melage 0.0.65__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- melage/__init__.py +16 -0
- melage/cli.py +4 -0
- melage/graphics/GLGraphicsItem.py +286 -0
- melage/graphics/GLViewWidget.py +595 -0
- melage/graphics/Transform3D.py +55 -0
- melage/graphics/__init__.py +8 -0
- melage/graphics/functions.py +101 -0
- melage/graphics/items/GLAxisItem.py +149 -0
- melage/graphics/items/GLGridItem.py +178 -0
- melage/graphics/items/GLPolygonItem.py +77 -0
- melage/graphics/items/GLScatterPlotItem.py +135 -0
- melage/graphics/items/GLVolumeItem.py +280 -0
- melage/graphics/items/GLVolumeItem_b.py +237 -0
- melage/graphics/items/__init__.py +0 -0
- melage/graphics/shaders.py +202 -0
- melage/main.py +270 -0
- melage/requirements22.txt +25 -0
- melage/requirements_old.txt +28 -0
- melage/resource/0circle.png +0 -0
- melage/resource/0circle_faded.png +0 -0
- melage/resource/3d.png +0 -0
- melage/resource/3d.psd +0 -0
- melage/resource/3dFaded.png +0 -0
- melage/resource/Eraser.png +0 -0
- melage/resource/EraserFaded.png +0 -0
- melage/resource/EraserX.png +0 -0
- melage/resource/EraserXFaded.png +0 -0
- melage/resource/Eraser_icon.svg +79 -0
- melage/resource/Hand.png +0 -0
- melage/resource/HandIcons_0.png +0 -0
- melage/resource/Hand_IX.png +0 -0
- melage/resource/Hand_IXFaded.png +0 -0
- melage/resource/Handsqueezed.png +0 -0
- melage/resource/Handwriting (copy).png +0 -0
- melage/resource/Handwriting.png +0 -0
- melage/resource/HandwritingMinus.png +0 -0
- melage/resource/HandwritingMinusX.png +0 -0
- melage/resource/HandwritingPlus.png +0 -0
- melage/resource/HandwritingPlusX.png +0 -0
- melage/resource/Move_icon.svg +8 -0
- melage/resource/PngItem_2422924.png +0 -0
- melage/resource/about.png +0 -0
- melage/resource/about_logo.png +0 -0
- melage/resource/about_logo0.png +0 -0
- melage/resource/action_check.png +0 -0
- melage/resource/action_check_OFF.png +0 -0
- melage/resource/arrow).png +0 -0
- melage/resource/arrow.png +0 -0
- melage/resource/arrowFaded.png +0 -0
- melage/resource/arrow_org.png +0 -0
- melage/resource/arrow_org.png.png +0 -0
- melage/resource/arrows.png +0 -0
- melage/resource/authors.mp4 +0 -0
- melage/resource/box.png +0 -0
- melage/resource/check-image-icon-0.jpg +0 -0
- melage/resource/circle.png +0 -0
- melage/resource/circle_faded.png +0 -0
- melage/resource/circle_or.png +0 -0
- melage/resource/close.png +0 -0
- melage/resource/close_bg.png +0 -0
- melage/resource/color/Simple.txt +18 -0
- melage/resource/color/Tissue.txt +24 -0
- melage/resource/color/Tissue12.txt +27 -0
- melage/resource/color/albert_LUT.txt +102 -0
- melage/resource/color/mcrib_LUT.txt +102 -0
- melage/resource/color/pediatric1.txt +29 -0
- melage/resource/color/pediatric1_old.txt +27 -0
- melage/resource/color/pediatric2.txt +87 -0
- melage/resource/color/pediatric3.txt +29 -0
- melage/resource/color/pediatrics (copy).csv +103 -0
- melage/resource/color/tissue_seg.txt +4 -0
- melage/resource/contour.png +0 -0
- melage/resource/contour.svg +2 -0
- melage/resource/contourFaded.png +0 -0
- melage/resource/contourX.png +0 -0
- melage/resource/contourXFaded.png +0 -0
- melage/resource/dti.png +0 -0
- melage/resource/dti0.png +0 -0
- melage/resource/dti222.png +0 -0
- melage/resource/dti_or.png +0 -0
- melage/resource/eco.png +0 -0
- melage/resource/eco22.png +0 -0
- melage/resource/eco_old.png +0 -0
- melage/resource/eco_or.png +0 -0
- melage/resource/eco_or2.png +0 -0
- melage/resource/eco_seg.png +0 -0
- melage/resource/eco_seg_old.png +0 -0
- melage/resource/export.png +0 -0
- melage/resource/hand-grab-icon-10.jpg +0 -0
- melage/resource/hand-grab-icon-25.jpg +0 -0
- melage/resource/info.png +0 -0
- melage/resource/line.png +0 -0
- melage/resource/linefaded.png +0 -0
- melage/resource/load.png +0 -0
- melage/resource/main.ico +0 -0
- melage/resource/manual_images/3D_rightc.png +0 -0
- melage/resource/manual_images/3D_rightc_goto.png +0 -0
- melage/resource/manual_images/3D_rightc_paint.png +0 -0
- melage/resource/manual_images/3D_rightc_paint_draw1.png +0 -0
- melage/resource/manual_images/3D_rightc_paint_draw2.png +0 -0
- melage/resource/manual_images/3D_rightc_paint_render.png +0 -0
- melage/resource/manual_images/3D_rightc_paint_render2.png +0 -0
- melage/resource/manual_images/3D_rightc_paint_render3.png +0 -0
- melage/resource/manual_images/3D_rightc_paint_render4.png +0 -0
- melage/resource/manual_images/3D_rightc_paint_render5.png +0 -0
- melage/resource/manual_images/3D_rightc_paint_render6.png +0 -0
- melage/resource/manual_images/3D_rightc_seg.png +0 -0
- melage/resource/manual_images/exit_toolbar.png +0 -0
- melage/resource/manual_images/load_image_file.png +0 -0
- melage/resource/manual_images/load_image_file_openp.png +0 -0
- melage/resource/manual_images/main_page.png +0 -0
- melage/resource/manual_images/menu_file.png +0 -0
- melage/resource/manual_images/menu_file_export.png +0 -0
- melage/resource/manual_images/menu_file_import.png +0 -0
- melage/resource/manual_images/menu_file_settings.png +0 -0
- melage/resource/manual_images/menu_file_ss.png +0 -0
- melage/resource/manual_images/open_save_load.png +0 -0
- melage/resource/manual_images/panning_toolbar.png +0 -0
- melage/resource/manual_images/segmentation_toolbar.png +0 -0
- melage/resource/manual_images/tab_mri.png +0 -0
- melage/resource/manual_images/tab_us.png +0 -0
- melage/resource/manual_images/tabs.png +0 -0
- melage/resource/manual_images/toolbar_tools.png +0 -0
- melage/resource/manual_images/tools_basic.png +0 -0
- melage/resource/manual_images/tools_bet.png +0 -0
- melage/resource/manual_images/tools_cs.png +0 -0
- melage/resource/manual_images/tools_deepbet.png +0 -0
- melage/resource/manual_images/tools_imageinfo.png +0 -0
- melage/resource/manual_images/tools_maskO.png +0 -0
- melage/resource/manual_images/tools_masking.png +0 -0
- melage/resource/manual_images/tools_n4b.png +0 -0
- melage/resource/manual_images/tools_resize.png +0 -0
- melage/resource/manual_images/tools_ruler.png +0 -0
- melage/resource/manual_images/tools_seg.png +0 -0
- melage/resource/manual_images/tools_threshold.png +0 -0
- melage/resource/manual_images/tools_tools.png +0 -0
- melage/resource/manual_images/widget_color.png +0 -0
- melage/resource/manual_images/widget_color_add.png +0 -0
- melage/resource/manual_images/widget_color_add2.png +0 -0
- melage/resource/manual_images/widget_color_additional.png +0 -0
- melage/resource/manual_images/widget_images.png +0 -0
- melage/resource/manual_images/widget_images2.png +0 -0
- melage/resource/manual_images/widget_images3.png +0 -0
- melage/resource/manual_images/widget_marker.png +0 -0
- melage/resource/manual_images/widget_mri.png +0 -0
- melage/resource/manual_images/widget_mri2.png +0 -0
- melage/resource/manual_images/widget_segintensity.png +0 -0
- melage/resource/manual_images/widget_tab_mutualview.png +0 -0
- melage/resource/manual_images/widget_tab_mutualview2.png +0 -0
- melage/resource/manual_images/widget_table.png +0 -0
- melage/resource/manual_images/widget_table2.png +0 -0
- melage/resource/manual_images/widget_us.png +0 -0
- melage/resource/melage_top.ico +0 -0
- melage/resource/melage_top.png +0 -0
- melage/resource/melage_top0.png +0 -0
- melage/resource/melage_top1.png +0 -0
- melage/resource/melage_top4.png +0 -0
- melage/resource/mri (copy).png +0 -0
- melage/resource/mri.png +0 -0
- melage/resource/mri0.png +0 -0
- melage/resource/mri000.png +0 -0
- melage/resource/mri22.png +0 -0
- melage/resource/mri_big.png +0 -0
- melage/resource/mri_old.png +0 -0
- melage/resource/mri_seg.png +0 -0
- melage/resource/mri_seg_old.png +0 -0
- melage/resource/new.png +0 -0
- melage/resource/open.png +0 -0
- melage/resource/open2.png +0 -0
- melage/resource/pan.png +0 -0
- melage/resource/pencil.png +0 -0
- melage/resource/pencilFaded.png +0 -0
- melage/resource/points.png +0 -0
- melage/resource/pointsFaded.png +0 -0
- melage/resource/rotate.png +0 -0
- melage/resource/ruler.png +0 -0
- melage/resource/rulerFaded.png +0 -0
- melage/resource/s.png +0 -0
- melage/resource/s.psd +0 -0
- melage/resource/save.png +0 -0
- melage/resource/saveas.png +0 -0
- melage/resource/seg_mri.png +0 -0
- melage/resource/seg_mri2.png +0 -0
- melage/resource/settings.png +0 -0
- melage/resource/synch.png +0 -0
- melage/resource/synchFaded.png +0 -0
- melage/resource/theme/rc/.keep +1 -0
- melage/resource/theme/rc/arrow_down.png +0 -0
- melage/resource/theme/rc/arrow_down@2x.png +0 -0
- melage/resource/theme/rc/arrow_down_disabled.png +0 -0
- melage/resource/theme/rc/arrow_down_disabled@2x.png +0 -0
- melage/resource/theme/rc/arrow_down_focus.png +0 -0
- melage/resource/theme/rc/arrow_down_focus@2x.png +0 -0
- melage/resource/theme/rc/arrow_down_pressed.png +0 -0
- melage/resource/theme/rc/arrow_down_pressed@2x.png +0 -0
- melage/resource/theme/rc/arrow_left.png +0 -0
- melage/resource/theme/rc/arrow_left@2x.png +0 -0
- melage/resource/theme/rc/arrow_left_disabled.png +0 -0
- melage/resource/theme/rc/arrow_left_disabled@2x.png +0 -0
- melage/resource/theme/rc/arrow_left_focus.png +0 -0
- melage/resource/theme/rc/arrow_left_focus@2x.png +0 -0
- melage/resource/theme/rc/arrow_left_pressed.png +0 -0
- melage/resource/theme/rc/arrow_left_pressed@2x.png +0 -0
- melage/resource/theme/rc/arrow_right.png +0 -0
- melage/resource/theme/rc/arrow_right@2x.png +0 -0
- melage/resource/theme/rc/arrow_right_disabled.png +0 -0
- melage/resource/theme/rc/arrow_right_disabled@2x.png +0 -0
- melage/resource/theme/rc/arrow_right_focus.png +0 -0
- melage/resource/theme/rc/arrow_right_focus@2x.png +0 -0
- melage/resource/theme/rc/arrow_right_pressed.png +0 -0
- melage/resource/theme/rc/arrow_right_pressed@2x.png +0 -0
- melage/resource/theme/rc/arrow_up.png +0 -0
- melage/resource/theme/rc/arrow_up@2x.png +0 -0
- melage/resource/theme/rc/arrow_up_disabled.png +0 -0
- melage/resource/theme/rc/arrow_up_disabled@2x.png +0 -0
- melage/resource/theme/rc/arrow_up_focus.png +0 -0
- melage/resource/theme/rc/arrow_up_focus@2x.png +0 -0
- melage/resource/theme/rc/arrow_up_pressed.png +0 -0
- melage/resource/theme/rc/arrow_up_pressed@2x.png +0 -0
- melage/resource/theme/rc/base_icon.png +0 -0
- melage/resource/theme/rc/base_icon@2x.png +0 -0
- melage/resource/theme/rc/base_icon_disabled.png +0 -0
- melage/resource/theme/rc/base_icon_disabled@2x.png +0 -0
- melage/resource/theme/rc/base_icon_focus.png +0 -0
- melage/resource/theme/rc/base_icon_focus@2x.png +0 -0
- melage/resource/theme/rc/base_icon_pressed.png +0 -0
- melage/resource/theme/rc/base_icon_pressed@2x.png +0 -0
- melage/resource/theme/rc/branch_closed.png +0 -0
- melage/resource/theme/rc/branch_closed@2x.png +0 -0
- melage/resource/theme/rc/branch_closed_disabled.png +0 -0
- melage/resource/theme/rc/branch_closed_disabled@2x.png +0 -0
- melage/resource/theme/rc/branch_closed_focus.png +0 -0
- melage/resource/theme/rc/branch_closed_focus@2x.png +0 -0
- melage/resource/theme/rc/branch_closed_pressed.png +0 -0
- melage/resource/theme/rc/branch_closed_pressed@2x.png +0 -0
- melage/resource/theme/rc/branch_end.png +0 -0
- melage/resource/theme/rc/branch_end@2x.png +0 -0
- melage/resource/theme/rc/branch_end_disabled.png +0 -0
- melage/resource/theme/rc/branch_end_disabled@2x.png +0 -0
- melage/resource/theme/rc/branch_end_focus.png +0 -0
- melage/resource/theme/rc/branch_end_focus@2x.png +0 -0
- melage/resource/theme/rc/branch_end_pressed.png +0 -0
- melage/resource/theme/rc/branch_end_pressed@2x.png +0 -0
- melage/resource/theme/rc/branch_line.png +0 -0
- melage/resource/theme/rc/branch_line@2x.png +0 -0
- melage/resource/theme/rc/branch_line_disabled.png +0 -0
- melage/resource/theme/rc/branch_line_disabled@2x.png +0 -0
- melage/resource/theme/rc/branch_line_focus.png +0 -0
- melage/resource/theme/rc/branch_line_focus@2x.png +0 -0
- melage/resource/theme/rc/branch_line_pressed.png +0 -0
- melage/resource/theme/rc/branch_line_pressed@2x.png +0 -0
- melage/resource/theme/rc/branch_more.png +0 -0
- melage/resource/theme/rc/branch_more@2x.png +0 -0
- melage/resource/theme/rc/branch_more_disabled.png +0 -0
- melage/resource/theme/rc/branch_more_disabled@2x.png +0 -0
- melage/resource/theme/rc/branch_more_focus.png +0 -0
- melage/resource/theme/rc/branch_more_focus@2x.png +0 -0
- melage/resource/theme/rc/branch_more_pressed.png +0 -0
- melage/resource/theme/rc/branch_more_pressed@2x.png +0 -0
- melage/resource/theme/rc/branch_open.png +0 -0
- melage/resource/theme/rc/branch_open@2x.png +0 -0
- melage/resource/theme/rc/branch_open_disabled.png +0 -0
- melage/resource/theme/rc/branch_open_disabled@2x.png +0 -0
- melage/resource/theme/rc/branch_open_focus.png +0 -0
- melage/resource/theme/rc/branch_open_focus@2x.png +0 -0
- melage/resource/theme/rc/branch_open_pressed.png +0 -0
- melage/resource/theme/rc/branch_open_pressed@2x.png +0 -0
- melage/resource/theme/rc/checkbox_checked.png +0 -0
- melage/resource/theme/rc/checkbox_checked0.png +0 -0
- melage/resource/theme/rc/checkbox_checked@2x.png +0 -0
- melage/resource/theme/rc/checkbox_checked@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_checked@2x000.png.png +0 -0
