diffusers 0.29.2__py3-none-any.whl → 0.30.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (220) hide show
  1. diffusers/__init__.py +94 -3
  2. diffusers/commands/env.py +1 -5
  3. diffusers/configuration_utils.py +4 -9
  4. diffusers/dependency_versions_table.py +2 -2
  5. diffusers/image_processor.py +1 -2
  6. diffusers/loaders/__init__.py +17 -2
  7. diffusers/loaders/ip_adapter.py +10 -7
  8. diffusers/loaders/lora_base.py +752 -0
  9. diffusers/loaders/lora_pipeline.py +2222 -0
  10. diffusers/loaders/peft.py +213 -5
  11. diffusers/loaders/single_file.py +1 -12
  12. diffusers/loaders/single_file_model.py +31 -10
  13. diffusers/loaders/single_file_utils.py +262 -2
  14. diffusers/loaders/textual_inversion.py +1 -6
  15. diffusers/loaders/unet.py +23 -208
  16. diffusers/models/__init__.py +20 -0
  17. diffusers/models/activations.py +22 -0
  18. diffusers/models/attention.py +386 -7
  19. diffusers/models/attention_processor.py +1795 -629
  20. diffusers/models/autoencoders/__init__.py +2 -0
  21. diffusers/models/autoencoders/autoencoder_kl.py +14 -3
  22. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1035 -0
  23. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
  24. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  25. diffusers/models/autoencoders/autoencoder_tiny.py +1 -0
  26. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  27. diffusers/models/autoencoders/vq_model.py +4 -4
  28. diffusers/models/controlnet.py +2 -3
  29. diffusers/models/controlnet_hunyuan.py +401 -0
  30. diffusers/models/controlnet_sd3.py +11 -11
  31. diffusers/models/controlnet_sparsectrl.py +789 -0
  32. diffusers/models/controlnet_xs.py +40 -10
  33. diffusers/models/downsampling.py +68 -0
  34. diffusers/models/embeddings.py +319 -36
  35. diffusers/models/model_loading_utils.py +1 -3
  36. diffusers/models/modeling_flax_utils.py +1 -6
  37. diffusers/models/modeling_utils.py +4 -16
  38. diffusers/models/normalization.py +203 -12
  39. diffusers/models/transformers/__init__.py +6 -0
  40. diffusers/models/transformers/auraflow_transformer_2d.py +527 -0
  41. diffusers/models/transformers/cogvideox_transformer_3d.py +345 -0
  42. diffusers/models/transformers/hunyuan_transformer_2d.py +19 -15
  43. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  44. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  45. diffusers/models/transformers/pixart_transformer_2d.py +102 -1
  46. diffusers/models/transformers/prior_transformer.py +1 -1
  47. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  48. diffusers/models/transformers/transformer_flux.py +455 -0
  49. diffusers/models/transformers/transformer_sd3.py +18 -4
  50. diffusers/models/unets/unet_1d_blocks.py +1 -1
  51. diffusers/models/unets/unet_2d_condition.py +8 -1
  52. diffusers/models/unets/unet_3d_blocks.py +51 -920
  53. diffusers/models/unets/unet_3d_condition.py +4 -1
  54. diffusers/models/unets/unet_i2vgen_xl.py +4 -1
  55. diffusers/models/unets/unet_kandinsky3.py +1 -1
  56. diffusers/models/unets/unet_motion_model.py +1330 -84
  57. diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
  58. diffusers/models/unets/unet_stable_cascade.py +1 -3
  59. diffusers/models/unets/uvit_2d.py +1 -1
  60. diffusers/models/upsampling.py +64 -0
  61. diffusers/models/vq_model.py +8 -4
  62. diffusers/optimization.py +1 -1
  63. diffusers/pipelines/__init__.py +100 -3
  64. diffusers/pipelines/animatediff/__init__.py +4 -0
  65. diffusers/pipelines/animatediff/pipeline_animatediff.py +50 -40
  66. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1076 -0
  67. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +17 -27
  68. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1008 -0
  69. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +51 -38
  70. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  71. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +1 -0
  72. diffusers/pipelines/aura_flow/__init__.py +48 -0
  73. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +591 -0
  74. diffusers/pipelines/auto_pipeline.py +97 -19
  75. diffusers/pipelines/cogvideo/__init__.py +48 -0
  76. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +687 -0
  77. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  78. diffusers/pipelines/controlnet/pipeline_controlnet.py +24 -30
  79. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +31 -30
  80. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +24 -153
  81. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +19 -28
  82. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +18 -28
  83. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +29 -32
  84. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  85. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  86. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1042 -0
  87. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +35 -0
  88. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +10 -6
  89. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +0 -4
  90. diffusers/pipelines/deepfloyd_if/pipeline_if.py +2 -2
  91. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +2 -2
  92. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +2 -2
  93. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +2 -2
  94. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +2 -2
  95. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +2 -2
  96. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -6
  97. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -6
  98. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +6 -6
  99. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
  100. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -10
  101. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +10 -6
  102. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +3 -3
  103. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +1 -1
  104. diffusers/pipelines/flux/__init__.py +47 -0
  105. diffusers/pipelines/flux/pipeline_flux.py +749 -0
  106. diffusers/pipelines/flux/pipeline_output.py +21 -0
  107. diffusers/pipelines/free_init_utils.py +2 -0
  108. diffusers/pipelines/free_noise_utils.py +236 -0
  109. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +2 -2
  110. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +2 -2
  111. diffusers/pipelines/kolors/__init__.py +54 -0
  112. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  113. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1247 -0
  114. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  115. diffusers/pipelines/kolors/text_encoder.py +889 -0
  116. diffusers/pipelines/kolors/tokenizer.py +334 -0
  117. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +30 -29
  118. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +23 -29
  119. diffusers/pipelines/latte/__init__.py +48 -0
  120. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  121. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +4 -4
  122. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +0 -4
  123. diffusers/pipelines/lumina/__init__.py +48 -0
  124. diffusers/pipelines/lumina/pipeline_lumina.py +897 -0
  125. diffusers/pipelines/pag/__init__.py +67 -0
  126. diffusers/pipelines/pag/pag_utils.py +237 -0
  127. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1329 -0
  128. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1612 -0
  129. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +953 -0
  130. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  131. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +872 -0
  132. diffusers/pipelines/pag/pipeline_pag_sd.py +1050 -0
  133. diffusers/pipelines/pag/pipeline_pag_sd_3.py +985 -0
  134. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +862 -0
  135. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1333 -0
  136. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1529 -0
  137. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1753 -0
  138. diffusers/pipelines/pia/pipeline_pia.py +30 -37
  139. diffusers/pipelines/pipeline_flax_utils.py +4 -9
  140. diffusers/pipelines/pipeline_loading_utils.py +0 -3
