melage 0.0.65__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- melage/__init__.py +16 -0
- melage/cli.py +4 -0
- melage/graphics/GLGraphicsItem.py +286 -0
- melage/graphics/GLViewWidget.py +595 -0
- melage/graphics/Transform3D.py +55 -0
- melage/graphics/__init__.py +8 -0
- melage/graphics/functions.py +101 -0
- melage/graphics/items/GLAxisItem.py +149 -0
- melage/graphics/items/GLGridItem.py +178 -0
- melage/graphics/items/GLPolygonItem.py +77 -0
- melage/graphics/items/GLScatterPlotItem.py +135 -0
- melage/graphics/items/GLVolumeItem.py +280 -0
- melage/graphics/items/GLVolumeItem_b.py +237 -0
- melage/graphics/items/__init__.py +0 -0
- melage/graphics/shaders.py +202 -0
- melage/main.py +270 -0
- melage/requirements22.txt +25 -0
- melage/requirements_old.txt +28 -0
- melage/resource/0circle.png +0 -0
- melage/resource/0circle_faded.png +0 -0
- melage/resource/3d.png +0 -0
- melage/resource/3d.psd +0 -0
- melage/resource/3dFaded.png +0 -0
- melage/resource/Eraser.png +0 -0
- melage/resource/EraserFaded.png +0 -0
- melage/resource/EraserX.png +0 -0
- melage/resource/EraserXFaded.png +0 -0
- melage/resource/Eraser_icon.svg +79 -0
- melage/resource/Hand.png +0 -0
- melage/resource/HandIcons_0.png +0 -0
- melage/resource/Hand_IX.png +0 -0
- melage/resource/Hand_IXFaded.png +0 -0
- melage/resource/Handsqueezed.png +0 -0
- melage/resource/Handwriting (copy).png +0 -0
- melage/resource/Handwriting.png +0 -0
- melage/resource/HandwritingMinus.png +0 -0
- melage/resource/HandwritingMinusX.png +0 -0
- melage/resource/HandwritingPlus.png +0 -0
- melage/resource/HandwritingPlusX.png +0 -0
- melage/resource/Move_icon.svg +8 -0
- melage/resource/PngItem_2422924.png +0 -0
- melage/resource/about.png +0 -0
- melage/resource/about_logo.png +0 -0
- melage/resource/about_logo0.png +0 -0
- melage/resource/action_check.png +0 -0
- melage/resource/action_check_OFF.png +0 -0
- melage/resource/arrow).png +0 -0
- melage/resource/arrow.png +0 -0
- melage/resource/arrowFaded.png +0 -0
- melage/resource/arrow_org.png +0 -0
- melage/resource/arrow_org.png.png +0 -0
- melage/resource/arrows.png +0 -0
- melage/resource/authors.mp4 +0 -0
- melage/resource/box.png +0 -0
- melage/resource/check-image-icon-0.jpg +0 -0
- melage/resource/circle.png +0 -0
- melage/resource/circle_faded.png +0 -0
- melage/resource/circle_or.png +0 -0
- melage/resource/close.png +0 -0
- melage/resource/close_bg.png +0 -0
- melage/resource/color/Simple.txt +18 -0
- melage/resource/color/Tissue.txt +24 -0
- melage/resource/color/Tissue12.txt +27 -0
- melage/resource/color/albert_LUT.txt +102 -0
- melage/resource/color/mcrib_LUT.txt +102 -0
- melage/resource/color/pediatric1.txt +29 -0
- melage/resource/color/pediatric1_old.txt +27 -0
- melage/resource/color/pediatric2.txt +87 -0
- melage/resource/color/pediatric3.txt +29 -0
- melage/resource/color/pediatrics (copy).csv +103 -0
- melage/resource/color/tissue_seg.txt +4 -0
- melage/resource/contour.png +0 -0
- melage/resource/contour.svg +2 -0
- melage/resource/contourFaded.png +0 -0
- melage/resource/contourX.png +0 -0
- melage/resource/contourXFaded.png +0 -0
- melage/resource/dti.png +0 -0
- melage/resource/dti0.png +0 -0
- melage/resource/dti222.png +0 -0
- melage/resource/dti_or.png +0 -0
- melage/resource/eco.png +0 -0
- melage/resource/eco22.png +0 -0
- melage/resource/eco_old.png +0 -0
- melage/resource/eco_or.png +0 -0
- melage/resource/eco_or2.png +0 -0
- melage/resource/eco_seg.png +0 -0
- melage/resource/eco_seg_old.png +0 -0
- melage/resource/export.png +0 -0
- melage/resource/hand-grab-icon-10.jpg +0 -0
- melage/resource/hand-grab-icon-25.jpg +0 -0
- melage/resource/info.png +0 -0
- melage/resource/line.png +0 -0
- melage/resource/linefaded.png +0 -0
- melage/resource/load.png +0 -0
- melage/resource/main.ico +0 -0
- melage/resource/manual_images/3D_rightc.png +0 -0
- melage/resource/manual_images/3D_rightc_goto.png +0 -0
- melage/resource/manual_images/3D_rightc_paint.png +0 -0
- melage/resource/manual_images/3D_rightc_paint_draw1.png +0 -0
- melage/resource/manual_images/3D_rightc_paint_draw2.png +0 -0
- melage/resource/manual_images/3D_rightc_paint_render.png +0 -0
- melage/resource/manual_images/3D_rightc_paint_render2.png +0 -0
- melage/resource/manual_images/3D_rightc_paint_render3.png +0 -0
- melage/resource/manual_images/3D_rightc_paint_render4.png +0 -0
- melage/resource/manual_images/3D_rightc_paint_render5.png +0 -0
- melage/resource/manual_images/3D_rightc_paint_render6.png +0 -0
- melage/resource/manual_images/3D_rightc_seg.png +0 -0
- melage/resource/manual_images/exit_toolbar.png +0 -0
- melage/resource/manual_images/load_image_file.png +0 -0
- melage/resource/manual_images/load_image_file_openp.png +0 -0
- melage/resource/manual_images/main_page.png +0 -0
- melage/resource/manual_images/menu_file.png +0 -0
- melage/resource/manual_images/menu_file_export.png +0 -0
- melage/resource/manual_images/menu_file_import.png +0 -0
- melage/resource/manual_images/menu_file_settings.png +0 -0
- melage/resource/manual_images/menu_file_ss.png +0 -0
- melage/resource/manual_images/open_save_load.png +0 -0
- melage/resource/manual_images/panning_toolbar.png +0 -0
- melage/resource/manual_images/segmentation_toolbar.png +0 -0
- melage/resource/manual_images/tab_mri.png +0 -0
- melage/resource/manual_images/tab_us.png +0 -0
- melage/resource/manual_images/tabs.png +0 -0
- melage/resource/manual_images/toolbar_tools.png +0 -0
- melage/resource/manual_images/tools_basic.png +0 -0