- melage/resource/theme/rc/checkbox_checked_disabled.png +0 -0
- melage/resource/theme/rc/checkbox_checked_disabled0.png +0 -0
- melage/resource/theme/rc/checkbox_checked_disabled@2x.png +0 -0
- melage/resource/theme/rc/checkbox_checked_disabled@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_checked_focus.png +0 -0
- melage/resource/theme/rc/checkbox_checked_focus0.png +0 -0
- melage/resource/theme/rc/checkbox_checked_focus@2x.png +0 -0
- melage/resource/theme/rc/checkbox_checked_focus@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_checked_pressed.png +0 -0
- melage/resource/theme/rc/checkbox_checked_pressed0.png +0 -0
- melage/resource/theme/rc/checkbox_checked_pressed@2x.png +0 -0
- melage/resource/theme/rc/checkbox_checked_pressed@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate@2x.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_disabled.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_disabled@2x.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_focus.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_focus@2x.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_pressed.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_pressed@2x.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked@2x.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked@2x00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled@2x.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled@2x00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus@2x.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus@2x00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed@2x.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed@2x00.png +0 -0
- melage/resource/theme/rc/line_horizontal.png +0 -0
- melage/resource/theme/rc/line_horizontal@2x.png +0 -0
- melage/resource/theme/rc/line_horizontal_disabled.png +0 -0
- melage/resource/theme/rc/line_horizontal_disabled@2x.png +0 -0
- melage/resource/theme/rc/line_horizontal_focus.png +0 -0
- melage/resource/theme/rc/line_horizontal_focus@2x.png +0 -0
- melage/resource/theme/rc/line_horizontal_pressed.png +0 -0
- melage/resource/theme/rc/line_horizontal_pressed@2x.png +0 -0
- melage/resource/theme/rc/line_vertical.png +0 -0
- melage/resource/theme/rc/line_vertical@2x.png +0 -0
- melage/resource/theme/rc/line_vertical_disabled.png +0 -0
- melage/resource/theme/rc/line_vertical_disabled@2x.png +0 -0
- melage/resource/theme/rc/line_vertical_focus.png +0 -0
- melage/resource/theme/rc/line_vertical_focus@2x.png +0 -0
- melage/resource/theme/rc/line_vertical_pressed.png +0 -0
- melage/resource/theme/rc/line_vertical_pressed@2x.png +0 -0
- melage/resource/theme/rc/radio_checked.png +0 -0
- melage/resource/theme/rc/radio_checked@2x.png +0 -0
- melage/resource/theme/rc/radio_checked_disabled.png +0 -0
- melage/resource/theme/rc/radio_checked_disabled@2x.png +0 -0
- melage/resource/theme/rc/radio_checked_focus.png +0 -0
- melage/resource/theme/rc/radio_checked_focus@2x.png +0 -0
- melage/resource/theme/rc/radio_checked_pressed.png +0 -0
- melage/resource/theme/rc/radio_checked_pressed@2x.png +0 -0
- melage/resource/theme/rc/radio_unchecked.png +0 -0
- melage/resource/theme/rc/radio_unchecked@2x.png +0 -0
- melage/resource/theme/rc/radio_unchecked_disabled.png +0 -0
- melage/resource/theme/rc/radio_unchecked_disabled@2x.png +0 -0
- melage/resource/theme/rc/radio_unchecked_focus.png +0 -0
- melage/resource/theme/rc/radio_unchecked_focus@2x.png +0 -0
- melage/resource/theme/rc/radio_unchecked_pressed.png +0 -0
- melage/resource/theme/rc/radio_unchecked_pressed@2x.png +0 -0
- melage/resource/theme/rc/toolbar_move_horizontal.png +0 -0
- melage/resource/theme/rc/toolbar_move_horizontal@2x.png +0 -0
- melage/resource/theme/rc/toolbar_move_horizontal_disabled.png +0 -0
- melage/resource/theme/rc/toolbar_move_horizontal_disabled@2x.png +0 -0
- melage/resource/theme/rc/toolbar_move_horizontal_focus.png +0 -0
- melage/resource/theme/rc/toolbar_move_horizontal_focus@2x.png +0 -0
- melage/resource/theme/rc/toolbar_move_horizontal_pressed.png +0 -0
- melage/resource/theme/rc/toolbar_move_horizontal_pressed@2x.png +0 -0
- melage/resource/theme/rc/toolbar_move_vertical.png +0 -0
- melage/resource/theme/rc/toolbar_move_vertical@2x.png +0 -0
- melage/resource/theme/rc/toolbar_move_vertical_disabled.png +0 -0
- melage/resource/theme/rc/toolbar_move_vertical_disabled@2x.png +0 -0
- melage/resource/theme/rc/toolbar_move_vertical_focus.png +0 -0
- melage/resource/theme/rc/toolbar_move_vertical_focus@2x.png +0 -0
- melage/resource/theme/rc/toolbar_move_vertical_pressed.png +0 -0
- melage/resource/theme/rc/toolbar_move_vertical_pressed@2x.png +0 -0
- melage/resource/theme/rc/toolbar_separator_horizontal.png +0 -0
- melage/resource/theme/rc/toolbar_separator_horizontal@2x.png +0 -0
- melage/resource/theme/rc/toolbar_separator_horizontal_disabled.png +0 -0
- melage/resource/theme/rc/toolbar_separator_horizontal_disabled@2x.png +0 -0
- melage/resource/theme/rc/toolbar_separator_horizontal_focus.png +0 -0
- melage/resource/theme/rc/toolbar_separator_horizontal_focus@2x.png +0 -0
- melage/resource/theme/rc/toolbar_separator_horizontal_pressed.png +0 -0
- melage/resource/theme/rc/toolbar_separator_horizontal_pressed@2x.png +0 -0
- melage/resource/theme/rc/toolbar_separator_vertical.png +0 -0
- melage/resource/theme/rc/toolbar_separator_vertical@2x.png +0 -0
- melage/resource/theme/rc/toolbar_separator_vertical_disabled.png +0 -0
- melage/resource/theme/rc/toolbar_separator_vertical_disabled@2x.png +0 -0
- melage/resource/theme/rc/toolbar_separator_vertical_focus.png +0 -0
- melage/resource/theme/rc/toolbar_separator_vertical_focus@2x.png +0 -0
- melage/resource/theme/rc/toolbar_separator_vertical_pressed.png +0 -0
- melage/resource/theme/rc/toolbar_separator_vertical_pressed@2x.png +0 -0
- melage/resource/theme/rc/transparent.png +0 -0
- melage/resource/theme/rc/transparent@2x.png +0 -0
- melage/resource/theme/rc/transparent_disabled.png +0 -0
- melage/resource/theme/rc/transparent_disabled@2x.png +0 -0
- melage/resource/theme/rc/transparent_focus.png +0 -0
- melage/resource/theme/rc/transparent_focus@2x.png +0 -0
- melage/resource/theme/rc/transparent_pressed.png +0 -0
- melage/resource/theme/rc/transparent_pressed@2x.png +0 -0
- melage/resource/theme/rc/window_close.png +0 -0
- melage/resource/theme/rc/window_close@2x.png +0 -0
- melage/resource/theme/rc/window_close_disabled.png +0 -0
- melage/resource/theme/rc/window_close_disabled@2x.png +0 -0
- melage/resource/theme/rc/window_close_focus.png +0 -0
- melage/resource/theme/rc/window_close_focus@2x.png +0 -0
- melage/resource/theme/rc/window_close_pressed.png +0 -0
- melage/resource/theme/rc/window_close_pressed@2x.png +0 -0
- melage/resource/theme/rc/window_grip.png +0 -0
- melage/resource/theme/rc/window_grip@2x.png +0 -0
- melage/resource/theme/rc/window_grip_disabled.png +0 -0
- melage/resource/theme/rc/window_grip_disabled@2x.png +0 -0
- melage/resource/theme/rc/window_grip_focus.png +0 -0
- melage/resource/theme/rc/window_grip_focus@2x.png +0 -0
- melage/resource/theme/rc/window_grip_pressed.png +0 -0
- melage/resource/theme/rc/window_grip_pressed@2x.png +0 -0
- melage/resource/theme/rc/window_minimize.png +0 -0
- melage/resource/theme/rc/window_minimize@2x.png +0 -0
- melage/resource/theme/rc/window_minimize_disabled.png +0 -0
- melage/resource/theme/rc/window_minimize_disabled@2x.png +0 -0
- melage/resource/theme/rc/window_minimize_focus.png +0 -0
- melage/resource/theme/rc/window_minimize_focus@2x.png +0 -0
- melage/resource/theme/rc/window_minimize_pressed.png +0 -0
- melage/resource/theme/rc/window_minimize_pressed@2x.png +0 -0
- melage/resource/theme/rc/window_undock.png +0 -0
- melage/resource/theme/rc/window_undock@2x.png +0 -0
- melage/resource/theme/rc/window_undock_disabled.png +0 -0
- melage/resource/theme/rc/window_undock_disabled@2x.png +0 -0
- melage/resource/theme/rc/window_undock_focus.png +0 -0
- melage/resource/theme/rc/window_undock_focus@2x.png +0 -0
- melage/resource/theme/rc/window_undock_pressed.png +0 -0
- melage/resource/theme/rc/window_undock_pressed@2x.png +0 -0
- melage/resource/theme/style.qss +2223 -0
- melage/resource/tract.png +0 -0
- melage/resource/view1.png +0 -0
- melage/resource/view1_eco.png +0 -0
- melage/resource/view1_mri.png +0 -0
- melage/resource/view1_seg.png +0 -0
- melage/resource/view2.png +0 -0
- melage/resource/view2_seg.png +0 -0
- melage/resource/w.png +0 -0
- melage/resource/zoom_in.png +0 -0
- melage/resource/zoom_inFaded.png +0 -0
- melage/resource/zoom_out.png +0 -0
- melage/resource/zoom_outFaded.png +0 -0
- melage/some_notes.txt +3 -0
- melage/utils/DispalyIm.py +2788 -0
- melage/utils/GMM.py +720 -0
- melage/utils/Shaders_120.py +257 -0
- melage/utils/Shaders_330.py +314 -0
- melage/utils/Shaders_bu.py +314 -0
- melage/utils/__init__0.py +7 -0
- melage/utils/brain_extraction_helper.py +234 -0
- melage/utils/custom_QScrollBar.py +61 -0
- melage/utils/glScientific.py +1554 -0
- melage/utils/glScientific_bc.py +1585 -0
- melage/utils/readData.py +1061 -0
- melage/utils/registration.py +512 -0
- melage/utils/source_folder.py +18 -0
- melage/utils/utils.py +3808 -0
- melage/version.txt +1 -0
- melage/widgets/ApplyMask.py +212 -0
- melage/widgets/ChangeSystem.py +152 -0
- melage/widgets/DeepLModels/InfantSegment/Unet.py +464 -0
- melage/widgets/DeepLModels/NPP/dataset/mri_dataset_affine.py +149 -0
- melage/widgets/DeepLModels/NPP/models/checkpoints/npp_v1.pth.py +0 -0
- melage/widgets/DeepLModels/NPP/models/losses.py +146 -0
- melage/widgets/DeepLModels/NPP/models/model.py +272 -0
- melage/widgets/DeepLModels/NPP/models/utils.py +303 -0
- melage/widgets/DeepLModels/NPP/npp.py +116 -0
- melage/widgets/DeepLModels/NPP/requirements.txt +8 -0
- melage/widgets/DeepLModels/NPP/train/train.py +116 -0
- melage/widgets/DeepLModels/Unet3DAtt.py +657 -0
- melage/widgets/DeepLModels/Unet3D_basic.py +648 -0
- melage/widgets/DeepLModels/new_unet.py +652 -0
- melage/widgets/DeepLModels/new_unet_old.py +639 -0
- melage/widgets/DeepLModels/new_unet_old2.py +658 -0
- melage/widgets/HistImage.py +153 -0
- melage/widgets/ImageThresholding.py +222 -0
- melage/widgets/MaskOperations.py +147 -0
- melage/widgets/N4Dialog.py +241 -0
- melage/widgets/Segmentation/FCM.py +1553 -0
- melage/widgets/Segmentation/__init__.py +588 -0
- melage/widgets/Segmentation/utils.py +417 -0
- melage/widgets/SemiAutoSeg.py +666 -0
- melage/widgets/Synthstrip.py +141 -0
- melage/widgets/__init__0.py +5 -0
- melage/widgets/about.py +246 -0
- melage/widgets/activation.py +437 -0
- melage/widgets/activator.py +147 -0
- melage/widgets/be_dl.py +409 -0
- melage/widgets/be_dl_unet3d.py +441 -0
- melage/widgets/brain_extraction.py +855 -0
- melage/widgets/brain_extraction_dl.py +887 -0
- melage/widgets/brain_extraction_dl_bu.py +869 -0
- melage/widgets/colorwidget.py +100 -0
- melage/widgets/dockWidgets.py +2005 -0
- melage/widgets/enhanceImWidget.py +109 -0
- melage/widgets/fileDialog_widget.py +275 -0
- melage/widgets/iminfo.py +346 -0
- melage/widgets/mainwindow_widget.py +6775 -0
- melage/widgets/melageAbout.py +123 -0
- melage/widgets/openglWidgets.py +556 -0
- melage/widgets/registrationWidget.py +342 -0
- melage/widgets/repeat_widget.py +74 -0
- melage/widgets/screenshot_widget.py +138 -0
- melage/widgets/settings_widget.py +77 -0
- melage/widgets/tranformationWidget.py +275 -0
- melage-0.0.65.dist-info/METADATA +742 -0
- melage-0.0.65.dist-info/RECORD +501 -0
- melage-0.0.65.dist-info/WHEEL +5 -0
- melage-0.0.65.dist-info/entry_points.txt +2 -0
- melage-0.0.65.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,1553 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
|
|
3
|
+
from melage.widgets.Segmentation.utils import BiasCorrection
|
|
4
|
+
from melage.widgets.Segmentation.utils import create_window_3D, ssim3D
|
|
5
|
+
from melage.widgets.Segmentation.utils import LargestCC, \
|
|
6
|
+
update_according_to_neighbours_conv, neighborhood_conv, axis_based_convolution, adjust_common_structures, \
|
|
7
|
+
compute_sdf, rescale_between_a_b
|
|
8
|
+
from sklearn.preprocessing import PolynomialFeatures
|
|
9
|
+
from scipy.ndimage import binary_fill_holes, binary_dilation
|
|
10
|
+
from scipy.special import softmax
|
|
11
|
+
from scipy.ndimage import gaussian_filter
|
|
12
|
+
from skimage.metrics import structural_similarity as ssim
|
|
13
|
+
from scipy.ndimage import sobel
|
|
14
|
+
import abc
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class FCM(object):
|
|
20
|
+
|
|
21
|
+
def __init__(self, parent=None):
|
|
22
|
+
self.parent = parent
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
@abc.abstractmethod
|
|
26
|
+
def Update_memership(self):
|
|
27
|
+
raise NotImplementedError("Subclass should implement this.")
|
|
28
|
+
|
|
29
|
+
@abc.abstractmethod
|
|
30
|
+
def Update_centers(self):
|
|
31
|
+
raise NotImplementedError("Subclass should implement this.")
|
|
32
|
+
|
|
33
|
+
def predict(self, use_softmax=False):
|
|
34
|
+
raise NotImplementedError("Subclass should implement this.")