  141. diffusers/pipelines/pipeline_utils.py +2 -14
  142. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +0 -1
  143. diffusers/pipelines/stable_audio/__init__.py +50 -0
  144. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  145. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +745 -0
  146. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +2 -0
  147. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  148. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +23 -29
  149. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +15 -8
  150. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +30 -29
  151. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +23 -152
  152. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +8 -4
  153. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +11 -11
  154. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +8 -6
  155. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +6 -6
  156. diffusers/pipelines/stable_diffusion_3/__init__.py +2 -0
  157. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +34 -3
  158. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +33 -7
  159. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1201 -0
  160. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +3 -3
  161. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +6 -6
  162. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -5
  163. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +5 -5
  164. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +6 -6
  165. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +0 -4
  166. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +23 -29
  167. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +27 -29
  168. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +3 -3
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +17 -27
  170. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +26 -29
  171. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +17 -145
  172. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +0 -4
  173. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +6 -6
  174. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -28
  175. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +8 -6
  176. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +8 -6
  177. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +6 -4
  178. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +0 -4
  179. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
  180. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  181. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -4
  182. diffusers/schedulers/__init__.py +8 -0
  183. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  184. diffusers/schedulers/scheduling_ddim.py +1 -1
  185. diffusers/schedulers/scheduling_ddim_cogvideox.py +449 -0
  186. diffusers/schedulers/scheduling_ddpm.py +1 -1
  187. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -1
  188. diffusers/schedulers/scheduling_deis_multistep.py +2 -2
  189. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  190. diffusers/schedulers/scheduling_dpmsolver_multistep.py +1 -1
  191. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +1 -1
  192. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +64 -19
  193. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +2 -2
  194. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +63 -39
  195. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +321 -0
  196. diffusers/schedulers/scheduling_ipndm.py +1 -1
  197. diffusers/schedulers/scheduling_unipc_multistep.py +1 -1
  198. diffusers/schedulers/scheduling_utils.py +1 -3
  199. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  200. diffusers/training_utils.py +99 -14
  201. diffusers/utils/__init__.py +2 -2
  202. diffusers/utils/dummy_pt_objects.py +210 -0
  203. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  204. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  205. diffusers/utils/dummy_torch_and_transformers_objects.py +315 -0
  206. diffusers/utils/dynamic_modules_utils.py +1 -11
  207. diffusers/utils/export_utils.py +1 -4
  208. diffusers/utils/hub_utils.py +45 -42
  209. diffusers/utils/import_utils.py +19 -16
  210. diffusers/utils/loading_utils.py +76 -3
  211. diffusers/utils/testing_utils.py +11 -8
  212. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/METADATA +73 -83
  213. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/RECORD +217 -164
  214. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/WHEEL +1 -1
  215. diffusers/loaders/autoencoder.py +0 -146
  216. diffusers/loaders/controlnet.py +0 -136
  217. diffusers/loaders/lora.py +0 -1728
  218. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/LICENSE +0 -0
  219. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/entry_points.txt +0 -0
  220. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1247 @@
1
+ # Copyright 2024 Stability AI, Kwai-Kolors Team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import inspect
15
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
16
+
17
+ import PIL.Image
18
+ import torch
19
+ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
20
+
21
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
22
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
23
+ from ...loaders import IPAdapterMixin, StableDiffusionXLLoraLoaderMixin
24
+ from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
25
+ from ...models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor
26
+ from ...schedulers import KarrasDiffusionSchedulers
27
+ from ...utils import is_torch_xla_available, logging, replace_example_docstring
28
+ from ...utils.torch_utils import randn_tensor
29
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
30
+ from .pipeline_output import KolorsPipelineOutput
31
+ from .text_encoder import ChatGLMModel
32
+ from .tokenizer import ChatGLMTokenizer
33
+
34
+
35
+ if is_torch_xla_available():
36
+ import torch_xla.core.xla_model as xm
37
+
38
+ XLA_AVAILABLE = True
39
+ else:
40
+ XLA_AVAILABLE = False
41
+
42
+
43
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
44
+
45
+
46
+ EXAMPLE_DOC_STRING = """
47
+ Examples:
48
+ ```py
49
+ >>> import torch
50
+ >>> from diffusers import KolorsImg2ImgPipeline
51
+ >>> from diffusers.utils import load_image
52
+
53
+ >>> pipe = KolorsImg2ImgPipeline.from_pretrained(
54
+ ... "Kwai-Kolors/Kolors-diffusers", variant="fp16", torch_dtype=torch.float16
55
+ ... )
56
+ >>> pipe = pipe.to("cuda")
57
+ >>> url = (
58
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/kolors/bunny_source.png"
59
+ ... )
60
+
61
+
62
+ >>> init_image = load_image(url)
63
+ >>> prompt = "high quality image of a capybara wearing sunglasses. In the background of the image there are trees, poles, grass and other objects. At the bottom of the object there is the road., 8k, highly detailed."
64
+ >>> image = pipe(prompt, image=init_image).images[0]
65
+ ```
66
+ """
67
+
68
+
69
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
70
+ def retrieve_latents(
71
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
72
+ ):
73
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
74
+ return encoder_output.latent_dist.sample(generator)
75
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
76
+ return encoder_output.latent_dist.mode()
77
+ elif hasattr(encoder_output, "latents"):
78
+ return encoder_output.latents
79
+ else:
80
+ raise AttributeError("Could not access latents of provided encoder_output")
81
+
82
+
83
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
84
+ def retrieve_timesteps(
85
+ scheduler,
86
+ num_inference_steps: Optional[int] = None,
87
+ device: Optional[Union[str, torch.device]] = None,
88
+ timesteps: Optional[List[int]] = None,
89
+ sigmas: Optional[List[float]] = None,
90
+ **kwargs,
91
+ ):
92
+ """
93
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
94
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
95
+
96
+ Args:
97
+ scheduler (`SchedulerMixin`):
98
+ The scheduler to get timesteps from.
99
+ num_inference_steps (`int`):
100
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
101
+ must be `None`.
