melage 0.0.65__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (501) hide show
  1. melage/__init__.py +16 -0
  2. melage/cli.py +4 -0
  3. melage/graphics/GLGraphicsItem.py +286 -0
  4. melage/graphics/GLViewWidget.py +595 -0
  5. melage/graphics/Transform3D.py +55 -0
  6. melage/graphics/__init__.py +8 -0
  7. melage/graphics/functions.py +101 -0
  8. melage/graphics/items/GLAxisItem.py +149 -0
  9. melage/graphics/items/GLGridItem.py +178 -0
  10. melage/graphics/items/GLPolygonItem.py +77 -0
  11. melage/graphics/items/GLScatterPlotItem.py +135 -0
  12. melage/graphics/items/GLVolumeItem.py +280 -0
  13. melage/graphics/items/GLVolumeItem_b.py +237 -0
  14. melage/graphics/items/__init__.py +0 -0
  15. melage/graphics/shaders.py +202 -0
  16. melage/main.py +270 -0
  17. melage/requirements22.txt +25 -0
  18. melage/requirements_old.txt +28 -0
  19. melage/resource/0circle.png +0 -0
  20. melage/resource/0circle_faded.png +0 -0
  21. melage/resource/3d.png +0 -0
  22. melage/resource/3d.psd +0 -0
  23. melage/resource/3dFaded.png +0 -0
  24. melage/resource/Eraser.png +0 -0
  25. melage/resource/EraserFaded.png +0 -0
  26. melage/resource/EraserX.png +0 -0
  27. melage/resource/EraserXFaded.png +0 -0
  28. melage/resource/Eraser_icon.svg +79 -0
  29. melage/resource/Hand.png +0 -0
  30. melage/resource/HandIcons_0.png +0 -0
  31. melage/resource/Hand_IX.png +0 -0
  32. melage/resource/Hand_IXFaded.png +0 -0
  33. melage/resource/Handsqueezed.png +0 -0
  34. melage/resource/Handwriting (copy).png +0 -0
  35. melage/resource/Handwriting.png +0 -0
  36. melage/resource/HandwritingMinus.png +0 -0
  37. melage/resource/HandwritingMinusX.png +0 -0
  38. melage/resource/HandwritingPlus.png +0 -0
  39. melage/resource/HandwritingPlusX.png +0 -0
  40. melage/resource/Move_icon.svg +8 -0
  41. melage/resource/PngItem_2422924.png +0 -0
  42. melage/resource/about.png +0 -0
  43. melage/resource/about_logo.png +0 -0
  44. melage/resource/about_logo0.png +0 -0
  45. melage/resource/action_check.png +0 -0
  46. melage/resource/action_check_OFF.png +0 -0
  47. melage/resource/arrow).png +0 -0
  48. melage/resource/arrow.png +0 -0
  49. melage/resource/arrowFaded.png +0 -0
  50. melage/resource/arrow_org.png +0 -0
  51. melage/resource/arrow_org.png.png +0 -0
  52. melage/resource/arrows.png +0 -0
  53. melage/resource/authors.mp4 +0 -0
  54. melage/resource/box.png +0 -0
  55. melage/resource/check-image-icon-0.jpg +0 -0
  56. melage/resource/circle.png +0 -0
  57. melage/resource/circle_faded.png +0 -0
  58. melage/resource/circle_or.png +0 -0
  59. melage/resource/close.png +0 -0
  60. melage/resource/close_bg.png +0 -0
  61. melage/resource/color/Simple.txt +18 -0
  62. melage/resource/color/Tissue.txt +24 -0
  63. melage/resource/color/Tissue12.txt +27 -0
  64. melage/resource/color/albert_LUT.txt +102 -0
  65. melage/resource/color/mcrib_LUT.txt +102 -0
  66. melage/resource/color/pediatric1.txt +29 -0
  67. melage/resource/color/pediatric1_old.txt +27 -0
  68. melage/resource/color/pediatric2.txt +87 -0
  69. melage/resource/color/pediatric3.txt +29 -0
  70. melage/resource/color/pediatrics (copy).csv +103 -0
  71. melage/resource/color/tissue_seg.txt +4 -0
  72. melage/resource/contour.png +0 -0
  73. melage/resource/contour.svg +2 -0
  74. melage/resource/contourFaded.png +0 -0
  75. melage/resource/contourX.png +0 -0
  76. melage/resource/contourXFaded.png +0 -0
  77. melage/resource/dti.png +0 -0
  78. melage/resource/dti0.png +0 -0
  79. melage/resource/dti222.png +0 -0
  80. melage/resource/dti_or.png +0 -0
  81. melage/resource/eco.png +0 -0
  82. melage/resource/eco22.png +0 -0
  83. melage/resource/eco_old.png +0 -0
  84. melage/resource/eco_or.png +0 -0
  85. melage/resource/eco_or2.png +0 -0
  86. melage/resource/eco_seg.png +0 -0
  87. melage/resource/eco_seg_old.png +0 -0
  88. melage/resource/export.png +0 -0
  89. melage/resource/hand-grab-icon-10.jpg +0 -0
  90. melage/resource/hand-grab-icon-25.jpg +0 -0
  91. melage/resource/info.png +0 -0
  92. melage/resource/line.png +0 -0
  93. melage/resource/linefaded.png +0 -0
  94. melage/resource/load.png +0 -0
  95. melage/resource/main.ico +0 -0
  96. melage/resource/manual_images/3D_rightc.png +0 -0
  97. melage/resource/manual_images/3D_rightc_goto.png +0 -0
  98. melage/resource/manual_images/3D_rightc_paint.png +0 -0
  99. melage/resource/manual_images/3D_rightc_paint_draw1.png +0 -0
  100. melage/resource/manual_images/3D_rightc_paint_draw2.png +0 -0
  101. melage/resource/manual_images/3D_rightc_paint_render.png +0 -0
  102. melage/resource/manual_images/3D_rightc_paint_render2.png +0 -0
  103. melage/resource/manual_images/3D_rightc_paint_render3.png +0 -0
  104. melage/resource/manual_images/3D_rightc_paint_render4.png +0 -0
  105. melage/resource/manual_images/3D_rightc_paint_render5.png +0 -0
  106. melage/resource/manual_images/3D_rightc_paint_render6.png +0 -0
  107. melage/resource/manual_images/3D_rightc_seg.png +0 -0
  108. melage/resource/manual_images/exit_toolbar.png +0 -0
  109. melage/resource/manual_images/load_image_file.png +0 -0
  110. melage/resource/manual_images/load_image_file_openp.png +0 -0
  111. melage/resource/manual_images/main_page.png +0 -0
  112. melage/resource/manual_images/menu_file.png +0 -0
  113. melage/resource/manual_images/menu_file_export.png +0 -0
  114. melage/resource/manual_images/menu_file_import.png +0 -0
  115. melage/resource/manual_images/menu_file_settings.png +0 -0
  116. melage/resource/manual_images/menu_file_ss.png +0 -0
  117. melage/resource/manual_images/open_save_load.png +0 -0
  118. melage/resource/manual_images/panning_toolbar.png +0 -0
  119. melage/resource/manual_images/segmentation_toolbar.png +0 -0
  120. melage/resource/manual_images/tab_mri.png +0 -0
  121. melage/resource/manual_images/tab_us.png +0 -0
  122. melage/resource/manual_images/tabs.png +0 -0
  123. melage/resource/manual_images/toolbar_tools.png +0 -0
  124. melage/resource/manual_images/tools_basic.png +0 -0
  125. melage/resource/manual_images/tools_bet.png +0 -0
  126. melage/resource/manual_images/tools_cs.png +0 -0
  127. melage/resource/manual_images/tools_deepbet.png +0 -0
  128. melage/resource/manual_images/tools_imageinfo.png +0 -0
  129. melage/resource/manual_images/tools_maskO.png +0 -0
  130. melage/resource/manual_images/tools_masking.png +0 -0
  131. melage/resource/manual_images/tools_n4b.png +0 -0
  132. melage/resource/manual_images/tools_resize.png +0 -0
  133. melage/resource/manual_images/tools_ruler.png +0 -0
  134. melage/resource/manual_images/tools_seg.png +0 -0
