diffusers 0.29.2__py3-none-any.whl → 0.30.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (220) hide show
  1. diffusers/__init__.py +94 -3
  2. diffusers/commands/env.py +1 -5
  3. diffusers/configuration_utils.py +4 -9
  4. diffusers/dependency_versions_table.py +2 -2
  5. diffusers/image_processor.py +1 -2
  6. diffusers/loaders/__init__.py +17 -2
  7. diffusers/loaders/ip_adapter.py +10 -7
  8. diffusers/loaders/lora_base.py +752 -0
  9. diffusers/loaders/lora_pipeline.py +2222 -0
  10. diffusers/loaders/peft.py +213 -5
  11. diffusers/loaders/single_file.py +1 -12
  12. diffusers/loaders/single_file_model.py +31 -10
  13. diffusers/loaders/single_file_utils.py +262 -2
  14. diffusers/loaders/textual_inversion.py +1 -6
  15. diffusers/loaders/unet.py +23 -208
  16. diffusers/models/__init__.py +20 -0
  17. diffusers/models/activations.py +22 -0
  18. diffusers/models/attention.py +386 -7
  19. diffusers/models/attention_processor.py +1795 -629
  20. diffusers/models/autoencoders/__init__.py +2 -0
  21. diffusers/models/autoencoders/autoencoder_kl.py +14 -3
  22. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1035 -0
  23. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
  24. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  25. diffusers/models/autoencoders/autoencoder_tiny.py +1 -0
  26. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  27. diffusers/models/autoencoders/vq_model.py +4 -4
  28. diffusers/models/controlnet.py +2 -3
  29. diffusers/models/controlnet_hunyuan.py +401 -0
  30. diffusers/models/controlnet_sd3.py +11 -11
  31. diffusers/models/controlnet_sparsectrl.py +789 -0
  32. diffusers/models/controlnet_xs.py +40 -10
  33. diffusers/models/downsampling.py +68 -0
  34. diffusers/models/embeddings.py +319 -36
  35. diffusers/models/model_loading_utils.py +1 -3
  36. diffusers/models/modeling_flax_utils.py +1 -6
  37. diffusers/models/modeling_utils.py +4 -16
  38. diffusers/models/normalization.py +203 -12
  39. diffusers/models/transformers/__init__.py +6 -0
  40. diffusers/models/transformers/auraflow_transformer_2d.py +527 -0
  41. diffusers/models/transformers/cogvideox_transformer_3d.py +345 -0
  42. diffusers/models/transformers/hunyuan_transformer_2d.py +19 -15
  43. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  44. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  45. diffusers/models/transformers/pixart_transformer_2d.py +102 -1
  46. diffusers/models/transformers/prior_transformer.py +1 -1
  47. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  48. diffusers/models/transformers/transformer_flux.py +455 -0
  49. diffusers/models/transformers/transformer_sd3.py +18 -4
  50. diffusers/models/unets/unet_1d_blocks.py +1 -1
  51. diffusers/models/unets/unet_2d_condition.py +8 -1
  52. diffusers/models/unets/unet_3d_blocks.py +51 -920
  53. diffusers/models/unets/unet_3d_condition.py +4 -1
  54. diffusers/models/unets/unet_i2vgen_xl.py +4 -1
  55. diffusers/models/unets/unet_kandinsky3.py +1 -1
  56. diffusers/models/unets/unet_motion_model.py +1330 -84
  57. diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
  58. diffusers/models/unets/unet_stable_cascade.py +1 -3
  59. diffusers/models/unets/uvit_2d.py +1 -1
  60. diffusers/models/upsampling.py +64 -0
  61. diffusers/models/vq_model.py +8 -4
  62. diffusers/optimization.py +1 -1
  63. diffusers/pipelines/__init__.py +100 -3
  64. diffusers/pipelines/animatediff/__init__.py +4 -0
  65. diffusers/pipelines/animatediff/pipeline_animatediff.py +50 -40
  66. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1076 -0
  67. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +17 -27
  68. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1008 -0
  69. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +51 -38
  70. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  71. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +1 -0
  72. diffusers/pipelines/aura_flow/__init__.py +48 -0
  73. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +591 -0
  74. diffusers/pipelines/auto_pipeline.py +97 -19
  75. diffusers/pipelines/cogvideo/__init__.py +48 -0
  76. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +687 -0
  77. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  78. diffusers/pipelines/controlnet/pipeline_controlnet.py +24 -30
  79. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +31 -30
  80. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +24 -153
  81. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +19 -28
  82. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +18 -28
  83. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +29 -32
  84. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  85. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  86. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1042 -0
  87. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +35 -0
  88. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +10 -6
  89. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +0 -4
  90. diffusers/pipelines/deepfloyd_if/pipeline_if.py +2 -2
  91. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +2 -2
  92. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +2 -2
  93. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +2 -2
  94. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +2 -2