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
@abc.abstractmethod
|
|
38
|
+
def fit(self):
|
|
39
|
+
raise NotImplementedError("Subclass should implement this.")
|
|
40
|
+
|
|
41
|
+
def _normalizeAtlasCreateMask(self):
|
|
42
|
+
raise NotImplementedError("Subclass should implement this.")
|
|
43
|
+
|
|
44
|
+
def initialize_fcm(self, initialization_method='otsu'):
|
|
45
|
+
|
|
46
|
+
if initialization_method=='random':
|
|
47
|
+
self.rng = np.random.default_rng(0)
|
|
48
|
+
m, n, o = self.image.shape
|
|
49
|
+
self.Membership = self.rng.uniform(size=(m, n, o, self.num_tissues))
|
|
50
|
+
self.Membership = self.Membership / np.tile(self.Membership.sum(axis=-1)[...,np.newaxis], self.num_tissues)
|
|
51
|
+
|
|
52
|
+
self.Membership[~self.mask, :] = 0
|
|
53
|
+
mask = self.mask.copy()
|
|
54
|
+
|
|
55
|
+
numerator = np.einsum('il->l',
|
|
56
|
+
np.expand_dims(self.image, -1)[mask, :] * pow(self.Membership[mask, :],
|
|
57
|
+
self.fuzziness))
|
|
58
|
+
|
|
59
|
+
denominator = np.einsum('il->l', pow(self.Membership[mask], self.fuzziness))
|
|
60
|
+
ind_non_denom = denominator != 0
|
|
61
|
+
numerator[ind_non_denom] = numerator[ind_non_denom] / denominator[ind_non_denom]
|
|
62
|
+
numerator[numerator == 0] = 0.00001
|
|
63
|
+
self.Centers = numerator
|
|
64
|
+
elif initialization_method=='otsu':
|
|
65
|
+
from skimage.filters import threshold_multiotsu, threshold_otsu
|
|
66
|
+
self.Centers = list(threshold_multiotsu(self.image[self.mask], classes=self.num_tissues+1))
|
|
67
|
+
el = -2. / (self.fuzziness - 1)
|
|
68
|
+
|
|
69
|
+
numerator = np.zeros((*self.image.shape, self.num_tissues))
|
|
70
|
+
|
|
71
|
+
for i in range(self.num_tissues):
|
|
72
|
+
numerator[self.mask, i] = np.power(abs(self.image[self.mask] - self.Centers[i])+1e-7, el)
|
|
73
|
+
#numerator[self.mask, i] = np.power(abs(self.image[self.mask] - self.Centers[i])+1e-7, el)
|
|
74
|
+
|
|
75
|
+
sumn = numerator.sum(-1)
|
|
76
|
+
ind_non_zero = sumn != 0
|
|
77
|
+
sumn = np.expand_dims(sumn, -1)
|
|
78
|
+
numerator[ind_non_zero, :] /= sumn[ind_non_zero, :]
|
|
79
|
+
self.Membership = numerator
|
|
80
|
+
self.Membership_freeB = numerator.copy()
|
|
81
|
+
|
|
82
|
+
elif initialization_method == 'kmeans':
|
|
83
|
+
from sklearn.cluster import KMeans
|
|
84
|
+
km = KMeans(self.num_tissues, random_state=0).fit(self.image[self.image > 0].reshape(-1, 1))
|
|
85
|
+
self.Centers = km.cluster_centers_.squeeze()
|
|
86
|
+
#idx = np.arange(self.num_gray)
|
|
87
|
+
#c_mesh, idx_mesh = np.meshgrid(self.Centers, idx)
|
|
88
|
+
el = -2. / (self.fuzziness - 1)
|
|
89
|
+
|
|
90
|
+
numerator = np.zeros((*self.image.shape, self.num_tissues))
|
|
91
|
+
|
|
92
|
+
|
|
93
|
+
for i in range(self.num_tissues):
|
|
94
|
+
numerator[self.mask>0, i] = np.power(abs(self.image[self.mask>0] - self.Centers[i]),el)
|
|
95
|
+
|
|
96
|
+
sumn = numerator.sum(-1)
|
|
97
|
+
ind_non_zero = sumn != 0
|
|
98
|
+
sumn = np.expand_dims(sumn, -1)
|
|
99
|
+
numerator[ind_non_zero, :] /= sumn[ind_non_zero, :]
|
|
100
|
+
self.Membership = numerator
|
|
101
|
+
|
|
102
|
+
|
|
103
|
+
|
|
104
|
+
|
|
105
|
+
|
|
106
|
+
class esFCM(FCM):
|
|
107
|
+
|
|
108
|
+
def __init__(self, image, affine,
|
|
109
|
+
image_range, num_tissues, fuzziness,
|
|
110
|
+
epsilon, max_iter,
|
|
111
|
+
padding=0,
|
|
112
|
+
tissuelabels=None, correct_bias=True,
|
|
113
|
+
mask=None, max_fail=4, use_ssim=True):
|
|
114
|
+
super(esFCM, self).__init__()
|
|
115
|
+
self.biascorrection = BiasCorrection()
|
|
116
|
+
self.use_ssim = use_ssim
|
|
117
|
+
self.mask = mask
|
|
118
|
+
self.image = image
|
|
119
|
+
self._imdim = [sh == 1 for sh in self.image.shape]
|
|
120
|
+
self._is2D = sum([sh == 1 for sh in self.image.shape])>0
|
|
121
|
+
self.max_fail = max_fail
|
|
122
|
+
self.window = create_window_3D(11, 1)
|
|
123
|
+
|
|
124
|
+
self.estimate = image.copy() # wstep
|
|
125
|
+
self.weight = image.copy() # wstep
|
|
126
|
+
self.type_im = 'T1'
|
|
127
|
+
self.image_range = image_range
|
|
128
|
+
self.num_tissues = num_tissues
|
|
129
|
+
self.fuzziness = fuzziness
|
|
130
|
+
self.padding = padding
|
|
131
|
+
self.epsilon = epsilon
|
|
132
|
+
self.max_iter = max_iter
|
|
133
|
+
self.correct_bias = correct_bias
|
|
134
|
+
|
|
135
|
+
self.shape = image.shape # image shape
|
|
136
|
+
# flatted image shape: (number of pixels,1)
|
|
137
|
+
|
|
138
|
+
self.affine = affine
|
|
139
|
+
self.biasfield = 1
|
|
140
|
+
|
|
141
|
+
if tissuelabels is not None:
|
|
142
|
+
self.tissuelabels = tissuelabels.astype('int')
|
|
143
|
+
else:
|
|
144
|
+
#
|
|
145
|
+
if self.num_tissues == 3:
|
|
146
|
+
self.tissuelabels = np.array([2, 3, 4])
|
|
147
|
+
else:
|
|
148
|
+
self.tissuelabels = np.zeros(self.num_tissues)
|
|
149
|
+
|
|
150
|
+
def SetBiasField(self, biasfield):
|
|
151
|
+
self.biasfield = biasfield
|
|
152
|
+
|
|
153
|
+
def Update_membership(self, constraint=True):
|
|
154
|
+
"""
|
|
155
|
+
Updating FCM membership function
|
|
156
|
+
@param final:
|
|
157
|
+
@param membership_p:
|
|
158
|
+
@return:
|
|
159
|
+
"""
|
|
160
|
+
|
|
161
|
+
el = -2. / (self.fuzziness - 1)
|
|
162
|
+
|
|
163
|
+
numerator = np.zeros_like(self.Membership)
|
|
164
|
+
|
|
165
|
+
for i in range(self.num_tissues):
|
|
166
|
+
weight = 1
|
|
167
|
+
numerator[self.mask, i] = weight * np.power(abs(self.filtered_image[self.mask] - self.Centers[i]) + 1e-7,
|
|
168
|
+
el)
|
|
169
|
+
|
|
170
|
+
sumn = numerator.sum(-1)
|
|
171
|
+
numerator[sumn != 0] = (numerator[sumn != 0]) / ((sumn[sumn != 0])[..., np.newaxis])
|
|
172
|
+
|
|
173
|
+
ind_non_zero_maks = self.mask == 1
|
|
174
|
+
|
|
175
|
+
mrf_energy = self._proximity_measure(ind_non_zero_maks, self.Membership)
|
|
176
|
+
|
|
177
|
+
numerator *= mrf_energy
|
|
178
|
+
|
|
179
|
+
|
|
180
|
+
|
|
181
|
+
|
|
182
|
+
return numerator
|
|
183
|
+
|
|
184
|
+
|
|
185
|
+
def Update_centers(self):
|
|
186
|
+
"""
|
|
187
|
+
Update center of the clusters
|
|
188
|
+
@return:
|
|
189
|
+
"""
|
|
190
|
+
mask = self.mask.copy()
|
|
191
|
+
|
|
192
|
+
numerator = np.einsum('il->l',
|
|
193
|
+
np.expand_dims(self.filtered_image, -1)[mask, :] * pow(self.Membership[mask, :],
|
|
194
|
+
self.fuzziness))
|
|
195
|
+
denominator = np.einsum('il->l', pow(self.Membership[mask], self.fuzziness))
|
|
196
|
+
ind_non_denom = denominator != 0
|
|
197
|
+
numerator[ind_non_denom] = numerator[ind_non_denom] / denominator[ind_non_denom]
|
|
198
|
+
|
|
199
|
+
numerator[numerator == 0] = 0.00001 # for numerical stability
|
|
200
|
+
return numerator
|
|
201
|
+
|
|
202
|
+
def WStep(self):
|
|
203
|
+
"""
|
|
204
|
+
WStep
|
|
205
|
+
@return:
|
|
206
|
+
"""
|
|
207
|
+
|
|
208
|
+
input_inp = self.image
|
|
209
|
+
|
|
210
|
+
a = self.predict()
|
|
211
|
+
uq = np.unique(a)
|
|
212
|
+
uq = [u for u in uq if u != 0]
|
|
213
|
+
pred = np.zeros((*a.shape, self.num_tissues))
|
|
214
|
+
for i, u in enumerate(uq):
|
|
215
|
+
ind = a == u
|
|
216
|
+
pred[ind, i] = 1
|
|
217
|
+
|
|
218
|
+
numstd = np.einsum('ijkl,ijkl->ijk', self.Membership, (input_inp[..., None] - self.Centers) ** 2)
|
|
219
|
+
denominator = np.sqrt(numstd)
|
|
220
|
+
|
|
221
|
+
numerator = np.einsum('ijkl,l', self.Membership, self.Centers) # +self.Membership*self.Centers
|
|
222
|
+
|
|
223
|
+
ind_non_zero = denominator != 0
|
|
224
|
+
|
|
225
|
+
self.weight[ind_non_zero] = denominator[ind_non_zero]
|
|
226
|
+
self.estimate[ind_non_zero] = numerator[ind_non_zero] # / denominator[ind_non_zero]
|
|
227
|
+
|
|
228
|
+
self.weight[(~ind_non_zero)] = self.padding
|
|
229
|
+
self.estimate[(~ind_non_zero)] = self.padding
|
|
230
|
+
|
|
231
|
+
def BStep(self, mask=None):
|
|
232
|
+
# bias correction step
|
|
233
|
+
|
|
234
|
+
if mask is None:
|
|
235
|
+
mask = self.mask
|
|
236
|
+
|
|
237
|
+
mask[~self.mask] = 0
|
|
238
|
+
self.biascorrection.set_info(target=self.image, reference=self.estimate,
|
|
239
|
+
weight=self.weight, biasfield=self.biasfield, padding=self.padding,
|
|
240
|
+
mask=mask, affine=self.affine, cov_pq=None, use_original=False)
|
|
241
|
+
|
|
242
|
+
self.filtered_image = self.image.copy()
|
|
243
|
+
if mask.sum() > 100:
|
|
244
|
+
self.biascorrection.Run()
|
|
245
|
+
self.biascorrection.Apply(self.filtered_image)
|
|
246
|
+
self.filtered_image[~self.mask] = 0
|
|
247
|
+
return
|
|
248
|
+
|
|
249
|
+
|
|
250
|
+
def _proximity_measure(self, index_, Membership=None, sqr2dist=False):
|
|
251
|
+
# Fuzzy c-means clustering with spatial information for image segmentation
|
|
252
|
+
|
|
253
|
+
if Membership is None:
|
|
254
|
+
Membership = self.Membership
|
|
255
|
+
|
|
256
|
+
in_out = np.zeros_like(Membership)
|
|
257
|
+
for i in range(self.num_tissues):
|
|
258
|
+
in_out[index_, i] = \
|
|
259
|
+
neighborhood_conv(Membership[..., i][..., None], kerenel_size=3, direction='xyz', sqr2dist=False)[
|
|
260
|
+
index_, 0]
|
|
261
|
+
|
|
262
|
+
in_out /= in_out.max()
|
|
263
|
+
return in_out
|
|
264
|
+
|
|
265
|
+
|
|
266
|
+
def softmax(self, x):
|
|
267
|
+
return np.exp(x) / np.sum(np.exp(x), -1)[..., None]
|
|
268
|
+
|
|
269
|
+
|
|
270
|
+
|
|
271
|
+
def fit(self, progressBar):
|
|
272
|
+
|
|
273
|
+
if not hasattr(self, 'Membership'):
|
|
274
|
+
self.Membership = self.atlas_ims.copy()
|
|
275
|
+
|
|
276
|
+
degree = 2
|
|
277
|
+
|
|
278
|
+
biasf = PolynomialFeatures(degree) # SplineTransformer(n_knots=2, degree=degree)#
|
|
279
|
+
best_cost = -np.inf
|
|
280
|
+
self.SetBiasField(biasf)
|
|
281
|
+
num_fails = 0
|
|
282
|
+
self.filtered_image = self.image.copy()
|
|
283
|
+
old_cost = np.inf
|
|
284
|
+
|
|
285
|
+
i = 0
|
|
286
|
+
|
|
287
|
+
|
|
288
|
+
|
|
289
|
+
while True:
|
|
290
|
+
# if i == 0:
|
|
291
|
+
self.Centers = self.Update_centers()
|
|
292
|
+
|
|
293
|
+
old_u = np.copy(self.Membership)
|
|
294
|
+
self.Membership = self.Update_membership()
|
|
295
|
+
|
|
296
|
+
|
|
297
|
+
|
|
298
|
+
cost = np.sum(abs(self.Membership - old_u) > 0.1) / np.prod(self.image[self.mask].shape)
|
|
299
|
+
|
|
300
|
+
progressBar.setValue(int(i / (self.max_iter + 1) * 100))
|
|
301
|
+
if self.use_ssim and cost < self.epsilon and self.correct_bias or abs(old_cost - cost) < 1e-6:
|
|
302
|
+
if not self.use_ssim:
|
|
303
|
+
break
|
|
304
|
+
self.WStep()
|
|
305
|
+
|
|
306
|
+
# Apply mapping
|
|
307
|
+
|
|
308
|
+
s1 = sobel(self.image)
|
|
309
|
+
s2 = sobel(self.predict())
|
|
310
|
+
fast_method = True
|
|
311
|
+
if fast_method:
|
|
312
|
+
if self._is2D:
|
|