  135. melage/resource/manual_images/tools_threshold.png +0 -0
  136. melage/resource/manual_images/tools_tools.png +0 -0
  137. melage/resource/manual_images/widget_color.png +0 -0
  138. melage/resource/manual_images/widget_color_add.png +0 -0
  139. melage/resource/manual_images/widget_color_add2.png +0 -0
  140. melage/resource/manual_images/widget_color_additional.png +0 -0
  141. melage/resource/manual_images/widget_images.png +0 -0
  142. melage/resource/manual_images/widget_images2.png +0 -0
  143. melage/resource/manual_images/widget_images3.png +0 -0
  144. melage/resource/manual_images/widget_marker.png +0 -0
  145. melage/resource/manual_images/widget_mri.png +0 -0
  146. melage/resource/manual_images/widget_mri2.png +0 -0
  147. melage/resource/manual_images/widget_segintensity.png +0 -0
  148. melage/resource/manual_images/widget_tab_mutualview.png +0 -0
  149. melage/resource/manual_images/widget_tab_mutualview2.png +0 -0
  150. melage/resource/manual_images/widget_table.png +0 -0
  151. melage/resource/manual_images/widget_table2.png +0 -0
  152. melage/resource/manual_images/widget_us.png +0 -0
  153. melage/resource/melage_top.ico +0 -0
  154. melage/resource/melage_top.png +0 -0
  155. melage/resource/melage_top0.png +0 -0
  156. melage/resource/melage_top1.png +0 -0
  157. melage/resource/melage_top4.png +0 -0
  158. melage/resource/mri (copy).png +0 -0
  159. melage/resource/mri.png +0 -0
  160. melage/resource/mri0.png +0 -0
  161. melage/resource/mri000.png +0 -0
  162. melage/resource/mri22.png +0 -0
  163. melage/resource/mri_big.png +0 -0
  164. melage/resource/mri_old.png +0 -0
  165. melage/resource/mri_seg.png +0 -0
  166. melage/resource/mri_seg_old.png +0 -0
  167. melage/resource/new.png +0 -0
  168. melage/resource/open.png +0 -0
  169. melage/resource/open2.png +0 -0
  170. melage/resource/pan.png +0 -0
  171. melage/resource/pencil.png +0 -0
  172. melage/resource/pencilFaded.png +0 -0
  173. melage/resource/points.png +0 -0
  174. melage/resource/pointsFaded.png +0 -0
  175. melage/resource/rotate.png +0 -0
  176. melage/resource/ruler.png +0 -0
  177. melage/resource/rulerFaded.png +0 -0
  178. melage/resource/s.png +0 -0
  179. melage/resource/s.psd +0 -0
  180. melage/resource/save.png +0 -0
  181. melage/resource/saveas.png +0 -0
  182. melage/resource/seg_mri.png +0 -0
  183. melage/resource/seg_mri2.png +0 -0
  184. melage/resource/settings.png +0 -0
  185. melage/resource/synch.png +0 -0
  186. melage/resource/synchFaded.png +0 -0
  187. melage/resource/theme/rc/.keep +1 -0
  188. melage/resource/theme/rc/arrow_down.png +0 -0
  189. melage/resource/theme/rc/arrow_down@2x.png +0 -0
  190. melage/resource/theme/rc/arrow_down_disabled.png +0 -0
  191. melage/resource/theme/rc/arrow_down_disabled@2x.png +0 -0
  192. melage/resource/theme/rc/arrow_down_focus.png +0 -0
  193. melage/resource/theme/rc/arrow_down_focus@2x.png +0 -0
  194. melage/resource/theme/rc/arrow_down_pressed.png +0 -0
  195. melage/resource/theme/rc/arrow_down_pressed@2x.png +0 -0
  196. melage/resource/theme/rc/arrow_left.png +0 -0
  197. melage/resource/theme/rc/arrow_left@2x.png +0 -0
  198. melage/resource/theme/rc/arrow_left_disabled.png +0 -0
  199. melage/resource/theme/rc/arrow_left_disabled@2x.png +0 -0
  200. melage/resource/theme/rc/arrow_left_focus.png +0 -0
  201. melage/resource/theme/rc/arrow_left_focus@2x.png +0 -0
  202. melage/resource/theme/rc/arrow_left_pressed.png +0 -0
  203. melage/resource/theme/rc/arrow_left_pressed@2x.png +0 -0
  204. melage/resource/theme/rc/arrow_right.png +0 -0
  205. melage/resource/theme/rc/arrow_right@2x.png +0 -0
  206. melage/resource/theme/rc/arrow_right_disabled.png +0 -0
  207. melage/resource/theme/rc/arrow_right_disabled@2x.png +0 -0
  208. melage/resource/theme/rc/arrow_right_focus.png +0 -0
  209. melage/resource/theme/rc/arrow_right_focus@2x.png +0 -0
  210. melage/resource/theme/rc/arrow_right_pressed.png +0 -0
  211. melage/resource/theme/rc/arrow_right_pressed@2x.png +0 -0
  212. melage/resource/theme/rc/arrow_up.png +0 -0
  213. melage/resource/theme/rc/arrow_up@2x.png +0 -0
  214. melage/resource/theme/rc/arrow_up_disabled.png +0 -0
  215. melage/resource/theme/rc/arrow_up_disabled@2x.png +0 -0
  216. melage/resource/theme/rc/arrow_up_focus.png +0 -0
  217. melage/resource/theme/rc/arrow_up_focus@2x.png +0 -0
  218. melage/resource/theme/rc/arrow_up_pressed.png +0 -0
  219. melage/resource/theme/rc/arrow_up_pressed@2x.png +0 -0
  220. melage/resource/theme/rc/base_icon.png +0 -0
  221. melage/resource/theme/rc/base_icon@2x.png +0 -0
  222. melage/resource/theme/rc/base_icon_disabled.png +0 -0
  223. melage/resource/theme/rc/base_icon_disabled@2x.png +0 -0
  224. melage/resource/theme/rc/base_icon_focus.png +0 -0
  225. melage/resource/theme/rc/base_icon_focus@2x.png +0 -0
  226. melage/resource/theme/rc/base_icon_pressed.png +0 -0
  227. melage/resource/theme/rc/base_icon_pressed@2x.png +0 -0
  228. melage/resource/theme/rc/branch_closed.png +0 -0
  229. melage/resource/theme/rc/branch_closed@2x.png +0 -0
  230. melage/resource/theme/rc/branch_closed_disabled.png +0 -0
  231. melage/resource/theme/rc/branch_closed_disabled@2x.png +0 -0
  232. melage/resource/theme/rc/branch_closed_focus.png +0 -0
  233. melage/resource/theme/rc/branch_closed_focus@2x.png +0 -0
  234. melage/resource/theme/rc/branch_closed_pressed.png +0 -0
  235. melage/resource/theme/rc/branch_closed_pressed@2x.png +0 -0
  236. melage/resource/theme/rc/branch_end.png +0 -0
  237. melage/resource/theme/rc/branch_end@2x.png +0 -0
  238. melage/resource/theme/rc/branch_end_disabled.png +0 -0
  239. melage/resource/theme/rc/branch_end_disabled@2x.png +0 -0
  240. melage/resource/theme/rc/branch_end_focus.png +0 -0
  241. melage/resource/theme/rc/branch_end_focus@2x.png +0 -0
  242. melage/resource/theme/rc/branch_end_pressed.png +0 -0
  243. melage/resource/theme/rc/branch_end_pressed@2x.png +0 -0
  244. melage/resource/theme/rc/branch_line.png +0 -0
  245. melage/resource/theme/rc/branch_line@2x.png +0 -0
  246. melage/resource/theme/rc/branch_line_disabled.png +0 -0
  247. melage/resource/theme/rc/branch_line_disabled@2x.png +0 -0
  248. melage/resource/theme/rc/branch_line_focus.png +0 -0
  249. melage/resource/theme/rc/branch_line_focus@2x.png +0 -0
  250. melage/resource/theme/rc/branch_line_pressed.png +0 -0
  251. melage/resource/theme/rc/branch_line_pressed@2x.png +0 -0
  252. melage/resource/theme/rc/branch_more.png +0 -0
  253. melage/resource/theme/rc/branch_more@2x.png +0 -0
