+
"""
|
|
24
|
+
if distance_use=='cdt':
|
|
25
|
+
distance = chdistance
|
|
26
|
+
else:
|
|
27
|
+
distance = edistance
|
|
28
|
+
|
|
29
|
+
posmask = segmentation.astype(np.uint8)
|
|
30
|
+
# negmask = ~posmask
|
|
31
|
+
thrs = 4
|
|
32
|
+
from skimage import morphology
|
|
33
|
+
|
|
34
|
+
posdis = posmask
|
|
35
|
+
#posdis[posdis > np.max(posdis) / 5] = np.max(posdis) / 5
|
|
36
|
+
#posdis = posdis#/spacing[0]
|
|
37
|
+
#ind = posdis>thrs
|
|
38
|
+
#posdis[ind] = thrs
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
#ind_use = (interior+ exterior + eroded)>0
|
|
42
|
+
#int_ext = (interior+ exterior)>0
|
|
43
|
+
dis = -distance(posmask)
|
|
44
|
+
|
|
45
|
+
negdis = distance(1 - posmask)
|
|
46
|
+
dis[(negdis > 0)] = negdis[(negdis > 0)]
|
|
47
|
+
if bounded:
|
|
48
|
+
dis[dis>4] =4
|
|
49
|
+
dis[dis<-4] = -4
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
return dis
|
|
53
|
+
|
|
54
|
+
def binary_fill_holes_lcc_diff(index, threshold=None):
|
|
55
|
+
segl, segl_f = LargestCC(index)
|
|
56
|
+
if len(segl_f) > 2:
|
|
57
|
+
argmax_gmf = np.argsort(segl_f)[-2]
|
|
58
|
+
elif len(segl_f)==2:
|
|
59
|
+
argmax_gmf = 1
|
|
60
|
+
else:
|
|
61
|
+
argmax_gmf = 0
|
|
62
|
+
index_used = (segl != 0) * (segl != argmax_gmf)
|
|
63
|
+
index_used_filled = binary_fill_holes(index_used) > 0
|
|
64
|
+
index_remain = (index_used_filled.astype('int') - index_used.astype('int'))>0
|
|
65
|
+
if threshold is None:
|
|
66
|
+
threshold = (segl_f[argmax_gmf]-1)
|
|
67
|
+
segl_f_remove = np.argwhere(segl_f <= threshold)
|
|
68
|
+
segl_f_keep = np.argwhere(segl_f > threshold)
|
|
69
|
+
|
|
70
|
+
if len(segl_f_keep)< len(segl_f_remove):
|
|
71
|
+
shouldbe_kept = 0
|
|
72
|
+
for el in segl_f_keep:
|
|
73
|
+
shouldbe_kept += (segl == el).astype('int')
|
|
74
|
+
shouldbe_removed = ~(shouldbe_kept > 0)
|
|
75
|
+
else:
|
|
76
|
+
shouldbe_removed = 0
|
|
77
|
+
for el in segl_f_remove:
|
|
78
|
+
if el == 0:
|
|
79
|
+
continue
|
|
80
|
+
shouldbe_removed += (segl == el).astype('int')
|
|
81
|
+
if type(shouldbe_removed) == int:
|
|
82
|
+
shouldbe_removed = np.zeros_like(index_used)>0
|
|
83
|
+
else:
|
|
84
|
+
shouldbe_removed = shouldbe_removed>0
|
|
85
|
+
return index_remain, shouldbe_removed
|
|
86
|
+
|
|
87
|
+
class BiasCorrection(object):
|
|
88
|
+
def __init__(self):
|
|
89
|
+
pass
|
|
90
|
+
def set_info(self, target, reference, weight, biasfield, padding, mask, affine, cov_pq = None,
|
|
91
|
+
use_original=True):
|
|
92
|
+
self.target = target
|
|
93
|
+
self.reference = reference
|
|
94
|
+
self.weight = weight
|
|
95
|
+
self.biasfield = biasfield
|
|
96
|
+
self.padding = padding
|
|
97
|
+
self.mask = mask
|
|
98
|
+
self.affine = affine
|
|
99
|
+
self.scaler = RobustScaler()
