diffusers 0.29.2__py3-none-any.whl → 0.30.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- diffusers/__init__.py +94 -3
- diffusers/commands/env.py +1 -5
- diffusers/configuration_utils.py +4 -9
- diffusers/dependency_versions_table.py +2 -2
- diffusers/image_processor.py +1 -2
- diffusers/loaders/__init__.py +17 -2
- diffusers/loaders/ip_adapter.py +10 -7
- diffusers/loaders/lora_base.py +752 -0
- diffusers/loaders/lora_pipeline.py +2222 -0
- diffusers/loaders/peft.py +213 -5
- diffusers/loaders/single_file.py +1 -12
- diffusers/loaders/single_file_model.py +31 -10
- diffusers/loaders/single_file_utils.py +262 -2
- diffusers/loaders/textual_inversion.py +1 -6
- diffusers/loaders/unet.py +23 -208
- diffusers/models/__init__.py +20 -0
- diffusers/models/activations.py +22 -0
- diffusers/models/attention.py +386 -7
- diffusers/models/attention_processor.py +1795 -629
- diffusers/models/autoencoders/__init__.py +2 -0
- diffusers/models/autoencoders/autoencoder_kl.py +14 -3
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1035 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +1 -0
- diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
- diffusers/models/autoencoders/vq_model.py +4 -4
- diffusers/models/controlnet.py +2 -3
- diffusers/models/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnet_sd3.py +11 -11
- diffusers/models/controlnet_sparsectrl.py +789 -0
- diffusers/models/controlnet_xs.py +40 -10
- diffusers/models/downsampling.py +68 -0
- diffusers/models/embeddings.py +319 -36
- diffusers/models/model_loading_utils.py +1 -3
- diffusers/models/modeling_flax_utils.py +1 -6
- diffusers/models/modeling_utils.py +4 -16
- diffusers/models/normalization.py +203 -12
- diffusers/models/transformers/__init__.py +6 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +527 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +345 -0
- diffusers/models/transformers/hunyuan_transformer_2d.py +19 -15
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +102 -1
- diffusers/models/transformers/prior_transformer.py +1 -1
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/transformer_flux.py +455 -0
- diffusers/models/transformers/transformer_sd3.py +18 -4
- diffusers/models/unets/unet_1d_blocks.py +1 -1
- diffusers/models/unets/unet_2d_condition.py +8 -1
- diffusers/models/unets/unet_3d_blocks.py +51 -920
- diffusers/models/unets/unet_3d_condition.py +4 -1
- diffusers/models/unets/unet_i2vgen_xl.py +4 -1
- diffusers/models/unets/unet_kandinsky3.py +1 -1
- diffusers/models/unets/unet_motion_model.py +1330 -84
- diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
- diffusers/models/unets/unet_stable_cascade.py +1 -3
- diffusers/models/unets/uvit_2d.py +1 -1
- diffusers/models/upsampling.py +64 -0
- diffusers/models/vq_model.py +8 -4
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +100 -3
- diffusers/pipelines/animatediff/__init__.py +4 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +50 -40
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1076 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +17 -27
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1008 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +51 -38
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +1 -0
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +591 -0
- diffusers/pipelines/auto_pipeline.py +97 -19
- diffusers/pipelines/cogvideo/__init__.py +48 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +687 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
- diffusers/pipelines/controlnet/pipeline_controlnet.py +24 -30
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +31 -30
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +24 -153
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +19 -28
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +18 -28
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +29 -32
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1042 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +35 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +10 -6
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +0 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +2 -2
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -6
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -6
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +6 -6
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -10
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +10 -6
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +3 -3
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +1 -1
- diffusers/pipelines/flux/__init__.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +749 -0
- diffusers/pipelines/flux/pipeline_output.py +21 -0
- diffusers/pipelines/free_init_utils.py +2 -0
- diffusers/pipelines/free_noise_utils.py +236 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +2 -2
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +2 -2
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1247 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +334 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +30 -29
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +23 -29
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +4 -4
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +0 -4
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +897 -0
- diffusers/pipelines/pag/__init__.py +67 -0
- diffusers/pipelines/pag/pag_utils.py +237 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1329 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1612 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +953 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +872 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1050 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +985 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +862 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1333 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1529 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1753 -0