  95. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +2 -2
  96. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -6
  97. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -6
  98. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +6 -6
  99. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
  100. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -10
  101. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +10 -6
  102. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +3 -3
  103. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +1 -1
  104. diffusers/pipelines/flux/__init__.py +47 -0
  105. diffusers/pipelines/flux/pipeline_flux.py +749 -0
  106. diffusers/pipelines/flux/pipeline_output.py +21 -0
  107. diffusers/pipelines/free_init_utils.py +2 -0
  108. diffusers/pipelines/free_noise_utils.py +236 -0
  109. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +2 -2
  110. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +2 -2
  111. diffusers/pipelines/kolors/__init__.py +54 -0
  112. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  113. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1247 -0
  114. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  115. diffusers/pipelines/kolors/text_encoder.py +889 -0
  116. diffusers/pipelines/kolors/tokenizer.py +334 -0
  117. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +30 -29
  118. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +23 -29
  119. diffusers/pipelines/latte/__init__.py +48 -0
  120. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  121. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +4 -4
  122. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +0 -4
  123. diffusers/pipelines/lumina/__init__.py +48 -0
  124. diffusers/pipelines/lumina/pipeline_lumina.py +897 -0
  125. diffusers/pipelines/pag/__init__.py +67 -0
  126. diffusers/pipelines/pag/pag_utils.py +237 -0
  127. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1329 -0
  128. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1612 -0
  129. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +953 -0
  130. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  131. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +872 -0
  132. diffusers/pipelines/pag/pipeline_pag_sd.py +1050 -0
  133. diffusers/pipelines/pag/pipeline_pag_sd_3.py +985 -0
  134. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +862 -0
  135. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1333 -0
  136. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1529 -0
  137. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1753 -0
  138. diffusers/pipelines/pia/pipeline_pia.py +30 -37
  139. diffusers/pipelines/pipeline_flax_utils.py +4 -9
  140. diffusers/pipelines/pipeline_loading_utils.py +0 -3
  141. diffusers/pipelines/pipeline_utils.py +2 -14
  142. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +0 -1
  143. diffusers/pipelines/stable_audio/__init__.py +50 -0
  144. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  145. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +745 -0
  146. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +2 -0
  147. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  148. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +23 -29
  149. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +15 -8
  150. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +30 -29
  151. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +23 -152
  152. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +8 -4
  153. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +11 -11
  154. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +8 -6
  155. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +6 -6
  156. diffusers/pipelines/stable_diffusion_3/__init__.py +2 -0
  157. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +34 -3
  158. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +33 -7
  159. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1201 -0
  160. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +3 -3
  161. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +6 -6
  162. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -5
  163. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +5 -5
  164. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +6 -6
  165. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +0 -4
  166. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +23 -29
  167. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +27 -29
  168. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +3 -3
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +17 -27
  170. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +26 -29
  171. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +17 -145
  172. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +0 -4
  173. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +6 -6
  174. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -28
  175. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +8 -6
  176. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +8 -6
  177. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +6 -4
  178. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +0 -4
  179. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