102
+ device (`str` or `torch.device`, *optional*):
103
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
104
+ timesteps (`List[int]`, *optional*):
105
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
106
+ `num_inference_steps` and `sigmas` must be `None`.
107
+ sigmas (`List[float]`, *optional*):
108
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
109
+ `num_inference_steps` and `timesteps` must be `None`.
110
+
111
+ Returns:
112
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
113
+ second element is the number of inference steps.
114
+ """
115
+ if timesteps is not None and sigmas is not None:
116
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
117
+ if timesteps is not None:
118
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
119
+ if not accepts_timesteps:
120
+ raise ValueError(
121
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
122
+ f" timestep schedules. Please check whether you are using the correct scheduler."
123
+ )
124
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
125
+ timesteps = scheduler.timesteps
126
+ num_inference_steps = len(timesteps)
127
+ elif sigmas is not None:
128
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
129
+ if not accept_sigmas:
130
+ raise ValueError(
131
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
132
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
133
+ )
134
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
135
+ timesteps = scheduler.timesteps
136
+ num_inference_steps = len(timesteps)
137
+ else:
138
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
139
+ timesteps = scheduler.timesteps
140
+ return timesteps, num_inference_steps
141
+
142
+
143
+ class KolorsImg2ImgPipeline(DiffusionPipeline, StableDiffusionMixin, StableDiffusionXLLoraLoaderMixin, IPAdapterMixin):
144
+ r"""
145
+ Pipeline for text-to-image generation using Kolors.
146
+
147
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
148
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
149
+
150
+ The pipeline also inherits the following loading methods:
151
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
152
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
153
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
154
+
155
+ Args:
156
+ vae ([`AutoencoderKL`]):
157
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
158
+ text_encoder ([`ChatGLMModel`]):
159
+ Frozen text-encoder. Kolors uses [ChatGLM3-6B](https://huggingface.co/THUDM/chatglm3-6b).
160
+ tokenizer (`ChatGLMTokenizer`):
161
+ Tokenizer of class
162
+ [ChatGLMTokenizer](https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py).
163
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
164
+ scheduler ([`SchedulerMixin`]):
165
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
166
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
167
+ force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"False"`):
168
+ Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
169
+ `Kwai-Kolors/Kolors-diffusers`.
170
+ """
171
+
172
+ model_cpu_offload_seq = "text_encoder->image_encoder-unet->vae"
173
+ _optional_components = [
174
+ "image_encoder",
175
+ "feature_extractor",
176
+ ]
177
+ _callback_tensor_inputs = [
178
+ "latents",
179
+ "prompt_embeds",
180
+ "negative_prompt_embeds",
181
+ "add_text_embeds",
182
+ "add_time_ids",
183
+ "negative_pooled_prompt_embeds",
184
+ "negative_add_time_ids",
185
+ ]
186
+
187
+ def __init__(
188
+ self,
189
+ vae: AutoencoderKL,
190
+ text_encoder: ChatGLMModel,
191
+ tokenizer: ChatGLMTokenizer,
192
+ unet: UNet2DConditionModel,
193
+ scheduler: KarrasDiffusionSchedulers,
194
+ image_encoder: CLIPVisionModelWithProjection = None,
195
+ feature_extractor: CLIPImageProcessor = None,
196
+ force_zeros_for_empty_prompt: bool = False,
197
+ ):
198
+ super().__init__()
199
+
200
+ self.register_modules(
201
+ vae=vae,
202
+ text_encoder=text_encoder,
203
+ tokenizer=tokenizer,
204
+ unet=unet,
205
+ scheduler=scheduler,
206
+ image_encoder=image_encoder,
207
+ feature_extractor=feature_extractor,
208
+ )
209
+ self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
210
+ self.vae_scale_factor = (
211
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
212
+ )
213
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
214
+
215
+ self.default_sample_size = self.unet.config.sample_size
216
+
217
+ # Copied from diffusers.pipelines.kolors.pipeline_kolors.KolorsPipeline.encode_prompt
218
+ def encode_prompt(
219
+ self,
220
+ prompt,
221
+ device: Optional[torch.device] = None,
222
+ num_images_per_prompt: int = 1,
223
+ do_classifier_free_guidance: bool = True,
224
+ negative_prompt=None,
225
+ prompt_embeds: Optional[torch.FloatTensor] = None,
226
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
227
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
228
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
229
+ max_sequence_length: int = 256,
230
+ ):
231
+ r"""
232
+ Encodes the prompt into text encoder hidden states.
233
+
234
+ Args:
235
+ prompt (`str` or `List[str]`, *optional*):
236
+ prompt to be encoded
237
+ device: (`torch.device`):
238
+ torch device
239
+ num_images_per_prompt (`int`):
240
+ number of images that should be generated per prompt
241
+ do_classifier_free_guidance (`bool`):
242
+ whether to use classifier free guidance or not
243
+ negative_prompt (`str` or `List[str]`, *optional*):
244
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
245
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
246
+ less than `1`).
247
+ prompt_embeds (`torch.FloatTensor`, *optional*):
248
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
249
+ provided, text embeddings will be generated from `prompt` input argument.
250
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
251
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
252
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
253
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
254
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
255
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
256
+ argument.
257
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
258
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
259
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
260
+ input argument.
261
+ max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
262
+ """
263
+ # from IPython import embed; embed(); exit()
264
+ device = device or self._execution_device
265
+
266
+ if prompt is not None and isinstance(prompt, str):
267
+ batch_size = 1
268
+ elif prompt is not None and isinstance(prompt, list):
269
+ batch_size = len(prompt)
270
+ else:
271
+ batch_size = prompt_embeds.shape[0]
272
+
273
+ # Define tokenizers and text encoders
274
+ tokenizers = [self.tokenizer]
275
+ text_encoders = [self.text_encoder]
276
+
277
+ if prompt_embeds is None:
278
+ prompt_embeds_list = []
279
+ for tokenizer, text_encoder in zip(tokenizers, text_encoders):
280
+ text_inputs = tokenizer(
281
+ prompt,
282
+ padding="max_length",
283
+ max_length=max_sequence_length,
284
+ truncation=True,
285
+ return_tensors="pt",
286
+ ).to(device)
287
+ output = text_encoder(
288
+ input_ids=text_inputs["input_ids"],
289
+ attention_mask=text_inputs["attention_mask"],
290
+ position_ids=text_inputs["position_ids"],
291
+ output_hidden_states=True,
292
+ )
293
+
294
+ # [max_sequence_length, batch, hidden_size] -> [batch, max_sequence_length, hidden_size]
295
+ # clone to have a contiguous tensor
296
+ prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
297
+ # [max_sequence_length, batch, hidden_size] -> [batch, hidden_size]
298
+ pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone()
299
+ bs_embed, seq_len, _ = prompt_embeds.shape
300
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
301
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
302
+
303
+ prompt_embeds_list.append(prompt_embeds)
304
+
305
+ prompt_embeds = prompt_embeds_list[0]
306
+
307
+ # get unconditional embeddings for classifier free guidance
308
+ zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
309
+
310
+ if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
311
+ negative_prompt_embeds = torch.zeros_like(prompt_embeds)
312
+ elif do_classifier_free_guidance and negative_prompt_embeds is None:
313
+ uncond_tokens: List[str]
314
+ if negative_prompt is None:
315
+ uncond_tokens = [""] * batch_size
316
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
317
+ raise TypeError(
318
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
319
+ f" {type(prompt)}."