- melage/resource/manual_images/tools_bet.png +0 -0
- melage/resource/manual_images/tools_cs.png +0 -0
- melage/resource/manual_images/tools_deepbet.png +0 -0
- melage/resource/manual_images/tools_imageinfo.png +0 -0
- melage/resource/manual_images/tools_maskO.png +0 -0
- melage/resource/manual_images/tools_masking.png +0 -0
- melage/resource/manual_images/tools_n4b.png +0 -0
- melage/resource/manual_images/tools_resize.png +0 -0
- melage/resource/manual_images/tools_ruler.png +0 -0
- melage/resource/manual_images/tools_seg.png +0 -0
- melage/resource/manual_images/tools_threshold.png +0 -0
- melage/resource/manual_images/tools_tools.png +0 -0
- melage/resource/manual_images/widget_color.png +0 -0
- melage/resource/manual_images/widget_color_add.png +0 -0
- melage/resource/manual_images/widget_color_add2.png +0 -0
- melage/resource/manual_images/widget_color_additional.png +0 -0
- melage/resource/manual_images/widget_images.png +0 -0
- melage/resource/manual_images/widget_images2.png +0 -0
- melage/resource/manual_images/widget_images3.png +0 -0
- melage/resource/manual_images/widget_marker.png +0 -0
- melage/resource/manual_images/widget_mri.png +0 -0
- melage/resource/manual_images/widget_mri2.png +0 -0
- melage/resource/manual_images/widget_segintensity.png +0 -0
- melage/resource/manual_images/widget_tab_mutualview.png +0 -0
- melage/resource/manual_images/widget_tab_mutualview2.png +0 -0
- melage/resource/manual_images/widget_table.png +0 -0
- melage/resource/manual_images/widget_table2.png +0 -0
- melage/resource/manual_images/widget_us.png +0 -0
- melage/resource/melage_top.ico +0 -0
- melage/resource/melage_top.png +0 -0
- melage/resource/melage_top0.png +0 -0
- melage/resource/melage_top1.png +0 -0
- melage/resource/melage_top4.png +0 -0
- melage/resource/mri (copy).png +0 -0
- melage/resource/mri.png +0 -0
- melage/resource/mri0.png +0 -0
- melage/resource/mri000.png +0 -0
- melage/resource/mri22.png +0 -0
- melage/resource/mri_big.png +0 -0
- melage/resource/mri_old.png +0 -0
- melage/resource/mri_seg.png +0 -0
- melage/resource/mri_seg_old.png +0 -0
- melage/resource/new.png +0 -0
- melage/resource/open.png +0 -0
- melage/resource/open2.png +0 -0
- melage/resource/pan.png +0 -0
- melage/resource/pencil.png +0 -0
- melage/resource/pencilFaded.png +0 -0
- melage/resource/points.png +0 -0
- melage/resource/pointsFaded.png +0 -0
- melage/resource/rotate.png +0 -0
- melage/resource/ruler.png +0 -0
- melage/resource/rulerFaded.png +0 -0
- melage/resource/s.png +0 -0
- melage/resource/s.psd +0 -0
- melage/resource/save.png +0 -0
- melage/resource/saveas.png +0 -0
- melage/resource/seg_mri.png +0 -0
- melage/resource/seg_mri2.png +0 -0
- melage/resource/settings.png +0 -0
- melage/resource/synch.png +0 -0
- melage/resource/synchFaded.png +0 -0
- melage/resource/theme/rc/.keep +1 -0
- melage/resource/theme/rc/arrow_down.png +0 -0
- melage/resource/theme/rc/arrow_down@2x.png +0 -0
- melage/resource/theme/rc/arrow_down_disabled.png +0 -0
- melage/resource/theme/rc/arrow_down_disabled@2x.png +0 -0
- melage/resource/theme/rc/arrow_down_focus.png +0 -0
- melage/resource/theme/rc/arrow_down_focus@2x.png +0 -0
- melage/resource/theme/rc/arrow_down_pressed.png +0 -0
- melage/resource/theme/rc/arrow_down_pressed@2x.png +0 -0
- melage/resource/theme/rc/arrow_left.png +0 -0
- melage/resource/theme/rc/arrow_left@2x.png +0 -0
- melage/resource/theme/rc/arrow_left_disabled.png +0 -0
- melage/resource/theme/rc/arrow_left_disabled@2x.png +0 -0
- melage/resource/theme/rc/arrow_left_focus.png +0 -0
- melage/resource/theme/rc/arrow_left_focus@2x.png +0 -0
- melage/resource/theme/rc/arrow_left_pressed.png +0 -0
- melage/resource/theme/rc/arrow_left_pressed@2x.png +0 -0
- melage/resource/theme/rc/arrow_right.png +0 -0
- melage/resource/theme/rc/arrow_right@2x.png +0 -0
- melage/resource/theme/rc/arrow_right_disabled.png +0 -0
- melage/resource/theme/rc/arrow_right_disabled@2x.png +0 -0
- melage/resource/theme/rc/arrow_right_focus.png +0 -0
- melage/resource/theme/rc/arrow_right_focus@2x.png +0 -0
- melage/resource/theme/rc/arrow_right_pressed.png +0 -0
- melage/resource/theme/rc/arrow_right_pressed@2x.png +0 -0
- melage/resource/theme/rc/arrow_up.png +0 -0
- melage/resource/theme/rc/arrow_up@2x.png +0 -0
- melage/resource/theme/rc/arrow_up_disabled.png +0 -0
- melage/resource/theme/rc/arrow_up_disabled@2x.png +0 -0
- melage/resource/theme/rc/arrow_up_focus.png +0 -0
- melage/resource/theme/rc/arrow_up_focus@2x.png +0 -0
- melage/resource/theme/rc/arrow_up_pressed.png +0 -0
- melage/resource/theme/rc/arrow_up_pressed@2x.png +0 -0
- melage/resource/theme/rc/base_icon.png +0 -0
- melage/resource/theme/rc/base_icon@2x.png +0 -0
- melage/resource/theme/rc/base_icon_disabled.png +0 -0
- melage/resource/theme/rc/base_icon_disabled@2x.png +0 -0
- melage/resource/theme/rc/base_icon_focus.png +0 -0
- melage/resource/theme/rc/base_icon_focus@2x.png +0 -0
- melage/resource/theme/rc/base_icon_pressed.png +0 -0
- melage/resource/theme/rc/base_icon_pressed@2x.png +0 -0
- melage/resource/theme/rc/branch_closed.png +0 -0
- melage/resource/theme/rc/branch_closed@2x.png +0 -0
- melage/resource/theme/rc/branch_closed_disabled.png +0 -0
- melage/resource/theme/rc/branch_closed_disabled@2x.png +0 -0
- melage/resource/theme/rc/branch_closed_focus.png +0 -0
- melage/resource/theme/rc/branch_closed_focus@2x.png +0 -0
- melage/resource/theme/rc/branch_closed_pressed.png +0 -0
- melage/resource/theme/rc/branch_closed_pressed@2x.png +0 -0