- diffusers/pipelines/pia/pipeline_pia.py +30 -37
- diffusers/pipelines/pipeline_flax_utils.py +4 -9
- diffusers/pipelines/pipeline_loading_utils.py +0 -3
- diffusers/pipelines/pipeline_utils.py +2 -14
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +0 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +745 -0
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +2 -0
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +23 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +15 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +23 -152
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +8 -4
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +11 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +8 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +6 -6
- diffusers/pipelines/stable_diffusion_3/__init__.py +2 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +34 -3
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +33 -7
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1201 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +3 -3
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +6 -6
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -5
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +5 -5
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +6 -6
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +0 -4
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +23 -29
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +27 -29
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +3 -3
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +17 -27
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +26 -29
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +17 -145
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +0 -4
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +6 -6
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -28
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +8 -6
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +8 -6
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +6 -4
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +0 -4
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -4
- diffusers/schedulers/__init__.py +8 -0
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +1 -1
- diffusers/schedulers/scheduling_ddim_cogvideox.py +449 -0
- diffusers/schedulers/scheduling_ddpm.py +1 -1
- diffusers/schedulers/scheduling_ddpm_parallel.py +1 -1
- diffusers/schedulers/scheduling_deis_multistep.py +2 -2
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +1 -1
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +1 -1
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +64 -19
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +2 -2
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +63 -39
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +321 -0
- diffusers/schedulers/scheduling_ipndm.py +1 -1
- diffusers/schedulers/scheduling_unipc_multistep.py +1 -1
- diffusers/schedulers/scheduling_utils.py +1 -3
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/training_utils.py +99 -14
- diffusers/utils/__init__.py +2 -2
- diffusers/utils/dummy_pt_objects.py +210 -0
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +315 -0
- diffusers/utils/dynamic_modules_utils.py +1 -11
- diffusers/utils/export_utils.py +1 -4
- diffusers/utils/hub_utils.py +45 -42
- diffusers/utils/import_utils.py +19 -16
- diffusers/utils/loading_utils.py +76 -3
- diffusers/utils/testing_utils.py +11 -8
- {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/METADATA +73 -83
- {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/RECORD +217 -164
- {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1728
- {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/LICENSE +0 -0
- {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/entry_points.txt +0 -0
- {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,345 @@
|
|
1
|
+
# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
|
2
|
+
# All rights reserved.
|
3
|
+
#
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5
|
+
# you may not use this file except in compliance with the License.
|
6
|
+
# You may obtain a copy of the License at
|
7
|
+
#
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9
|
+
#
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13
|
+
# See the License for the specific language governing permissions and
|
14
|
+
# limitations under the License.
|
15
|
+
|
16
|
+
from typing import Any, Dict, Optional, Union
|
17
|
+
|
18
|
+
import torch
|
19
|
+
from torch import nn
|
20
|
+
|
21
|
+
from ...configuration_utils import ConfigMixin, register_to_config
|
22
|
+
from ...utils import is_torch_version, logging
|
23
|
+
from ...utils.torch_utils import maybe_allow_in_graph
|
24
|
+
from ..attention import Attention, FeedForward
|
25
|
+
from ..embeddings import CogVideoXPatchEmbed, TimestepEmbedding, Timesteps, get_3d_sincos_pos_embed
|
26
|
+
from ..modeling_outputs import Transformer2DModelOutput
|
27
|
+
from ..modeling_utils import ModelMixin
|
28
|
+
from ..normalization import AdaLayerNorm, CogVideoXLayerNormZero
|
29
|
+
|
30
|
+
|
31
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
32
|
+
|
33
|
+
|
34
|
+
@maybe_allow_in_graph
|
35
|
+
class CogVideoXBlock(nn.Module):
|
36
|
+
r"""
|
37
|
+
Transformer block used in [CogVideoX](https://github.com/THUDM/CogVideo) model.