  254. melage/resource/theme/rc/branch_more_disabled.png +0 -0
  255. melage/resource/theme/rc/branch_more_disabled@2x.png +0 -0
  256. melage/resource/theme/rc/branch_more_focus.png +0 -0
  257. melage/resource/theme/rc/branch_more_focus@2x.png +0 -0
  258. melage/resource/theme/rc/branch_more_pressed.png +0 -0
  259. melage/resource/theme/rc/branch_more_pressed@2x.png +0 -0
  260. melage/resource/theme/rc/branch_open.png +0 -0
  261. melage/resource/theme/rc/branch_open@2x.png +0 -0
  262. melage/resource/theme/rc/branch_open_disabled.png +0 -0
  263. melage/resource/theme/rc/branch_open_disabled@2x.png +0 -0
  264. melage/resource/theme/rc/branch_open_focus.png +0 -0
  265. melage/resource/theme/rc/branch_open_focus@2x.png +0 -0
  266. melage/resource/theme/rc/branch_open_pressed.png +0 -0
  267. melage/resource/theme/rc/branch_open_pressed@2x.png +0 -0
  268. melage/resource/theme/rc/checkbox_checked.png +0 -0
  269. melage/resource/theme/rc/checkbox_checked0.png +0 -0
  270. melage/resource/theme/rc/checkbox_checked@2x.png +0 -0
  271. melage/resource/theme/rc/checkbox_checked@2x0.png +0 -0
  272. melage/resource/theme/rc/checkbox_checked@2x000.png.png +0 -0
  273. melage/resource/theme/rc/checkbox_checked_disabled.png +0 -0
  274. melage/resource/theme/rc/checkbox_checked_disabled0.png +0 -0
  275. melage/resource/theme/rc/checkbox_checked_disabled@2x.png +0 -0
  276. melage/resource/theme/rc/checkbox_checked_disabled@2x0.png +0 -0
  277. melage/resource/theme/rc/checkbox_checked_focus.png +0 -0
  278. melage/resource/theme/rc/checkbox_checked_focus0.png +0 -0
  279. melage/resource/theme/rc/checkbox_checked_focus@2x.png +0 -0
  280. melage/resource/theme/rc/checkbox_checked_focus@2x0.png +0 -0
  281. melage/resource/theme/rc/checkbox_checked_pressed.png +0 -0
  282. melage/resource/theme/rc/checkbox_checked_pressed0.png +0 -0
  283. melage/resource/theme/rc/checkbox_checked_pressed@2x.png +0 -0
  284. melage/resource/theme/rc/checkbox_checked_pressed@2x0.png +0 -0
  285. melage/resource/theme/rc/checkbox_indeterminate.png +0 -0
  286. melage/resource/theme/rc/checkbox_indeterminate@2x.png +0 -0
  287. melage/resource/theme/rc/checkbox_indeterminate_disabled.png +0 -0
  288. melage/resource/theme/rc/checkbox_indeterminate_disabled@2x.png +0 -0
  289. melage/resource/theme/rc/checkbox_indeterminate_focus.png +0 -0
  290. melage/resource/theme/rc/checkbox_indeterminate_focus@2x.png +0 -0
  291. melage/resource/theme/rc/checkbox_indeterminate_pressed.png +0 -0
  292. melage/resource/theme/rc/checkbox_indeterminate_pressed@2x.png +0 -0
  293. melage/resource/theme/rc/checkbox_unchecked.png +0 -0
  294. melage/resource/theme/rc/checkbox_unchecked0.png +0 -0
  295. melage/resource/theme/rc/checkbox_unchecked00.png +0 -0
  296. melage/resource/theme/rc/checkbox_unchecked@2x.png +0 -0
  297. melage/resource/theme/rc/checkbox_unchecked@2x0.png +0 -0
  298. melage/resource/theme/rc/checkbox_unchecked@2x00.png +0 -0
  299. melage/resource/theme/rc/checkbox_unchecked_disabled.png +0 -0
  300. melage/resource/theme/rc/checkbox_unchecked_disabled0.png +0 -0
  301. melage/resource/theme/rc/checkbox_unchecked_disabled00.png +0 -0
  302. melage/resource/theme/rc/checkbox_unchecked_disabled@2x.png +0 -0
  303. melage/resource/theme/rc/checkbox_unchecked_disabled@2x0.png +0 -0
  304. melage/resource/theme/rc/checkbox_unchecked_disabled@2x00.png +0 -0
  305. melage/resource/theme/rc/checkbox_unchecked_focus.png +0 -0
  306. melage/resource/theme/rc/checkbox_unchecked_focus0.png +0 -0
  307. melage/resource/theme/rc/checkbox_unchecked_focus00.png +0 -0
  308. melage/resource/theme/rc/checkbox_unchecked_focus@2x.png +0 -0
  309. melage/resource/theme/rc/checkbox_unchecked_focus@2x0.png +0 -0
  310. melage/resource/theme/rc/checkbox_unchecked_focus@2x00.png +0 -0
  311. melage/resource/theme/rc/checkbox_unchecked_pressed.png +0 -0
  312. melage/resource/theme/rc/checkbox_unchecked_pressed0.png +0 -0
  313. melage/resource/theme/rc/checkbox_unchecked_pressed00.png +0 -0
  314. melage/resource/theme/rc/checkbox_unchecked_pressed@2x.png +0 -0
  315. melage/resource/theme/rc/checkbox_unchecked_pressed@2x0.png +0 -0
  316. melage/resource/theme/rc/checkbox_unchecked_pressed@2x00.png +0 -0
  317. melage/resource/theme/rc/line_horizontal.png +0 -0
  318. melage/resource/theme/rc/line_horizontal@2x.png +0 -0
  319. melage/resource/theme/rc/line_horizontal_disabled.png +0 -0
  320. melage/resource/theme/rc/line_horizontal_disabled@2x.png +0 -0
  321. melage/resource/theme/rc/line_horizontal_focus.png +0 -0
  322. melage/resource/theme/rc/line_horizontal_focus@2x.png +0 -0
  323. melage/resource/theme/rc/line_horizontal_pressed.png +0 -0
  324. melage/resource/theme/rc/line_horizontal_pressed@2x.png +0 -0
  325. melage/resource/theme/rc/line_vertical.png +0 -0
  326. melage/resource/theme/rc/line_vertical@2x.png +0 -0
  327. melage/resource/theme/rc/line_vertical_disabled.png +0 -0
  328. melage/resource/theme/rc/line_vertical_disabled@2x.png +0 -0
  329. melage/resource/theme/rc/line_vertical_focus.png +0 -0
  330. melage/resource/theme/rc/line_vertical_focus@2x.png +0 -0
  331. melage/resource/theme/rc/line_vertical_pressed.png +0 -0
  332. melage/resource/theme/rc/line_vertical_pressed@2x.png +0 -0
  333. melage/resource/theme/rc/radio_checked.png +0 -0
  334. melage/resource/theme/rc/radio_checked@2x.png +0 -0
  335. melage/resource/theme/rc/radio_checked_disabled.png +0 -0
  336. melage/resource/theme/rc/radio_checked_disabled@2x.png +0 -0
  337. melage/resource/theme/rc/radio_checked_focus.png +0 -0
  338. melage/resource/theme/rc/radio_checked_focus@2x.png +0 -0
  339. melage/resource/theme/rc/radio_checked_pressed.png +0 -0
  340. melage/resource/theme/rc/radio_checked_pressed@2x.png +0 -0
  341. melage/resource/theme/rc/radio_unchecked.png +0 -0
  342. melage/resource/theme/rc/radio_unchecked@2x.png +0 -0
  343. melage/resource/theme/rc/radio_unchecked_disabled.png +0 -0
  344. melage/resource/theme/rc/radio_unchecked_disabled@2x.png +0 -0
  345. melage/resource/theme/rc/radio_unchecked_focus.png +0 -0
  346. melage/resource/theme/rc/radio_unchecked_focus@2x.png +0 -0
  347. melage/resource/theme/rc/radio_unchecked_pressed.png +0 -0
  348. melage/resource/theme/rc/radio_unchecked_pressed@2x.png +0 -0
  349. melage/resource/theme/rc/toolbar_move_horizontal.png +0 -0
  350. melage/resource/theme/rc/toolbar_move_horizontal@2x.png +0 -0
  351. melage/resource/theme/rc/toolbar_move_horizontal_disabled.png +0 -0
  352. melage/resource/theme/rc/toolbar_move_horizontal_disabled@2x.png +0 -0