- melage/resource/theme/rc/branch_end.png +0 -0
- melage/resource/theme/rc/branch_end@2x.png +0 -0
- melage/resource/theme/rc/branch_end_disabled.png +0 -0
- melage/resource/theme/rc/branch_end_disabled@2x.png +0 -0
- melage/resource/theme/rc/branch_end_focus.png +0 -0
- melage/resource/theme/rc/branch_end_focus@2x.png +0 -0
- melage/resource/theme/rc/branch_end_pressed.png +0 -0
- melage/resource/theme/rc/branch_end_pressed@2x.png +0 -0
- melage/resource/theme/rc/branch_line.png +0 -0
- melage/resource/theme/rc/branch_line@2x.png +0 -0
- melage/resource/theme/rc/branch_line_disabled.png +0 -0
- melage/resource/theme/rc/branch_line_disabled@2x.png +0 -0
- melage/resource/theme/rc/branch_line_focus.png +0 -0
- melage/resource/theme/rc/branch_line_focus@2x.png +0 -0
- melage/resource/theme/rc/branch_line_pressed.png +0 -0
- melage/resource/theme/rc/branch_line_pressed@2x.png +0 -0
- melage/resource/theme/rc/branch_more.png +0 -0
- melage/resource/theme/rc/branch_more@2x.png +0 -0
- melage/resource/theme/rc/branch_more_disabled.png +0 -0
- melage/resource/theme/rc/branch_more_disabled@2x.png +0 -0
- melage/resource/theme/rc/branch_more_focus.png +0 -0
- melage/resource/theme/rc/branch_more_focus@2x.png +0 -0
- melage/resource/theme/rc/branch_more_pressed.png +0 -0
- melage/resource/theme/rc/branch_more_pressed@2x.png +0 -0
- melage/resource/theme/rc/branch_open.png +0 -0
- melage/resource/theme/rc/branch_open@2x.png +0 -0
- melage/resource/theme/rc/branch_open_disabled.png +0 -0
- melage/resource/theme/rc/branch_open_disabled@2x.png +0 -0
- melage/resource/theme/rc/branch_open_focus.png +0 -0
- melage/resource/theme/rc/branch_open_focus@2x.png +0 -0
- melage/resource/theme/rc/branch_open_pressed.png +0 -0
- melage/resource/theme/rc/branch_open_pressed@2x.png +0 -0
- melage/resource/theme/rc/checkbox_checked.png +0 -0
- melage/resource/theme/rc/checkbox_checked0.png +0 -0
- melage/resource/theme/rc/checkbox_checked@2x.png +0 -0
- melage/resource/theme/rc/checkbox_checked@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_checked@2x000.png.png +0 -0
- melage/resource/theme/rc/checkbox_checked_disabled.png +0 -0
- melage/resource/theme/rc/checkbox_checked_disabled0.png +0 -0
- melage/resource/theme/rc/checkbox_checked_disabled@2x.png +0 -0
- melage/resource/theme/rc/checkbox_checked_disabled@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_checked_focus.png +0 -0
- melage/resource/theme/rc/checkbox_checked_focus0.png +0 -0
- melage/resource/theme/rc/checkbox_checked_focus@2x.png +0 -0
- melage/resource/theme/rc/checkbox_checked_focus@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_checked_pressed.png +0 -0
- melage/resource/theme/rc/checkbox_checked_pressed0.png +0 -0
- melage/resource/theme/rc/checkbox_checked_pressed@2x.png +0 -0
- melage/resource/theme/rc/checkbox_checked_pressed@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate@2x.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_disabled.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_disabled@2x.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_focus.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_focus@2x.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_pressed.png +0 -0
- melage/resource/theme/rc/checkbox_indeterminate_pressed@2x.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked@2x.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked@2x00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled@2x.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_disabled@2x00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus@2x.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_focus@2x00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed00.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed@2x.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed@2x0.png +0 -0
- melage/resource/theme/rc/checkbox_unchecked_pressed@2x00.png +0 -0
- melage/resource/theme/rc/line_horizontal.png +0 -0
- melage/resource/theme/rc/line_horizontal@2x.png +0 -0
- melage/resource/theme/rc/line_horizontal_disabled.png +0 -0
- melage/resource/theme/rc/line_horizontal_disabled@2x.png +0 -0
- melage/resource/theme/rc/line_horizontal_focus.png +0 -0
- melage/resource/theme/rc/line_horizontal_focus@2x.png +0 -0
- melage/resource/theme/rc/line_horizontal_pressed.png +0 -0
- melage/resource/theme/rc/line_horizontal_pressed@2x.png +0 -0
- melage/resource/theme/rc/line_vertical.png +0 -0
- melage/resource/theme/rc/line_vertical@2x.png +0 -0
- melage/resource/theme/rc/line_vertical_disabled.png +0 -0
- melage/resource/theme/rc/line_vertical_disabled@2x.png +0 -0
- melage/resource/theme/rc/line_vertical_focus.png +0 -0
- melage/resource/theme/rc/line_vertical_focus@2x.png +0 -0
- melage/resource/theme/rc/line_vertical_pressed.png +0 -0
- melage/resource/theme/rc/line_vertical_pressed@2x.png +0 -0
- melage/resource/theme/rc/radio_checked.png +0 -0
- melage/resource/theme/rc/radio_checked@2x.png +0 -0
- melage/resource/theme/rc/radio_checked_disabled.png +0 -0
- melage/resource/theme/rc/radio_checked_disabled@2x.png +0 -0
- melage/resource/theme/rc/radio_checked_focus.png +0 -0
- melage/resource/theme/rc/radio_checked_focus@2x.png +0 -0
- melage/resource/theme/rc/radio_checked_pressed.png +0 -0
- melage/resource/theme/rc/radio_checked_pressed@2x.png +0 -0
- melage/resource/theme/rc/radio_unchecked.png +0 -0
- melage/resource/theme/rc/radio_unchecked@2x.png +0 -0
- melage/resource/theme/rc/radio_unchecked_disabled.png +0 -0