|
38
|
+
|
39
|
+
Parameters:
|
40
|
+
dim (`int`): The number of channels in the input and output.
|
41
|
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
42
|
+
attention_head_dim (`int`): The number of channels in each head.
|
43
|
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
44
|
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
45
|
+
attention_bias (:
|
46
|
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
47
|
+
qk_norm (`bool`, defaults to `True`):
|
48
|
+
Whether or not to use normalization after query and key projections in Attention.
|
49
|
+
norm_elementwise_affine (`bool`, defaults to `True`):
|
50
|
+
Whether to use learnable elementwise affine parameters for normalization.
|
51
|
+
norm_eps (`float`, defaults to `1e-5`):
|
52
|
+
Epsilon value for normalization layers.
|
53
|
+
final_dropout (`bool` defaults to `False`):
|
54
|
+
Whether to apply a final dropout after the last feed-forward layer.
|
55
|
+
ff_inner_dim (`int`, *optional*, defaults to `None`):
|
56
|
+
Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used.
|
57
|
+
ff_bias (`bool`, defaults to `True`):
|
58
|
+
Whether or not to use bias in Feed-forward layer.
|
59
|
+
attention_out_bias (`bool`, defaults to `True`):
|
60
|
+
Whether or not to use bias in Attention output projection layer.
|
61
|
+
"""
|
62
|
+
|
63
|
+
def __init__(
|
64
|
+
self,
|
65
|
+
dim: int,
|
66
|
+
num_attention_heads: int,
|
67
|
+
attention_head_dim: int,
|
68
|
+
time_embed_dim: int,
|
69
|
+
dropout: float = 0.0,
|
70
|
+
activation_fn: str = "gelu-approximate",
|
71
|
+
attention_bias: bool = False,
|
72
|
+
qk_norm: bool = True,
|
73
|
+
norm_elementwise_affine: bool = True,
|
74
|
+
norm_eps: float = 1e-5,
|
75
|
+
final_dropout: bool = True,
|
76
|
+
ff_inner_dim: Optional[int] = None,
|
77
|
+
ff_bias: bool = True,
|
78
|
+
attention_out_bias: bool = True,
|
79
|
+
):
|
80
|
+
super().__init__()
|
81
|
+
|
82
|
+
# 1. Self Attention
|
83
|
+
self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
|
84
|
+
|
85
|
+
self.attn1 = Attention(
|
86
|
+
query_dim=dim,
|
87
|
+
dim_head=attention_head_dim,
|
88
|
+
heads=num_attention_heads,
|
89
|
+
qk_norm="layer_norm" if qk_norm else None,
|
90
|
+
eps=1e-6,
|
91
|
+
bias=attention_bias,
|
92
|
+
out_bias=attention_out_bias,
|
93
|
+
)
|
94
|
+
|
95
|
+
# 2. Feed Forward
|
96
|
+
self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
|
97
|
+
|
98
|
+
self.ff = FeedForward(
|
99
|
+
dim,
|
100
|
+
dropout=dropout,
|
101
|
+
activation_fn=activation_fn,
|
102
|
+
final_dropout=final_dropout,
|
103
|
+
inner_dim=ff_inner_dim,
|
104
|
+
bias=ff_bias,
|
105
|
+
)
|
106
|
+
|
107
|
+
def forward(
|
108
|
+
self,
|
109
|
+
hidden_states: torch.Tensor,
|
110
|
+
encoder_hidden_states: torch.Tensor,
|
111
|
+
temb: torch.Tensor,
|
112
|
+
) -> torch.Tensor:
|
113
|
+
norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1(
|
114
|
+
hidden_states, encoder_hidden_states, temb
|
115
|
+
)
|
116
|
+
|
117
|
+
# attention
|
118
|
+
text_length = norm_encoder_hidden_states.size(1)
|
119
|
+
|
120
|
+