313
|
+
cost_ssim, ssim_map = ssim(s1.squeeze() / s1.max(), s2.squeeze() / s2.max(), full=True,
|
|
314
|
+
win_size=11)
|
|
315
|
+
ssim_map = np.expand_dims(ssim_map, np.where(self._imdim)[0][0])
|
|
316
|
+
else:
|
|
317
|
+
cost_ssim, ssim_map = ssim(s1 / s1.max(), s2 / s2.max(), full=True,
|
|
318
|
+
win_size=11)
|
|
319
|
+
else: # faster
|
|
320
|
+
ssim_map = ssim3D(s1 / s1.max(), s2 / s2.max(), self.window,
|
|
321
|
+
self.window.shape[-1], 1, contrast=False)
|
|
322
|
+
cost_ssim = ssim_map[self.mask].mean()
|
|
323
|
+
|
|
324
|
+
|
|
325
|
+
ssim_map = rescale_between_a_b(-ssim_map, -1000, 1000)
|
|
326
|
+
ssim_map[~self.mask] = 0
|
|
327
|
+
|
|
328
|
+
if (cost_ssim - best_cost) > 1e-4:
|
|
329
|
+
print("best SSIM value {}".format(cost_ssim))
|
|
330
|
+
|
|
331
|
+
self.BestCenters = self.Centers.copy()
|
|
332
|
+
self.BestFilter = self.filtered_image.copy()
|
|
333
|
+
self.BestMS = self.Membership.copy()
|
|
334
|
+
|
|
335
|
+
|
|
336
|
+
best_cost = cost_ssim
|
|
337
|
+
num_fails = 0
|
|
338
|
+
else:
|
|
339
|
+
num_fails += 1
|
|
340
|
+
|
|
341
|
+
if num_fails > self.max_fail: # abs(old_cost_ssim - cost_ssim) < 1e-4
|
|
342
|
+
break
|
|
343
|
+
if num_fails == 0:
|
|
344
|
+
|
|
345
|
+
self.weight = ssim_map # rescale_between_a_b(sobel(self.image),-1,1) #ssim_map
|
|
346
|
+
self.BStep(mask=None)
|
|
347
|
+
else:
|
|
348
|
+
self.filtered_image = self.BestFilter.copy()
|
|
349
|
+
|
|
350
|
+
|
|
351
|
+
print("Iteration %d : cost = %f" % (i, cost))
|
|
352
|
+
old_cost = cost
|
|
353
|
+
if i > self.max_iter - 1:
|
|
354
|
+
break
|
|
355
|
+
|
|
356
|
+
# break
|
|
357
|
+
i += 1
|
|
358
|
+
|
|
359
|
+
### Update with the best parameters
|
|
360
|
+
if self.use_ssim:
|
|
361
|
+
self.Centers = self.BestCenters
|
|
362
|
+
self.filtered_image = self.BestFilter
|
|
363
|
+
|
|
364
|
+
self.Membership = self.BestMS
|
|
365
|
+
|
|
366
|
+
|
|
367
|
+
sortedC = self.Centers.argsort()
|
|
368
|
+
sorted_el = [sortedC[i] for i in range(self.num_tissues)]
|
|
369
|
+
self.Membership = self.Membership[..., sorted_el]
|
|
370
|
+
self.Centers = self.Centers[sorted_el]
|
|
371
|
+
if self.num_tissues == 3:
|
|
372
|
+
|
|
373
|
+
if self.type_im=='T1': # T1
|
|
374
|
+
self.wmlabel = [sortedC[2].item()]
|
|
375
|
+
self.gmlabel = [sortedC[1].item()]
|
|
376
|
+
self.csflabel = [sortedC[0].item()]
|
|
377
|
+
|
|
378
|
+
elif self.num_tissues == 2:
|
|
379
|
+
self.wmlabel = [sortedC[1]]
|
|
380
|
+
self.gmlabel = [sortedC[0]]
|
|
381
|
+
|
|
382
|
+
|
|
383
|
+
|
|
384
|
+
|
|
385
|
+
|
|
386
|
+
def predict(self, use_softmax=False, Membership=None):
|
|
387
|
+
"""
|
|
388
|
+
Segment image
|
|
389
|
+
@return:
|
|
390
|
+
"""
|
|
391
|
+
if Membership is None:
|
|
392
|
+
Membership = self.Membership
|
|
393
|
+
if use_softmax:
|
|
394
|
+
MM = softmax(Membership, -1)
|
|
395
|
+
else:
|
|
396
|
+
MM = Membership
|
|
397
|
+
|
|
398
|
+
sumu = Membership.sum(-1)
|
|
399
|
+
ind_zero = sumu == 0
|
|
400
|
+
maxs = MM.argmax(-1) # defuzzify
|
|
401
|
+
self.output = maxs + 1
|
|
402
|
+
self.output[ind_zero] = 0
|
|
403
|
+
return self.output
|
|
404
|
+
|
|
405
|
+
|
|
406
|
+
|
|
407
|
+
|
|
408
|
+
class FCM_pure(FCM):
|
|
409
|
+
"""
|
|
410
|
+
Fuzzy c-means clustering with spatial information for image segmentation: 2006
|
|
411
|
+
"""
|
|
412
|
+
def __init__(self, image, affine, atlas,
|
|
413
|
+
image_range, num_tissues, fuzziness,
|
|
414
|
+
epsilon, max_iter,
|
|
415
|
+
padding=0, constraint=False, post_correction=True,mask =None):
|
|
416
|
+
super(FCM_pure).__init__()
|
|
417
|
+
self.biascorrection = BiasCorrection()
|
|
418
|
+
|
|
419
|
+
self.mask = mask
|
|
420
|
+
|
|
421
|
+
self.estimate = image.copy() # wstep
|
|
422
|
+
self.weight = image.copy() # wstep
|
|
423
|
+
|
|
424
|
+
self.image = rescale_between_a_b(image, 0, 1000)
|
|
425
|
+
|
|
426
|
+
self.image_range = image_range
|
|
427
|
+
self.num_tissues = num_tissues
|
|
428
|
+
self.fuzziness = fuzziness
|
|
429
|
+
self.padding = padding
|
|
430
|
+
self.post_correction = post_correction
|
|
431
|
+
|
|
432
|
+
self.epsilon = epsilon
|
|
433
|
+
self.constraint = constraint
|
|
434
|
+
self.max_iter = max_iter
|
|
435
|
+
|
|
436
|
+
self.atlas_ims = atlas
|
|
437
|
+
self.shape = image.shape # image shape
|
|
438
|
+
self.numPixels = image.size
|
|
439
|
+
self.affine = affine
|
|
440
|
+
|
|
441
|
+
|
|
442
|
+
|
|
443
|
+
|
|
444
|
+
|
|
445
|
+
|
|
446
|
+
|
|
447
|
+
|
|
448
|
+
|
|
449
|
+
def Update_memership(self):
|
|
450
|
+
'''Compute weights'''
|
|
451
|
+
# idx = np.arange(self.num_gray)
|
|
452
|
+
# c_mesh, idx_mesh = np.meshgrid(self.Centers, idx)
|
|
453
|
+
el = -2. / (self.fuzziness - 1)
|
|
454
|
+
|
|
455
|
+
numerator = np.zeros_like(self.Membership)
|
|
456
|
+
|
|
457
|
+
for i in range(self.num_tissues):
|
|
458
|
+
numerator[self.mask, i] = np.power(abs(self.image[self.mask] - self.Centers[i]) + 1e-7,
|
|
459
|
+
el)
|
|
460
|
+
|
|
461
|
+
|
|
462
|
+
sumn = numerator.sum(-1)
|
|
463
|
+
numerator[sumn != 0] = (numerator[sumn != 0]) / ((sumn[sumn != 0])[..., np.newaxis])
|
|
464
|
+
|
|
465
|
+
return numerator
|
|
466
|
+
|
|
467
|
+
|
|
468
|
+
def Update_centers(self):
|
|
469
|
+
"""
|
|
470
|
+
Update center of the clusters
|
|
471
|
+
@return:
|
|
472
|
+
"""
|
|
473
|
+
mask = self.mask.copy()
|
|
474
|
+
|
|
475
|
+
numerator = np.einsum('il->l', np.expand_dims(self.image, -1)[mask, :] * pow(self.Membership[mask, :],
|
|
476
|
+
self.fuzziness))
|
|
477
|
+
|
|
478
|
+
denominator = np.einsum('il->l', pow(self.Membership[mask,:], self.fuzziness))
|
|
479
|
+
ind_non_denom = denominator != 0
|
|
480
|
+
numerator[ind_non_denom] = numerator[ind_non_denom] / denominator[ind_non_denom]
|
|
481
|
+
numerator[numerator == 0] = 0.00001
|
|
482
|
+
return numerator
|
|
483
|
+
|
|
484
|
+
|
|
485
|
+
|
|
486
|
+
|
|
487
|
+
def fit(self, progressBar):
|
|
488
|
+
#if not hasattr(self, 'Membership'):
|
|
489
|
+
# self.Membership = self.atlas_ims.copy()
|
|
490
|
+
|
|
491
|
+
#self.last_seg = self.predict()
|
|
492
|
+
|
|
493
|
+
|
|
494
|
+
oldd = np.inf
|
|
495
|
+
i = 0
|
|
496
|
+
while True:
|
|
497
|
+
|
|
498
|
+
self.Centers = self.Update_centers()
|
|
499
|
+
|
|
500
|
+
old_u = np.copy(self.Membership)
|
|
501
|
+
|
|
502
|
+
self.Membership = self.Update_memership()
|
|
503
|
+
|
|
504
|
+
d = np.sum(abs(self.Membership - old_u) > 0.1) / np.prod(self.image[self.mask].shape)
|
|
505
|
+
|
|
506
|
+
print("Iteration %d : cost = %f" % (i, d))
|
|
507
|
+
progressBar.setValue(int(i/(self.max_iter+1)*100))
|
|
508
|
+
if d < self.epsilon or abs(oldd - d) < 1e-2:
|
|
509
|
+
break
|
|
510
|
+
|
|
511
|
+
oldd = d
|
|
512
|
+
|
|
513
|
+
i += 1
|
|
514
|
+
|
|
515
|
+
|
|
516
|
+
self.predict()
|
|
517
|
+
|
|
518
|
+
def predict(self, use_softmax=False):
|
|
519
|
+
"""
|
|
520
|
+
Segment image
|
|
521
|
+
@return:
|
|
522
|
+
"""
|
|
523
|
+
Membership = self.Membership
|
|
524
|
+
if use_softmax:
|
|
525
|
+
MM = softmax(Membership, -1)
|
|
526
|
+
else:
|
|
527
|
+
MM = Membership
|
|
528
|
+
|
|
529
|
+
sumu = Membership.sum(-1)
|
|
530
|
+
ind_zero = sumu == 0
|
|
531
|
+
maxs = MM.argmax(-1) # defuzzify
|
|
532
|
+
self.output = maxs + 1
|
|
533
|
+
self.output[ind_zero] = 0
|
|
534
|
+
return self.output
|
|
535
|
+
|
|
536
|
+
|
|
537
|
+
|
|
538
|
+
|
|
539
|
+
class Constrained_esFCM(FCM):
|
|
540
|
+
|
|
541
|
+
def __init__(self, image, affine, atlas,
|
|
542
|
+
image_range, num_tissues, fuzziness,
|
|
543
|
+
epsilon, max_iter,
|
|
544
|
+
padding=0, constraint=False,
|
|
545
|
+
tissuelabels=None, correct_bias=True, post_correction=True,
|
|
546
|
+
mask=None, max_fail=4, use_ssim=True, equalize=False):
|
|
547
|
+
super(Constrained_esFCM, self).__init__()
|
|
548
|
+
self.biascorrection = BiasCorrection()
|
|
549
|
+
self.use_ssim = use_ssim
|
|
550
|
+
self.mask = mask
|
|
551
|
+
self.max_fail = max_fail
|
|
552
|
+
self.window = create_window_3D(11, 1)
|
|
553
|
+
|
|
554
|
+
self.estimate = image.copy() # wstep
|
|
555
|
+
self.weight = image.copy() # wstep
|
|
556
|
+
|
|
557
|
+
if equalize:
|
|
558
|
+
from skimage import exposure
|
|
559
|
+
from melage.utils.utils import histogram_equalization
|
|
560
|
+
self.image = histogram_equalization(image)
|
|
561
|
+
else:
|
|
562
|
+
self.image = image
|
|
563
|
+
|
|
564
|
+
self.image_range = image_range
|
|
565
|
+
self.num_tissues = num_tissues
|
|
566
|
+
self.fuzziness = fuzziness
|
|
567
|
+
self.padding = padding
|
|
568
|
+
self.post_correction = post_correction
|
|
569
|
+
self.epsilon = epsilon
|
|
570
|
+
self.constraint = constraint
|
|
571
|
+
self.max_iter = max_iter
|
|
572
|
+
if self.constraint:
|
|
573
|
+
print('Neontal platform is activated')
|
|
574
|
+
else:
|
|
575
|
+
print('Neontal platform is deactivated')
|
|
576
|
+
self.correct_bias = correct_bias
|
|
577
|
+
|
|
578
|
+
self.atlas_ims = atlas # in case atlas image is provided
|
|
579
|
+
self.shape = image.shape # image shape
|
|
580
|
+
# flatted image shape: (number of pixels,1)
|
|
581
|
+
|
|
582
|
+
self.affine = affine
|
|
583
|
+
self.OriginalImage = image
|
|
584
|
+
if self.atlas_ims is not None:
|
|
585
|
+
self._normalizeAtlasCreateMask()
|
|
586
|
+
if self.constraint:
|
|
587
|
+
self.mask_sdf = compute_sdf(mask, bounded=False)
|
|
588
|
+
self.biasfield = 1
|
|
589
|
+
|
|
590
|
+
if tissuelabels is not None:
|
|
591
|
+
self.tissuelabels = tissuelabels.astype('int')
|
|
592
|
+
else:
|
|
593
|
+
#
|
|
594
|
+
if self.num_tissues == 3:
|
|
595
|
+
self.tissuelabels = np.array([2, 3, 4])
|
|
596
|
+
else:
|
|
597
|
+
self.tissuelabels = np.zeros(self.num_tissues)
|
|
598
|
+
old = True
|
|
599
|
+
if old:
|
|
600
|
+
self.outlabel = [l[0] for l in np.argwhere(self.tissuelabels == 1)]
|
|
601
|
+
self.csflabel = [l[0] for l in np.argwhere(self.tissuelabels == 2)]
|
|
602
|
+
self.gmlabel = [l[0] for l in np.argwhere(self.tissuelabels == 3)]
|
|
603
|
+
self.wmlabel = [l[0] for l in np.argwhere(self.tissuelabels == 4)]
|
|
604
|
+
self.dgmlabel = [l[0] for l in np.argwhere(self.tissuelabels == 5)] # non cortical graymatter
|
|
605
|
+
self.venlabel = [l[0] for l in np.argwhere(self.tissuelabels == 6)]
|
|
606
|
+
|
|
607
|
+
self.cereblabel = []
|
|
608
|
+
self.bslabel = [] # brain stem
|
|
609
|
+
self.amyglabel = []
|
|
610
|
+
|
|
611
|
+
else:
|
|
612
|
+
|
|
613
|
+
self.csflabel = [l[0] for l in np.argwhere(self.tissuelabels == 1)]
|
|
614
|
+
self.gmlabel = [l[0] for l in np.argwhere(self.tissuelabels == 2)]