- melage/resource/theme/rc/radio_unchecked_disabled@2x.png +0 -0
- melage/resource/theme/rc/radio_unchecked_focus.png +0 -0
- melage/resource/theme/rc/radio_unchecked_focus@2x.png +0 -0
- melage/resource/theme/rc/radio_unchecked_pressed.png +0 -0
- melage/resource/theme/rc/radio_unchecked_pressed@2x.png +0 -0
- melage/resource/theme/rc/toolbar_move_horizontal.png +0 -0
- melage/resource/theme/rc/toolbar_move_horizontal@2x.png +0 -0
- melage/resource/theme/rc/toolbar_move_horizontal_disabled.png +0 -0
- melage/resource/theme/rc/toolbar_move_horizontal_disabled@2x.png +0 -0
- melage/resource/theme/rc/toolbar_move_horizontal_focus.png +0 -0
- melage/resource/theme/rc/toolbar_move_horizontal_focus@2x.png +0 -0
- melage/resource/theme/rc/toolbar_move_horizontal_pressed.png +0 -0
- melage/resource/theme/rc/toolbar_move_horizontal_pressed@2x.png +0 -0
- melage/resource/theme/rc/toolbar_move_vertical.png +0 -0
- melage/resource/theme/rc/toolbar_move_vertical@2x.png +0 -0
- melage/resource/theme/rc/toolbar_move_vertical_disabled.png +0 -0
- melage/resource/theme/rc/toolbar_move_vertical_disabled@2x.png +0 -0
- melage/resource/theme/rc/toolbar_move_vertical_focus.png +0 -0
- melage/resource/theme/rc/toolbar_move_vertical_focus@2x.png +0 -0
- melage/resource/theme/rc/toolbar_move_vertical_pressed.png +0 -0
- melage/resource/theme/rc/toolbar_move_vertical_pressed@2x.png +0 -0
- melage/resource/theme/rc/toolbar_separator_horizontal.png +0 -0
- melage/resource/theme/rc/toolbar_separator_horizontal@2x.png +0 -0
- melage/resource/theme/rc/toolbar_separator_horizontal_disabled.png +0 -0
- melage/resource/theme/rc/toolbar_separator_horizontal_disabled@2x.png +0 -0
- melage/resource/theme/rc/toolbar_separator_horizontal_focus.png +0 -0
- melage/resource/theme/rc/toolbar_separator_horizontal_focus@2x.png +0 -0
- melage/resource/theme/rc/toolbar_separator_horizontal_pressed.png +0 -0
- melage/resource/theme/rc/toolbar_separator_horizontal_pressed@2x.png +0 -0
- melage/resource/theme/rc/toolbar_separator_vertical.png +0 -0
- melage/resource/theme/rc/toolbar_separator_vertical@2x.png +0 -0
- melage/resource/theme/rc/toolbar_separator_vertical_disabled.png +0 -0
- melage/resource/theme/rc/toolbar_separator_vertical_disabled@2x.png +0 -0
- melage/resource/theme/rc/toolbar_separator_vertical_focus.png +0 -0
- melage/resource/theme/rc/toolbar_separator_vertical_focus@2x.png +0 -0
- melage/resource/theme/rc/toolbar_separator_vertical_pressed.png +0 -0
- melage/resource/theme/rc/toolbar_separator_vertical_pressed@2x.png +0 -0
- melage/resource/theme/rc/transparent.png +0 -0
- melage/resource/theme/rc/transparent@2x.png +0 -0
- melage/resource/theme/rc/transparent_disabled.png +0 -0
- melage/resource/theme/rc/transparent_disabled@2x.png +0 -0
- melage/resource/theme/rc/transparent_focus.png +0 -0
- melage/resource/theme/rc/transparent_focus@2x.png +0 -0
- melage/resource/theme/rc/transparent_pressed.png +0 -0
- melage/resource/theme/rc/transparent_pressed@2x.png +0 -0
- melage/resource/theme/rc/window_close.png +0 -0
- melage/resource/theme/rc/window_close@2x.png +0 -0
- melage/resource/theme/rc/window_close_disabled.png +0 -0
- melage/resource/theme/rc/window_close_disabled@2x.png +0 -0
- melage/resource/theme/rc/window_close_focus.png +0 -0
- melage/resource/theme/rc/window_close_focus@2x.png +0 -0
- melage/resource/theme/rc/window_close_pressed.png +0 -0
- melage/resource/theme/rc/window_close_pressed@2x.png +0 -0
- melage/resource/theme/rc/window_grip.png +0 -0
- melage/resource/theme/rc/window_grip@2x.png +0 -0
- melage/resource/theme/rc/window_grip_disabled.png +0 -0
- melage/resource/theme/rc/window_grip_disabled@2x.png +0 -0
- melage/resource/theme/rc/window_grip_focus.png +0 -0
- melage/resource/theme/rc/window_grip_focus@2x.png +0 -0
- melage/resource/theme/rc/window_grip_pressed.png +0 -0
- melage/resource/theme/rc/window_grip_pressed@2x.png +0 -0
- melage/resource/theme/rc/window_minimize.png +0 -0
- melage/resource/theme/rc/window_minimize@2x.png +0 -0
- melage/resource/theme/rc/window_minimize_disabled.png +0 -0
- melage/resource/theme/rc/window_minimize_disabled@2x.png +0 -0
- melage/resource/theme/rc/window_minimize_focus.png +0 -0
- melage/resource/theme/rc/window_minimize_focus@2x.png +0 -0
- melage/resource/theme/rc/window_minimize_pressed.png +0 -0
- melage/resource/theme/rc/window_minimize_pressed@2x.png +0 -0
- melage/resource/theme/rc/window_undock.png +0 -0
- melage/resource/theme/rc/window_undock@2x.png +0 -0
- melage/resource/theme/rc/window_undock_disabled.png +0 -0
- melage/resource/theme/rc/window_undock_disabled@2x.png +0 -0
- melage/resource/theme/rc/window_undock_focus.png +0 -0
- melage/resource/theme/rc/window_undock_focus@2x.png +0 -0
- melage/resource/theme/rc/window_undock_pressed.png +0 -0
- melage/resource/theme/rc/window_undock_pressed@2x.png +0 -0
- melage/resource/theme/style.qss +2223 -0
- melage/resource/tract.png +0 -0
- melage/resource/view1.png +0 -0
- melage/resource/view1_eco.png +0 -0
- melage/resource/view1_mri.png +0 -0
- melage/resource/view1_seg.png +0 -0
- melage/resource/view2.png +0 -0
- melage/resource/view2_seg.png +0 -0
- melage/resource/w.png +0 -0
- melage/resource/zoom_in.png +0 -0
- melage/resource/zoom_inFaded.png +0 -0
- melage/resource/zoom_out.png +0 -0
- melage/resource/zoom_outFaded.png +0 -0
- melage/some_notes.txt +3 -0
- melage/utils/DispalyIm.py +2788 -0
- melage/utils/GMM.py +720 -0
- melage/utils/Shaders_120.py +257 -0