  353. melage/resource/theme/rc/toolbar_move_horizontal_focus.png +0 -0
  354. melage/resource/theme/rc/toolbar_move_horizontal_focus@2x.png +0 -0
  355. melage/resource/theme/rc/toolbar_move_horizontal_pressed.png +0 -0
  356. melage/resource/theme/rc/toolbar_move_horizontal_pressed@2x.png +0 -0
  357. melage/resource/theme/rc/toolbar_move_vertical.png +0 -0
  358. melage/resource/theme/rc/toolbar_move_vertical@2x.png +0 -0
  359. melage/resource/theme/rc/toolbar_move_vertical_disabled.png +0 -0
  360. melage/resource/theme/rc/toolbar_move_vertical_disabled@2x.png +0 -0
  361. melage/resource/theme/rc/toolbar_move_vertical_focus.png +0 -0
  362. melage/resource/theme/rc/toolbar_move_vertical_focus@2x.png +0 -0
  363. melage/resource/theme/rc/toolbar_move_vertical_pressed.png +0 -0
  364. melage/resource/theme/rc/toolbar_move_vertical_pressed@2x.png +0 -0
  365. melage/resource/theme/rc/toolbar_separator_horizontal.png +0 -0
  366. melage/resource/theme/rc/toolbar_separator_horizontal@2x.png +0 -0
  367. melage/resource/theme/rc/toolbar_separator_horizontal_disabled.png +0 -0
  368. melage/resource/theme/rc/toolbar_separator_horizontal_disabled@2x.png +0 -0
  369. melage/resource/theme/rc/toolbar_separator_horizontal_focus.png +0 -0
  370. melage/resource/theme/rc/toolbar_separator_horizontal_focus@2x.png +0 -0
  371. melage/resource/theme/rc/toolbar_separator_horizontal_pressed.png +0 -0
  372. melage/resource/theme/rc/toolbar_separator_horizontal_pressed@2x.png +0 -0
  373. melage/resource/theme/rc/toolbar_separator_vertical.png +0 -0
  374. melage/resource/theme/rc/toolbar_separator_vertical@2x.png +0 -0
  375. melage/resource/theme/rc/toolbar_separator_vertical_disabled.png +0 -0
  376. melage/resource/theme/rc/toolbar_separator_vertical_disabled@2x.png +0 -0
  377. melage/resource/theme/rc/toolbar_separator_vertical_focus.png +0 -0
  378. melage/resource/theme/rc/toolbar_separator_vertical_focus@2x.png +0 -0
  379. melage/resource/theme/rc/toolbar_separator_vertical_pressed.png +0 -0
  380. melage/resource/theme/rc/toolbar_separator_vertical_pressed@2x.png +0 -0
  381. melage/resource/theme/rc/transparent.png +0 -0
  382. melage/resource/theme/rc/transparent@2x.png +0 -0
  383. melage/resource/theme/rc/transparent_disabled.png +0 -0
  384. melage/resource/theme/rc/transparent_disabled@2x.png +0 -0
  385. melage/resource/theme/rc/transparent_focus.png +0 -0
  386. melage/resource/theme/rc/transparent_focus@2x.png +0 -0
  387. melage/resource/theme/rc/transparent_pressed.png +0 -0
  388. melage/resource/theme/rc/transparent_pressed@2x.png +0 -0
  389. melage/resource/theme/rc/window_close.png +0 -0
  390. melage/resource/theme/rc/window_close@2x.png +0 -0
  391. melage/resource/theme/rc/window_close_disabled.png +0 -0
  392. melage/resource/theme/rc/window_close_disabled@2x.png +0 -0
  393. melage/resource/theme/rc/window_close_focus.png +0 -0
  394. melage/resource/theme/rc/window_close_focus@2x.png +0 -0
  395. melage/resource/theme/rc/window_close_pressed.png +0 -0
  396. melage/resource/theme/rc/window_close_pressed@2x.png +0 -0
  397. melage/resource/theme/rc/window_grip.png +0 -0
  398. melage/resource/theme/rc/window_grip@2x.png +0 -0
  399. melage/resource/theme/rc/window_grip_disabled.png +0 -0
  400. melage/resource/theme/rc/window_grip_disabled@2x.png +0 -0
  401. melage/resource/theme/rc/window_grip_focus.png +0 -0
  402. melage/resource/theme/rc/window_grip_focus@2x.png +0 -0
  403. melage/resource/theme/rc/window_grip_pressed.png +0 -0
  404. melage/resource/theme/rc/window_grip_pressed@2x.png +0 -0
  405. melage/resource/theme/rc/window_minimize.png +0 -0
  406. melage/resource/theme/rc/window_minimize@2x.png +0 -0
  407. melage/resource/theme/rc/window_minimize_disabled.png +0 -0
  408. melage/resource/theme/rc/window_minimize_disabled@2x.png +0 -0
  409. melage/resource/theme/rc/window_minimize_focus.png +0 -0
  410. melage/resource/theme/rc/window_minimize_focus@2x.png +0 -0
  411. melage/resource/theme/rc/window_minimize_pressed.png +0 -0
  412. melage/resource/theme/rc/window_minimize_pressed@2x.png +0 -0
  413. melage/resource/theme/rc/window_undock.png +0 -0
  414. melage/resource/theme/rc/window_undock@2x.png +0 -0
  415. melage/resource/theme/rc/window_undock_disabled.png +0 -0
  416. melage/resource/theme/rc/window_undock_disabled@2x.png +0 -0
  417. melage/resource/theme/rc/window_undock_focus.png +0 -0
  418. melage/resource/theme/rc/window_undock_focus@2x.png +0 -0
  419. melage/resource/theme/rc/window_undock_pressed.png +0 -0
  420. melage/resource/theme/rc/window_undock_pressed@2x.png +0 -0
  421. melage/resource/theme/style.qss +2223 -0
  422. melage/resource/tract.png +0 -0
  423. melage/resource/view1.png +0 -0
  424. melage/resource/view1_eco.png +0 -0
  425. melage/resource/view1_mri.png +0 -0
  426. melage/resource/view1_seg.png +0 -0
  427. melage/resource/view2.png +0 -0
  428. melage/resource/view2_seg.png +0 -0
  429. melage/resource/w.png +0 -0
  430. melage/resource/zoom_in.png +0 -0
  431. melage/resource/zoom_inFaded.png +0 -0
  432. melage/resource/zoom_out.png +0 -0
  433. melage/resource/zoom_outFaded.png +0 -0
  434. melage/some_notes.txt +3 -0
  435. melage/utils/DispalyIm.py +2788 -0
  436. melage/utils/GMM.py +720 -0
  437. melage/utils/Shaders_120.py +257 -0
  438. melage/utils/Shaders_330.py +314 -0
  439. melage/utils/Shaders_bu.py +314 -0
  440. melage/utils/__init__0.py +7 -0
  441. melage/utils/brain_extraction_helper.py +234 -0
  442. melage/utils/custom_QScrollBar.py +61 -0
  443. melage/utils/glScientific.py +1554 -0
  444. melage/utils/glScientific_bc.py +1585 -0
  445. melage/utils/readData.py +1061 -0
  446. melage/utils/registration.py +512 -0
  447. melage/utils/source_folder.py +18 -0
  448. melage/utils/utils.py +3808 -0
  449. melage/version.txt +1 -0
  450. melage/widgets/ApplyMask.py +212 -0
  451. melage/widgets/ChangeSystem.py +152 -0
  452. melage/widgets/DeepLModels/InfantSegment/Unet.py +464 -0
  453. melage/widgets/DeepLModels/NPP/dataset/mri_dataset_affine.py +149 -0
  454. melage/widgets/DeepLModels/NPP/models/checkpoints/npp_v1.pth.py +0 -0
  455. melage/widgets/DeepLModels/NPP/models/losses.py +146 -0
  456. melage/widgets/DeepLModels/NPP/models/model.py +272 -0
  457. melage/widgets/DeepLModels/NPP/models/utils.py +303 -0
  458. melage/widgets/DeepLModels/NPP/npp.py +116 -0
  459. melage/widgets/DeepLModels/NPP/requirements.txt +8 -0
  460. melage/widgets/DeepLModels/NPP/train/train.py +116 -0
  461. melage/widgets/DeepLModels/Unet3DAtt.py +657 -0
  462. melage/widgets/DeepLModels/Unet3D_basic.py +648 -0