320
+ )
321
+ elif isinstance(negative_prompt, str):
322
+ uncond_tokens = [negative_prompt]
323
+ elif batch_size != len(negative_prompt):
324
+ raise ValueError(
325
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
326
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
327
+ " the batch size of `prompt`."
328
+ )
329
+ else:
330
+ uncond_tokens = negative_prompt
331
+
332
+ negative_prompt_embeds_list = []
333
+
334
+ for tokenizer, text_encoder in zip(tokenizers, text_encoders):
335
+ uncond_input = tokenizer(
336
+ uncond_tokens,
337
+ padding="max_length",
338
+ max_length=max_sequence_length,
339
+ truncation=True,
340
+ return_tensors="pt",
341
+ ).to(device)
342
+ output = text_encoder(
343
+ input_ids=uncond_input["input_ids"],
344
+ attention_mask=uncond_input["attention_mask"],
345
+ position_ids=uncond_input["position_ids"],
346
+ output_hidden_states=True,
347
+ )
348
+
349
+ # [max_sequence_length, batch, hidden_size] -> [batch, max_sequence_length, hidden_size]
350
+ # clone to have a contiguous tensor
351
+ negative_prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
352
+ # [max_sequence_length, batch, hidden_size] -> [batch, hidden_size]
353
+ negative_pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone()
354
+
355
+ if do_classifier_free_guidance:
356
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
357
+ seq_len = negative_prompt_embeds.shape[1]
358
+
359
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device)
360
+
361
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
362
+ negative_prompt_embeds = negative_prompt_embeds.view(
363
+ batch_size * num_images_per_prompt, seq_len, -1
364
+ )
365
+
366
+ negative_prompt_embeds_list.append(negative_prompt_embeds)
367
+
368
+ negative_prompt_embeds = negative_prompt_embeds_list[0]
369
+
370
+ bs_embed = pooled_prompt_embeds.shape[0]
371
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
372
+ bs_embed * num_images_per_prompt, -1
373
+ )
374
+
375
+ if do_classifier_free_guidance:
376
+ negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
377
+ bs_embed * num_images_per_prompt, -1
378
+ )
379
+
380
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
381
+
382
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
383
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
384
+ dtype = next(self.image_encoder.parameters()).dtype
385
+
386
+ if not isinstance(image, torch.Tensor):
387
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
388
+
389
+ image = image.to(device=device, dtype=dtype)
390
+ if output_hidden_states:
391
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
392
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
393
+ uncond_image_enc_hidden_states = self.image_encoder(
394
+ torch.zeros_like(image), output_hidden_states=True
395
+ ).hidden_states[-2]
396
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
397
+ num_images_per_prompt, dim=0
398
+ )
399
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
400
+ else:
401
+ image_embeds = self.image_encoder(image).image_embeds
402
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
403
+ uncond_image_embeds = torch.zeros_like(image_embeds)
404
+
405
+ return image_embeds, uncond_image_embeds
406
+
407
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
408
+ def prepare_ip_adapter_image_embeds(
409
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
410
+ ):
411
+ image_embeds = []
412
+ if do_classifier_free_guidance:
413
+ negative_image_embeds = []
414
+ if ip_adapter_image_embeds is None:
415
+ if not isinstance(ip_adapter_image, list):
416
+ ip_adapter_image = [ip_adapter_image]
417
+
418
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
419
+ raise ValueError(
420
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
421
+ )
422
+
423
+ for single_ip_adapter_image, image_proj_layer in zip(
424
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
425
+ ):
426
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
427
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
428
+ single_ip_adapter_image, device, 1, output_hidden_state
429
+ )
430
+
431
+ image_embeds.append(single_image_embeds[None, :])
432
+ if do_classifier_free_guidance:
433
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
434
+ else:
435
+ for single_image_embeds in ip_adapter_image_embeds:
436
+ if do_classifier_free_guidance:
437
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
438
+ negative_image_embeds.append(single_negative_image_embeds)
439
+ image_embeds.append(single_image_embeds)
440
+
441
+ ip_adapter_image_embeds = []
442
+ for i, single_image_embeds in enumerate(image_embeds):
443
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
444
+ if do_classifier_free_guidance:
445
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
446
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
447
+
448
+ single_image_embeds = single_image_embeds.to(device=device)
449
+ ip_adapter_image_embeds.append(single_image_embeds)
450
+
451
+ return ip_adapter_image_embeds
452
+
453
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
454
+ def prepare_extra_step_kwargs(self, generator, eta):
455
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
456
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
457
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
458
+ # and should be between [0, 1]
459
+
460
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
461
+ extra_step_kwargs = {}
462
+ if accepts_eta:
463
+ extra_step_kwargs["eta"] = eta
464
+
465
+ # check if the scheduler accepts generator
466
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
467
+ if accepts_generator:
468
+ extra_step_kwargs["generator"] = generator
469
+ return extra_step_kwargs
470
+
471
+ def check_inputs(
472
+ self,
473
+ prompt,
474
+ strength,
475
+ num_inference_steps,
476
+ height,
477
+ width,
478
+ negative_prompt=None,
479
+ prompt_embeds=None,
480
+ pooled_prompt_embeds=None,
481
+ negative_prompt_embeds=None,
482
+ negative_pooled_prompt_embeds=None,
483
+ ip_adapter_image=None,
484
+ ip_adapter_image_embeds=None,
485
+ callback_on_step_end_tensor_inputs=None,
486
+ max_sequence_length=None,
487
+ ):
488
+ if strength < 0 or strength > 1:
489
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
490
+
491
+ if not isinstance(num_inference_steps, int) or num_inference_steps <= 0:
492
+ raise ValueError(
493
+ f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
494
+ f" {type(num_inference_steps)}."