- melage/utils/Shaders_330.py +314 -0
- melage/utils/Shaders_bu.py +314 -0
- melage/utils/__init__0.py +7 -0
- melage/utils/brain_extraction_helper.py +234 -0
- melage/utils/custom_QScrollBar.py +61 -0
- melage/utils/glScientific.py +1554 -0
- melage/utils/glScientific_bc.py +1585 -0
- melage/utils/readData.py +1061 -0
- melage/utils/registration.py +512 -0
- melage/utils/source_folder.py +18 -0
- melage/utils/utils.py +3808 -0
- melage/version.txt +1 -0
- melage/widgets/ApplyMask.py +212 -0
- melage/widgets/ChangeSystem.py +152 -0
- melage/widgets/DeepLModels/InfantSegment/Unet.py +464 -0
- melage/widgets/DeepLModels/NPP/dataset/mri_dataset_affine.py +149 -0
- melage/widgets/DeepLModels/NPP/models/checkpoints/npp_v1.pth.py +0 -0
- melage/widgets/DeepLModels/NPP/models/losses.py +146 -0
- melage/widgets/DeepLModels/NPP/models/model.py +272 -0
- melage/widgets/DeepLModels/NPP/models/utils.py +303 -0
- melage/widgets/DeepLModels/NPP/npp.py +116 -0
- melage/widgets/DeepLModels/NPP/requirements.txt +8 -0
- melage/widgets/DeepLModels/NPP/train/train.py +116 -0
- melage/widgets/DeepLModels/Unet3DAtt.py +657 -0
- melage/widgets/DeepLModels/Unet3D_basic.py +648 -0
- melage/widgets/DeepLModels/new_unet.py +652 -0
- melage/widgets/DeepLModels/new_unet_old.py +639 -0
- melage/widgets/DeepLModels/new_unet_old2.py +658 -0
- melage/widgets/HistImage.py +153 -0
- melage/widgets/ImageThresholding.py +222 -0
- melage/widgets/MaskOperations.py +147 -0
- melage/widgets/N4Dialog.py +241 -0
- melage/widgets/Segmentation/FCM.py +1553 -0
- melage/widgets/Segmentation/__init__.py +588 -0
- melage/widgets/Segmentation/utils.py +417 -0
- melage/widgets/SemiAutoSeg.py +666 -0
- melage/widgets/Synthstrip.py +141 -0
- melage/widgets/__init__0.py +5 -0
- melage/widgets/about.py +246 -0
- melage/widgets/activation.py +437 -0
- melage/widgets/activator.py +147 -0
- melage/widgets/be_dl.py +409 -0
- melage/widgets/be_dl_unet3d.py +441 -0
- melage/widgets/brain_extraction.py +855 -0
- melage/widgets/brain_extraction_dl.py +887 -0
- melage/widgets/brain_extraction_dl_bu.py +869 -0
- melage/widgets/colorwidget.py +100 -0
- melage/widgets/dockWidgets.py +2005 -0
- melage/widgets/enhanceImWidget.py +109 -0
- melage/widgets/fileDialog_widget.py +275 -0
- melage/widgets/iminfo.py +346 -0
- melage/widgets/mainwindow_widget.py +6775 -0
- melage/widgets/melageAbout.py +123 -0
- melage/widgets/openglWidgets.py +556 -0
- melage/widgets/registrationWidget.py +342 -0
- melage/widgets/repeat_widget.py +74 -0
- melage/widgets/screenshot_widget.py +138 -0
- melage/widgets/settings_widget.py +77 -0
- melage/widgets/tranformationWidget.py +275 -0
- melage-0.0.65.dist-info/METADATA +742 -0
- melage-0.0.65.dist-info/RECORD +501 -0
- melage-0.0.65.dist-info/WHEEL +5 -0
- melage-0.0.65.dist-info/entry_points.txt +2 -0
- melage-0.0.65.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,146 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import torch.nn.functional as F
|
|
3
|
+
from torch.autograd import Variable
|
|
4
|
+
import numpy as np
|
|
5
|
+
from math import exp
|
|
6
|
+
|
|
7
|
+
def gaussian(window_size, sigma):
|
|
8
|
+
gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
|
|
9
|
+
return gauss/gauss.sum()
|
|
10
|
+
|
|
11
|
+
def create_window(window_size, channel):
|
|
12
|
+
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
|
|
13
|
+
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
|
|
14
|
+
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
|
|
15
|
+
return window
|
|
16
|
+
|
|
17
|
+
def create_window_3D(window_size, channel):
|
|
18
|
+
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
|
|
19
|
+
_2D_window = _1D_window.mm(_1D_window.t())
|
|
20
|
+
_3D_window = _1D_window.mm(_2D_window.reshape(1, -1)).reshape(window_size, window_size, window_size).float().unsqueeze(0).unsqueeze(0)
|
|
21
|
+
window = Variable(_3D_window.expand(channel, 1, window_size, window_size, window_size).contiguous())
|
|
22
|
+
return window
|
|
23
|
+
|
|
24
|
+
def _ssim(img1, img2, window, window_size, channel, size_average = True):
|
|
25
|
+
mu1 = F.conv2d(img1, window, padding = window_size//2, groups = channel)
|
|
26
|
+
mu2 = F.conv2d(img2, window, padding = window_size//2, groups = channel)
|
|
27
|
+
|
|
28
|
+
mu1_sq = mu1.pow(2)
|
|
29
|
+
mu2_sq = mu2.pow(2)
|
|
30
|
+
mu1_mu2 = mu1*mu2
|
|
31
|
+
|
|
32
|
+
sigma1_sq = F.conv2d(img1*img1, window, padding = window_size//2, groups = channel) - mu1_sq
|
|
33
|
+
sigma2_sq = F.conv2d(img2*img2, window, padding = window_size//2, groups = channel) - mu2_sq
|
|
34
|
+
sigma12 = F.conv2d(img1*img2, window, padding = window_size//2, groups = channel) - mu1_mu2
|
|
35
|
+
|
|
36
|
+
C1 = 0.01**2
|
|
37
|
+
C2 = 0.03**2
|
|
38
|
+
|
|
39
|
+
ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2))
|
|
40
|
+
|
|
41
|
+
if size_average:
|
|
42
|
+
return ssim_map.mean()
|
|
43
|
+
else:
|
|
44
|
+
return ssim_map.mean(1).mean(1).mean(1)
|
|
45
|
+
|
|
46
|
+
def f_ssim_3D(img1, img2, window, window_size, channel, size_average = True):
|
|
47
|
+
#window = torch.ones(window.shape).type_as(img1)
|
|
48
|
+
#window = window/window.sum()
|
|
49
|
+
mu1 = F.conv3d(img1, window, padding = window_size//2, groups = channel)
|
|
50
|
+
mu2 = F.conv3d(img2, window, padding = window_size//2, groups = channel)
|
|
51
|
+
|
|
52
|
+
mu1_sq = mu1.pow(2)
|
|
53
|
+
mu2_sq = mu2.pow(2)
|
|
54
|
+
|
|
55
|
+
mu1_mu2 = mu1*mu2
|
|
56
|
+
|
|
57
|
+