  180. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  181. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -4
  182. diffusers/schedulers/__init__.py +8 -0
  183. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  184. diffusers/schedulers/scheduling_ddim.py +1 -1
  185. diffusers/schedulers/scheduling_ddim_cogvideox.py +449 -0
  186. diffusers/schedulers/scheduling_ddpm.py +1 -1
  187. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -1
  188. diffusers/schedulers/scheduling_deis_multistep.py +2 -2
  189. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  190. diffusers/schedulers/scheduling_dpmsolver_multistep.py +1 -1
  191. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +1 -1
  192. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +64 -19
  193. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +2 -2
  194. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +63 -39
  195. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +321 -0
  196. diffusers/schedulers/scheduling_ipndm.py +1 -1
  197. diffusers/schedulers/scheduling_unipc_multistep.py +1 -1
  198. diffusers/schedulers/scheduling_utils.py +1 -3
  199. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  200. diffusers/training_utils.py +99 -14
  201. diffusers/utils/__init__.py +2 -2
  202. diffusers/utils/dummy_pt_objects.py +210 -0
  203. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  204. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  205. diffusers/utils/dummy_torch_and_transformers_objects.py +315 -0
  206. diffusers/utils/dynamic_modules_utils.py +1 -11
  207. diffusers/utils/export_utils.py +1 -4
  208. diffusers/utils/hub_utils.py +45 -42
  209. diffusers/utils/import_utils.py +19 -16
  210. diffusers/utils/loading_utils.py +76 -3
  211. diffusers/utils/testing_utils.py +11 -8
  212. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/METADATA +73 -83
  213. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/RECORD +217 -164
  214. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/WHEEL +1 -1
  215. diffusers/loaders/autoencoder.py +0 -146
  216. diffusers/loaders/controlnet.py +0 -136
  217. diffusers/loaders/lora.py +0 -1728
  218. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/LICENSE +0 -0
  219. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/entry_points.txt +0 -0
  220. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/top_level.txt +0 -0
@@ -75,7 +75,7 @@ class WuerstchenPrior(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, Peft
75
75
 
76
76
  def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
77
77
  if hasattr(module, "get_processor"):
78
- processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
78
+ processors[f"{name}.processor"] = module.get_processor()
79
79
 
80
80
  for sub_name, child in module.named_children():
81
81
  fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
@@ -20,7 +20,7 @@ import numpy as np
20
20
  import torch
21
21
  from transformers import CLIPTextModel, CLIPTokenizer
22
22
 
23
- from ...loaders import LoraLoaderMixin
23
+ from ...loaders import StableDiffusionLoraLoaderMixin
24
24
  from ...schedulers import DDPMWuerstchenScheduler
25
25
  from ...utils import BaseOutput, deprecate, logging, replace_example_docstring
26
26
  from ...utils.torch_utils import randn_tensor
@@ -62,7 +62,7 @@ class WuerstchenPriorPipelineOutput(BaseOutput):
62
62
  image_embeddings: Union[torch.Tensor, np.ndarray]
63
63
 
64
64
 
65
- class WuerstchenPriorPipeline(DiffusionPipeline, LoraLoaderMixin):
65
+ class WuerstchenPriorPipeline(DiffusionPipeline, StableDiffusionLoraLoaderMixin):
66
66
  """
67
67
  Pipeline for generating image prior for Wuerstchen.
68
68
 
@@ -70,8 +70,8 @@ class WuerstchenPriorPipeline(DiffusionPipeline, LoraLoaderMixin):
70
70
  library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
71
71
 
72
72
  The pipeline also inherits the following loading methods:
73
- - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
74
- - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
73
+ - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
74
+ - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
75
75
 
76
76
  Args:
77
77
  prior ([`Prior`]):
@@ -95,6 +95,7 @@ class WuerstchenPriorPipeline(DiffusionPipeline, LoraLoaderMixin):
95
95
  text_encoder_name = "text_encoder"
96
96
  model_cpu_offload_seq = "text_encoder->prior"
97
97
  _callback_tensor_inputs = ["latents", "text_encoder_hidden_states", "negative_prompt_embeds"]
98
+ _lora_loadable_modules = ["prior", "text_encoder"]
98
99
 
99
100
  def __init__(
100
101
  self,
@@ -43,12 +43,14 @@ else:
43
43
  _import_structure["scheduling_consistency_decoder"] = ["ConsistencyDecoderScheduler"]
44
44
  _import_structure["scheduling_consistency_models"] = ["CMStochasticIterativeScheduler"]
45
45
  _import_structure["scheduling_ddim"] = ["DDIMScheduler"]
46
+ _import_structure["scheduling_ddim_cogvideox"] = ["CogVideoXDDIMScheduler"]
46
47
  _import_structure["scheduling_ddim_inverse"] = ["DDIMInverseScheduler"]
47
48
  _import_structure["scheduling_ddim_parallel"] = ["DDIMParallelScheduler"]
48
49
  _import_structure["scheduling_ddpm"] = ["DDPMScheduler"]
49
50
  _import_structure["scheduling_ddpm_parallel"] = ["DDPMParallelScheduler"]
50
51
  _import_structure["scheduling_ddpm_wuerstchen"] = ["DDPMWuerstchenScheduler"]
51
52