|
|
100
|
+
self.scalerW = StandardScaler()
|
|
101
|
+
self.scalery = StandardScaler()
|
|
102
|
+
self.cov_pq = cov_pq
|
|
103
|
+
self.use_original=use_original
|
|
104
|
+
|
|
105
|
+
def _weighted_leas_square(self, imcoord, realdcoord, bias, weights,
|
|
106
|
+
use_original=True, sample_every= None):
|
|
107
|
+
|
|
108
|
+
if sample_every is not None:
|
|
109
|
+
vecB = bias[::sample_every]
|
|
110
|
+
weight = weights[::sample_every]
|
|
111
|
+
realdcoord = realdcoord[::sample_every, :]
|
|
112
|
+
else:
|
|
113
|
+
vecB = bias
|
|
114
|
+
weight = weights
|
|
115
|
+
|
|
116
|
+
A = self.biasfield.fit_transform(realdcoord)
|
|
117
|
+
|
|
118
|
+
|
|
119
|
+
if self.use_original:
|
|
120
|
+
AtW = np.einsum('ji,ik->ji',A.T, weight.reshape(-1,1))
|
|
121
|
+
AtWA = np.matmul(AtW,A)
|
|
122
|
+
AtWy = np.matmul(AtW, vecB.reshape(-1,1))
|
|
123
|
+
invAtWA = np.linalg.inv(AtWA)
|
|
124
|
+
coef = np.matmul(invAtWA, AtWy)
|
|
125
|
+
return coef
|
|
126
|
+
else:
|
|
127
|
+
A = self.scaler.fit_transform(A)
|
|
128
|
+
|
|
129
|
+
weight = (weight - weight.min())/np.ptp(weight)
|
|
130
|
+
vecB = self.scalery.fit_transform(vecB.reshape(-1, 1)).squeeze()
|
|
131
|
+
WLS = LinearRegression()
|
|
132
|
+
|
|
133
|
+
WLS.fit(A, vecB, sample_weight=1-weight)
|
|
134
|
+
return WLS
|
|
135
|
+
def normalize(self, fi, source):
|
|
136
|
+
a, b = source.min(), source.max()
|
|
137
|
+
dif = b - a
|
|
138
|
+
mindata = fi.min()
|
|
139
|
+
maxdata = fi.max()
|
|
140
|
+
filtered_image = a + (((fi - mindata) * dif) / (maxdata - mindata))
|
|
141
|
+
return filtered_image
|
|
142
|
+
def Apply(self, x, weight=None):
|
|
143
|
+
# apply bias field correction on image
|
|
144
|
+
ind_non_padd = (x != self.padding)* (self.mask==1)
|
|
145
|
+
coord = np.argwhere(ind_non_padd)
|
|
146
|
+
world = apply_affine(self.affine, coord)
|
|
147
|
+
A = self.biasfield.transform(world)
|
|
148
|
+
if self.use_original:
|
|
149
|
+
res = np.matmul(A, self.coef).squeeze()
|
|
150
|
+
else:
|
|
151
|
+
A = self.scaler.transform(A)
|
|
152
|
+
res = self.scalery.inverse_transform(self.coef.predict(A).reshape(-1,1)).squeeze()
|
|
153
|
+
|
|
154
|
+
if weight is not None:
|
|
155
|
+
x[ind_non_padd] = x[ind_non_padd] -weight[ind_non_padd]*res
|
|
156
|
+
else:
|
|
157
|
+
x[ind_non_padd] = x[ind_non_padd] -res
|
|
158
|
+
return x
|
|
159
|
+
|
|
160
|
+
def Run(self):
|
|
161
|
+
index_selected = (self.target!= self.padding)* (self.mask==1)
|
|
162
|
+
imcoord = np.argwhere(index_selected)
|
|
163
|
+
realdcoord = apply_affine(self.affine, imcoord)
|
|
164
|
+
if self.cov_pq is not None:
|
|
165
|
+
realdcoord = np.concatenate([realdcoord, self.cov_pq[index_selected].reshape(-1,1)], 1)
|
|
166
|
+
|
|
167
|
+