495
+ )
496
+
497
+ if height % 8 != 0 or width % 8 != 0:
498
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
499
+
500
+ if callback_on_step_end_tensor_inputs is not None and not all(
501
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
502
+ ):
503
+ raise ValueError(
504
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
505
+ )
506
+
507
+ if prompt is not None and prompt_embeds is not None:
508
+ raise ValueError(
509
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
510
+ " only forward one of the two."
511
+ )
512
+ elif prompt is None and prompt_embeds is None:
513
+ raise ValueError(
514
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
515
+ )
516
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
517
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
518
+
519
+ if negative_prompt is not None and negative_prompt_embeds is not None:
520
+ raise ValueError(
521
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
522
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
523
+ )
524
+
525
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
526
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
527
+ raise ValueError(
528
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
529
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
530
+ f" {negative_prompt_embeds.shape}."
531
+ )
532
+
533
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
534
+ raise ValueError(
535
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
536
+ )
537
+
538
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
539
+ raise ValueError(
540
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
541
+ )
542
+
543
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
544
+ raise ValueError(
545
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
546
+ )
547
+
548
+ if ip_adapter_image_embeds is not None:
549
+ if not isinstance(ip_adapter_image_embeds, list):
550
+ raise ValueError(
551
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
552
+ )
553
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
554
+ raise ValueError(
555
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
556
+ )
557
+
558
+ if max_sequence_length is not None and max_sequence_length > 256:
559
+ raise ValueError(f"`max_sequence_length` cannot be greater than 256 but is {max_sequence_length}")
560
+
561
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.get_timesteps
562
+ def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None):
563
+ # get the original timestep using init_timestep
564
+ if denoising_start is None:
565
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
566
+ t_start = max(num_inference_steps - init_timestep, 0)
567
+ else:
568
+ t_start = 0
569
+
570
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
571
+
572
+ # Strength is irrelevant if we directly request a timestep to start at;
573
+ # that is, strength is determined by the denoising_start instead.
574
+ if denoising_start is not None:
575
+ discrete_timestep_cutoff = int(
576
+ round(
577
+ self.scheduler.config.num_train_timesteps
578
+ - (denoising_start * self.scheduler.config.num_train_timesteps)
579
+ )
580
+ )
581
+
582
+ num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item()
583
+ if self.scheduler.order == 2 and num_inference_steps % 2 == 0:
584
+ # if the scheduler is a 2nd order scheduler we might have to do +1
585
+ # because `num_inference_steps` might be even given that every timestep
586
+ # (except the highest one) is duplicated. If `num_inference_steps` is even it would
587
+ # mean that we cut the timesteps in the middle of the denoising step
588
+ # (between 1st and 2nd derivative) which leads to incorrect results. By adding 1
589
+ # we ensure that the denoising process always ends after the 2nd derivate step of the scheduler
590
+ num_inference_steps = num_inference_steps + 1
591
+
592
+ # because t_n+1 >= t_n, we slice the timesteps starting from the end
593
+ timesteps = timesteps[-num_inference_steps:]
594
+ return timesteps, num_inference_steps
595
+
596
+ return timesteps, num_inference_steps - t_start
597
+
598
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.prepare_latents
599
+ def prepare_latents(
600
+ self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None, add_noise=True
601
+ ):
602
+ if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
603
+ raise ValueError(
604
+ f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
605
+ )
606
+
607
+ latents_mean = latents_std = None
608
+ if hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None:
609
+ latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1)
610
+ if hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None:
611
+ latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1)
612
+
613
+ # Offload text encoder if `enable_model_cpu_offload` was enabled
614
+ if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
615
+ self.text_encoder_2.to("cpu")
616
+ torch.cuda.empty_cache()
617
+
618
+ image = image.to(device=device, dtype=dtype)
619
+
620
+ batch_size = batch_size * num_images_per_prompt
621
+
622
+ if image.shape[1] == 4:
623
+ init_latents = image
624
+
625
+ else:
626
+ # make sure the VAE is in float32 mode, as it overflows in float16
627
+ if self.vae.config.force_upcast:
628
+ image = image.float()
629
+ self.vae.to(dtype=torch.float32)
630
+
631
+ if isinstance(generator, list) and len(generator) != batch_size:
632
+ raise ValueError(
633
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
634
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
635
+ )
636
+
637
+ elif isinstance(generator, list):
638
+ if image.shape[0] < batch_size and batch_size % image.shape[0] == 0:
639
+ image = torch.cat([image] * (batch_size // image.shape[0]), dim=0)
640
+ elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0:
641
+ raise ValueError(
642
+ f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} "
643
+ )
644
+
645
+ init_latents = [
646
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
647
+ for i in range(batch_size)
648
+ ]
649
+ init_latents = torch.cat(init_latents, dim=0)
650
+ else:
651
+ init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
652
+
653
+ if self.vae.config.force_upcast:
654
+ self.vae.to(dtype)
655
+
656
+ init_latents = init_latents.to(dtype)
657
+ if latents_mean is not None and latents_std is not None:
658
+ latents_mean = latents_mean.to(device=device, dtype=dtype)
659
+ latents_std = latents_std.to(device=device, dtype=dtype)
660
+ init_latents = (init_latents - latents_mean) * self.vae.config.scaling_factor / latents_std
661
+ else:
662
+ init_latents = self.vae.config.scaling_factor * init_latents
663
+
664
+ if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
665
+ # expand init_latents for batch_size
666
+ additional_image_per_prompt = batch_size // init_latents.shape[0]
667
+ init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
668
+ elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
669
+ raise ValueError(
670
+ f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
671
+ )
672
+ else:
673
+ init_latents = torch.cat([init_latents], dim=0)
674
+
675
+ if add_noise:
676
+ shape = init_latents.shape
677
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
678
+ # get latents
679
+ init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
680
+
681
+ latents = init_latents
682
+
683
+ return latents
684
+
685
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids
686
+ def _get_add_time_ids(
687
+ self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
688
+ ):
689
+ add_time_ids = list(original_size + crops_coords_top_left + target_size)
690
+
691
+ passed_add_embed_dim = (
692
+ self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
693
+ )
694
+ expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
695
+
696
+ if expected_add_embed_dim != passed_add_embed_dim:
697
+ raise ValueError(
698
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
699
+ )
700
+
701
+ add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
702
+ return add_time_ids
703
+
704
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae
705
+ def upcast_vae(self):
706
+ dtype = self.vae.dtype
707
+ self.vae.to(dtype=torch.float32)
708
+ use_torch_2_0_or_xformers = isinstance(
709
+ self.vae.decoder.mid_block.attentions[0].processor,
710
+ (
711
+ AttnProcessor2_0,
712
+ XFormersAttnProcessor,
713
+ FusedAttnProcessor2_0,
714
+ ),
715
+ )
716
+ # if xformers or torch_2_0 is used attention block does not need
717
+ # to be in float32 which can save lots of memory
718
+ if use_torch_2_0_or_xformers:
719
+ self.vae.post_quant_conv.to(dtype)
720
+ self.vae.decoder.conv_in.to(dtype)
721
+ self.vae.decoder.mid_block.to(dtype)
722
+
723
+ # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
724
+ def get_guidance_scale_embedding(
725
+ self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
726
+ ) -> torch.Tensor:
727
+ """
728
+ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
729
+
730
+ Args:
731
+ w (`torch.Tensor`):
732
+ Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
733
+ embedding_dim (`int`, *optional*, defaults to 512):
734
+ Dimension of the embeddings to generate.