  _import_structure["scheduling_deis_multistep"] = ["DEISMultistepScheduler"]
53
+ _import_structure["scheduling_dpm_cogvideox"] = ["CogVideoXDPMScheduler"]
52
54
  _import_structure["scheduling_dpmsolver_multistep"] = ["DPMSolverMultistepScheduler"]
53
55
  _import_structure["scheduling_dpmsolver_multistep_inverse"] = ["DPMSolverMultistepInverseScheduler"]
54
56
  _import_structure["scheduling_dpmsolver_singlestep"] = ["DPMSolverSinglestepScheduler"]
@@ -57,6 +59,7 @@ else:
57
59
  _import_structure["scheduling_euler_ancestral_discrete"] = ["EulerAncestralDiscreteScheduler"]
58
60
  _import_structure["scheduling_euler_discrete"] = ["EulerDiscreteScheduler"]
59
61
  _import_structure["scheduling_flow_match_euler_discrete"] = ["FlowMatchEulerDiscreteScheduler"]
62
+ _import_structure["scheduling_flow_match_heun_discrete"] = ["FlowMatchHeunDiscreteScheduler"]
60
63
  _import_structure["scheduling_heun_discrete"] = ["HeunDiscreteScheduler"]
61
64
  _import_structure["scheduling_ipndm"] = ["IPNDMScheduler"]
62
65
  _import_structure["scheduling_k_dpm_2_ancestral_discrete"] = ["KDPM2AncestralDiscreteScheduler"]
@@ -117,6 +120,7 @@ except OptionalDependencyNotAvailable:
117
120
  _dummy_modules.update(get_objects_from_module(dummy_torch_and_torchsde_objects))
118
121
 
119
122
  else:
123
+ _import_structure["scheduling_cosine_dpmsolver_multistep"] = ["CosineDPMSolverMultistepScheduler"]
120
124
  _import_structure["scheduling_dpmsolver_sde"] = ["DPMSolverSDEScheduler"]
121
125
 
122
126
  if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
@@ -139,12 +143,14 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
139
143
  from .scheduling_consistency_decoder import ConsistencyDecoderScheduler
140
144
  from .scheduling_consistency_models import CMStochasticIterativeScheduler
141
145
  from .scheduling_ddim import DDIMScheduler
146
+ from .scheduling_ddim_cogvideox import CogVideoXDDIMScheduler
142
147
  from .scheduling_ddim_inverse import DDIMInverseScheduler
143
148
  from .scheduling_ddim_parallel import DDIMParallelScheduler
144
149
  from .scheduling_ddpm import DDPMScheduler
145
150
  from .scheduling_ddpm_parallel import DDPMParallelScheduler
146
151
  from .scheduling_ddpm_wuerstchen import DDPMWuerstchenScheduler
147
152
  from .scheduling_deis_multistep import DEISMultistepScheduler
153
+ from .scheduling_dpm_cogvideox import CogVideoXDPMScheduler
148
154
  from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
149
155
  from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler
150
156
  from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
@@ -153,6 +159,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
153
159
  from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
154
160
  from .scheduling_euler_discrete import EulerDiscreteScheduler
155
161
  from .scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
162
+ from .scheduling_flow_match_heun_discrete import FlowMatchHeunDiscreteScheduler
156
163
  from .scheduling_heun_discrete import HeunDiscreteScheduler
157
164
  from .scheduling_ipndm import IPNDMScheduler
158
165
  from .scheduling_k_dpm_2_ancestral_discrete import KDPM2AncestralDiscreteScheduler
@@ -203,6 +210,7 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
203
210
  except OptionalDependencyNotAvailable:
204
211
  from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403
205
212
  else:
213
+ from .scheduling_cosine_dpmsolver_multistep import CosineDPMSolverMultistepScheduler
206
214
  from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
207
215
 
208
216
  else:
@@ -0,0 +1,572 @@
1
+ # Copyright 2024 TSAIL Team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver and https://github.com/NVlabs/edm
16
+
17
+ import math
18
+ from typing import List, Optional, Tuple, Union
19
+
20
+ import numpy as np
21
+ import torch
22
+
23
+ from ..configuration_utils import ConfigMixin, register_to_config
24
+ from .scheduling_dpmsolver_sde import BrownianTreeNoiseSampler
25
+ from .scheduling_utils import SchedulerMixin, SchedulerOutput
26
+
27
+
28
+ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
29
+ """
30
+ Implements a variant of `DPMSolverMultistepScheduler` with cosine schedule, proposed by Nichol and Dhariwal (2021).
31
+ This scheduler was used in Stable Audio Open [1].
32
+
33
+ [1] Evans, Parker, et al. "Stable Audio Open" https://arxiv.org/abs/2407.14358
34
+
35
+ This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
36
+ methods the library implements for all schedulers such as loading and saving.
37
+
38
+ Args:
39
+ sigma_min (`float`, *optional*, defaults to 0.3):
40
+ Minimum noise magnitude in the sigma schedule. This was set to 0.3 in Stable Audio Open [1].
41
+ sigma_max (`float`, *optional*, defaults to 500):
42
+ Maximum noise magnitude in the sigma schedule. This was set to 500 in Stable Audio Open [1].
43
+ sigma_data (`float`, *optional*, defaults to 1.0):
44
+ The standard deviation of the data distribution. This is set to 1.0 in Stable Audio Open [1].
45
+ sigma_schedule (`str`, *optional*, defaults to `exponential`):
46
+ Sigma schedule to compute the `sigmas`. By default, we the schedule introduced in the EDM paper
47
+ (https://arxiv.org/abs/2206.00364). Other acceptable value is "exponential". The exponential schedule was
48
+ incorporated in this model: https://huggingface.co/stabilityai/cosxl.