  463. melage/widgets/DeepLModels/new_unet.py +652 -0
  464. melage/widgets/DeepLModels/new_unet_old.py +639 -0
  465. melage/widgets/DeepLModels/new_unet_old2.py +658 -0
  466. melage/widgets/HistImage.py +153 -0
  467. melage/widgets/ImageThresholding.py +222 -0
  468. melage/widgets/MaskOperations.py +147 -0
  469. melage/widgets/N4Dialog.py +241 -0
  470. melage/widgets/Segmentation/FCM.py +1553 -0
  471. melage/widgets/Segmentation/__init__.py +588 -0
  472. melage/widgets/Segmentation/utils.py +417 -0
  473. melage/widgets/SemiAutoSeg.py +666 -0
  474. melage/widgets/Synthstrip.py +141 -0
  475. melage/widgets/__init__0.py +5 -0
  476. melage/widgets/about.py +246 -0
  477. melage/widgets/activation.py +437 -0
  478. melage/widgets/activator.py +147 -0
  479. melage/widgets/be_dl.py +409 -0
  480. melage/widgets/be_dl_unet3d.py +441 -0
  481. melage/widgets/brain_extraction.py +855 -0
  482. melage/widgets/brain_extraction_dl.py +887 -0
  483. melage/widgets/brain_extraction_dl_bu.py +869 -0
  484. melage/widgets/colorwidget.py +100 -0
  485. melage/widgets/dockWidgets.py +2005 -0
  486. melage/widgets/enhanceImWidget.py +109 -0
  487. melage/widgets/fileDialog_widget.py +275 -0
  488. melage/widgets/iminfo.py +346 -0
  489. melage/widgets/mainwindow_widget.py +6775 -0
  490. melage/widgets/melageAbout.py +123 -0
  491. melage/widgets/openglWidgets.py +556 -0
  492. melage/widgets/registrationWidget.py +342 -0
  493. melage/widgets/repeat_widget.py +74 -0
  494. melage/widgets/screenshot_widget.py +138 -0
  495. melage/widgets/settings_widget.py +77 -0
  496. melage/widgets/tranformationWidget.py +275 -0
  497. melage-0.0.65.dist-info/METADATA +742 -0
  498. melage-0.0.65.dist-info/RECORD +501 -0
  499. melage-0.0.65.dist-info/WHEEL +5 -0
  500. melage-0.0.65.dist-info/entry_points.txt +2 -0
  501. melage-0.0.65.dist-info/top_level.txt +1 -0
@@ -0,0 +1,464 @@
1
+ from functools import partial
2
+
3
+ import numpy as np
4
+ import torch.nn as nn
5
+ import torch
6
+ import math
7
+ # from .model_utils import *
8
+ import math
9
+ import torch
10
+ from functools import partial
11
+ import torch.nn as nn
12
+ from einops import repeat, rearrange
13
+
14
+
15
+
16
+ class BlockLayer(nn.Module):
17
+ def __init__(self, num_blcks, block_layer, planes_in, planes_out, kernel_size=3, first_layer=False,
18
+ input_size=None, norm_type='layer'):
19
+ super(BlockLayer, self).__init__()
20
+
21
+ self.blocks = nn.ModuleList()
22
+ for i in range(num_blcks):
23
+ if i == 0:
24
+ self.blocks.append(block_layer(planes_in, planes_out, kernel_size=kernel_size, first_layer=first_layer,
25
+ input_size=input_size, norm_type=norm_type))
26
+ else:
27
+ self.blocks.append(block_layer(planes_in, planes_out, kernel_size=kernel_size, first_layer=False,
28
+ input_size=input_size, norm_type=norm_type))
29
+ planes_in = planes_out
30
+
31
+ def forward(self, x):
32
+ for i, block in enumerate(self.blocks):
33
+ x = block(x)
34
+ return x
35
+
36
+
37
+ class ResidualBlock(nn.Module):
38
+ def __init__(self, planes_in, planes_out, kernel_size=3, first_layer=False, input_size=128, norm_type='layer'):
39
+ super(ResidualBlock, self).__init__()
40
+
41
+ self.conv1 = ConvolutionalBlock(planes_in=planes_in, planes_out=planes_out, first_layer=first_layer,
42
+ kernel_size=kernel_size, dilation=1,
43
+ activation=nn.ELU, input_size=input_size, norm_type=norm_type)
44
+ self.conv2 = ConvolutionalBlock(planes_in=planes_out, planes_out=planes_out, first_layer=False,
45
+ kernel_size=1,
46
+ dilation=1, activation=nn.ELU, input_size=input_size, norm_type=norm_type)
47
+ if planes_in != planes_out:
48
+ self.sample = nn.Conv3d(planes_in, planes_out, (1, 1, 1), stride=(1, 1, 1), dilation=(1, 1, 1),
49
+ bias=True) #
50
+ else:
51
+ self.sample = None
52
+
53
+ def forward(self, x):
54
+ identity = x.clone()
55
+
56
+ x = self.conv1(x)
57
+ x = self.conv2(x)
58
+
59
+ if self.sample is not None:
60
+ identity = self.sample(identity)
61
+
62
+ x += identity
63
+
64
+ return x
65
+
66
+
67
+ class UnetEncoder(nn.Module):
68
+ def __init__(self, in_channel, base_inc_channel=8, layer=BlockLayer, block=None, layer_blocks=None,
69
+ downsampling_stride=None, feature_dilation=1.5, layer_widths=None, kernel_size=3,
70
+ norm_type='layer'):
71
+ super(UnetEncoder, self).__init__()
72
+
73
+ self.layers = nn.ModuleList()
74
+ self.downsampling_convolutions = nn.ModuleList()
75
+ self.attention_modules = nn.ModuleList()
76
+ self.downsampling_zarib = []
77
+ in_channel_layer = in_channel
78
+ input_size = 192
79
+ self._layers_with = []
80
+ # self._layers_with.append(base_inc_channel)
81
+ for i, num_blcks in enumerate(layer_blocks):
82
+ if layer_widths is not None:
83
+ out_channel_layer = layer_widths[i]
84
+ else:
85
+ out_channel_layer = base_inc_channel * int(feature_dilation ** (i + 1)) // 2
86
+
87
+ if i == 0:
88
+ first_layer = True
89
+ else:
90
+ first_layer = False
91
+ self.layers.append(layer(num_blcks=num_blcks, block_layer=block,
92
+ planes_in=in_channel_layer, planes_out=out_channel_layer,
93
+ kernel_size=kernel_size,
94
+ first_layer=first_layer, input_size=input_size,
95
+ norm_type=norm_type))
96
+ # self.attention_modules.append(Attention(out_channel_layer))
97
+ if i != len(layer_blocks) - 1:
98
+ # padding = kernel_size // 2 # constant size
99
+ downsampling_conv = nn.Conv3d(out_channel_layer, out_channel_layer, (3, 3, 3), padding=3 // 2,
100
+ stride=(downsampling_stride, downsampling_stride, downsampling_stride),
101
+ bias=True)
102
+ # downsampling_conv = nn.MaxPool3d(kernel_size=2, stride=2)
103
+
104
+ self.downsampling_convolutions.append(downsampling_conv)
105
+
106
+ input_size = input_size // 2
107
+ print("Encoder {}:".format(i), in_channel_layer, out_channel_layer)
108
+ self._layers_with.append(out_channel_layer)
109
+ in_channel_layer = out_channel_layer
110
+ self.out_channel_layer = in_channel_layer // 2
111
+ self.last_downsampling_conv = nn.Conv3d(out_channel_layer, out_channel_layer, (3, 3, 3),
112
+ padding=3 // 2,
113
+ stride=(downsampling_stride, downsampling_stride, downsampling_stride),
114
+ bias=True)
115
+ self.output_size = input_size
116
+
117
+ def forward(self, x):
118
+ outputs = list()
119
+ # outputs.insert(0, x)
120
+ for layer, downsampling in zip(self.layers[:-1], self.downsampling_convolutions):
121
+ x = layer(x)
122
+
123
+ outputs.insert(0, x)
124
+
125
+ x = downsampling(x)
126
+ outputs.insert(0, x)
127
+ x = self.layers[-1](x)
128
+ x = self.last_downsampling_conv(x)
129
+ #outputs.insert(0, x) # bottle neck layer
130
+ return x, outputs