sigma1_sq = F.conv3d(img1*img1, window, padding = window_size//2, groups = channel) - mu1_sq
|
|
58
|
+
sigma2_sq = F.conv3d(img2*img2, window, padding = window_size//2, groups = channel) - mu2_sq
|
|
59
|
+
sigma12 = F.conv3d(img1*img2, window, padding = window_size//2, groups = channel) - mu1_mu2
|
|
60
|
+
|
|
61
|
+
C1 = 0.01**2
|
|
62
|
+
C2 = 0.03**2
|
|
63
|
+
|
|
64
|
+
ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2))
|
|
65
|
+
|
|
66
|
+
if size_average:
|
|
67
|
+
return ssim_map.mean()
|
|
68
|
+
else:
|
|
69
|
+
return ssim_map.mean(1).mean(1).mean(1)
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
class SSIM(torch.nn.Module):
|
|
74
|
+
def __init__(self, window_size = 11, size_average = True):
|
|
75
|
+
super(SSIM, self).__init__()
|
|
76
|
+
self.window_size = window_size
|
|
77
|
+
self.size_average = size_average
|
|
78
|
+
self.channel = 1
|
|
79
|
+
self.window = create_window(window_size, self.channel)
|
|
80
|
+
|
|
81
|
+
def forward(self, img1, img2):
|
|
82
|
+
(_, channel, _, _) = img1.size()
|
|
83
|
+
|
|
84
|
+
if channel == self.channel and self.window.data.type() == img1.data.type():
|
|
85
|
+
window = self.window
|
|
86
|
+
else:
|
|
87
|
+
window = create_window(self.window_size, channel)
|
|
88
|
+
|
|
89
|
+
if img1.is_cuda:
|
|
90
|
+
window = window.cuda(img1.get_device())
|
|
91
|
+
window = window.type_as(img1)
|
|
92
|
+
|
|
93
|
+
self.window = window
|
|
94
|
+
self.channel = channel
|
|
95
|
+
|
|
96
|
+
|
|
97
|
+
return _ssim(img1, img2, window, self.window_size, channel, self.size_average)
|
|
98
|
+
|
|
99
|
+
|
|
100
|
+
class SSIM3D(torch.nn.Module):
|
|
101
|
+
def __init__(self, window_size = 11, size_average = True):
|
|
102
|
+
super(SSIM3D, self).__init__()
|
|
103
|
+
self.window_size = window_size
|
|
104
|
+
self.size_average = size_average
|
|
105
|
+
self.channel = 1
|
|
106
|
+
self.window = create_window_3D(window_size, self.channel)
|
|
107
|
+
|
|
108
|
+
def forward(self, img1, img2):
|
|
109
|
+
(_, channel, _, _, _) = img1.size()
|
|
110
|
+
|
|
111
|
+
if channel == self.channel and self.window.data.type() == img1.data.type():
|
|
112
|
+
window = self.window
|
|
113
|
+
else:
|
|
114
|
+
window = create_window_3D(self.window_size, channel)
|
|
115
|
+
|
|
116
|
+
if img1.is_cuda:
|
|
117
|
+
window = window.cuda(img1.get_device())
|
|
118
|
+
window = window.type_as(img1)
|
|
119
|
+
|
|
120
|
+
self.window = window
|
|
121
|
+
self.channel = channel
|
|
122
|
+
|
|
123
|
+
|
|
124
|
+
return f_ssim_3D(img1, img2, window, self.window_size, channel, self.size_average)
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
def ssim(img1, img2, window_size = 11, size_average = True):
|
|
128
|
+
(_, channel, _, _) = img1.size()
|
|
129
|
+
window = create_window(window_size, channel)
|
|
130
|
+
|
|
131
|
+
if img1.is_cuda:
|
|
132
|
+
window = window.cuda(img1.get_device())
|
|
133
|
+
window = window.type_as(img1)
|
|
134
|
+
|
|
135
|
+
return _ssim(img1, img2, window, window_size, channel, size_average)
|
|
136
|
+
|
|
137
|
+
def ssim3D(img1, img2, window_size = 11, size_average = True):
|
|
138
|
+
(_, channel, _, _, _) = img1.size()
|
|
139
|
+
window = create_window_3D(window_size, channel)
|
|
140
|
+
|
|
141
|
+
if img1.is_cuda:
|
|
142
|
+
window = window.cuda(img1.get_device())
|
|
143
|
+
window = window.type_as(img1)
|
|
144
|
+
|
|
145
|
+
return f_ssim_3D(img1, img2, window, window_size, channel, size_average)
|
|
146
|
+
|
|
@@ -0,0 +1,272 @@
|
|
|
1
|
+
import nibabel
|
|
2
|
+
import torch
|
|
3
|
+
from torch import nn
|
|
4
|
+
import torch.nn.functional as F
|
|
5
|
+
from pytorch_lightning import LightningModule, Trainer
|
|
6
|
+
from melage.widgets.DeepLModels.NPP.models.losses import SSIM3D
|
|
7
|
+
from einops import rearrange
|
|
8
|
+
import numpy as np
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class FeedForward(nn.Module):
|
|
12
|
+
def __init__(self, dim, hidden_dim, dropout = 0.):
|
|
13
|
+
super().__init__()
|
|
14
|
+
self.net = nn.Sequential(
|
|
15
|
+
nn.Linear(dim, hidden_dim),
|
|
16
|
+
nn.GELU(),
|
|
17
|
+
nn.Dropout(dropout),
|
|
18
|
+
nn.Linear(hidden_dim, dim),
|
|
19
|
+
nn.Dropout(dropout)
|
|
20
|
+
)
|
|
21
|
+
def forward(self, x):
|
|
22
|
+
return self.net(x)
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
class Attention(nn.Module):
|
|
26
|
+
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
|
|
27
|
+
super().__init__()
|
|
28
|
+
inner_dim = dim_head * heads
|
|
29
|
+
project_out = not (heads == 1 and dim_head == dim)
|
|
30
|
+
|
|
31
|
+
self.heads = heads
|
|
32
|
+
self.scale = dim_head ** -0.5
|
|
33
|
+
|
|
34
|
+
self.attend = nn.Softmax(dim = -1)
|
|
35
|
+
self.dropout = nn.Dropout(dropout)
|
|
36
|
+
|
|
37
|
+
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
|
38
|
+
|
|
39
|
+
self.to_out = nn.Sequential(
|
|
40
|
+
nn.Linear(inner_dim, dim),
|
|
41
|
+
nn.Dropout(dropout)
|
|
42
|
+
) if project_out else nn.Identity()
|
|
43
|
+
|
|
44
|
+
def forward(self, x):
|
|
45
|
+
qkv = self.to_qkv(x).chunk(3, dim = -1)
|
|
46
|
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
|
|
47
|
+
|
|
48
|
+
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
|
49
|
+
|
|
50
|
+
attn = self.attend(dots)
|
|
51
|
+
attn = self.dropout(attn)
|
|
52
|
+
|
|
53
|
+
out = torch.matmul(attn, v)
|
|
54
|
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
|
55
|
+
return self.to_out(out)
|
|
56
|
+
|
|
57
|
+
class Grad:
|
|
58
|
+
"""
|
|
59
|
+
N-D gradient loss.