735
+ dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
736
+ Data type of the generated embeddings.
737
+
738
+ Returns:
739
+ `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
740
+ """
741
+ assert len(w.shape) == 1
742
+ w = w * 1000.0
743
+
744
+ half_dim = embedding_dim // 2
745
+ emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
746
+ emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
747
+ emb = w.to(dtype)[:, None] * emb[None, :]
748
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
749
+ if embedding_dim % 2 == 1: # zero pad
750
+ emb = torch.nn.functional.pad(emb, (0, 1))
751
+ assert emb.shape == (w.shape[0], embedding_dim)
752
+ return emb
753
+
754
+ @property
755
+ def guidance_scale(self):
756
+ return self._guidance_scale
757
+
758
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
759
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
760
+ # corresponds to doing no classifier free guidance.
761
+ @property
762
+ def do_classifier_free_guidance(self):
763
+ return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
764
+
765
+ @property
766
+ def cross_attention_kwargs(self):
767
+ return self._cross_attention_kwargs
768
+
769
+ @property
770
+ def denoising_start(self):
771
+ return self._denoising_start
772
+
773
+ @property
774
+ def denoising_end(self):
775
+ return self._denoising_end
776
+
777
+ @property
778
+ def num_timesteps(self):
779
+ return self._num_timesteps
780
+
781
+ @property
782
+ def interrupt(self):
783
+ return self._interrupt
784
+
785
+ @torch.no_grad()
786
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
787
+ def __call__(
788
+ self,
789
+ prompt: Union[str, List[str]] = None,
790
+ image: PipelineImageInput = None,
791
+ strength: float = 0.3,
792
+ height: Optional[int] = None,
793
+ width: Optional[int] = None,
794
+ num_inference_steps: int = 50,
795
+ timesteps: List[int] = None,
796
+ sigmas: List[float] = None,
797
+ denoising_start: Optional[float] = None,
798
+ denoising_end: Optional[float] = None,
799
+ guidance_scale: float = 5.0,
800
+ negative_prompt: Optional[Union[str, List[str]]] = None,
801
+ num_images_per_prompt: Optional[int] = 1,
802
+ eta: float = 0.0,
803
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
804
+ latents: Optional[torch.Tensor] = None,
805
+ prompt_embeds: Optional[torch.Tensor] = None,
806
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
807
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
808
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
809
+ ip_adapter_image: Optional[PipelineImageInput] = None,
810
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
811
+ output_type: Optional[str] = "pil",
812
+ return_dict: bool = True,
813
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
814
+ original_size: Optional[Tuple[int, int]] = None,
815
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
816
+ target_size: Optional[Tuple[int, int]] = None,
817
+ negative_original_size: Optional[Tuple[int, int]] = None,
818
+ negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
819
+ negative_target_size: Optional[Tuple[int, int]] = None,
820
+ callback_on_step_end: Optional[
821
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
822
+ ] = None,
823
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
824
+ max_sequence_length: int = 256,
825
+ ):
826
+ r"""
827
+ Function invoked when calling the pipeline for generation.
828
+
829
+ Args:
830
+ prompt (`str` or `List[str]`, *optional*):
831
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
832
+ instead.
833
+ image (`torch.Tensor` or `PIL.Image.Image` or `np.ndarray` or `List[torch.Tensor]` or `List[PIL.Image.Image]` or `List[np.ndarray]`):
834
+ The image(s) to modify with the pipeline.
835
+ strength (`float`, *optional*, defaults to 0.3):
836
+ Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
837
+ will be used as a starting point, adding more noise to it the larger the `strength`. The number of
838
+ denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
839
+ be maximum and the denoising process will run for the full number of iterations specified in
840
+ `num_inference_steps`. A value of 1, therefore, essentially ignores `image`. Note that in the case of
841
+ `denoising_start` being declared as an integer, the value of `strength` will be ignored.
842
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
843
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
844
+ Anything below 512 pixels won't work well for
845
+ [Kwai-Kolors/Kolors-diffusers](https://huggingface.co/Kwai-Kolors/Kolors-diffusers) and checkpoints
846
+ that are not specifically fine-tuned on low resolutions.
847
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
848
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
849
+ Anything below 512 pixels won't work well for
850
+ [Kwai-Kolors/Kolors-diffusers](https://huggingface.co/Kwai-Kolors/Kolors-diffusers) and checkpoints
851
+ that are not specifically fine-tuned on low resolutions.
852
+ num_inference_steps (`int`, *optional*, defaults to 50):
853
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
854
+ expense of slower inference.
855
+ timesteps (`List[int]`, *optional*):
856
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
857
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
858
+ passed will be used. Must be in descending order.
859
+ sigmas (`List[float]`, *optional*):
860
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
861
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
862
+ will be used.