|
|
615
|
+
self.wmlabel = [l[0] for l in np.argwhere(self.tissuelabels == 3)]
|
|
616
|
+
self.outlabel = [l[0] for l in np.argwhere(self.tissuelabels == 4)]
|
|
617
|
+
self.venlabel = [l[0] for l in np.argwhere(self.tissuelabels == 5)]
|
|
618
|
+
self.cereblabel = [l[0] for l in np.argwhere(self.tissuelabels == 6)]
|
|
619
|
+
self.dgmlabel = [l[0] for l in np.argwhere(self.tissuelabels == 7)] # non cortical graymatter
|
|
620
|
+
self.bslabel = [l[0] for l in np.argwhere(self.tissuelabels == 8)] # brain stem
|
|
621
|
+
self.amyglabel = [l[0] for l in np.argwhere(self.tissuelabels == 9)]
|
|
622
|
+
|
|
623
|
+
def SetBiasField(self, biasfield):
|
|
624
|
+
self.biasfield = biasfield
|
|
625
|
+
|
|
626
|
+
def Update_membership(self, constraint=True):
|
|
627
|
+
"""
|
|
628
|
+
Updating FCM membership function
|
|
629
|
+
@param final:
|
|
630
|
+
@param membership_p:
|
|
631
|
+
@return:
|
|
632
|
+
"""
|
|
633
|
+
|
|
634
|
+
el = -2. / (self.fuzziness - 1)
|
|
635
|
+
|
|
636
|
+
numerator = np.zeros_like(self.Membership)
|
|
637
|
+
|
|
638
|
+
###########Compute weight ##########
|
|
639
|
+
a = self.predict()
|
|
640
|
+
uq = np.unique(a)
|
|
641
|
+
uq = [u for u in uq if u != 0]
|
|
642
|
+
pred = np.zeros((*a.shape, self.num_tissues))
|
|
643
|
+
for i, u in enumerate(uq):
|
|
644
|
+
ind = a == u
|
|
645
|
+
pred[ind, i] = 1
|
|
646
|
+
|
|
647
|
+
# numstd = np.einsum('ijkl,ijkl->ijk', pred, (self.image[..., None] - self.Centers) ** 2)
|
|
648
|
+
# weight = np.sqrt(numstd)
|
|
649
|
+
|
|
650
|
+
if self.atlas_ims is not None:
|
|
651
|
+
weight = self.atlas_ims
|
|
652
|
+
# weight = np.zeros_like(self.atlas_ims)
|
|
653
|
+
# weight = (fuzzy_weights+self.epsilon) / (fuzzy_weights.sum(-1) + self.epsilon)[..., np.newaxis]
|
|
654
|
+
# weight =np.exp(-(self.predict(Membership=self.atlas_ims)[...,np.newaxis] - np.arange(self.num_tissues))**2)
|
|
655
|
+
# weight = (fuzzy_weights + self.epsilon) / (fuzzy_weights.sum(-1) + self.epsilon)[..., np.newaxis]
|
|
656
|
+
# weight=1
|
|
657
|
+
else:
|
|
658
|
+
weight = 1
|
|
659
|
+
for i in range(self.num_tissues):
|
|
660
|
+
if constraint and self.atlas_ims is not None:
|
|
661
|
+
if i == 20 and self.num_tissues == 3:
|
|
662
|
+
weight = 1
|
|
663
|
+
else:
|
|
664
|
+
weight = self.atlas_ims[..., i]
|
|
665
|
+
weight = weight[self.mask]
|
|
666
|
+
else:
|
|
667
|
+
weight = 1
|
|
668
|
+
numerator[self.mask, i] = weight * np.power(abs(self.filtered_image[self.mask] - self.Centers[i]) + 1e-7,
|
|
669
|
+
el)
|
|
670
|
+
# numerator =(((self.filtered_image[..., np.newaxis] - self.Centers)+self.epsilon))**el
|
|
671
|
+
sumn = numerator.sum(-1)
|
|
672
|
+
numerator[sumn != 0] = (numerator[sumn != 0]) / ((sumn[sumn != 0])[..., np.newaxis])
|
|
673
|
+
# numerator[~self.mask, :] = 0
|
|
674
|
+
ind_non_zero_maks = self.mask == 1
|
|
675
|
+
# numerator*=rescale_between_a_b(self.weight[..., np.newaxis],0,1)
|
|
676
|
+
# if membership_p is None:
|
|
677
|
+
membership_p = numerator
|
|
678
|
+
if self.atlas_ims is not None:
|
|
679
|
+
mrf_energy = self._proximity_measure(ind_non_zero_maks, self.Membership)
|
|
680
|
+
# mrf_energy*=self.atlas_ims
|
|
681
|
+
# mrf_energy[...,[0,3,4,5]]*=self.atlas_ims[...,[0,3,4,5]]
|
|
682
|
+
# mrf_energy = np.ones_like(numerator)
|
|
683
|
+
# mrf_energy
|
|
684
|
+
# mrf_energy[..., [1, 2]] *= self.atlas_ims[..., [1, 2]]
|
|
685
|
+
# mrf_energy *= self._proximity_measure(ind_non_zero_maks, membership_p)
|
|
686
|
+
else:
|
|
687
|
+
mrf_energy = self._proximity_measure(ind_non_zero_maks, self.Membership)
|
|
688
|
+
|
|
689
|
+
numerator *= mrf_energy
|
|
690
|
+
if constraint:
|
|
691
|
+
# sumn = numerator.sum(-1)
|
|
692
|
+
# ind_non_zero = sumn != 0
|
|
693
|
+
# sumn = np.expand_dims(sumn, -1)
|
|
694
|
+
# numerator[ind_non_zero, :] /= sumn[ind_non_zero, :]
|
|
695
|
+
# pass
|
|
696
|
+
sumn = numerator.sum(-1)
|
|
697
|
+
numerator[sumn != 0] = (numerator[sumn != 0]) / ((sumn[sumn != 0])[..., np.newaxis])
|
|
698
|
+
# numerator*=self.atlas_ims
|
|
699
|
+
# numerator = 0.5*(numerator + self.atlas_ims)
|
|
700
|
+
# pass
|
|
701
|
+
# sumn = numerator.sum(-1)
|
|
702
|
+
# ind_non_zero = sumn != 0
|
|
703
|
+
# sumn = np.expand_dims(sumn, -1)
|
|
704
|
+
# numerator[ind_non_zero, :] /= sumn[ind_non_zero, :]
|
|
705
|
+
# if self.amyglabel is not None:
|
|
706
|
+
# numerator[...,self.amyglabel[0]] = self.atlas_ims[...,self.amyglabel[0]]
|
|
707
|
+
|
|
708
|
+
# numerator[..., [3, 5]] *= self.atlas_ims[..., [3, 5]]
|
|
709
|
+
# numerator *= self.atlas_ims
|
|
710
|
+
# numerator[..., [1, 2]] *= self.atlas_ims[..., [1, 2]]
|
|
711
|
+
# mrf_energy[..., [0, 2]] *= self.atlas_ims[..., [0, 2]]
|
|
712
|
+
# numerator[..., [self.csflabel[0]]] = self.atlas_ims[..., [self.csflabel[0]]]
|
|
713
|
+
# self.Membership = np.maximum.reduce([numerator, self.atlas_ims])
|
|
714
|
+
"""
|
|
715
|
+
sumn = numerator.sum(-1)
|
|
716
|
+
ind_non_zero = sumn != 0
|
|
717
|
+
sumn = np.expand_dims(sumn, -1)
|
|
718
|
+
numerator[ind_non_zero, :] /= sumn[ind_non_zero, :]
|
|
719
|
+
"""
|
|
720
|
+
return numerator
|
|
721
|
+
|
|
722
|
+
def Update_membership_old(self):
|
|
723
|
+
'''Compute weights'''
|
|
724
|
+
# idx = np.arange(self.num_gray)
|
|
725
|
+
# c_mesh, idx_mesh = np.meshgrid(self.Centers, idx)
|
|
726
|
+
el = -2. / (self.fuzziness - 1)
|
|
727
|
+
|
|
728
|
+
numerator = np.zeros_like(self.Membership)
|
|
729
|
+
|
|
730
|
+
for i in range(self.num_tissues):
|
|
731
|
+
numerator[self.mask, i] = np.power(abs(self.filtered_image[self.mask] - self.Centers[i]) + 1e-7, el)
|
|
732
|
+
# for j in range(self.num_tissues):
|
|
733
|
+
# numerator[self.mask,i]+=np.power(numi/abs(self.filtered_image[self.mask] - self.Centers[j]), power)
|
|
734
|
+
# denominator[i] = np.sum(abs(self.filtered_image[self.mask] - self.Centers[i]) ** power)
|
|
735
|
+
# if denominator[i]!=0:
|
|
736
|
+
# numerator[...,i]/= denominator[i]
|
|
737
|
+
|
|
738
|
+
# sumn = mrf_energy.sum(-1)
|
|
739
|
+
##ind_non_zero = sumn != 0
|
|
740
|
+
# sumn = np.expand_dims(sumn, -1)
|
|
741
|
+
# mrf_energy[ind_non_zero, :] /= sumn[ind_non_zero, :]
|
|
742
|
+
ind_non_zero_maks = self.mask == 1
|
|
743
|
+
|
|
744
|
+
mrf_energy = self._proximity_measure(ind_non_zero_maks, self.Membership)
|
|
745
|
+
|
|
746
|
+
if self.constraint:
|
|
747
|
+
print(self.wmlabel, self.gmlabel)
|
|
748
|
+
if not self.constraint:
|
|
749
|
+
mrf_energy[..., [2]] *= self.atlas_ims[..., [2]] # just wm
|
|
750
|
+
# mrf_energy[...,[0,2]] *= self.atlas_ims[...,[0,2]]
|
|
751
|
+
numerator *= mrf_energy
|
|
752
|
+
if self.constraint:
|
|
753
|
+
numerator *= self.atlas_ims
|
|
754
|
+
# numerator[..., [0, 1,2,5]] *= self.atlas_ims[..., [0, 1,2,5]]
|
|
755
|
+
else:
|
|
756
|
+
numerator *= mrf_energy
|
|
757
|
+
sumn = numerator.sum(-1)
|
|
758
|
+
ind_non_zero = sumn != 0
|
|
759
|
+
sumn = np.expand_dims(sumn, -1)
|
|
760
|
+
|
|
761
|
+
numerator[ind_non_zero, :] /= sumn[ind_non_zero, :]
|
|
762
|
+
numerator *= self.atlas_ims
|
|
763
|
+
|
|
764
|
+
return numerator
|
|
765
|
+
|
|
766
|
+
def Update_centers(self):
|
|
767
|
+
"""
|
|
768
|
+
Update center of the clusters
|
|
769
|
+
@return:
|
|
770
|
+
"""
|
|
771
|
+
mask = self.mask.copy()
|
|
772
|
+
|
|
773
|
+
numerator = np.einsum('il->l',
|
|
774
|
+
np.expand_dims(self.filtered_image, -1)[mask, :] * pow(self.Membership[mask, :],
|
|
775
|
+
self.fuzziness))
|
|
776
|
+
denominator = np.einsum('il->l', pow(self.Membership[mask], self.fuzziness))
|
|
777
|
+
ind_non_denom = denominator != 0
|
|
778
|
+
numerator[ind_non_denom] = numerator[ind_non_denom] / denominator[ind_non_denom]
|
|
779
|
+
|
|
780
|
+
numerator[numerator == 0] = 0.00001 # for numerical stability
|
|
781
|
+
return numerator
|
|
782
|
+
|
|
783
|
+
def WStep(self):
|
|
784
|
+
"""
|
|
785
|
+
WStep
|
|
786
|
+
@return:
|
|
787
|
+
"""
|
|
788
|
+
|
|
789
|
+
input_inp = self.image
|
|
790
|
+
|
|
791
|
+
a = self.predict()
|
|
792
|
+
uq = np.unique(a)
|
|
793
|
+
uq = [u for u in uq if u != 0]
|
|
794
|
+
pred = np.zeros((*a.shape, self.num_tissues))
|
|
795
|
+
for i, u in enumerate(uq):
|
|
796
|
+
ind = a == u
|
|
797
|
+
pred[ind, i] = 1
|
|
798
|
+
|
|
799
|
+
numstd = np.einsum('ijkl,ijkl->ijk', self.Membership, (input_inp[..., None] - self.Centers) ** 2)
|
|
800
|
+
denominator = np.sqrt(numstd)
|
|
801
|
+
# self.Membership = (self.Membership) / ((self.Membership.sum(-1))[..., np.newaxis])
|
|
802
|
+
# self.Membership[~self.mask, :] = 0
|
|
803
|
+
numerator = np.einsum('ijkl,l', self.Membership, self.Centers) # +self.Membership*self.Centers
|
|
804
|
+
|
|
805
|
+
ind_non_zero = denominator != 0
|
|
806
|
+
|
|
807
|
+
self.weight[ind_non_zero] = denominator[ind_non_zero]
|
|
808
|
+
self.estimate[ind_non_zero] = numerator[ind_non_zero] # / denominator[ind_non_zero]
|
|
809
|
+
|
|
810
|
+
self.weight[(~ind_non_zero)] = self.padding
|
|
811
|
+
self.estimate[(~ind_non_zero)] = self.padding
|
|
812
|
+
|
|
813
|
+
def BStep(self, mask=None):
|
|
814
|
+
# bias correction step
|
|
815
|
+
|
|
816
|
+
if mask is None:
|
|
817
|
+
mask = self.mask
|
|
818
|
+
|
|
819
|
+
mask[~self.mask] = 0
|
|
820
|
+
self.biascorrection.set_info(target=self.image, reference=self.estimate,
|
|
821
|
+
weight=self.weight, biasfield=self.biasfield, padding=self.padding,
|
|
822
|
+
mask=mask, affine=self.affine, cov_pq=None, use_original=False)
|
|
823
|
+
|
|
824
|
+
self.filtered_image = self.OriginalImage.copy()
|
|
825
|
+
if mask.sum() > 100:
|
|
826
|
+
self.biascorrection.Run()
|
|
827
|
+
self.biascorrection.Apply(self.filtered_image)
|
|
828
|
+
self.filtered_image[~self.mask] = 0
|
|
829
|
+
|
|
830
|
+
return
|
|
831
|
+
|
|
832
|
+
def _normalizeAtlasCreateMask(self):
|
|
833
|
+
"""
|
|
834
|
+
Normalizing atlas creation
|
|
835
|
+
@return:
|
|
836
|
+
"""
|
|
837
|
+
self.atlas_ims[self.atlas_ims < 0] = 0
|
|
838
|
+
mask = self.atlas_ims.sum(-1)
|
|
839
|
+
mask_rep = np.repeat(np.expand_dims(mask, -1), (self.atlas_ims.shape[-1]), -1)
|
|
840
|
+
ind_positive = mask_rep > 0
|
|
841
|
+
self.atlas_ims[ind_positive] /= mask_rep[ind_positive] # mutual normalize between 0 and 1
|
|
842
|
+
self.atlas_ims[~ind_positive] = 0
|
|
843
|
+
|
|
844
|
+
def _csf_gm_bg_correction(self):
|
|
845
|
+
"""
|
|
846
|
+
Correction for CSF, Gray Matter and Background
|
|
847
|
+
@return:
|
|
848
|
+
"""
|
|
849
|
+
print('Correction for CSF BG GM using nearest neighbour method ...')