49
+ num_train_timesteps (`int`, defaults to 1000):
50
+ The number of diffusion steps to train the model.
51
+ solver_order (`int`, defaults to 2):
52
+ The DPMSolver order which can be `1` or `2`. It is recommended to use `solver_order=2`.
53
+ prediction_type (`str`, defaults to `v_prediction`, *optional*):
54
+ Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
55
+ `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
56
+ Video](https://imagen.research.google/video/paper.pdf) paper).
57
+ solver_type (`str`, defaults to `midpoint`):
58
+ Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
59
+ sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
60
+ lower_order_final (`bool`, defaults to `True`):
61
+ Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
62
+ stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
63
+ euler_at_final (`bool`, defaults to `False`):
64
+ Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail
65
+ richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference
66
+ steps, but sometimes may result in blurring.
67
+ final_sigmas_type (`str`, defaults to `"zero"`):
68
+ The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
69
+ sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
70
+ """
71
+
72
+ _compatibles = []
73
+ order = 1
74
+
75
+ @register_to_config
76
+ def __init__(
77
+ self,
78
+ sigma_min: float = 0.3,
79
+ sigma_max: float = 500,
80
+ sigma_data: float = 1.0,
81
+ sigma_schedule: str = "exponential",
82
+ num_train_timesteps: int = 1000,
83
+ solver_order: int = 2,
84
+ prediction_type: str = "v_prediction",
85
+ rho: float = 7.0,
86
+ solver_type: str = "midpoint",
87
+ lower_order_final: bool = True,
88
+ euler_at_final: bool = False,
89
+ final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
90
+ ):
91
+ if solver_type not in ["midpoint", "heun"]:
92
+ if solver_type in ["logrho", "bh1", "bh2"]:
93
+ self.register_to_config(solver_type="midpoint")
94
+ else:
95
+ raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
96
+
97
+ ramp = torch.linspace(0, 1, num_train_timesteps)
98
+ if sigma_schedule == "karras":
99
+ sigmas = self._compute_karras_sigmas(ramp)
100
+ elif sigma_schedule == "exponential":
101
+ sigmas = self._compute_exponential_sigmas(ramp)
102
+
103
+ self.timesteps = self.precondition_noise(sigmas)
104
+
105
+ self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
106
+
107
+ # setable values
108
+ self.num_inference_steps = None
109
+ self.model_outputs = [None] * solver_order
110
+ self.lower_order_nums = 0
111
+ self._step_index = None
112
+ self._begin_index = None
113
+ self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
114
+
115
+ @property
116
+ def init_noise_sigma(self):
117
+ # standard deviation of the initial noise distribution
118
+ return (self.config.sigma_max**2 + 1) ** 0.5
119
+
120
+ @property
121
+ def step_index(self):
122
+ """
123
+ The index counter for current timestep. It will increase 1 after each scheduler step.
124
+ """
125
+ return self._step_index
126
+
127
+ @property
128
+ def begin_index(self):
129
+ """
130
+ The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
131
+ """
132
+ return self._begin_index
133
+
134
+ # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
135
+ def set_begin_index(self, begin_index: int = 0):
136
+ """
137
+ Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
138
+
139
+ Args:
140
+ begin_index (`int`):
141
+ The begin index for the scheduler.
142
+ """
143
+ self._begin_index = begin_index
144
+
145
+ # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_inputs
146
+ def precondition_inputs(self, sample, sigma):
147
+ c_in = 1 / ((sigma**2 + self.config.sigma_data**2) ** 0.5)
148
+ scaled_sample = sample * c_in
149
+ return scaled_sample
150
+
151
+ def precondition_noise(self, sigma):
152
+ if not isinstance(sigma, torch.Tensor):
153
+ sigma = torch.tensor([sigma])
154
+
155
+ return sigma.atan() / math.pi * 2
156
+
157
+ # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_outputs
158
+ def precondition_outputs(self, sample, model_output, sigma):
159
+ sigma_data = self.config.sigma_data
160
+ c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)
161
+
162
+ if self.config.prediction_type == "epsilon":
163
+ c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
164
+ elif self.config.prediction_type == "v_prediction":
165
+ c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
166
+ else:
167
+ raise ValueError(f"Prediction type {self.config.prediction_type} is not supported.")
168
+
169
+ denoised = c_skip * sample + c_out * model_output
170
+
171
+ return denoised
172
+
173
+ # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.scale_model_input
174
+ def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor:
175
+ """
176
+ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
177
+ current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
178
+
179
+ Args:
180
+ sample (`torch.Tensor`):
181
+ The input sample.