863
+ denoising_start (`float`, *optional*):
864
+ When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
865
+ bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
866
+ it is assumed that the passed `image` is a partly denoised image. Note that when this is specified,
867
+ strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline
868
+ is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refine Image
869
+ Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality).
870
+ denoising_end (`float`, *optional*):
871
+ When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
872
+ completed before it is intentionally prematurely terminated. As a result, the returned sample will
873
+ still retain a substantial amount of noise as determined by the discrete timesteps selected by the
874
+ scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
875
+ "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
876
+ Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
877
+ guidance_scale (`float`, *optional*, defaults to 5.0):
878
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
879
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
880
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
881
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
882
+ usually at the expense of lower image quality.
883
+ negative_prompt (`str` or `List[str]`, *optional*):
884
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
885
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
886
+ less than `1`).
887
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
888
+ The number of images to generate per prompt.
889
+ eta (`float`, *optional*, defaults to 0.0):
890
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
891
+ [`schedulers.DDIMScheduler`], will be ignored for others.
892
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
893
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
894
+ to make generation deterministic.
895
+ latents (`torch.Tensor`, *optional*):
896
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
897
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
898
+ tensor will ge generated by sampling using the supplied random `generator`.
899
+ prompt_embeds (`torch.Tensor`, *optional*):
900
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
901
+ provided, text embeddings will be generated from `prompt` input argument.
902
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
903
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
904
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
905
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
906
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
907
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
908
+ argument.
909
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
910
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
911
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
912
+ input argument.
913
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
914
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
915
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
916
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
917
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
918
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
919
+ output_type (`str`, *optional*, defaults to `"pil"`):
920
+ The output format of the generate image. Choose between
921
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
922
+ return_dict (`bool`, *optional*, defaults to `True`):
923
+ Whether or not to return a [`~pipelines.kolors.KolorsPipelineOutput`] instead of a plain tuple.
924
+ cross_attention_kwargs (`dict`, *optional*):
925
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
926
+ `self.processor` in
927
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
928
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
929
+ If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
930
+ `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
931
+ explained in section 2.2 of
932
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
933
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
934
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
935
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
936
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
937
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
938
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
939
+ For most cases, `target_size` should be set to the desired height and width of the generated image. If
940
+ not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
941
+ section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
942
+ negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
943
+ To negatively condition the generation process based on a specific image resolution. Part of SDXL's
944
+ micro-conditioning as explained in section 2.2 of
945
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
946
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
947
+ negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
948
+ To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
949
+ micro-conditioning as explained in section 2.2 of
950
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
951
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
952
+ negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
953
+ To negatively condition the generation process based on a target image resolution. It should be as same
954
+ as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
955
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
956
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
957
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
958
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
959
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
960
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
961
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
962
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
963
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
964
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
965
+ `._callback_tensor_inputs` attribute of your pipeline class.
966
+ max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
967
+
968
+ Examples:
969
+
970
+ Returns:
971
+ [`~pipelines.kolors.KolorsPipelineOutput`] or `tuple`: [`~pipelines.kolors.KolorsPipelineOutput`] if
972
+ `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the
973
+ generated images.
974
+ """
975
+
976
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
977
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
978
+
979
+ # 0. Default height and width to unet
980
+ height = height or self.default_sample_size * self.vae_scale_factor
981
+ width = width or self.default_sample_size * self.vae_scale_factor
982
+
983
+ original_size = original_size or (height, width)
984
+ target_size = target_size or (height, width)
985
+
986
+ # 1. Check inputs. Raise error if not correct
987
+ self.check_inputs(
988
+ prompt,
989
+ strength,
990
+ num_inference_steps,
991
+ height,
992
+ width,
993
+ negative_prompt,
994
+ prompt_embeds,
995
+ pooled_prompt_embeds,
996
+ negative_prompt_embeds,
997
+ negative_pooled_prompt_embeds,
998
+ ip_adapter_image,
999
+ ip_adapter_image_embeds,
1000
+ callback_on_step_end_tensor_inputs,
1001
+ max_sequence_length=max_sequence_length,
1002
+ )
1003
+
1004
+ self._guidance_scale = guidance_scale
1005
+ self._cross_attention_kwargs = cross_attention_kwargs
1006
+ self._denoising_end = denoising_end
1007
+ self._denoising_start = denoising_start
1008
+ self._interrupt = False
1009
+
1010
+ # 2. Define call parameters
1011
+ if prompt is not None and isinstance(prompt, str):
1012
+ batch_size = 1
1013
+ elif prompt is not None and isinstance(prompt, list):
1014
+ batch_size = len(prompt)
1015
+ else:
1016
+ batch_size = prompt_embeds.shape[0]
1017
+
1018
+ device = self._execution_device
1019
+
1020
+ # 3. Encode input prompt
1021
+ (
1022
+ prompt_embeds,
1023
+ negative_prompt_embeds,
1024
+ pooled_prompt_embeds,
1025
+ negative_pooled_prompt_embeds,
1026
+ ) = self.encode_prompt(
1027
+ prompt=prompt,
1028
+ device=device,
1029
+ num_images_per_prompt=num_images_per_prompt,
1030
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1031
+ negative_prompt=negative_prompt,
1032
+ prompt_embeds=prompt_embeds,
1033
+ negative_prompt_embeds=negative_prompt_embeds,
1034
+ )
1035
+
1036
+ # 4. Preprocess image
1037
+ image = self.image_processor.preprocess(image)
1038
+
1039
+ # 5. Prepare timesteps
1040
+ def denoising_value_valid(dnv):
1041
+ return isinstance(dnv, float) and 0 < dnv < 1
1042
+
1043
+ timesteps, num_inference_steps = retrieve_timesteps(
1044
+ self.scheduler, num_inference_steps, device, timesteps, sigmas
1045
+ )
1046
+
1047
+ timesteps, num_inference_steps = self.get_timesteps(
1048
+ num_inference_steps,
1049
+ strength,
1050
+ device,
1051
+ denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None,
1052
+ )
1053
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
1054
+
1055
+ add_noise = True if self.denoising_start is None else False
1056
+
1057
+ # 6. Prepare latent variables
1058
+ if latents is None:
1059
+ latents = self.prepare_latents(
1060
+ image,
1061
+ latent_timestep,
1062
+ batch_size,
1063
+ num_images_per_prompt,
1064
+ prompt_embeds.dtype,
1065
+ device,
1066
+ generator,
1067
+ add_noise,
1068
+ )
1069
+
1070
+ # 7. Prepare extra step kwargs.