bias= (self.target[index_selected] - self.reference[index_selected])#/np.median(self.target[self.target>0])
|
|
168
|
+
|
|
169
|
+
weights = self.weight[index_selected]
|
|
170
|
+
# wheighted least square for bias field which polynomial here
|
|
171
|
+
self.coef = self._weighted_leas_square(imcoord, realdcoord, bias=bias, weights=weights, sample_every=None)
|
|
172
|
+
|
|
173
|
+
def gaussian(window_size, sigma):
|
|
174
|
+
gauss = torch.Tensor([np.exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2))/(np.sqrt(2*np.pi)*sigma) for x in range(window_size)])
|
|
175
|
+
return gauss / gauss.sum()
|
|
176
|
+
def create_window_3D(window_size, channel):
|
|
177
|
+
from torch.autograd import Variable
|
|
178
|
+
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
|
|
179
|
+
_2D_window = _1D_window.mm(_1D_window.t())
|
|
180
|
+
_3D_window = _1D_window.mm(_2D_window.reshape(1, -1)).reshape(window_size, window_size,
|
|
181
|
+
window_size).float().unsqueeze(0).unsqueeze(0)
|
|
182
|
+
window = Variable(_3D_window.expand(channel, 1, window_size, window_size, window_size).contiguous())
|
|
183
|
+
return window
|
|
184
|
+
|
|
185
|
+
|
|
186
|
+
|
|
187
|
+
|
|
188
|
+
|
|
189
|
+
|
|
190
|
+
|
|
191
|
+
|
|
192
|
+
|
|
193
|
+
def ssim3D(i1, i2, window, window_size, channel, contrast=True, L=1):
|
|
194
|
+
img1 =torch.from_numpy(i1).unsqueeze(0).unsqueeze(0).to(torch.float)
|
|
195
|
+
img2 = torch.from_numpy(i2).unsqueeze(0).unsqueeze(0).to(torch.float)
|
|
196
|
+
mux = F.conv3d(img1, window, padding=window_size // 2, groups=channel) #Overall Mean Luminance im1
|
|
197
|
+
muy = F.conv3d(img2, window, padding=window_size // 2, groups=channel)#Overall Mean Luminance im2
|
|
198
|
+
mux_sq = mux.pow(2)
|
|
199
|
+
muy_sq = muy.pow(2)
|
|
200
|
+
# Constants for SSIM calculation
|
|
201
|
+
C1 = (0.01 * L) ** 2
|
|
202
|
+
C2 = (0.03 * L) ** 2
|
|
203
|
+
|
|
204
|
+
|
|
205
|
+
mux_muy = mux * muy
|
|
206
|
+
|
|
207
|
+
sigmax_sq = F.conv3d(img1 * img1, window, padding=window_size // 2, groups=channel) - mux_sq
|
|
208
|
+
sigmax_sq = np.clip(sigmax_sq, 0, sigmax_sq.max())
|
|
209
|
+
sigmay_sq = F.conv3d(img2 * img2, window, padding=window_size // 2, groups=channel) - muy_sq
|
|
210
|
+
sigmay_sq = np.clip(sigmay_sq, 0, sigmay_sq.max())
|
|
211
|
+
sigmaxy = F.conv3d(img1 * img2, window, padding=window_size // 2, groups=channel) - mux_muy
|
|
212
|
+
# structural similarity
|
|
213
|
+
#ssim_map = (sigmaxy + C1) / (sigmax_sq.sqrt() * sigmay_sq.sqrt() + C1)
|
|
214
|
+
#Luminance
|
|
215
|
+
#ssim_map = (2 * mux * muy + C1) / (mux** 2 + muy** 2 + C1)#contrast
|
|
216
|
+
if contrast:
|
|
217
|
+
ssim_map = (2 * sigmax_sq.sqrt() * sigmay_sq.sqrt() + C1) / (sigmax_sq + sigmay_sq + C1)
|
|
218
|
+
else:
|
|
219
|
+