|
|
60
|
+
"""
|
|
61
|
+
|
|
62
|
+
def __init__(self, penalty='l1', loss_mult=None):
|
|
63
|
+
self.penalty = penalty
|
|
64
|
+
self.loss_mult = loss_mult
|
|
65
|
+
|
|
66
|
+
def __call__(self, y_pred):
|
|
67
|
+
dy = torch.abs(y_pred[:, :, 1:, :, :] - y_pred[:, :, :-1, :, :])
|
|
68
|
+
dx = torch.abs(y_pred[:, :, :, 1:, :] - y_pred[:, :, :, :-1, :])
|
|
69
|
+
dz = torch.abs(y_pred[:, :, :, :, 1:] - y_pred[:, :, :, :, :-1])
|
|
70
|
+
|
|
71
|
+
if self.penalty == 'l2':
|
|
72
|
+
dy = dy * dy
|
|
73
|
+
dx = dx * dx
|
|
74
|
+
dz = dz * dz
|
|
75
|
+
|
|
76
|
+
grad = torch.mean(dx) + torch.mean(dy) + torch.mean(dz)
|
|
77
|
+
|
|
78
|
+
return grad
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
class VGGBlock(nn.Module):
|
|
82
|
+
def __init__(self, in_channels, middle_channels, out_channels,stride = 1,relu='lrelu'):
|
|
83
|
+
super().__init__()
|
|
84
|
+
if relu=='lrelu':
|
|
85
|
+
self.relu = nn.LeakyReLU(inplace=True,negative_slope=0.01)
|
|
86
|
+
else:
|
|
87
|
+
self.relu = nn.ReLU(inplace=True)
|
|
88
|
+
|
|
89
|
+
self.conv1 = nn.Conv3d(in_channels, middle_channels, 3, padding=1,stride=stride)
|
|
90
|
+
self.bn1 = nn.InstanceNorm3d(middle_channels,affine=True)
|
|
91
|
+
self.conv2 = nn.Conv3d(middle_channels, out_channels, 3, padding=1)
|
|
92
|
+
self.bn2 = nn.InstanceNorm3d(out_channels,affine=True)
|
|
93
|
+
|
|
94
|
+
def forward(self, x):
|
|
95
|
+
out = self.conv1(x)
|
|
96
|
+
out = self.bn1(out)
|
|
97
|
+
out = self.relu(out)
|
|
98
|
+
|
|
99
|
+
out = self.conv2(out)
|
|
100
|
+
out = self.bn2(out)
|
|
101
|
+
out = self.relu(out)
|
|
102
|
+
|
|
103
|
+
return out
|
|
104
|
+
|
|
105
|
+
|
|
106
|
+
class UNet(nn.Module):
|
|
107
|
+
def __init__(self, input_channels=1, output_channels=1,):
|
|
108
|
+
super().__init__()
|
|
109
|
+
self._leaky_relu_alpha = 0.01
|
|
110
|
+
nb_filter = [16, 32, 64, 128, 256,512]
|
|
111
|
+
self.nb_filter = nb_filter
|
|
112
|
+
self.pool = nn.MaxPool3d(2)
|
|
113
|
+
self.up = nn.Upsample(scale_factor=(2,2,2), mode='trilinear', align_corners=True)
|
|
114
|
+
|
|
115
|
+
self.conv0_0 = VGGBlock(input_channels, nb_filter[0], nb_filter[0])
|
|
116
|
+
self.conv1_0 = VGGBlock(nb_filter[0], nb_filter[1], nb_filter[1],stride=2)
|
|
117
|
+
self.conv2_0 = VGGBlock(nb_filter[1], nb_filter[2], nb_filter[2],stride=2)
|
|
118
|
+
self.conv3_0 = VGGBlock(nb_filter[2], nb_filter[3], nb_filter[3],stride=2)
|
|
119
|
+
self.conv4_0 = VGGBlock(nb_filter[3], nb_filter[4], nb_filter[4],stride=2)
|
|
120
|
+
self.conv5_0 = VGGBlock(nb_filter[4], nb_filter[5], nb_filter[5],stride=2)
|
|
121
|
+
|
|
122
|
+
self.conv4_1 = VGGBlock(nb_filter[4]+nb_filter[5], nb_filter[4], nb_filter[4])
|
|
123
|
+
self.conv3_1 = VGGBlock(nb_filter[3]+nb_filter[4], nb_filter[3], nb_filter[3])
|
|
124
|
+
self.conv2_1 = VGGBlock(nb_filter[2]+nb_filter[3], nb_filter[2], nb_filter[2])
|
|
125
|
+
self.conv1_1 = VGGBlock(nb_filter[1]+nb_filter[2], nb_filter[1], nb_filter[1])
|
|
126
|
+
self.conv0_1 = VGGBlock(nb_filter[0]+nb_filter[1], nb_filter[0], nb_filter[0])
|
|
127
|
+
|
|
128
|
+
self.final = nn.Conv3d(nb_filter[0], output_channels, kernel_size=1)
|
|
129
|
+
self.LN1 = nn.LayerNorm(nb_filter[5])
|
|
130
|
+
self.LN2 = nn.LayerNorm(nb_filter[5])
|
|
131
|
+
self.attention1 = Attention(nb_filter[5],heads = 8,dim_head=64)
|
|
132
|
+
self.mlp1 = FeedForward(nb_filter[5],nb_filter[5])
|
|
133
|
+
self.LN3 = nn.LayerNorm(nb_filter[5])
|
|
134
|
+
self.LN4 = nn.LayerNorm(nb_filter[5])
|
|
135
|
+
self.attention2 = Attention(nb_filter[5],heads = 8,dim_head=64)
|
|
136
|
+
self.mlp2 = FeedForward(nb_filter[5],nb_filter[5])
|
|
137
|
+
|
|
138
|
+
self.head = nn.Sequential(
|
|
139
|
+
nn.Linear(nb_filter[5], nb_filter[5] // 2, bias=False),
|
|
140
|
+
nn.ReLU(inplace=True),
|
|
141
|
+
nn.Linear(nb_filter[5] // 2, 12, bias=False),
|
|
142
|
+
nn.Tanh()
|
|
143
|
+
)
|
|
144
|
+
self.head2 = nn.Sequential(
|
|
145
|
+
nn.Linear(1, nb_filter[5]),
|
|
146
|
+
nn.ReLU(inplace=True),
|
|
147
|
+
nn.Linear(nb_filter[5], nb_filter[5]*4),
|
|
148
|
+
nn.ReLU(inplace=True),
|
|
149
|
+
nn.Linear(nb_filter[5]*4, sum(np.array(nb_filter[:-1]))*2),
|
|
150
|
+
)
|
|
151
|
+
def forward(self, input,weight=None):
|
|
152
|
+
|
|
153
|
+
input_downsampled = torch.nn.functional.interpolate(input, size=[128, 128, 128],
|
|
154
|
+
mode='trilinear', align_corners=False)
|
|
155
|
+
|
|
156
|
+
x0_0 = self.conv0_0(input_downsampled)
|
|
157
|
+
x1_0 = self.conv1_0(x0_0)
|
|
158
|
+
x2_0 = self.conv2_0(x1_0)
|
|
159
|
+
x3_0 = self.conv3_0(x2_0)
|
|
160
|
+
x4_0 = self.conv4_0(x3_0)
|
|
161
|
+
x5_0 = self.conv5_0(x4_0)
|
|
162
|
+
|
|
163
|
+
identity = torch.eye(3,4).repeat(x5_0.shape[0],1,1).type_as(x5_0)
|
|
164
|
+
b,c,h,w,d = x5_0.shape
|
|
165
|
+