131
+
132
+
133
+ class ConvolutionalBlock(nn.Module):
134
+ def __init__(self, planes_in, planes_out, first_layer=False, kernel_size=3, dilation=1, activation=None,
135
+ input_size=None, norm_type='layer'):
136
+ super(ConvolutionalBlock, self).__init__()
137
+ if dilation == 1:
138
+ padding = kernel_size // 2 # constant size
139
+ else:
140
+ # (In + 2*padding - dilation * (kernel_size - 1) - 1)/stride + 1
141
+ if kernel_size == 3:
142
+ if dilation == 2:
143
+ padding = 2
144
+ elif dilation == 4:
145
+ padding = 4
146
+ elif dilation == 3:
147
+ padding = 3
148
+ else:
149
+ padding = None
150
+ elif kernel_size == 1:
151
+ padding = 0
152
+ self.activation = None
153
+ self.norm = None
154
+ if first_layer:
155
+ self.norm = nn.InstanceNorm3d(planes_in)
156
+ self.activation = activation()
157
+ self.conv = nn.Conv3d(planes_in, planes_out, (kernel_size, kernel_size, kernel_size),
158
+ padding=padding, bias=True,
159
+ dilation=(dilation, dilation, dilation))
160
+ else:
161
+ if activation is not None:
162
+ if norm_type.lower() == 'layer':
163
+ self.norm = nn.LayerNorm([input_size, input_size, input_size])
164
+ elif norm_type.lower() == 'group':
165
+ valid_num_groups = np.array([16, 8, 4, 2])
166
+ valid_num_groups = valid_num_groups[valid_num_groups < planes_in]
167
+ num_groups = None
168
+ for num_groups in valid_num_groups:
169
+ if planes_in % num_groups != 0:
170
+ break
171
+ if num_groups is None:
172
+ raise exit('Num groups can not be determined')
173
+ self.norm = nn.GroupNorm(num_groups=num_groups, num_channels=planes_in)
174
+ elif norm_type.lower() == 'batch':
175
+ self.norm = nn.BatchNorm3d(planes_in)
176
+ elif norm_type.lower() == 'instance':
177
+ self.norm = nn.InstanceNorm3d(planes_in)
178
+ else:
179
+ self.norm = None
180
+
181
+ self.activation = activation()
182
+ self.conv = nn.Conv3d(planes_in, planes_out, (kernel_size, kernel_size, kernel_size),
183
+ padding=padding, bias=True,
184
+ dilation=(dilation, dilation, dilation))
185
+
186
+ else:
187
+ if norm_type.lower() == 'layer':
188
+ if input_size < 120:
189
+ self.norm = nn.LayerNorm([input_size, input_size, input_size])
190
+ else:
191
+ self.norm = nn.InstanceNorm3d(planes_in)
192
+ elif norm_type.lower() == 'group':
193
+ valid_num_groups = [16, 8, 4, 2]
194
+ valid_num_groups = valid_num_groups[valid_num_groups < planes_in]
195
+ num_groups = None
196
+ for num_groups in valid_num_groups:
197
+ if planes_in % num_groups != 0:
198
+ break
199
+ if num_groups is None:
200
+ raise exit('Num groups can not be determined')
201
+ self.norm = nn.GroupNorm(num_groups=planes_in, num_channels=planes_in)
202
+ elif norm_type.lower() == 'batch':
203
+ self.norm = nn.BatchNorm3d(planes_in)
204
+ elif norm_type.lower() == 'instance':
205
+ self.norm = nn.InstanceNorm3d(planes_in)
206
+ else:
207
+ self.norm = None
208
+
209
+ self.conv = nn.Conv3d(planes_in, planes_out, (kernel_size, kernel_size, kernel_size),
210
+ padding=padding, bias=True,
211
+ dilation=(dilation, dilation, dilation))
212
+
213
+ def forward(self, x):
214
+ if self.norm is not None:
215
+ x = self.norm(x)
216
+
217
+ if self.activation is not None:
218
+ x = self.activation(x)
219
+
220
+ x = self.conv(x)
221
+
222
+ return x
223
+
224
+
225
+ class UnetDecoder(nn.Module):
226
+ def __init__(self, in_channel, base_inc_channel=64, layer=BlockLayer, block=None, layer_blocks=[1, 1, 1, 1],
227
+ feature_dilation=2, upsampling_stride=2, layer_widths=None, kernel_size=3,
228
+ upsampling_mode="trilinear", align_corners=False, use_transposed_convolutions=False,
229
+ last_cov_channels=256,
230
+ norm_type='layer'
231
+ ):
232
+ super(UnetDecoder, self).__init__()
233
+ self.layers = nn.ModuleList()
234
+
235
+ self.upsampling_blocks = nn.ModuleList()
236
+
237
+ self.attention_modules = nn.ModuleList()
238
+ in_channel_layer = in_channel
239
+ # input_size = 24
240
+ input_size = 16
241
+
242
+ for i, num_blcks in enumerate(layer_blocks):
243
+ if layer_widths is not None:
244
+ out_channel_layer = layer_widths[i]
245
+ else:
246
+ out_channel_layer = base_inc_channel // (feature_dilation ** (i))
247
+
248
+ if i == 0:
249
+ first_layer = True
250
+ self.layers.append(layer(num_blcks=num_blcks, block_layer=block,
251
+ planes_in=last_cov_channels, planes_out=out_channel_layer,
252
+ kernel_size=kernel_size,
253
+ first_layer=first_layer, input_size=input_size, norm_type=norm_type))
254
+ else:
255
+ first_layer = False
256
+
257
+ self.layers.append(layer(num_blcks=num_blcks, block_layer=block,
258
+ planes_in=in_channel_layer + layer_widths[i - 1], planes_out=out_channel_layer,
259
+ kernel_size=kernel_size,
260
+ first_layer=first_layer, input_size=input_size, norm_type=norm_type))
261
+
262
+
263
+ # self.upsampling_blocks.append(nn.ConvTranspose3d(out_channel_layer, out_channel_layer, kernel_size=2,
264
+ # stride=upsampling_stride, padding=0))
265
+ self.upsampling_blocks.append(nn.Upsample(scale_factor=2, mode='trilinear'))
266
+
267
+ input_size = input_size * 2
268
+ last_cov_channels = in_channel_layer # last_cov_channels//2
269
+ print("Decoder {}:".format(i), in_channel_layer, out_channel_layer)
270
+ in_channel_layer = out_channel_layer
271
+ self.out_channel_layer = in_channel_layer
272
+
273
+ def forward(self, y, x):
274
+ i = 0
275
+ outputs = list()
276
+ #y = x[0]
277
+ for up, lay in zip(self.upsampling_blocks, self.layers[:-1]):
278
+ if i == 0:
279
+ y = lay(y)
280
+ else:
281
+ y = lay(y)
282
+ outputs.insert(0, y)
283
+ y = up(y)
284
+ y = torch.cat([y, x[i]], 1)
285
+
286
+ # y = att(y)
287
+ # y = torch.cat([y, x[i + 1]],1)
288
+ i += 1
289
+ outputs.insert(0, y)
290
+ y = self.layers[-1](y)
291
+ y = up(y)
292
+ outputs.insert(0, y)
293
+ return y, outputs
294
+
295
+
296
+ class Attention(nn.Module):
297
+ def __init__(self, dim, heads=4, dim_head=16):
298
+ super().__init__()
299
+ self.scale = dim_head ** -0.5
300
+ self.heads = heads
301
+ hidden_dim = dim_head * heads
302
+
303
+ self.to_qkv = nn.Conv3d(dim, hidden_dim * 3, 1, bias=False)
304
+ self.to_out = nn.Conv3d(hidden_dim, dim // 2, 1)
305
+
306
+ def forward(self, x, mask=None):
307
+ b, c, h, w, z = x.shape
308
+ qkv = self.to_qkv(x).chunk(3, dim=1)
309
+ q, k, v = map(lambda t: rearrange(t, 'b (h c) x y z -> b h c (x y z)', h=self.heads), qkv)
310
+
311
+ scaled_dot_prod = torch.einsum('... i d , ... j d -> ... i j', q, k) * self.scale
312
+ attention = torch.softmax(scaled_dot_prod, dim=-1)
313
+ v = v / (h * w * z)
314
+ atv = torch.einsum('... i j , ... j d -> ... i d', attention, v)
315