ssim_map = ((2 * mux_muy + C1) * (2 * sigmaxy + C2)) / ((mux_sq + muy_sq + C1) * (sigmax_sq + sigmay_sq + C2))
|
|
220
|
+
ssim_map = ssim_map.squeeze().detach().cpu().numpy()
|
|
221
|
+
return ssim_map
|
|
222
|
+
|
|
223
|
+
def LargestCC(segmentation, connectivity=3):
|
|
224
|
+
"""
|
|
225
|
+
Get largets connected components
|
|
226
|
+
"""
|
|
227
|
+
ndim = 3
|
|
228
|
+
if segmentation.ndim == 4:
|
|
229
|
+
segmentation = segmentation.squeeze(-1)
|
|
230
|
+
ndim = 4
|
|
231
|
+
labels = label_connector(segmentation, connectivity=connectivity)
|
|
232
|
+
frequency = np.bincount(labels.flat)
|
|
233
|
+
# frequency = -np.sort(-frequency)
|
|
234
|
+
return labels, frequency
|
|
235
|
+
|
|
236
|
+
|
|
237
|
+
def update_according_to_neighbours_conv(segmentation, index, label, sign='+',
|
|
238
|
+
connectivity=6,kernel_size =3, index_extra=None):
|
|
239
|
+
if kernel_size != 3:
|
|
240
|
+
kernel_size =3
|
|
241
|
+
segmentation_extended = segmentation.reshape(1, 1, *segmentation.shape)
|
|
242
|
+
segmentation_extended = torch.from_numpy(segmentation_extended.astype(np.float32))
|
|
243
|
+
in_out = np.zeros_like(segmentation)
|
|
244
|
+
if sign != '+':
|
|
245
|
+
in_out[index] += 6
|
|
246
|
+
if connectivity==6:
|
|
247
|
+
proxs = [(0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 2), (1, 2, 1), (2, 1, 1)]
|
|
248
|
+
elif connectivity==26:
|
|
249
|
+
import itertools
|
|
250
|
+
proxs=list(itertools.product([0,1,2], repeat=3))
|
|
251
|
+
proxs.remove((1, 1, 1))
|
|
252
|
+
|
|
253
|
+
for i, pr in enumerate(proxs):
|
|
254
|
+
kernel_used = np.zeros(kernel_size).astype(np.float32)
|
|
255
|
+
footprint = np.einsum('i,j,k->ijk', kernel_used, kernel_used, kernel_used) # mean
|
|
256
|
+
footprint[pr] = 1
|
|
257
|
+
footprint = torch.from_numpy(footprint.reshape(1, 1, *footprint.shape))
|
|
258
|
+
|
|
259
|
+
output = F.conv3d(segmentation_extended,
|
|
260
|
+
footprint, stride=1,
|
|
261
|
+
padding=kernel_size // 2).squeeze().cpu().numpy()
|
|
262
|
+
if index_extra is not None:
|
|
263
|
+
indo = 0
|
|
264
|
+
for l in label:
|
|
265
|
+
indo += (output == l)
|
|
266
|
+
index_sel = ((indo)+index_extra)*index
|
|
267
|
+
else:
|
|
268
|
+
indo = 0
|
|
269
|
+
for l in label:
|
|
270
|
+
indo += (output == l)
|
|
271
|
+
index_sel = (indo)*index
|
|
272
|
+
if sign != '+':
|
|
273
|
+
in_out[index_sel>0] -= 1
|
|
274
|
+
else:
|
|
275
|
+
in_out[index_sel>0] += 1
|
|
276
|
+
return in_out
|
|
277
|
+
|
|
278
|
+
|
|
279
|
+
def neighborhood_conv(output, kerenel_size=3, direction ='x',sqr2dist=False):
|
|
280
|
+
# compute neighborhood pixels
|
|
281
|
+
if sqr2dist: # average of all neighborhood pixels in 3D
|
|
282
|
+
kernel_used = torch.from_numpy(np.zeros(kerenel_size).astype(np.float32)) # mean