x5_0_faltten = rearrange(x5_0,'b c h w d-> b (h w d) c')
|
|
166
|
+
x5_0_faltten = self.attention1(self.LN1(x5_0_faltten)) + x5_0_faltten
|
|
167
|
+
x5_0_faltten = self.mlp1(self.LN2(x5_0_faltten)) + x5_0_faltten
|
|
168
|
+
x5_0_faltten = self.attention2(self.LN3(x5_0_faltten)) + x5_0_faltten
|
|
169
|
+
x5_0_faltten = self.mlp2(self.LN4(x5_0_faltten)) + x5_0_faltten
|
|
170
|
+
|
|
171
|
+
affine = self.head(x5_0_faltten.mean(dim=1)).reshape(-1, 3, 4) + identity
|
|
172
|
+
x5_0 = rearrange(x5_0_faltten,'b (h w d) c -> b c h w d',h=h,w=w,d=d)
|
|
173
|
+
|
|
174
|
+
x0_0_warp = torch.nn.functional.affine_grid(affine, input.size(), align_corners=False)
|
|
175
|
+
mod = self.head2(torch.Tensor([weight]).type_as(x0_0_warp))
|
|
176
|
+
mod = torch.split(mod,np.repeat(self.nb_filter[:-1],2).tolist(),0)
|
|
177
|
+
|
|
178
|
+
x4_1 = self.conv4_1(torch.cat([x4_0, self.up(x5_0)], 1))*mod[-1].reshape(1,-1,1,1,1)+ mod[-2].reshape(1,-1,1,1,1)
|
|
179
|
+
x3_1 = self.conv3_1(torch.cat([x3_0, self.up(x4_1)], 1))*mod[-3].reshape(1,-1,1,1,1) + mod[-4].reshape(1,-1,1,1,1)
|
|
180
|
+
x2_1 = self.conv2_1(torch.cat([x2_0, self.up(x3_1)], 1))*mod[-5].reshape(1,-1,1,1,1)+ mod[-6].reshape(1,-1,1,1,1)
|
|
181
|
+
x1_1 = self.conv1_1(torch.cat([x1_0, self.up(x2_1)], 1))*mod[-7].reshape(1,-1,1,1,1)+ mod[-8].reshape(1,-1,1,1,1)
|
|
182
|
+
x0_1 = self.conv0_1(torch.cat([x0_0, self.up(x1_1)], 1))*mod[-9].reshape(1,-1,1,1,1)+ mod[-10].reshape(1,-1,1,1,1)
|
|
183
|
+
|
|
184
|
+
output = self.final(x0_1)
|
|
185
|
+
output_upsampled = torch.nn.functional.interpolate(output, size=[256, 256, 256],mode='trilinear', align_corners=False)
|
|
186
|
+
norm = input*255 * output_upsampled
|
|
187
|
+
mni_norm = torch.nn.functional.grid_sample(norm, x0_0_warp, align_corners=False)
|
|
188
|
+
|
|
189
|
+
return mni_norm,norm,output_upsampled
|
|
190
|
+
class NPP(LightningModule):
|
|
191
|
+
def __init__(
|
|
192
|
+
self,
|
|
193
|
+
lr,
|
|
194
|
+
):
|
|
195
|
+
super().__init__()
|
|
196
|
+
self.save_hyperparameters()
|
|
197
|
+
|
|
198
|
+
# networks
|
|
199
|
+
self.generator = UNet()
|
|
200
|
+
|
|
201
|
+
self.ssim7 = SSIM3D(window_size=5)
|
|
202
|
+
self.mse = nn.L1Loss()
|
|
203
|
+
self.grad = Grad('l1')
|
|
204
|
+
self.automatic_optimization = False
|
|
205
|
+
|
|
206
|
+
|
|
207
|
+
def forward(self, x,ind = None):
|
|
208
|
+
return self.generator(x,ind)
|
|
209
|
+
|
|
210
|
+
def training_step(self, batch, batch_idx):
|
|
211
|
+
imgs, gts,brain_mask, ind = batch
|
|
212
|
+
opt = self.optimizers()
|
|
213
|
+
sch = self.lr_schedulers()
|
|
214
|
+
# train generator
|
|
215
|
+
# generate images
|
|
216
|
+
weight = np.random.uniform(2,-4)
|
|
217
|
+
self.generated_imgs = self(imgs,weight)
|
|
218
|
+
|
|
219
|
+
# log sampled images
|
|
220
|
+
loss_ssim_7 = -self.ssim7(self.generated_imgs[1], gts)
|
|
221
|
+
|
|
222
|
+
grad_loss = self.grad(self.generated_imgs[0])
|
|
223
|
+
|
|
224
|
+
loss = loss_ssim_7 + grad_loss*10**weight
|
|
225
|
+
opt.zero_grad()
|
|
226
|
+
|
|
227
|
+
self.manual_backward(loss)
|
|
228
|
+
opt.step()
|
|
229
|
+
|
|
230
|
+
if self.trainer.is_last_batch:
|
|
231
|
+
sch.step()
|
|
232
|
+
|
|
233
|
+
self.log("tv_train" , grad_loss,prog_bar=True, sync_dist=True)
|
|
234
|
+
self.log("ssim_7_train" , loss_ssim_7,prog_bar=True, sync_dist=True)
|
|
235
|
+
return loss
|
|
236
|
+
|
|
237
|
+
def configure_optimizers(self):
|
|
238
|
+
lr = self.hparams.lr
|
|
239
|
+
my_list = []
|
|
240
|
+
sparse_params = list(filter(lambda kv: kv[0] in my_list, self.generator.named_parameters()))
|
|
241
|
+
sparse_params = [i[1] for i in sparse_params]
|
|
242
|
+
base_params = list(filter(lambda kv: kv[0] not in my_list, self.generator.named_parameters()))
|
|
243
|
+
base_params = [i[1] for i in base_params]
|
|
244
|
+
|
|
245
|
+
base_params = [{"params": base_params},]
|
|
246
|
+
sparse_params = [{"params": sparse_params},]
|
|
247
|
+
|
|
248
|
+
optimizer = torch.optim.Adam(base_params, lr=lr)
|
|
249
|
+
|
|
250
|
+
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[30], gamma=0.5)
|
|
251
|
+
return [optimizer], [lr_scheduler,]
|
|
252
|
+
|
|
253
|
+
def validation_step(self, batch, batch_idx):
|
|
254
|
+
imgs, gts,brain_mask,ind = batch
|
|
255
|
+
|
|
256
|
+
# train generator
|
|
257
|
+
self.generated_imgs = self(imgs,0.1)
|
|
258
|
+
|
|
259
|
+
grad_loss = self.grad(self.generated_imgs[0])
|
|
260
|
+
loss_ssim_7 = -self.ssim7(self.generated_imgs[1],gts)
|
|
261
|
+
loss = grad_loss + loss_ssim_7
|
|
262
|
+
self.log("tv_val", grad_loss,prog_bar=True, sync_dist=True )
|
|
263
|
+
self.log("ssim_7_val", loss_ssim_7,prog_bar=True, sync_dist=True )
|
|
264
|
+
|
|
265
|
+
return loss
|
|
266
|
+
|
|
267
|
+
|
|
268
|
+
|
|
269
|
+
|
|
270
|
+
|
|
271
|
+
|
|
272
|
+
|