|
|
850
|
+
output_image = self.predict()
|
|
851
|
+
|
|
852
|
+
gm = output_image.copy()
|
|
853
|
+
label_gm = self.gmlabel[0] + 1
|
|
854
|
+
label_csf = self.csflabel[0] + 1
|
|
855
|
+
ind_csf = gm == label_csf
|
|
856
|
+
ind_gm = gm == label_gm
|
|
857
|
+
|
|
858
|
+
gmneighbourscsf = update_according_to_neighbours_conv(output_image, ind_gm, [self.csflabel[0] + 1], sign='+',
|
|
859
|
+
connectivity=6, kernel_size=3)
|
|
860
|
+
|
|
861
|
+
gmneighboursOut = update_according_to_neighbours_conv(output_image, ind_gm, [0], sign='+',
|
|
862
|
+
connectivity=6, kernel_size=3)
|
|
863
|
+
|
|
864
|
+
gmn = gmneighbourscsf + gmneighboursOut
|
|
865
|
+
ind = (gmneighbourscsf > 0) * (gmneighboursOut > 0)
|
|
866
|
+
self.Membership[(gmn >= 4), label_gm - 1] = 0
|
|
867
|
+
self.Membership[(gmn >= 4), label_csf - 1] = 1
|
|
868
|
+
self.Membership[ind, :] = 0
|
|
869
|
+
self.Membership[ind, label_csf - 1] = 1
|
|
870
|
+
|
|
871
|
+
def _proximity_measure(self, index_, Membership=None, sqr2dist=False):
|
|
872
|
+
# Fuzzy c-means clustering with spatial information for image segmentation
|
|
873
|
+
# sFCM
|
|
874
|
+
# invSpacing = 1. / self.spacing
|
|
875
|
+
in_out = np.ones_like(self.Membership)
|
|
876
|
+
if Membership is None:
|
|
877
|
+
Membership = self.Membership
|
|
878
|
+
|
|
879
|
+
in_out = np.zeros_like(Membership)
|
|
880
|
+
for i in range(self.num_tissues):
|
|
881
|
+
in_out[index_, i] = \
|
|
882
|
+
neighborhood_conv(Membership[..., i][..., None], kerenel_size=3, direction='xyz', sqr2dist=False)[
|
|
883
|
+
index_, 0]
|
|
884
|
+
# in_out /= 6
|
|
885
|
+
|
|
886
|
+
in_out /= in_out.max()
|
|
887
|
+
return in_out
|
|
888
|
+
|
|
889
|
+
def _reverse_prob(self, index, label1, label2):
|
|
890
|
+
"""
|
|
891
|
+
Reversing the probability
|
|
892
|
+
@param index:
|
|
893
|
+
@param label1:
|
|
894
|
+
@param label2:
|
|
895
|
+
@return:
|
|
896
|
+
"""
|
|
897
|
+
tmp1 = self.Membership[index, label1].copy()
|
|
898
|
+
tmp2 = self.Membership[index, label2].copy()
|
|
899
|
+
ind_max = tmp1 > tmp2
|
|
900
|
+
mins_vals = tmp1[~ind_max].copy()
|
|
901
|
+
tmp1[~ind_max] = tmp2[~ind_max]
|
|
902
|
+
tmp2[~ind_max] = mins_vals
|
|
903
|
+
self.Membership[index, label1] = tmp1 # max
|
|
904
|
+
self.Membership[index, label2] = tmp2
|
|
905
|
+
|
|
906
|
+
def _connection_between_bg_wm(self):
|
|
907
|
+
seg = self.predict()
|
|
908
|
+
if len(self.outlabel) <= 0:
|
|
909
|
+
return
|
|
910
|
+
index_bg_used = (seg == 0) + (seg == (self.outlabel[0] + 1))
|
|
911
|
+
index_bg_used = index_bg_used > 0
|
|
912
|
+
ind_wm = 0
|
|
913
|
+
for el in self.wmlabel:
|
|
914
|
+
ind_wm += seg == (el + 1)
|
|
915
|
+
ind_wm = ind_wm > 0
|
|
916
|
+
|
|
917
|
+
# index of all neighbours plus the center
|
|
918
|
+
ind_wm_neighbours = neighborhood_conv(ind_wm[..., None], kerenel_size=3,
|
|
919
|
+
direction='xyz', sqr2dist=False)[..., 0]
|
|
920
|
+
|
|
921
|
+
ind_bg_neighbours = \
|
|
922
|
+
neighborhood_conv(index_bg_used[..., None], kerenel_size=3,
|
|
923
|
+
direction='xyz', sqr2dist=False)[..., 0]
|
|
924
|
+
if len(self.venlabel) > 0:
|
|
925
|
+
ind_non_ventric = seg != (self.venlabel[0] + 1)
|
|
926
|
+
# neigbhour hould less than two should be something else
|
|
927
|
+
ind_common_bg_wm = (ind_wm_neighbours > 0) * (ind_bg_neighbours > 0) * (ind_wm) * (ind_non_ventric)
|
|
928
|
+
else:
|
|
929
|
+
ind_common_bg_wm = (ind_wm_neighbours > 0) * (ind_bg_neighbours > 0) * (ind_wm)
|
|
930
|
+
self.Membership[ind_common_bg_wm, :] = 0
|
|
931
|
+
self.Membership[ind_common_bg_wm, self.gmlabel[0]] = 1
|
|
932
|
+
|
|
933
|
+
def _connection_between_csf_wm(self, closing=True):
|
|
934
|
+
"""
|
|
935
|
+
Correct the border between CSF and white matter
|
|
936
|
+
@param closing:
|
|
937
|
+
@return:
|
|
938
|
+
"""
|
|
939
|
+
seg = self.predict()
|
|
940
|
+
if len(self.outlabel) > 0:
|
|
941
|
+
index_csf_used = (seg == (self.csflabel[0] + 1)).astype('int') + (seg == (self.outlabel[0] + 1)).astype(
|
|
942
|
+
'int')
|
|
943
|
+
else:
|
|
944
|
+
index_csf_used = (seg == (self.csflabel[0] + 1)).astype('int') + (seg == 0).astype('int')
|
|
945
|
+
index_csf_used = index_csf_used > 0
|
|
946
|
+
ind_wm = 0
|
|
947
|
+
for el in self.wmlabel:
|
|
948
|
+
ind_wm += seg == (el + 1)
|
|
949
|
+
ind_wm = ind_wm > 0
|
|
950
|
+
|
|
951
|
+
# ind_gm = seg == (self.gmlabel[0] + 1)
|
|
952
|
+
# index_gm_used = ind_gm
|
|
953
|
+
# gms= compute_sdf(ind_gm, bounded=False)
|
|
954
|
+
|
|
955
|
+
"""
|
|
956
|
+
|
|
957
|
+
wms= compute_sdf(ind_wm, bounded=False)
|
|
958
|
+
csfs = compute_sdf(index_csf_used, bounded=False)
|
|
959
|
+
ind_comon_wm_csf =(wms<=2)*(csfs<=0)*(csfs>=-4)*(wms>=0) * (self.mask_sdf > -4)
|
|
960
|
+
self._reverse_probs_new(ind_comon_wm_csf*ind_wm, self.wmlabel[0], self.gmlabel[0])
|
|
961
|
+
self._reverse_probs_new(ind_comon_wm_csf*index_csf_used, self.csflabel[0], self.gmlabel[0])
|
|
962
|
+
return
|
|
963
|
+
"""
|
|
964
|
+
# (gms>=0)*(gms<=1)
|
|
965
|
+
# index of all neighbours plus the center
|
|
966
|
+
ind_wm_neighbours = neighborhood_conv(ind_wm[..., None], kerenel_size=3,
|
|
967
|
+
direction='xyz', sqr2dist=False)[..., 0]
|
|
968
|
+
|
|
969
|
+
ind_csf_neighbours = \
|
|
970
|
+
neighborhood_conv(index_csf_used[..., None], kerenel_size=3,
|
|
971
|
+
direction='xyz', sqr2dist=False)[..., 0]
|
|
972
|
+
if len(self.venlabel) > 0:
|
|
973
|
+
ind_non_ventric = seg != (self.venlabel[0] + 1)
|
|
974
|
+
# neigbhour hould less than two should be something else
|
|
975
|
+
ind_common_csf_wm = (ind_wm_neighbours > 0) * (ind_csf_neighbours > 0) * (ind_wm) * (
|
|
976
|
+
ind_non_ventric) # * (self.mask_sdf > -2)
|
|
977
|
+
else:
|
|
978
|
+
ind_common_csf_wm = (ind_wm_neighbours > 0) * (ind_csf_neighbours > 0) * (ind_wm) # * (self.mask_sdf > -2)
|
|
979
|
+
# ind_common_csf_wm = (ind_wm_neighbours > 0) * (ind_csf_neighbours > 0) * (ind_wm) * (self.mask_sdf > -2)
|
|
980
|
+
ind_common_csf_wm = binary_dilation(ind_common_csf_wm)
|
|
981
|
+
if closing:
|
|
982
|
+
self._reverse_prob(ind_common_csf_wm, self.gmlabel[0], self.wmlabel[0])
|
|
983
|
+
else:
|
|
984
|
+
self._reverse_prob(ind_common_csf_wm, self.csflabel[0], self.wmlabel[0])
|
|
985
|
+
|
|
986
|
+
def _remove_extra_wm(self, Membership=None, soft=False):
|
|
987
|
+
"""
|
|
988
|
+
Remove extra white matter ...
|
|
989
|
+
@param total:
|
|
990
|
+
@param soft:
|
|
991
|
+
@return:
|
|
992
|
+
"""
|
|
993
|
+
if Membership is None:
|
|
994
|
+
Membership = self.Membership
|
|
995
|
+
|
|
996
|
+
try:
|
|
997
|
+
seg = self.predict(Membership=Membership)
|
|
998
|
+
index_0 = seg == (self.csflabel[0] + 1)
|
|
999
|
+
if len(self.outlabel) > 0:
|
|
1000
|
+
index_0 += seg == (self.outlabel[0] + 1)
|
|
1001
|
+
index_0 += seg == 0
|
|
1002
|
+
csf_out_zero = 300
|
|
1003
|
+
seg[index_0 > 0] = csf_out_zero
|
|
1004
|
+
index_csf_out_bg = index_0 > 0
|
|
1005
|
+
ind_wm = 0
|
|
1006
|
+
for el in self.wmlabel:
|
|
1007
|
+
ind_wm += seg == (el + 1)
|
|
1008
|
+
ind_wm = ind_wm > 0
|
|
1009
|
+
cc, cc_f = LargestCC(ind_wm, 1)
|
|
1010
|
+
ind_wm_lcc = 0
|
|
1011
|
+
ind_low_wm = np.argwhere(cc_f <= cc_f[cc_f.argsort()[-2]] * 0.05)
|
|
1012
|
+
ind_high_wm = np.argwhere(cc_f > cc_f[cc_f.argsort()[-2]] * 0.05)
|
|
1013
|
+
if len(ind_high_wm) < len(ind_low_wm):
|
|
1014
|
+
ind_non_wm = 0
|
|
1015
|
+
for i in ind_high_wm:
|
|
1016
|
+
ind_non_wm += cc == i
|
|
1017
|
+
ind_wm_lcc = (~(ind_non_wm > 0))
|
|
1018
|
+
else:
|
|
1019
|
+
for i in ind_low_wm:
|
|
1020
|
+
ind_wm += cc == i
|
|
1021
|
+
ind_wm_lcc = ind_wm > 0
|
|
1022
|
+
# ind_wm = seg == (self.wmlabel[0] + 1)
|
|
1023
|
+
ind_wm_neighbours = \
|
|
1024
|
+
neighborhood_conv(ind_wm_lcc[..., None], kerenel_size=3,
|
|
1025
|
+
direction='xyz', sqr2dist=False)[..., 0]
|
|
1026
|
+
|
|
1027
|
+
index_csf_new = (ind_wm_neighbours > 1) * (~index_csf_out_bg)
|
|
1028
|
+
|
|
1029
|
+
a1 = axis_based_convolution(ind_wm.astype('int'), kernel_size=3)
|
|
1030
|
+
gmlbl = self.gmlabel[0] + 1
|
|
1031
|
+
# csflbl = self.csflabel[0] + 1
|
|
1032
|
+
csfs_new = np.zeros_like(seg)
|
|
1033
|
+
try:
|
|
1034
|
+
indx_l = a1[..., 0] > 0
|
|
1035
|
+
indx_r = a1[..., 1] > 0
|
|
1036
|
+
csfs_new[ind_wm] += ((seg[indx_l] == gmlbl) * (seg[indx_r] == csf_out_zero)) + (
|
|
1037
|
+
(seg[indx_l] == csf_out_zero) * (seg[indx_r] == gmlbl)) + (
|
|
1038
|
+
(seg[indx_l] == csf_out_zero) * (seg[indx_r] == csf_out_zero))
|
|
1039
|
+
except:
|
|
1040
|
+
pass
|
|
1041
|
+
try:
|
|
1042
|
+
indy_l = a1[..., 2] > 0
|
|
1043
|
+
indy_r = a1[..., 3] > 0
|
|
1044
|
+
csfs_new[ind_wm] += ((seg[indy_l] == gmlbl) * (seg[indy_r] == csf_out_zero)) + (
|
|
1045
|
+
(seg[indy_l] == csf_out_zero) * (seg[indy_r] == gmlbl)) + (
|
|
1046
|
+
(seg[indy_l] == csf_out_zero) * (seg[indy_r] == csf_out_zero))
|
|
1047
|
+
except:
|
|
1048
|
+
pass
|
|
1049
|
+
try:
|
|
1050
|
+
indz_l = a1[..., 4] > 0
|
|
1051
|
+
indz_r = a1[..., 5] > 0
|
|
1052
|
+
csfs_new[ind_wm] += ((seg[indz_l] == gmlbl) * (seg[indz_r] == csf_out_zero)) + (
|
|
1053
|
+
(seg[indz_l] == csf_out_zero) * (seg[indz_r] == gmlbl)) + (
|
|
1054
|
+
(seg[indz_l] == csf_out_zero) * (seg[indz_r] == csf_out_zero))
|
|
1055
|
+
except:
|
|
1056
|
+
pass
|
|
1057
|
+
index_csf_new = (csfs_new.astype('int') + index_csf_new.astype('int')) > 0
|
|
1058
|
+
for el2 in self.wmlabel:
|
|
1059
|
+
Membership[index_csf_new, el2] *= 0.1
|
|
1060
|
+
|
|
1061
|
+
Membership[index_csf_new] = (
|
|
1062
|
+
neighborhood_conv(Membership, kerenel_size=3, direction='xyz', sqr2dist=False)[
|
|
1063
|
+
index_csf_new] / 6)
|
|
1064
|
+
|
|
1065
|
+
return index_csf_new
|
|
1066
|
+
except:
|
|
1067
|
+
return None
|
|
1068
|
+
|
|
1069
|
+
def _get_index_label(self, seg, label):
|
|
1070
|
+
ind_lbl = 0
|
|
1071
|
+
for el in label:
|
|
1072
|
+
ind_lbl += seg == (el + 1)
|
|
1073
|
+
ind_lbl = ind_lbl > 0
|
|
1074
|
+
return ind_lbl
|
|
1075
|
+
|
|
1076
|
+
def _binary_fill_holes_lcc(self, index, threshold=3):
|
|
1077
|
+
segl, segl_f = LargestCC(index)
|
|
1078
|
+
if len(segl_f) > 2:
|
|
1079
|
+
argmax_gmf = np.argsort(segl_f)[-2]
|
|
1080
|
+
else:
|
|
1081
|
+
argmax_gmf = 1
|
|
1082
|
+
index_used = (segl != 0) * (segl != argmax_gmf)
|
|
1083
|
+
index_used_filled = binary_fill_holes(index_used) > 0
|
|
1084
|
+
index_remain = (index_used_filled.astype('int') - index_used.astype('int')) > 0
|
|
1085
|
+
segl_f_remove = np.argwhere(segl_f <= threshold)
|
|
1086
|
+
segl_f_keep = np.argwhere(segl_f > threshold)
|
|
1087
|
+
|
|
1088
|
+
if len(segl_f_keep) < len(segl_f_remove):