+ out = rearrange(atv, "b h c (x y z) -> b (h c) x y z", h=self.heads, x=h, y=w, z=z)
316
+ return self.to_out(out)
317
+
318
+
319
+ class UnetGen(nn.Module):
320
+ def __init__(self, base_inc_channel=8,
321
+ feature_dilation=2, downsampling_stride=2,
322
+ encoder_class=UnetEncoder, layer_widths=None, block=None,
323
+ kernel_size=3, interpolation_mode="trilinear", decoder_class=None,
324
+ use_transposed_convolutions=True, norm_type='layer', outChannels=3):
325
+ super(UnetGen, self).__init__()
326
+
327
+ use_transposed_convolutions = self.use_tr_conv
328
+ inblock = 16
329
+ base_inc_channel = inblock
330
+ self.base_inc_channel = base_inc_channel
331
+
332
+ # encoder_blocks = [1, 1, 1, 1, 1, 1]
333
+
334
+ # decoder_blocks = [1,1,1,1, 1, 1]
335
+ #encoder_blocks = [1, 1, 1]
336
+
337
+ #decoder_blocks = [1, 1, 1]
338
+
339
+ encoder_blocks = [1, 1, 1, 1, 1]
340
+
341
+ decoder_blocks = [1, 1, 1, 1, 1]
342
+
343
+ padding = kernel_size // 2 # constant size
344
+ self.before_encoder = nn.Conv3d(1, inblock, kernel_size=(3, 3, 3),
345
+ stride=(1, 1, 1), padding=3 // 2,
346
+ bias=True)
347
+
348
+ self.encoder = encoder_class(in_channel=inblock, base_inc_channel=base_inc_channel, layer_blocks=encoder_blocks,
349
+ block=block,
350
+ feature_dilation=feature_dilation, downsampling_stride=downsampling_stride,
351
+ layer_widths=layer_widths, kernel_size=kernel_size,
352
+ norm_type=norm_type)
353
+
354
+ layer_widths = self.encoder._layers_with
355
+ in_channel = layer_widths[-1]
356
+ self.BottleNeck = BlockLayer(num_blcks=1, block_layer=block,
357
+ planes_in=in_channel, planes_out=in_channel // 2,
358
+ kernel_size=kernel_size,
359
+ first_layer=False, input_size=self.encoder.output_size, norm_type=norm_type)
360
+
361
+ # self.BottleNeck_att = Attention(in_channel)
362
+
363
+ layer_widths = layer_widths[::-1] # [1:]
364
+ layer_widths[0] = layer_widths[0] // 2
365
+ layer_widths[-1] = layer_widths[-2]
366
+
367
+ in_channel = in_channel // 2
368
+ self.decoder = decoder_class(in_channel=in_channel, base_inc_channel=base_inc_channel * 8,
369
+ layer_blocks=decoder_blocks,
370
+ block=block, last_cov_channels=self.encoder.out_channel_layer,
371
+ upsampling_mode=interpolation_mode, layer_widths=layer_widths,
372
+ use_transposed_convolutions=use_transposed_convolutions,
373
+ kernel_size=kernel_size, norm_type=norm_type,
374
+ )
375
+
376
+ kernel_size = 3
377
+
378
+ #self.last_convolution_rec = BlockLayer(num_blcks=1, block_layer=block,
379
+ # planes_in=inblock * 2, planes_out=inblock * 4,
380
+ # kernel_size=kernel_size,
381
+ # first_layer=False, input_size=192, norm_type=norm_type)
382
+
383
+ """
384
+
385
+ self.decoder2 = decoder_class(in_channel=in_channel, base_inc_channel=base_inc_channel*8, layer_blocks=decoder_blocks,
386
+ block=block, last_cov_channels = self.encoder.out_channel_layer,
387
+ upsampling_mode=interpolation_mode, layer_widths=layer_widths,
388
+ use_transposed_convolutions=use_transposed_convolutions,
389
+ kernel_size=kernel_size, norm_type=norm_type,
390
+ )
391
+ self.last_convolution_rec2 = BlockLayer(num_blcks=1, block_layer=block,
392
+ planes_in=inblock*2, planes_out=inblock//2,
393
+ kernel_size=kernel_size,
394
+ first_layer=False, input_size=192, norm_type=norm_type)
395
+ self.final_convolution_rec2 = nn.Conv3d(inblock//2, 1, kernel_size=(kernel_size, kernel_size, kernel_size),
396
+ stride=(1, 1, 1), bias=True, padding=kernel_size // 2)
397
+ """
398
+ kernel_size = 1
399
+ self.final_convolution_rec = nn.Conv3d(inblock * 3, outChannels, kernel_size=(kernel_size, kernel_size, kernel_size),
400
+ stride=(1, 1, 1), bias=True, padding=kernel_size // 2)
401
+ #self.seg_layer = nn.Conv3d(inblock * 3, outChannels, kernel_size=(kernel_size, kernel_size, kernel_size),
402
+ # stride=(1, 1, 1), bias=True, padding=kernel_size // 2)
403
+ self.activation = nn.Softmax(dim=1)
404
+ self.sigmoid = nn.Sigmoid()
405
+
406
+ def forward(self, y):
407
+ y = self.before_encoder(y)
408
+
409
+ y1, x = self.encoder(y)
410
+ y1 = self.BottleNeck(y1)
411
+ # x[0] = self.BottleNeck_att(x[0])
412
+
413
+ x1, _ = self.decoder(y1, x)
414
+
415
+ x1 = torch.cat([x1, y], 1)
416
+ # x = (x * mask)
417
+ #z1 = self.last_convolution_rec(x1)
418
+ z1 = self.final_convolution_rec(x1)
419
+ z2 = 0# self.seg_layer(x1)
420
+
421
+ """
422
+
423
+ x2, _ = self.decoder2(x)
424
+
425
+ x2 = torch.cat([x2, y], 1)
426
+ #x = (x * mask)
427
+ z2 = self.last_convolution_rec2(x2)
428
+ z2 = self.final_convolution_rec2(z2)
429
+ """
430
+ return z1, z2
431
+
432
+
433
+ class MGA_NET(UnetGen):
434
+ def __init__(self, channels=3, *args, encoder_class=UnetEncoder, **kwargs):
435
+ self.use_tr_conv = False
436
+
437
+ norm_type = "instance"
438
+ super().__init__(encoder_class=encoder_class, decoder_class=UnetDecoder,
439
+ block=ResidualBlock, outChannels=channels, norm_type=norm_type, **kwargs)
440
+
441
+ self.channels = channels
442
+ self.netName = 'MGA_NET'
443
+
444
+ def name(self):
445
+ return 'MGA_NET'
446
+
447
+
448
+ class Segmentor(nn.Module):
449
+ """
450
+ Segmentor
451
+ """
452
+
453
+ def __init__(self,
454
+ channels=30):
455
+ """
456
+
457
+ """
458
+ super().__init__()
459
+ self.seg_model = MGA_NET(channels=channels)
460
+
461
+ def forward(self, source, shape=None):
462
+ pred_logits, pred_logits_seg = self.seg_model(source)
463
+
464
+ return pred_logits, pred_logits_seg
@@ -0,0 +1,149 @@
1
+ import os.path
2
+ from torch.utils.data import Dataset
3
+ import nibabel as nib
4
+ from multiprocessing import Manager
5
+ import random
6
+ import torchio as tio
7
+ import pickle
8
+ import torch
9
+
10
+ error_list = [5298, 5894, 393, 66, 68, 6576, 76, 6653, 347, 6218, 804, 844,
11
+ 5445, 751, 6075, 5501, 368, 236, 269, 5472, 494, 6711, 5571, 6543,
12
+ 5837, 5586, 6663, 791, 6113, 318, 299, 688, 323, 26, 6496, 5746]
13
+ def Generate_dataset():
14
+
15
+ # This if else sentence is used to decide whether enables dataset cache funciton
16
+ if False:
17
+ cache = DatasetCache(None,use_cache=False)
18
+ manager2 = Manager()
19
+ cache2 = DatasetCache(manager2,use_cache=True)
20
+ else:
21
+ manager = None
22
+ cache = DatasetCache(manager,use_cache=False)
23
+ manager2 = None
24
+ cache2 = DatasetCache(manager2,use_cache=False)
25
+
26
+ # Loading all availible files
27
+ if os.path.exists('dataset/pretrain_files_list.pkl'):
28
+ with open('dataset/pretrain_files_list.pkl', 'rb') as file:
29
+ files_list = pickle.load(file)
30
+
31
+ # splitting the training and testing datasets. The Oasis will be treated as testing while the rest of them will be trated as training dataset.