# CogVideoX uses concatenated text + video embeddings with self-attention instead of using
|
121
|
+
# them in cross-attention individually
|
122
|
+
norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1)
|
123
|
+
attn_output = self.attn1(
|
124
|
+
hidden_states=norm_hidden_states,
|
125
|
+
encoder_hidden_states=None,
|
126
|
+
)
|
127
|
+
|
128
|
+
hidden_states = hidden_states + gate_msa * attn_output[:, text_length:]
|
129
|
+
encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_output[:, :text_length]
|
130
|
+
|
131
|
+
# norm & modulate
|
132
|
+
norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2(
|
133
|
+
hidden_states, encoder_hidden_states, temb
|
134
|
+
)
|
135
|
+
|
136
|
+
# feed-forward
|
137
|
+
norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1)
|
138
|
+
ff_output = self.ff(norm_hidden_states)
|
139
|
+
|
140
|
+
hidden_states = hidden_states + gate_ff * ff_output[:, text_length:]
|
141
|
+
encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_length]
|
142
|
+
return hidden_states, encoder_hidden_states
|
143
|
+
|
144
|
+
|
145
|
+
class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin):
|
146
|
+
"""
|
147
|
+
A Transformer model for video-like data in [CogVideoX](https://github.com/THUDM/CogVideo).
|
148
|
+
|
149
|
+
Parameters:
|
150
|
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
151
|
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
152
|
+
in_channels (`int`, *optional*):
|
153
|
+
The number of channels in the input.
|
154
|
+
out_channels (`int`, *optional*):
|
155
|
+
The number of channels in the output.
|
156
|
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
157
|
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
158
|
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
159
|
+
attention_bias (`bool`, *optional*):
|
160
|
+
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
161
|
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
162
|
+
This is fixed during training since it is used to learn a number of position embeddings.
|
163
|
+
patch_size (`int`, *optional*):
|
164
|
+
The size of the patches to use in the patch embedding layer.
|
165
|
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
166
|
+
num_embeds_ada_norm ( `int`, *optional*):
|
167
|
+
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
168
|
+
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
169
|
+
added to the hidden states. During inference, you can denoise for up to but not more steps than
|
170
|
+
`num_embeds_ada_norm`.
|
171
|
+
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
172
|
+
The type of normalization to use. Options are `"layer_norm"` or `"ada_layer_norm"`.
|
173
|
+
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
174
|
+
Whether or not to use elementwise affine in normalization layers.
|
175
|
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use in normalization layers.
|
176
|
+
caption_channels (`int`, *optional*):
|
177
|
+
The number of channels in the caption embeddings.
|
178
|
+
video_length (`int`, *optional*):
|
179
|
+
The number of frames in the video-like data.