|
|
1089
|
+
shouldbe_kept = 0
|
|
1090
|
+
for el in segl_f_keep:
|
|
1091
|
+
shouldbe_kept += (segl == el).astype('int')
|
|
1092
|
+
shouldbe_removed = ~(shouldbe_kept > 0)
|
|
1093
|
+
else:
|
|
1094
|
+
shouldbe_removed = 0
|
|
1095
|
+
for el in segl_f_remove:
|
|
1096
|
+
if el == 0:
|
|
1097
|
+
continue
|
|
1098
|
+
shouldbe_removed += (segl == el).astype('int')
|
|
1099
|
+
if type(shouldbe_removed) == int:
|
|
1100
|
+
shouldbe_removed = np.zeros_like(index_used) > 0
|
|
1101
|
+
else:
|
|
1102
|
+
shouldbe_removed = shouldbe_removed > 0
|
|
1103
|
+
return index_remain, shouldbe_removed
|
|
1104
|
+
|
|
1105
|
+
def _neighbours(self, index):
|
|
1106
|
+
ind_neighbours = \
|
|
1107
|
+
neighborhood_conv(index[..., None], kerenel_size=3,
|
|
1108
|
+
direction='xyz', sqr2dist=False)[..., 0]
|
|
1109
|
+
return ind_neighbours
|
|
1110
|
+
|
|
1111
|
+
def softmax(self, x):
|
|
1112
|
+
return np.exp(x) / np.sum(np.exp(x), -1)[..., None]
|
|
1113
|
+
|
|
1114
|
+
def _remove_common_structures(self, threshold=5):
|
|
1115
|
+
seg = self.predict()
|
|
1116
|
+
concat1 = []
|
|
1117
|
+
concat2 = []
|
|
1118
|
+
neigbs = np.zeros((*self.image.shape, self.Membership.shape[-1]))
|
|
1119
|
+
if len(self.wmlabel) > 0:
|
|
1120
|
+
ind_wm = self._get_index_label(seg, self.wmlabel)
|
|
1121
|
+
ind_wm_cc, ind_wm_extra = self._binary_fill_holes_lcc(ind_wm, threshold=threshold)
|
|
1122
|
+
neigbs[..., self.wmlabel[0]] = self._neighbours(ind_wm)
|
|
1123
|
+
concat1.append(ind_wm_extra)
|
|
1124
|
+
concat2.append(ind_wm_cc)
|
|
1125
|
+
if len(self.gmlabel) > 0:
|
|
1126
|
+
ind_gm = self._get_index_label(seg, self.gmlabel)
|
|
1127
|
+
ind_gm_cc, ind_gm_extra = self._binary_fill_holes_lcc(ind_gm, threshold=threshold)
|
|
1128
|
+
neigbs[..., self.gmlabel[0]] = self._neighbours(ind_gm)
|
|
1129
|
+
concat1.append(ind_gm_extra)
|
|
1130
|
+
concat2.append(ind_gm_cc)
|
|
1131
|
+
if len(self.csflabel) > 0:
|
|
1132
|
+
if len(self.outlabel) > 0:
|
|
1133
|
+
ind_csf = self._get_index_label(seg, self.csflabel + self.outlabel)
|
|
1134
|
+
else:
|
|
1135
|
+
ind_csf = self._get_index_label(seg, self.csflabel)
|
|
1136
|
+
ind_csf_cc, ind_csf_extra = self._binary_fill_holes_lcc(ind_csf, threshold=threshold)
|
|
1137
|
+
neigbs[..., self.csflabel[0]] = self._neighbours(ind_csf)
|
|
1138
|
+
concat1.append(ind_csf_extra)
|
|
1139
|
+
concat2.append(ind_csf_cc)
|
|
1140
|
+
if len(self.dgmlabel) > 0:
|
|
1141
|
+
ind_dgm = self._get_index_label(seg, self.dgmlabel)
|
|
1142
|
+
ind_dgm_cc, ind_dgm_extra = self._binary_fill_holes_lcc(ind_dgm, threshold=threshold)
|
|
1143
|
+
neigbs[..., self.gmlabel[0]] = self._neighbours(ind_dgm)
|
|
1144
|
+
concat1.append(ind_dgm_extra)
|
|
1145
|
+
concat2.append(ind_dgm_cc)
|
|
1146
|
+
if len(self.venlabel) > 0:
|
|
1147
|
+
ind_ven = self._get_index_label(seg, self.venlabel)
|
|
1148
|
+
ind_ven_cc, ind_ven_extra = self._binary_fill_holes_lcc(ind_ven, threshold=20)
|
|
1149
|
+
neigbs[..., self.venlabel[0]] = self._neighbours(ind_ven)
|
|
1150
|
+
concat1.append(ind_ven_extra)
|
|
1151
|
+
concat2.append(ind_ven_cc)
|
|
1152
|
+
|
|
1153
|
+
neigbssf = self.softmax(neigbs)
|
|
1154
|
+
for indice in concat1:
|
|
1155
|
+
self.Membership[indice, :] = neigbssf[indice, :]
|
|
1156
|
+
for indice in concat2:
|
|
1157
|
+
self.Membership[indice, :] = neigbssf[indice, :]
|
|
1158
|
+
|
|
1159
|
+
def _remove_small_structures(self, label, threshold_percent=0.5, Membership=None):
|
|
1160
|
+
if Membership is None:
|
|
1161
|
+
Membership = self.Membership
|
|
1162
|
+
### REMOVE SMALL STRUCTURES
|
|
1163
|
+
seg = self.predict()
|
|
1164
|
+
if len(label) == 0:
|
|
1165
|
+
return
|
|
1166
|
+
ind_lbl = 0
|
|
1167
|
+
for el in label:
|
|
1168
|
+
ind_lbl += seg == (el + 1)
|
|
1169
|
+
ind_lbl = ind_lbl > 0
|
|
1170
|
+
|
|
1171
|
+
segl, segl_f = LargestCC(ind_lbl, 1)
|
|
1172
|
+
if len(segl_f) > 2:
|
|
1173
|
+
segl, segl_f = LargestCC(ind_lbl, 1)
|
|
1174
|
+
if len(segl_f) > 2:
|
|
1175
|
+
argmax_gmf = np.argsort(segl_f)[-2]
|
|
1176
|
+
else:
|
|
1177
|
+
argmax_gmf = 1
|
|
1178
|
+
"""
|
|
1179
|
+
|
|
1180
|
+
index_total = 0
|
|
1181
|
+
max_v = ind_lbl.sum()/ind_lbl.shape[0]
|
|
1182
|
+
ind_remove = np.zeros_like(ind_lbl)
|
|
1183
|
+
for sh in range(ind_lbl.shape[0]):
|
|
1184
|
+
if ind_lbl[sh,...].sum()<0.05*max_v:
|
|
1185
|
+
continue
|
|
1186
|
+
segl, segl_f = LargestCC(ind_lbl[sh,...],1)
|
|
1187
|
+
if len(segl_f) > 2:
|
|
1188
|
+
argmax_gmf = np.argsort(segl_f)[-2]
|
|
1189
|
+
else:
|
|
1190
|
+
argmax_gmf = 1
|
|
1191
|
+
segl_f_remove = np.argwhere(segl_f != segl_f[argmax_gmf])
|
|
1192
|
+
shouldbe_removed = 0
|
|
1193
|
+
for el in segl_f_remove:
|
|
1194
|
+
if el.all() == 0:
|
|
1195
|
+
continue
|
|
1196
|
+
shouldbe_removed += (segl == el).astype('int')
|
|
1197
|
+
ind_remove[sh,...] = shouldbe_removed
|
|
1198
|
+
"""
|
|
1199
|
+
ind_remove = (segl != argmax_gmf) * (segl != 0)
|
|
1200
|
+
# segl_f_remove = np.argwhere(ind_remove)
|
|
1201
|
+
index_use = ind_remove > 0
|
|
1202
|
+
Membership[index_use, label[0]] = 0
|
|
1203
|
+
|
|
1204
|
+
Membership[index_use] = (
|
|
1205
|
+
neighborhood_conv(Membership, kerenel_size=3, direction='xyz', sqr2dist=False)[
|
|
1206
|
+
index_use] / 6)
|
|
1207
|
+
return index_use
|
|
1208
|
+
else:
|
|
1209
|
+
return (ind_lbl * 0) > 0
|
|
1210
|
+
|
|
1211
|
+
def set_tissue_labels(self):
|
|
1212
|
+
self.tissuelabels = np.zeros(self.num_tissues)
|
|
1213
|
+
|
|
1214
|
+
def _wm_touch_csf_out(self, outval, csfval, gmval, wmval, ind_wm_gm_csfout, lambda_val):
|
|
1215
|
+
# if is a wm voxel that touches (outlier or csf) and gm -> csf, gm
|
|
1216
|
+
|
|
1217
|
+
sum_gm_csf = csfval + gmval
|
|
1218
|
+
ind_wm_gm_csfout_no_zero = (sum_gm_csf != 0) * ind_wm_gm_csfout
|
|
1219
|
+
# for non zero pixels
|
|
1220
|
+
gmval[ind_wm_gm_csfout_no_zero] += (1 - lambda_val) * wmval[ind_wm_gm_csfout_no_zero] * (
|
|
1221
|
+
gmval[ind_wm_gm_csfout_no_zero] / sum_gm_csf[ind_wm_gm_csfout_no_zero])
|
|
1222
|
+
|
|
1223
|
+
csfval[ind_wm_gm_csfout_no_zero] += (1 - lambda_val) * wmval[ind_wm_gm_csfout_no_zero] * (
|
|
1224
|
+
csfval[ind_wm_gm_csfout_no_zero] / sum_gm_csf[ind_wm_gm_csfout_no_zero])
|
|
1225
|
+
|
|
1226
|
+
# for zero pixels
|
|
1227
|
+
ind_wm_gm_csfout_zero = (sum_gm_csf == 0) * (ind_wm_gm_csfout)
|
|
1228
|
+
gmval[ind_wm_gm_csfout_zero] += (1 - lambda_val) * wmval[ind_wm_gm_csfout_zero] * 0.5
|
|
1229
|
+
csfval[ind_wm_gm_csfout_zero] += (1 - lambda_val) * wmval[ind_wm_gm_csfout_zero] * 0.5
|
|
1230
|
+
|
|
1231
|
+
# after that
|
|
1232
|
+
wmval[ind_wm_gm_csfout] *= lambda_val
|
|
1233
|
+
return [outval, csfval, gmval, wmval]
|
|
1234
|
+
|
|
1235
|
+
|
|
1236
|
+
|
|
1237
|
+
def adjust_membership(self, Membership, threshold=None):
|
|
1238
|
+
# self.cereblabel = [l[0] for l in np.argwhere(self.tissuelabels == 6)]
|
|
1239
|
+
# self.dgmlabel = [l[0] for l in np.argwhere(self.tissuelabels == 7)] # non cortical graymatter
|
|
1240
|
+
# self.bslabel = [l[0] for l in np.argwhere(self.tissuelabels == 8)] # brain stem
|
|
1241
|
+
# self.amyglabel = [l[0] for l in np.argwhere(self.tissuelabels == 9)]
|
|
1242
|
+
# self.venlabel = [l[0] for l in np.argwhere(self.tissuelabels == 5)]
|
|
1243
|
+
seg = self.predict()
|
|
1244
|
+
remain_index = 0
|
|
1245
|
+
index_used_filleds = []
|
|
1246
|
+
for el in self.dgmlabel + self.amyglabel + self.bslabel + self.venlabel + self.cereblabel:
|
|
1247
|
+
index = seg == el + 1
|
|
1248
|
+
# index_used_filled = binary_dilation(index)
|
|
1249
|
+
|
|
1250
|
+
segl, segl_f = LargestCC(index, 1)
|
|
1251
|
+
if len(segl_f) > 2:
|
|
1252
|
+
argmax_gmf = [np.argsort(segl_f)[-2]]
|
|
1253
|
+
else:
|
|
1254
|
+
argmax_gmf = [1]
|
|
1255
|
+
if el == 9: # Amygdala
|
|
1256
|
+
argmax_gmf = [np.argsort(segl_f)[-2], np.argsort(segl_f)[-3]]
|
|
1257
|
+
|
|
1258
|
+
indx = 0
|
|
1259
|
+
for maxf in argmax_gmf:
|
|
1260
|
+
indx += (segl == maxf)
|
|
1261
|
+
index_used = (segl != 0) * indx > 0
|
|
1262
|
+
|
|
1263
|
+
index_used_filled = binary_fill_holes(index_used) > 0
|
|
1264
|
+
m = Membership[..., el]
|
|
1265
|
+
m[index_used_filled] = np.clip(Membership[index_used_filled, :].max(-1) + 0.1, 0, 1)
|
|
1266
|
+
Membership[..., el] = m
|
|
1267
|
+
# Membership[index_used_filled, el] = np.clip(Membership[index_used_filled,:].max(-1)+0.1,0,1)
|
|
1268
|
+
|
|
1269
|
+
index_used_filleds.append([index_used_filled, el])
|
|
1270
|
+
|
|
1271
|
+
remain_ind = (index.astype('int') - index_used_filled.astype('int')) > 0
|
|
1272
|
+
Membership[remain_ind, el] = 0
|
|
1273
|
+
remain_index += remain_ind
|
|
1274
|
+
Membership[remain_index > 0] = (
|
|
1275
|
+
neighborhood_conv(Membership, kerenel_size=3, direction='xyz', sqr2dist=False)[
|
|
1276
|
+
remain_index > 0] / 6)
|
|
1277
|
+
|
|
1278
|
+
return remain_index > 0, index_used_filleds
|
|
1279
|
+
|
|
1280
|
+
def _reverse_probs_new(self, ind_revise, label1, label2, exclude_largest=False):
|
|
1281
|
+
if exclude_largest:
|
|
1282
|
+
segl, segl_f = LargestCC(ind_revise, 1)
|
|
1283
|
+
if len(segl_f) > 2:
|
|
1284
|
+
argmax_gmf = [np.argsort(segl_f)[-2]]
|
|
1285
|
+
else:
|
|
1286
|
+
argmax_gmf = [1]
|
|
1287
|
+
indx = 0
|
|
1288
|
+
for maxf in argmax_gmf:
|
|
1289
|
+
indx += (segl == maxf)
|
|
1290
|
+
index_used = (segl != 0) * indx > 0
|
|
1291
|
+
remain_ind = (ind_revise.astype('int') - index_used.astype('int')) > 0
|
|
1292
|
+
else:
|
|
1293
|
+
remain_ind = ind_revise
|
|
1294
|
+
indices = np.where(remain_ind > 0)
|
|
1295
|
+
|
|
1296
|
+
m = self.Membership[indices[0], indices[1], indices[2], label1].copy()
|
|
1297
|
+
m2 = self.Membership[indices[0], indices[1], indices[2], label2]
|
|
1298
|
+
|
|
1299
|
+
self.Membership[indices[0], indices[1], indices[2], label2] = m
|
|
1300
|
+
self.Membership[indices[0], indices[1], indices[2], label1] = m2
|
|
1301
|
+
|
|
1302
|
+
def correct_wm_csf_gm(self):
|
|
1303
|
+
summation = 0
|
|
1304
|
+
seg = self.predict()
|
|
1305
|
+
ind_wm = seg == self.wmlabel[0] + 1
|
|
1306
|
+
# ind_csf = seg == self.csflabel[0] + 1
|
|
1307
|
+
ind_gm = seg == self.gmlabel[0] + 1
|
|
1308
|
+
gms = compute_sdf(ind_gm, bounded=False)
|
|
1309
|
+
spacing = 0.5 # self.header['pixdim'][1]
|
|
1310
|
+
segl, segl_f = LargestCC(ind_wm, 1)
|
|
1311
|
+
if len(segl_f) > 2:
|
|
1312
|
+
argmax_gmf = [np.argsort(segl_f)[-2], np.argsort(segl_f)[-3]]
|
|
1313
|
+
else:
|
|
1314
|
+
argmax_gmf = 1
|
|
1315
|
+
ind_wm2 = (segl != argmax_gmf[0]) * (segl > 0) * (segl != argmax_gmf[1])