1071
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1072
+
1073
+ height, width = latents.shape[-2:]
1074
+ height = height * self.vae_scale_factor
1075
+ width = width * self.vae_scale_factor
1076
+
1077
+ original_size = original_size or (height, width)
1078
+ target_size = target_size or (height, width)
1079
+
1080
+ # 8. Prepare added time ids & embeddings
1081
+ add_text_embeds = pooled_prompt_embeds
1082
+ text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
1083
+
1084
+ add_time_ids = self._get_add_time_ids(
1085
+ original_size,
1086
+ crops_coords_top_left,
1087
+ target_size,
1088
+ dtype=prompt_embeds.dtype,
1089
+ text_encoder_projection_dim=text_encoder_projection_dim,
1090
+ )
1091
+ if negative_original_size is not None and negative_target_size is not None:
1092
+ negative_add_time_ids = self._get_add_time_ids(
1093
+ negative_original_size,
1094
+ negative_crops_coords_top_left,
1095
+ negative_target_size,
1096
+ dtype=prompt_embeds.dtype,
1097
+ text_encoder_projection_dim=text_encoder_projection_dim,
1098
+ )
1099
+ else:
1100
+ negative_add_time_ids = add_time_ids
1101
+
1102
+ if self.do_classifier_free_guidance:
1103
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
1104
+ add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
1105
+ add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
1106
+
1107
+ prompt_embeds = prompt_embeds.to(device)
1108
+ add_text_embeds = add_text_embeds.to(device)
1109
+ add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
1110
+
1111
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1112
+ image_embeds = self.prepare_ip_adapter_image_embeds(
1113
+ ip_adapter_image,
1114
+ ip_adapter_image_embeds,
1115
+ device,
1116
+ batch_size * num_images_per_prompt,
1117
+ self.do_classifier_free_guidance,
1118
+ )
1119
+
1120
+ # 9. Denoising loop
1121
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
1122
+
1123
+ # 9.1 Apply denoising_end
1124
+ if (
1125
+ self.denoising_end is not None
1126
+ and self.denoising_start is not None
1127
+ and denoising_value_valid(self.denoising_end)
1128
+ and denoising_value_valid(self.denoising_start)
1129
+ and self.denoising_start >= self.denoising_end
1130
+ ):
1131
+ raise ValueError(
1132
+ f"`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: "
1133
+ + f" {self.denoising_end} when using type float."
1134
+ )
1135
+ elif self.denoising_end is not None and denoising_value_valid(self.denoising_end):
1136
+ discrete_timestep_cutoff = int(
1137
+ round(
1138
+ self.scheduler.config.num_train_timesteps
1139
+ - (self.denoising_end * self.scheduler.config.num_train_timesteps)
1140
+ )
1141
+ )
1142
+ num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
1143
+ timesteps = timesteps[:num_inference_steps]
1144
+
1145
+ # 9.2 Optionally get Guidance Scale Embedding
1146
+ timestep_cond = None
1147
+ if self.unet.config.time_cond_proj_dim is not None:
1148
+ guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
1149
+ timestep_cond = self.get_guidance_scale_embedding(
1150
+ guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
1151
+ ).to(device=device, dtype=latents.dtype)
1152
+
1153
+ self._num_timesteps = len(timesteps)
1154
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1155
+ for i, t in enumerate(timesteps):
1156
+ if self.interrupt:
1157
+ continue
1158
+
1159
+ # expand the latents if we are doing classifier free guidance
1160
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1161
+
1162
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1163
+
1164
+ # predict the noise residual
1165
+ added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
1166
+
1167
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1168
+ added_cond_kwargs["image_embeds"] = image_embeds
1169
+
1170
+ noise_pred = self.unet(
1171
+ latent_model_input,
1172
+ t,
1173
+ encoder_hidden_states=prompt_embeds,
1174
+ timestep_cond=timestep_cond,
1175
+ cross_attention_kwargs=self.cross_attention_kwargs,
1176
+ added_cond_kwargs=added_cond_kwargs,
1177
+ return_dict=False,
1178
+ )[0]
1179
+
1180
+ # perform guidance
1181
+ if self.do_classifier_free_guidance:
1182
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1183
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
1184
+
1185
+ # compute the previous noisy sample x_t -> x_t-1
1186
+ latents_dtype = latents.dtype
1187
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1188
+ if latents.dtype != latents_dtype:
1189
+ if torch.backends.mps.is_available():
1190
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1191
+ latents = latents.to(latents_dtype)
1192
+
1193
+ if callback_on_step_end is not None:
1194
+ callback_kwargs = {}
1195
+ for k in callback_on_step_end_tensor_inputs:
1196
+ callback_kwargs[k] = locals()[k]
1197
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1198
+
1199
+ latents = callback_outputs.pop("latents", latents)
1200
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1201
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1202
+ add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
1203
+ negative_pooled_prompt_embeds = callback_outputs.pop(
1204
+ "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
1205
+ )
1206
+ add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
1207
+ negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids)
1208
+
1209
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1210
+ progress_bar.update()
1211
+
1212
+ if XLA_AVAILABLE:
1213
+ xm.mark_step()
1214
+
1215
+ if not output_type == "latent":
1216
+ # make sure the VAE is in float32 mode, as it overflows in float16
1217
+ needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
1218
+
1219
+ if needs_upcasting:
1220
+ self.upcast_vae()
1221
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
1222
+ elif latents.dtype != self.vae.dtype:
1223
+ if torch.backends.mps.is_available():
1224
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1225
+ self.vae = self.vae.to(latents.dtype)
1226
+
1227
+ # unscale/denormalize the latents
1228
+ latents = latents / self.vae.config.scaling_factor
1229
+
1230
+ image = self.vae.decode(latents, return_dict=False)[0]
1231
+
1232
+ # cast back to fp16 if needed
1233
+ if needs_upcasting:
1234
+ self.vae.to(dtype=torch.float16)
1235
+ else:
1236
+ image = latents
1237
+
1238
+ if not output_type == "latent":
1239
+ image = self.image_processor.postprocess(image, output_type=output_type)
1240
+
1241
+ # Offload all models
1242
+ self.maybe_free_model_hooks()
1243
+
1244
+ if not return_dict:
1245
+ return (image,)
1246
+
1247
+ return KolorsPipelineOutput(images=image)