182
+ timestep (`int`, *optional*):
183
+ The current timestep in the diffusion chain.
184
+
185
+ Returns:
186
+ `torch.Tensor`:
187
+ A scaled input sample.
188
+ """
189
+ if self.step_index is None:
190
+ self._init_step_index(timestep)
191
+
192
+ sigma = self.sigmas[self.step_index]
193
+ sample = self.precondition_inputs(sample, sigma)
194
+
195
+ self.is_scale_input_called = True
196
+ return sample
197
+
198
+ def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
199
+ """
200
+ Sets the discrete timesteps used for the diffusion chain (to be run before inference).
201
+
202
+ Args:
203
+ num_inference_steps (`int`):
204
+ The number of diffusion steps used when generating samples with a pre-trained model.
205
+ device (`str` or `torch.device`, *optional*):
206
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
207
+ """
208
+
209
+ self.num_inference_steps = num_inference_steps
210
+
211
+ ramp = torch.linspace(0, 1, self.num_inference_steps)
212
+ if self.config.sigma_schedule == "karras":
213
+ sigmas = self._compute_karras_sigmas(ramp)
214
+ elif self.config.sigma_schedule == "exponential":
215
+ sigmas = self._compute_exponential_sigmas(ramp)
216
+
217
+ sigmas = sigmas.to(dtype=torch.float32, device=device)
218
+ self.timesteps = self.precondition_noise(sigmas)
219
+
220
+ if self.config.final_sigmas_type == "sigma_min":
221
+ sigma_last = self.config.sigma_min
222
+ elif self.config.final_sigmas_type == "zero":
223
+ sigma_last = 0
224
+ else:
225
+ raise ValueError(
226
+ f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
227
+ )
228
+
229
+ self.sigmas = torch.cat([sigmas, torch.tensor([sigma_last], dtype=torch.float32, device=device)])
230
+
231
+ self.model_outputs = [
232
+ None,
233
+ ] * self.config.solver_order
234
+ self.lower_order_nums = 0
235
+
236
+ # add an index counter for schedulers that allow duplicated timesteps
237
+ self._step_index = None
238
+ self._begin_index = None
239
+ self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
240
+
241
+ # if a noise sampler is used, reinitialise it
242
+ self.noise_sampler = None
243
+
244
+ # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_karras_sigmas
245
+ def _compute_karras_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:
246
+ """Constructs the noise schedule of Karras et al. (2022)."""
247
+ sigma_min = sigma_min or self.config.sigma_min
248
+ sigma_max = sigma_max or self.config.sigma_max
249
+
250
+ rho = self.config.rho
251
+ min_inv_rho = sigma_min ** (1 / rho)
252
+ max_inv_rho = sigma_max ** (1 / rho)
253
+ sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
254
+ return sigmas
255
+
256
+ # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_exponential_sigmas
257
+ def _compute_exponential_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:
258
+ """Implementation closely follows k-diffusion.
259
+
260
+ https://github.com/crowsonkb/k-diffusion/blob/6ab5146d4a5ef63901326489f31f1d8e7dd36b48/k_diffusion/sampling.py#L26
261
+ """
262
+ sigma_min = sigma_min or self.config.sigma_min
263
+ sigma_max = sigma_max or self.config.sigma_max
264
+ sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), len(ramp)).exp().flip(0)
265
+ return sigmas
266
+
267
+ # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
268
+ def _sigma_to_t(self, sigma, log_sigmas):
269
+ # get log sigma
270
+ log_sigma = np.log(np.maximum(sigma, 1e-10))
271
+
272
+ # get distribution
273
+ dists = log_sigma - log_sigmas[:, np.newaxis]
274
+
275
+ # get sigmas range
276
+ low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
277
+ high_idx = low_idx + 1
278
+
279
+ low = log_sigmas[low_idx]
280
+ high = log_sigmas[high_idx]
281
+
282
+ # interpolate sigmas
283
+ w = (low - log_sigma) / (low - high)
284
+ w = np.clip(w, 0, 1)
285
+
286
+ # transform interpolation to time range
287
+ t = (1 - w) * low_idx + w * high_idx
288
+ t = t.reshape(sigma.shape)
289
+ return t
290
+
291
+ def _sigma_to_alpha_sigma_t(self, sigma):
292
+ alpha_t = torch.tensor(1) # Inputs are pre-scaled before going into unet, so alpha_t = 1
293
+ sigma_t = sigma
294
+
295
+ return alpha_t, sigma_t
296
+
297
+ def convert_model_output(
298
+ self,
299
+ model_output: torch.Tensor,
300
+ sample: torch.Tensor = None,
301
+ ) -> torch.Tensor:
302
+ """
303
+ Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
304
+ designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
305
+ integral of the data prediction model.