|
180
|
+
"""
|
181
|
+
|
182
|
+
_supports_gradient_checkpointing = True
|
183
|
+
|
184
|
+
@register_to_config
|
185
|
+
def __init__(
|
186
|
+
self,
|
187
|
+
num_attention_heads: int = 30,
|
188
|
+
attention_head_dim: int = 64,
|
189
|
+
in_channels: Optional[int] = 16,
|
190
|
+
out_channels: Optional[int] = 16,
|
191
|
+
flip_sin_to_cos: bool = True,
|
192
|
+
freq_shift: int = 0,
|
193
|
+
time_embed_dim: int = 512,
|
194
|
+
text_embed_dim: int = 4096,
|
195
|
+
num_layers: int = 30,
|
196
|
+
dropout: float = 0.0,
|
197
|
+
attention_bias: bool = True,
|
198
|
+
sample_width: int = 90,
|
199
|
+
sample_height: int = 60,
|
200
|
+
sample_frames: int = 49,
|
201
|
+
patch_size: int = 2,
|
202
|
+
temporal_compression_ratio: int = 4,
|
203
|
+
max_text_seq_length: int = 226,
|
204
|
+
activation_fn: str = "gelu-approximate",
|
205
|
+
timestep_activation_fn: str = "silu",
|
206
|
+
norm_elementwise_affine: bool = True,
|
207
|
+
norm_eps: float = 1e-5,
|
208
|
+
spatial_interpolation_scale: float = 1.875,
|
209
|
+
temporal_interpolation_scale: float = 1.0,
|
210
|
+
):
|
211
|
+
super().__init__()
|
212
|
+
inner_dim = num_attention_heads * attention_head_dim
|
213
|
+
|
214
|
+
post_patch_height = sample_height // patch_size
|
215
|
+
post_patch_width = sample_width // patch_size
|
216
|
+
post_time_compression_frames = (sample_frames - 1) // temporal_compression_ratio + 1
|
217
|
+
self.num_patches = post_patch_height * post_patch_width * post_time_compression_frames
|
218
|
+
|
219
|
+
# 1. Patch embedding
|
220
|
+
self.patch_embed = CogVideoXPatchEmbed(patch_size, in_channels, inner_dim, text_embed_dim, bias=True)
|
221
|
+
self.embedding_dropout = nn.Dropout(dropout)
|
222
|
+
|
223
|
+
# 2. 3D positional embeddings
|
224
|
+
spatial_pos_embedding = get_3d_sincos_pos_embed(
|
225
|
+
inner_dim,
|
226
|
+
(post_patch_width, post_patch_height),
|
227
|
+
post_time_compression_frames,
|
228
|
+
spatial_interpolation_scale,
|
229
|
+
temporal_interpolation_scale,
|
230
|
+
)
|
231
|
+
spatial_pos_embedding = torch.from_numpy(spatial_pos_embedding).flatten(0, 1)
|
232
|
+
pos_embedding = torch.zeros(1, max_text_seq_length + self.num_patches, inner_dim, requires_grad=False)
|
233
|
+
pos_embedding.data[:, max_text_seq_length:].copy_(spatial_pos_embedding)
|
234
|
+
self.register_buffer("pos_embedding", pos_embedding, persistent=False)
|
235
|
+
|
236
|
+
# 3. Time embeddings
|
237
|
+
self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift)
|
238
|
+
self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn)
|
239
|
+
|
240
|
+
# 4. Define spatio-temporal transformers blocks
|
241
|
+
self.transformer_blocks = nn.ModuleList(
|
242
|
+
[
|
243
|
+
CogVideoXBlock(
|
244
|
+
dim=inner_dim,
|
245
|
+
num_attention_heads=num_attention_heads,
|
246
|
+
attention_head_dim=attention_head_dim,
|
247
|
+
time_embed_dim=time_embed_dim,
|
248
|
+
dropout=dropout,
|
249
|
+
activation_fn=activation_fn,
|
250
|
+
attention_bias=attention_bias,
|
251
|
+
norm_elementwise_affine=norm_elementwise_affine,
|
252
|
+
norm_eps=norm_eps,
|
253
|
+
)
|
254
|
+
for _ in range(num_layers)
|
255
|
+
]
|
256
|
+
)
|
257
|
+
self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine)
|
258
|
+
|
259
|
+
# 5. Output blocks
|
260
|
+
self.norm_out = AdaLayerNorm(
|
261
|
+
embedding_dim=time_embed_dim,
|
262
|
+
output_dim=2 * inner_dim,
|
263
|
+
norm_elementwise_affine=norm_elementwise_affine,
|
264
|
+
norm_eps=norm_eps,
|
265
|
+
chunk_dim=1,
|
266
|
+
)
|
267
|
+
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels)
|
268
|
+
|
269
|
+
self.gradient_checkpointing = False
|
270
|
+
|
271
|
+
def _set_gradient_checkpointing(self, module, value=False):
|
272
|
+
self.gradient_checkpointing = value
|
273
|
+
|
274
|
+
def forward(
|
275
|
+
self,
|
276
|
+
hidden_states: torch.Tensor,
|
277
|
+
encoder_hidden_states: torch.Tensor,
|
278
|
+
timestep: Union[int, float, torch.LongTensor],
|
279
|
+
timestep_cond: Optional[torch.Tensor] = None,
|
280
|
+
return_dict: bool = True,
|
281
|
+
):
|
282
|
+
batch_size, num_frames, channels, height, width = hidden_states.shape
|
283
|
+
|
284
|
+
# 1. Time embedding
|
285
|
+
timesteps = timestep
|
286
|
+
t_emb = self.time_proj(timesteps)