|
|
283
|
+
threed_kernel = torch.einsum('i,j,k->ijk', kernel_used, kernel_used, kernel_used) # mean
|
|
284
|
+
|
|
285
|
+
if direction=='xz':
|
|
286
|
+
threed_kernel[0][1][[0,2]] = 1 #xz
|
|
287
|
+
threed_kernel[2][1][[0, 2]] = 1 #xz
|
|
288
|
+
elif direction=='xy':
|
|
289
|
+
threed_kernel[0][0][1] = 1 #xy
|
|
290
|
+
threed_kernel[0][2][1] = 1 #xy
|
|
291
|
+
|
|
292
|
+
threed_kernel[2][0][1] = 1 #xy
|
|
293
|
+
threed_kernel[2][2][1] = 1 #xy
|
|
294
|
+
elif direction == 'yz':
|
|
295
|
+
threed_kernel[1][0][[0,2]] =1 # yz
|
|
296
|
+
threed_kernel[1][2][[0,2]] =1 # yz
|
|
297
|
+
elif direction == 'xyz':
|
|
298
|
+
threed_kernel[0][1][[0,2]] = 1 #xz
|
|
299
|
+
threed_kernel[2][1][[0, 2]] = 1 #xz
|
|
300
|
+
|
|
301
|
+
threed_kernel[0][0][1] = 1 #xy
|
|
302
|
+
threed_kernel[0][2][1] = 1 #xy
|
|
303
|
+
|
|
304
|
+
threed_kernel[2][0][1] = 1 #xy
|
|
305
|
+
threed_kernel[2][2][1] = 1 #xy
|
|
306
|
+
|
|
307
|
+
threed_kernel[1][0][[0,2]] =1 # yz
|
|
308
|
+
threed_kernel[1][2][[0,2]] =1 # yz
|
|
309
|
+
else:
|
|
310
|
+
raise exit('Direction should be xy, xz, yz or xyz')
|
|
311
|
+
|
|
312
|
+
else:
|
|
313
|
+
kernel_used = torch.from_numpy(np.zeros(kerenel_size).astype(np.float32)) # mean
|
|
314
|
+
threed_kernel = torch.einsum('i,j,k->ijk', kernel_used, kernel_used, kernel_used)
|
|
315
|
+
if direction=='x':
|
|
316
|
+
|
|
317
|
+
threed_kernel[0][1][1] = 1.0 # left
|
|
318
|
+
threed_kernel[2][1][1] = 1.0 # right
|
|
319
|
+
elif direction=='y':
|
|
320
|
+
threed_kernel[1][0][1] = 1.0 # left
|
|
321
|
+
threed_kernel[1][2][1] = 1.0 # right
|
|
322
|
+
elif direction == 'z':
|
|
323
|
+
threed_kernel[1][1][0] = 1.0 # left
|
|
324
|
+
threed_kernel[1][1][2] = 1.0 # right
|
|
325
|
+
elif direction == 'xyz':
|
|
326
|
+
threed_kernel[0][1][1] = 1.0 # left
|
|
327
|
+
threed_kernel[2][1][1] = 1.0 # right
|
|
328
|
+
|
|
329
|
+
threed_kernel[1][0][1] = 1.0 # left
|
|
330
|
+
threed_kernel[1][2][1] = 1.0 # right
|
|
331
|
+
|
|
332
|
+
threed_kernel[1][1][0] = 1.0 # left
|
|
333
|
+
threed_kernel[1][1][2] = 1.0 # right
|
|
334
|
+
else:
|
|
335
|
+
raise exit('Direction should be x, y, y or xyz')
|
|
336
|
+
inp_torch = torch.from_numpy(output.astype(np.float32)).unsqueeze(0).permute([4, 0, 1, 2, 3])
|
|
337
|
+
s = F.conv3d(inp_torch,
|
|
338
|
+
threed_kernel.reshape(1, 1, *threed_kernel.shape), stride=1,
|
|
339
|
+
padding=len(kernel_used) // 2)
|
|
340
|
+
s= s.permute([1, 2, 3, 4, 0]).squeeze(0).squeeze(-1).detach().cpu().numpy()
|
|
341
|
+
if s.ndim==3:
|
|
342
|
+
s = s.reshape(*s.shape,1)
|
|
343
|
+
return s
|
|
344
|
+
|
|
345
|
+
def axis_based_convolution(dif_ven, kernel_size=3, connectivity=6):
|
|
346
|
+
"""
|
|
347
|
+
@param larg_dif:
|
|
348
|
+