32
+ testing_set = files_list[0:1]
33
+
34
+ training_sets = files_list
35
+ del training_sets[0]
36
+
37
+ training_sets[2] = [i.replace('GSP','GSP/FS_4p5') for i in training_sets[2]]
38
+ training_sets_path = sum(training_sets, [])
39
+ for index in sorted(error_list, reverse=True):
40
+ del training_sets_path[index]
41
+ training_sets_path= ['/scratch/datasets/xh278/orig'+i for i in training_sets_path]
42
+ testing_set_path = sum(testing_set, [])
43
+
44
+ train_dataset = VoxelDataset(training_sets_path, cache=cache, train=True)
45
+ val_dataset = VoxelDataset(testing_set_path, cache=cache2, train=False)
46
+
47
+ return train_dataset,val_dataset
48
+
49
+ class DatasetCache(object):
50
+ def __init__(self, manager, use_cache=True):
51
+ self.use_cache = use_cache
52
+ self.manager = manager
53
+ if self.manager is not None:
54
+ self._dict = manager.dict()
55
+
56
+ def is_cached(self, key):
57
+ if not self.use_cache:
58
+ return False
59
+ return str(key) in self._dict
60
+
61
+ def reset(self):
62
+ self._dict.clear()
63
+
64
+ def get(self, key):
65
+ if not self.use_cache:
66
+ raise AttributeError('Data caching is disabled and get funciton is unavailable! Check your config.')
67
+ return self._dict[str(key)]
68
+
69
+ def cache(self, key, img, lbl):
70
+ # only store if full data in memory is enabled
71
+ if not self.use_cache:
72
+ return
73
+ # only store if not already cached
74
+ if str(key) in self._dict:
75
+ return
76
+ self._dict[str(key)] = (img, lbl)
77
+
78
+
79
+ class VoxelDataset(Dataset):
80
+ def __init__(self, norm_file_path, rescale_sdf=True, cache = None,train=True):
81
+ # note that input image paths are for processed images rather than unprocessed
82
+ self.norm_file_path = [i.replace('proc/ForAdrian_Talairach','orig').replace('talairach/','') for i in norm_file_path]
83
+ self.orig_file_path = [i.replace('norm.mgz','orig.mgz').replace('talairach/','') for i in self.norm_file_path]
84
+
85
+ self.intensity_spatial_norm_file_path = [i.replace('orig.mgz','talairach/norm.mgz') for i in self.orig_file_path]
86
+ self.intensity_norm_file_path =[i.replace('orig.mgz','norm.mgz') for i in self.orig_file_path]
87
+ self.seg_path =[i.replace('orig.mgz','talairach/aseg.mgz') for i in self.orig_file_path]
88
+
89
+ removal = []
90
+ for i in range(len(self.seg_path)):
91
+ if not os.path.exists(self.seg_path[i]):
92
+ removal.append(i)
93
+ removal = []
94
+
95
+ for i in reversed(removal):
96
+ self.seg_path.pop(i)
97
+ self.intensity_spatial_norm_file_path.pop(i)
98
+ self.orig_file_path.pop(i)
99
+ self.rescale_sdf = rescale_sdf
100
+ self.cache = cache
101
+ self.train = train
102
+ self.transform = tio.Compose([
103
+ tio.RandomGamma(log_gamma = (-0.3,0.3),p=0.3),
104
+ ]
105
+ )
106
+ def __len__(self):
107
+ return len(self.orig_file_path)
108
+
109
+ def __getitem__(self, index):
110
+ image_resolution= 256
111
+ normalization=255
112
+ output_index = [index]
113
+ for cur_index in output_index:
114
+ array = nib.load(self.orig_file_path[cur_index])
115
+ input = array.get_fdata()
116
+ input = torch.FloatTensor(input)
117
+ input = input.unsqueeze(0).unsqueeze(0)
118
+ if image_resolution != 256:
119
+ input = torch.nn.functional.interpolate(input, size=[image_resolution, image_resolution, image_resolution], mode='trilinear',align_corners=False)[0]
120
+ else:
121
+ input = torch.Tensor(input)[0]
122
+
123
+ array = nib.load(self.intensity_spatial_norm_file_path[cur_index])
124
+ intensity_spatial_norm = array.get_fdata()
125
+ intensity_spatial_norm = torch.FloatTensor(intensity_spatial_norm)
126
+ intensity_spatial_norm = intensity_spatial_norm.unsqueeze(0).unsqueeze(0)
127
+ if image_resolution != 256:
128
+ intensity_spatial_norm = torch.nn.functional.interpolate(intensity_spatial_norm, size=[image_resolution, image_resolution, image_resolution], mode='trilinear',align_corners=False)[0]
129
+ else:
130
+ intensity_spatial_norm = torch.Tensor(intensity_spatial_norm)[0]
131
+
132
+ seg = intensity_spatial_norm.unsqueeze(0)
133
+ if image_resolution != 256:
134
+ seg = torch.nn.functional.interpolate(seg, size=[image_resolution, image_resolution, image_resolution], mode='nearest')[0]
135
+ else:
136
+ seg = torch.Tensor(seg)[0]
137
+ if self.train:
138
+ subject = tio.Subject(image = tio.ScalarImage(tensor=input))
139
+ transformed = self.transform(subject)
140
+ input = transformed['image'].data
141
+ input = input.clip(0, normalization) / normalization
142
+ intensity_spatial_norm = intensity_spatial_norm.clip(0, normalization) / normalization
143
+ else:
144
+ input = input.clip(0, normalization) / normalization
145
+ intensity_spatial_norm = intensity_spatial_norm.clip(0, normalization) / normalization
146
+ return input,intensity_spatial_norm,seg,cur_index
147
+
148
+
149
+