306
+
307
+ <Tip>
308
+
309
+ The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
310
+ prediction and data prediction models.
311
+
312
+ </Tip>
313
+
314
+ Args:
315
+ model_output (`torch.Tensor`):
316
+ The direct output from the learned diffusion model.
317
+ sample (`torch.Tensor`):
318
+ A current instance of a sample created by the diffusion process.
319
+
320
+ Returns:
321
+ `torch.Tensor`:
322
+ The converted model output.
323
+ """
324
+ sigma = self.sigmas[self.step_index]
325
+ x0_pred = self.precondition_outputs(sample, model_output, sigma)
326
+
327
+ return x0_pred
328
+
329
+ def dpm_solver_first_order_update(
330
+ self,
331
+ model_output: torch.Tensor,
332
+ sample: torch.Tensor = None,
333
+ noise: Optional[torch.Tensor] = None,
334
+ ) -> torch.Tensor:
335
+ """
336
+ One step for the first-order DPMSolver (equivalent to DDIM).
337
+
338
+ Args:
339
+ model_output (`torch.Tensor`):
340
+ The direct output from the learned diffusion model.
341
+ sample (`torch.Tensor`):
342
+ A current instance of a sample created by the diffusion process.
343
+
344
+ Returns:
345
+ `torch.Tensor`:
346
+ The sample tensor at the previous timestep.
347
+ """
348
+ sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
349
+ alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
350
+ alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
351
+ lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
352
+ lambda_s = torch.log(alpha_s) - torch.log(sigma_s)
353
+
354
+ h = lambda_t - lambda_s
355
+ assert noise is not None
356
+ x_t = (
357
+ (sigma_t / sigma_s * torch.exp(-h)) * sample
358
+ + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
359
+ + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
360
+ )
361
+
362
+ return x_t
363
+
364
+ def multistep_dpm_solver_second_order_update(
365
+ self,
366
+ model_output_list: List[torch.Tensor],
367
+ sample: torch.Tensor = None,
368
+ noise: Optional[torch.Tensor] = None,
369
+ ) -> torch.Tensor:
370
+ """
371
+ One step for the second-order multistep DPMSolver.
372
+
373
+ Args:
374
+ model_output_list (`List[torch.Tensor]`):
375
+ The direct outputs from learned diffusion model at current and latter timesteps.
376
+ sample (`torch.Tensor`):
377
+ A current instance of a sample created by the diffusion process.
378
+
379
+ Returns:
380
+ `torch.Tensor`:
381
+ The sample tensor at the previous timestep.
382
+ """
383
+ sigma_t, sigma_s0, sigma_s1 = (
384
+ self.sigmas[self.step_index + 1],
385
+ self.sigmas[self.step_index],
386
+ self.sigmas[self.step_index - 1],
387
+ )
388
+
389
+ alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
390
+ alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
391
+ alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
392
+
393
+ lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
394
+ lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
395
+ lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
396
+
397
+ m0, m1 = model_output_list[-1], model_output_list[-2]
398
+
399
+ h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
400
+ r0 = h_0 / h
401
+ D0, D1 = m0, (1.0 / r0) * (m0 - m1)
402
+
403
+ # sde-dpmsolver++
404
+ assert noise is not None
405
+ if self.config.solver_type == "midpoint":
406
+ x_t = (
407
+ (sigma_t / sigma_s0 * torch.exp(-h)) * sample
408
+ + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
409
+ + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
410
+ + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
411
+ )
412
+ elif self.config.solver_type == "heun":
413
+ x_t = (
414
+ (sigma_t / sigma_s0 * torch.exp(-h)) * sample
415
+ + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
416
+ + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
417
+ + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
418
+ )
419
+
420
+ return x_t
421
+
422
+ # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
423
+ def index_for_timestep(self, timestep, schedule_timesteps=None):
424
+ if schedule_timesteps is None:
425
+ schedule_timesteps = self.timesteps
426
+
427
+ index_candidates = (schedule_timesteps == timestep).nonzero()
428
+
429
+ if len(index_candidates) == 0:
430
+ step_index = len(self.timesteps) - 1
431
+ # The sigma index that is taken for the **very** first `step`
432
+ # is always the second index (or the last index if there is only 1)
433
+ # This way we can ensure we don't accidentally skip a sigma in
434
+ # case we start in the middle of the denoising schedule (e.g. for image-to-image)
435
+ elif len(index_candidates) > 1:
436
+ step_index = index_candidates[1].item()
437
+ else:
438
+ step_index = index_candidates[0].item()
439
+
440
+ return step_index
441
+
442
+ # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
443
+ def _init_step_index(self, timestep):
444
+ """
445
+ Initialize the step_index counter for the scheduler.