@param kernel_size:
|
|
349
|
+
@param connectivity:
|
|
350
|
+
@return:
|
|
351
|
+
"""
|
|
352
|
+
output = np.repeat(np.expand_dims(np.zeros_like(dif_ven), -1), connectivity, -1)
|
|
353
|
+
dif_ven = dif_ven.reshape(1, 1, *dif_ven.shape)
|
|
354
|
+
dif_ven = torch.from_numpy(dif_ven.astype(np.float32))
|
|
355
|
+
|
|
356
|
+
if connectivity==6:
|
|
357
|
+
#'x1,x2, y1,y2,z1,z2'
|
|
358
|
+
proxs=[(0,1,1), (2,1,1), (1,0,1), (1,2,1), (1,1,0), (1,1,2)]
|
|
359
|
+
|
|
360
|
+
elif connectivity==26:
|
|
361
|
+
import itertools
|
|
362
|
+
proxs=list(itertools.product([0,1,2], repeat=3))
|
|
363
|
+
proxs.remove((1, 1, 1))
|
|
364
|
+
for i, pr in enumerate(proxs):
|
|
365
|
+
|
|
366
|
+
kernel_used = np.zeros(kernel_size).astype(np.float32)
|
|
367
|
+
footprint = np.einsum('i,j,k->ijk', kernel_used, kernel_used, kernel_used) # mean
|
|
368
|
+
footprint[pr] = 1
|
|
369
|
+
footprint = torch.from_numpy(footprint.reshape(1, 1, *footprint.shape))
|
|
370
|
+
|
|
371
|
+
output[...,i] = F.conv3d(dif_ven,
|
|
372
|
+
footprint, stride=1,
|
|
373
|
+
padding=kernel_size // 2).squeeze().cpu().numpy()
|
|
374
|
+
return output
|
|
375
|
+
|
|
376
|
+
|
|
377
|
+
def adjust_common_structures(prob_r_nonc, threshold=5):
|
|
378
|
+
ind_zero = prob_r_nonc.sum(-1) == 0
|
|
379
|
+
seg_init_nonc = prob_r_nonc.argmax(-1) + 1
|
|
380
|
+
seg_init_nonc[ind_zero] = 0
|
|
381
|
+
neigbs = np.zeros_like(prob_r_nonc)
|
|
382
|
+
concat1 = []
|
|
383
|
+
concat2 = []
|
|
384
|
+
for i in range(prob_r_nonc.shape[-1]):
|
|
385
|
+
ind_ex = seg_init_nonc == (i + 1)
|
|
386
|
+
ind_cc, ind_extra = binary_fill_holes_lcc_diff(ind_ex, threshold=threshold)
|
|
387
|
+
neigbs[..., i] = ind_ex
|
|
388
|
+
concat1.append(ind_extra)
|
|
389
|
+
concat2.append(ind_cc)
|
|
390
|
+
|
|
391
|
+
neigbs = neighborhood_conv(neigbs, kerenel_size=3,
|
|
392
|
+
direction='xyz', sqr2dist=True)
|
|
393
|
+
|
|
394
|
+
neigbssf = softmax(neigbs,-1)
|
|
395
|
+
for indice in concat1:
|
|
396
|
+
prob_r_nonc[indice, :] = neigbssf[indice, :]
|
|
397
|
+
for indice in concat2:
|
|
398
|
+
prob_r_nonc[indice, :] = neigbssf[indice, :]
|
|
399
|
+
return prob_r_nonc
|
|
400
|
+
|
|
401
|
+
|
|
402
|
+
|
|
403
|
+
def rescale_between_a_b(image, a, b):
|
|
404
|
+
nifti_type = False
|
|
405
|
+
if hasattr(image, 'get_fdata'):
|
|
406
|
+
nifti_type = True
|
|
407
|
+
data_im = image.get_fdata().copy()
|
|
408
|
+
else:
|
|
409
|
+
data_im = image.copy()
|
|
410
|
+
dif = b-a
|
|
411
|
+
mindata= data_im.min()
|
|
412
|
+
maxdata = data_im.max()
|
|
413
|
+
data_im = a + (((data_im - mindata) * dif) / (maxdata - mindata))
|
|
414
|
+
if nifti_type:
|
|
415
|
+
return nib.Nifti1Image(data_im, image.affine, image.header)
|
|
416
|
+
else:
|
|
417
|
+
return data_im
|