|
|
1316
|
+
wm2 = compute_sdf(ind_wm2, bounded=False)
|
|
1317
|
+
# contamination of white matter in gray matter
|
|
1318
|
+
ind_revise_wm_gm = (((gms >= 0) * (gms <= 1) * (wm2 <= 1) * ind_wm))
|
|
1319
|
+
summation += ind_revise_wm_gm.sum()
|
|
1320
|
+
if summation != 0:
|
|
1321
|
+
self._reverse_probs_new(ind_revise_wm_gm, self.wmlabel[0], self.csflabel[0])
|
|
1322
|
+
seg = self.predict()
|
|
1323
|
+
ind_wm = seg == self.wmlabel[0] + 1
|
|
1324
|
+
|
|
1325
|
+
cc, cc_f = LargestCC(ind_wm, 1)
|
|
1326
|
+
if len(cc_f) > 2:
|
|
1327
|
+
sorted_f = np.argsort(cc_f)
|
|
1328
|
+
argmax_g = [sorted_f[-2], sorted_f[-3]]
|
|
1329
|
+
else:
|
|
1330
|
+
argmax_g = [0, 0]
|
|
1331
|
+
# ind_wm_larg = ((cc==argmax_g[0]).astype('int')+(cc==argmax_g[1]).astype('int'))>0
|
|
1332
|
+
# remain_wm = (ind_wm.astype('int')-ind_wm_larg.astype('int'))>0
|
|
1333
|
+
if len(self.csflabel) > 0 and 1 > 2:
|
|
1334
|
+
ind_ = (seg == self.csflabel[0] + 1).astype('int')
|
|
1335
|
+
if len(self.outlabel) > 0:
|
|
1336
|
+
ind_ += (seg == self.outlabel[0] + 1).astype('int')
|
|
1337
|
+
ind_csf = (ind_) > 0
|
|
1338
|
+
# ind_gm = seg == self.gmlabel[0] + 1
|
|
1339
|
+
|
|
1340
|
+
ind_rest = (seg != 0).astype('int') - (ind_csf.astype('int') + ind_gm.astype('int') + ind_wm.astype('int'))
|
|
1341
|
+
# gms = compute_sdf(ind_gm, bounded=False)
|
|
1342
|
+
wms = compute_sdf(ind_wm, bounded=False)
|
|
1343
|
+
csfs = compute_sdf(ind_csf, bounded=False)
|
|
1344
|
+
rest = compute_sdf(ind_rest, bounded=False)
|
|
1345
|
+
ind_revise_wm_csf = ((csfs <= 0) * (
|
|
1346
|
+
(csfs >= -3) * (wms >= 0) *
|
|
1347
|
+
(wms <= 2) * (self.mask_sdf > -10) * (self.mask_sdf <= -3) * (rest > 5) * ind_csf))
|
|
1348
|
+
ind_revise_wm_csf = (ind_revise_wm_csf.astype('int') - ind_revise_wm_gm.astype('int')) > 0
|
|
1349
|
+
ind_revise_wm_csf *= (seg == self.csflabel[0] + 1)
|
|
1350
|
+
self._reverse_probs_new(ind_revise_wm_csf * ind_wm, self.wmlabel[0], self.csflabel[0])
|
|
1351
|
+
self._reverse_probs_new(ind_revise_wm_csf * ind_csf, self.csflabel[0], self.gmlabel[0])
|
|
1352
|
+
summation += ind_revise_wm_csf.sum()
|
|
1353
|
+
# self._reverse_probs_new(ind_revise_wm_csf, self.wmlabel[0], self.csflabel[0])
|
|
1354
|
+
return summation
|
|
1355
|
+
|
|
1356
|
+
def _correction_wm(self):
|
|
1357
|
+
cc, cc_f = LargestCC(self.predict() == self.wmlabel[0] + 1, 1)
|
|
1358
|
+
if len(cc_f) > 2:
|
|
1359
|
+
argm = cc_f.argsort()[-2]
|
|
1360
|
+
argms = np.argwhere(cc_f > 0.05 * cc_f[argm]).squeeze()
|
|
1361
|
+
for a in argms:
|
|
1362
|
+
cc[cc == a] = 0
|
|
1363
|
+
A = self.Membership[..., self.wmlabel]
|
|
1364
|
+
A[cc > 0] = 0
|
|
1365
|
+
self.Membership[..., self.wmlabel] = A
|
|
1366
|
+
|
|
1367
|
+
def fit(self, progressBar):
|
|
1368
|
+
|
|
1369
|
+
# ind_common_csf_dgm = ((self.atlas_ims[..., 3] > 0.1) * (self.atlas_ims[..., 0] > 0.1))
|
|
1370
|
+
# self.atlas_ims[ind_common_csf_dgm, self.csflabel[0]] *= 0.1
|
|
1371
|
+
if not hasattr(self, 'Membership') or self.constraint:
|
|
1372
|
+
self.Membership = self.atlas_ims.copy()
|
|
1373
|
+
|
|
1374
|
+
degree = 2
|
|
1375
|
+
max_degree = 2
|
|
1376
|
+
biasf = PolynomialFeatures(degree) # SplineTransformer(n_knots=2, degree=degree)#
|
|
1377
|
+
best_cost = -np.inf
|
|
1378
|
+
self.SetBiasField(biasf)
|
|
1379
|
+
num_fails = 0
|
|
1380
|
+
self.filtered_image = self.image.copy()
|
|
1381
|
+
old_cost = np.inf
|
|
1382
|
+
old_cost_ssim = np.inf
|
|
1383
|
+
i = 0
|
|
1384
|
+
# self.Centers = self.Update_centers()
|
|
1385
|
+
|
|
1386
|
+
# self.Membership = self.Update_membership(constraint=False)
|
|
1387
|
+
# self.WStep()
|
|
1388
|
+
# self.filtered_image = rescale_between_a_b(self.weight, 0, 1000).copy()
|
|
1389
|
+
# self.filtered_image = rescale_between_a_b(self.filtered_image+gaussian_filter(self.filtered_image,2),0,1000)
|
|
1390
|
+
# self.filtered_image[~self.mask]=0
|
|
1391
|
+
# a = neighborhood_conv(self.filtered_image[..., np.newaxis]).squeeze()
|
|
1392
|
+
ssim_map = None
|
|
1393
|
+
# alphas = np.linspace(0.3,1,self.max_iter)
|
|
1394
|
+
while True:
|
|
1395
|
+
# if i == 0:
|
|
1396
|
+
self.Centers = self.Update_centers()
|
|
1397
|
+
|
|
1398
|
+
old_u = np.copy(self.Membership)
|
|
1399
|
+
self.Membership = self.Update_membership()
|
|
1400
|
+
|
|
1401
|
+
if self.constraint:
|
|
1402
|
+
self.adjust_membership(self.Membership)
|
|
1403
|
+
|
|
1404
|
+
cost = np.sum(abs(self.Membership - old_u) > 0.1) / np.prod(self.image[self.mask].shape)
|
|
1405
|
+
|
|
1406
|
+
progressBar.setValue(int(i / (self.max_iter + 1) * 100))
|
|
1407
|
+
if self.use_ssim and cost < self.epsilon and self.correct_bias or abs(old_cost - cost) < 1e-6:
|
|
1408
|
+
if not self.use_ssim:
|
|
1409
|
+
break
|
|
1410
|
+
self.WStep()
|
|
1411
|
+
|
|
1412
|
+
# Apply mapping
|
|
1413
|
+
|
|
1414
|
+
s1 = sobel(self.image)
|
|
1415
|
+
s2 = sobel(self.predict())
|
|
1416
|
+
#ssim_map = ssim3D(s1 / s1.max(), s2 / s2.max(), self.window,
|
|
1417
|
+
# self.window.shape[-1], 1, contrast=True)
|
|
1418
|
+
#cost_ssim = ssim_map[self.mask].mean()
|
|
1419
|
+
from skimage.metrics import structural_similarity as ssim
|
|
1420
|
+
cost_ssim, ssim_map = ssim(s1 / s1.max(), s2 / s2.max(), full=True,
|
|
1421
|
+
win_size=11)
|
|
1422
|
+
|
|
1423
|
+
ssim_map = rescale_between_a_b(-ssim_map, -1000, 1000)
|
|
1424
|
+
ssim_map[~self.mask] = 0
|
|
1425
|
+
|
|
1426
|
+
if (cost_ssim - best_cost) > 1e-4:
|
|
1427
|
+
print("best SSIM value {}".format(cost_ssim))
|
|
1428
|
+
summation_new = np.inf
|
|
1429
|
+
|
|
1430
|
+
if self.constraint:
|
|
1431
|
+
summation_new = self.correct_wm_csf_gm()
|
|
1432
|
+
# changed_index = self._remove_extra_wm(Membership=self.Membership)
|
|
1433
|
+
# if changed_index is not None:
|
|
1434
|
+
# self.atlas_ims[changed_index, :] = self.Membership[changed_index, :]
|
|
1435
|
+
changed_index, index_changed_el = self.adjust_membership(self.Membership, threshold=None)
|
|
1436
|
+
for [indx, el] in index_changed_el:
|
|
1437
|
+
self.atlas_ims[indx, el] = self.Membership[indx, el]
|
|
1438
|
+
self.atlas_ims[changed_index, :] = self.Membership[changed_index, :]
|
|
1439
|
+
# changed_index = self._remove_small_structures(self.gmlabel, Membership=self.Membership)
|
|
1440
|
+
# self.atlas_ims[changed_index, :] = self.Membership[changed_index, :]
|
|
1441
|
+
# self.atlas_ims[...,0] = self.Membership[...,0].copy()
|
|
1442
|
+
self.BestCenters = self.Centers.copy()
|
|
1443
|
+
self.BestFilter = self.filtered_image.copy()
|
|
1444
|
+
self.BestMS = self.Membership.copy()
|
|
1445
|
+
if self.atlas_ims is not None:
|
|
1446
|
+
self.Membership = self.atlas_ims.copy()
|
|
1447
|
+
|
|
1448
|
+
best_cost = cost_ssim
|
|
1449
|
+
num_fails = 0
|
|
1450
|
+
else:
|
|
1451
|
+
num_fails += 1
|
|
1452
|
+
|
|
1453
|
+
if num_fails > self.max_fail: # abs(old_cost_ssim - cost_ssim) < 1e-4
|
|
1454
|
+
break
|
|
1455
|
+
if num_fails == 0:
|
|
1456
|
+
|
|
1457
|
+
self.weight = ssim_map # rescale_between_a_b(sobel(self.image),-1,1) #ssim_map
|
|
1458
|
+
self.BStep(mask=None)
|
|
1459
|
+
else:
|
|
1460
|
+
self.filtered_image = self.BestFilter.copy()
|
|
1461
|
+
# self.Membership = self.BestMS.copy()
|
|
1462
|
+
|
|
1463
|
+
old_cost_ssim = cost_ssim
|
|
1464
|
+
|
|
1465
|
+
# self.huiPVCorrection()
|
|
1466
|
+
# self._remove_common_structures(threshold=3)
|
|
1467
|
+
|
|
1468
|
+
print("Iteration %d : cost = %f" % (i, cost))
|
|
1469
|
+
old_cost = cost
|
|
1470
|
+
if i > self.max_iter - 1:
|
|
1471
|
+
break
|
|
1472
|
+
|
|
1473
|
+
# break
|
|
1474
|
+
i += 1
|
|
1475
|
+
|
|
1476
|
+
### Update with the best parameters
|
|
1477
|
+
if self.use_ssim:
|
|
1478
|
+
self.Centers = self.BestCenters
|
|
1479
|
+
self.filtered_image = self.BestFilter
|
|
1480
|
+
|
|
1481
|
+
self.Membership = self.BestMS
|
|
1482
|
+
|
|
1483
|
+
# if degree==max_degree and not self.constraint:
|
|
1484
|
+
if not self.constraint:
|
|
1485
|
+
sortedC = self.Centers.argsort()
|
|
1486
|
+
sorted_el = [sortedC[i] for i in range(self.num_tissues)]
|
|
1487
|
+
self.Membership = self.Membership[..., sorted_el]
|
|
1488
|
+
self.Centers = self.Centers[sorted_el]
|
|
1489
|
+
if self.num_tissues == 3:
|
|
1490
|
+
|
|
1491
|
+
if len(self.csflabel) > 0: # T1
|
|
1492
|
+
self.wmlabel = [sortedC[2].item()]
|
|
1493
|
+
self.gmlabel = [sortedC[1].item()]
|
|
1494
|
+
self.csflabel = [sortedC[0].item()]
|
|
1495
|
+
|
|
1496
|
+
elif self.num_tissues == 2:
|
|
1497
|
+
self.wmlabel = [sortedC[1]]
|
|
1498
|
+
self.gmlabel = [sortedC[0]]
|
|
1499
|
+
else:
|
|
1500
|
+
pass
|
|
1501
|
+
# if self.num_tissues==3:
|
|
1502
|
+
# sortedC = self.Centers.argsort()
|
|
1503
|
+
# self.Membership = self.Membership[..., [sortedC[0], sortedC[2], sortedC[1]]]
|
|
1504
|
+
# self.Centers = self.Centers[[sortedC[0], sortedC[2], sortedC[1]]]
|
|
1505
|
+
# if len(self.csflabel) > 0: # T1
|
|
1506
|
+
# self.wmlabel = [sortedC[2].item()]
|
|
1507
|
+
# self.gmlabel = [sortedC[1].item()]
|
|
1508
|
+
# self.csflabel = [sortedC[0].item()]
|
|
1509
|
+
|
|
1510
|
+
#self.post_correction = True
|
|
1511
|
+
print('post correction is {}'.format(self.post_correction))
|
|
1512
|
+
if self.post_correction:
|
|
1513
|
+
|
|
1514
|
+
|
|
1515
|
+
|
|
1516
|
+
|
|
1517
|
+
### REMOVE SMALL STRUCTURES FROM WM
|
|
1518
|
+
self.adjust_membership(self.Membership)
|
|
1519
|
+
|
|
1520
|
+
self._remove_small_structures(self.dgmlabel)
|
|
1521
|
+
|
|
1522
|
+
self.Membership = adjust_common_structures(self.Membership, threshold=None)
|
|
1523
|
+
summation_old = 0
|
|
1524
|
+
summation_new = np.inf
|
|
1525
|
+
|
|
1526
|
+
if self.constraint and self.num_tissues > 4:
|
|
1527
|
+
self._correction_wm()
|
|
1528
|
+
self._connection_between_csf_wm(closing=True)
|
|
1529
|
+
else:
|
|
1530
|
+
self._correction_wm()
|
|
1531
|
+
# self._connection_between_bg_wm()
|
|
1532
|
+
|
|
1533
|
+
self.predict()
|
|
1534
|
+
|
|
1535
|
+
def predict(self, use_softmax=False, Membership=None):
|
|
1536
|
+
"""
|
|
1537
|
+
Segment image
|
|
1538
|
+
@return:
|
|
1539
|
+
"""
|
|
1540
|
+
if Membership is None:
|
|
1541
|
+
Membership = self.Membership
|
|
1542
|
+
if use_softmax:
|
|
1543
|
+
MM = softmax(Membership, -1)
|
|
1544
|
+
else:
|
|
1545
|
+
MM = Membership
|
|
1546
|
+
|
|
1547
|
+
sumu = Membership.sum(-1)
|
|
1548
|
+
ind_zero = sumu == 0
|
|
1549
|
+
maxs = MM.argmax(-1) # defuzzify
|
|
1550
|
+
self.output = maxs + 1
|
|
1551
|
+
self.output[ind_zero] = 0
|
|
1552
|
+
return self.output
|
|
1553
|
+
|