446
+ """
447
+
448
+ if self.begin_index is None:
449
+ if isinstance(timestep, torch.Tensor):
450
+ timestep = timestep.to(self.timesteps.device)
451
+ self._step_index = self.index_for_timestep(timestep)
452
+ else:
453
+ self._step_index = self._begin_index
454
+
455
+ def step(
456
+ self,
457
+ model_output: torch.Tensor,
458
+ timestep: Union[int, torch.Tensor],
459
+ sample: torch.Tensor,
460
+ generator=None,
461
+ return_dict: bool = True,
462
+ ) -> Union[SchedulerOutput, Tuple]:
463
+ """
464
+ Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
465
+ the multistep DPMSolver.
466
+
467
+ Args:
468
+ model_output (`torch.Tensor`):
469
+ The direct output from learned diffusion model.
470
+ timestep (`int`):
471
+ The current discrete timestep in the diffusion chain.
472
+ sample (`torch.Tensor`):
473
+ A current instance of a sample created by the diffusion process.
474
+ generator (`torch.Generator`, *optional*):
475
+ A random number generator.
476
+ return_dict (`bool`):
477
+ Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
478
+
479
+ Returns:
480
+ [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
481
+ If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
482
+ tuple is returned where the first element is the sample tensor.
483
+
484
+ """
485
+ if self.num_inference_steps is None:
486
+ raise ValueError(
487
+ "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
488
+ )
489
+
490
+ if self.step_index is None:
491
+ self._init_step_index(timestep)
492
+
493
+ # Improve numerical stability for small number of steps
494
+ lower_order_final = (self.step_index == len(self.timesteps) - 1) and (
495
+ self.config.euler_at_final
496
+ or (self.config.lower_order_final and len(self.timesteps) < 15)
497
+ or self.config.final_sigmas_type == "zero"
498
+ )
499
+ lower_order_second = (
500
+ (self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15
501
+ )
502
+
503
+ model_output = self.convert_model_output(model_output, sample=sample)
504
+ for i in range(self.config.solver_order - 1):
505
+ self.model_outputs[i] = self.model_outputs[i + 1]
506
+ self.model_outputs[-1] = model_output
507
+
508
+ if self.noise_sampler is None:
509
+ seed = None
510
+ if generator is not None:
511
+ seed = (
512
+ [g.initial_seed() for g in generator] if isinstance(generator, list) else generator.initial_seed()
513
+ )
514
+ self.noise_sampler = BrownianTreeNoiseSampler(
515
+ model_output, sigma_min=self.config.sigma_min, sigma_max=self.config.sigma_max, seed=seed
516
+ )
517
+ noise = self.noise_sampler(self.sigmas[self.step_index], self.sigmas[self.step_index + 1]).to(
518
+ model_output.device
519
+ )
520
+
521
+ if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
522
+ prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise)
523
+ elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
524
+ prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise)
525
+
526
+ if self.lower_order_nums < self.config.solver_order:
527
+ self.lower_order_nums += 1
528
+
529
+ # upon completion increase step index by one
530
+ self._step_index += 1
531
+
532
+ if not return_dict:
533
+ return (prev_sample,)
534
+
535
+ return SchedulerOutput(prev_sample=prev_sample)
536
+
537
+ # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
538
+ def add_noise(
539
+ self,
540
+ original_samples: torch.Tensor,
541
+ noise: torch.Tensor,
542
+ timesteps: torch.Tensor,
543
+ ) -> torch.Tensor:
544
+ # Make sure sigmas and timesteps have the same device and dtype as original_samples
545
+ sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
546
+ if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
547
+ # mps does not support float64
548
+ schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
549
+ timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
550
+ else:
551
+ schedule_timesteps = self.timesteps.to(original_samples.device)
552
+ timesteps = timesteps.to(original_samples.device)
553
+
554
+ # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
555
+ if self.begin_index is None:
556
+ step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
557
+ elif self.step_index is not None:
558
+ # add_noise is called after first denoising step (for inpainting)
559
+ step_indices = [self.step_index] * timesteps.shape[0]
560
+ else:
561
+ # add noise is called before first denoising step to create initial latent(img2img)
562
+ step_indices = [self.begin_index] * timesteps.shape[0]
563
+
564
+ sigma = sigmas[step_indices].flatten()
565
+ while len(sigma.shape) < len(original_samples.shape):
566
+ sigma = sigma.unsqueeze(-1)
567
+
568
+ noisy_samples = original_samples + noise * sigma
569
+ return noisy_samples
570
+
571
+ def __len__(self):
572
+ return self.config.num_train_timesteps