|
287
|
+
|
288
|
+
# timesteps does not contain any weights and will always return f32 tensors
|
289
|
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
290
|
+
# there might be better ways to encapsulate this.
|
291
|
+
t_emb = t_emb.to(dtype=hidden_states.dtype)
|
292
|
+
emb = self.time_embedding(t_emb, timestep_cond)
|
293
|
+
|
294
|
+
# 2. Patch embedding
|
295
|
+
hidden_states = self.patch_embed(encoder_hidden_states, hidden_states)
|
296
|
+
|
297
|
+
# 3. Position embedding
|
298
|
+
seq_length = height * width * num_frames // (self.config.patch_size**2)
|
299
|
+
|
300
|
+
pos_embeds = self.pos_embedding[:, : self.config.max_text_seq_length + seq_length]
|
301
|
+
hidden_states = hidden_states + pos_embeds
|
302
|
+
hidden_states = self.embedding_dropout(hidden_states)
|
303
|
+
|
304
|
+
encoder_hidden_states = hidden_states[:, : self.config.max_text_seq_length]
|
305
|
+
hidden_states = hidden_states[:, self.config.max_text_seq_length :]
|
306
|
+
|
307
|
+
# 5. Transformer blocks
|
308
|
+
for i, block in enumerate(self.transformer_blocks):
|
309
|
+
if self.training and self.gradient_checkpointing:
|
310
|
+
|
311
|
+
def create_custom_forward(module):
|
312
|
+
def custom_forward(*inputs):
|
313
|
+
return module(*inputs)
|
314
|
+
|
315
|
+
return custom_forward
|
316
|
+
|
317
|
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
318
|
+
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
|
319
|
+
create_custom_forward(block),
|
320
|
+
hidden_states,
|
321
|
+
encoder_hidden_states,
|
322
|
+
emb,
|
323
|
+
**ckpt_kwargs,
|
324
|
+
)
|
325
|
+
else:
|
326
|
+
hidden_states, encoder_hidden_states = block(
|
327
|
+
hidden_states=hidden_states,
|
328
|
+
encoder_hidden_states=encoder_hidden_states,
|
329
|
+
temb=emb,
|
330
|
+
)
|
331
|
+
|
332
|
+
hidden_states = self.norm_final(hidden_states)
|
333
|
+
|
334
|
+
# 6. Final block
|
335
|
+
hidden_states = self.norm_out(hidden_states, temb=emb)
|
336
|
+
hidden_states = self.proj_out(hidden_states)
|
337
|
+
|
338
|
+
# 7. Unpatchify
|
339
|
+
p = self.config.patch_size
|
340
|
+
output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, channels, p, p)
|
341
|
+
output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4)
|
342
|
+
|
343
|
+
if not return_dict:
|
344
|
+
return (output,)
|
345
|
+
return Transformer2DModelOutput(sample=output)
|
@@ -1,4 +1,4 @@
|
|
1
|
-
# Copyright 2024 HunyuanDiT Authors and The HuggingFace Team. All rights reserved.
|
1
|
+
# Copyright 2024 HunyuanDiT Authors, Qixun Wang and The HuggingFace Team. All rights reserved.
|
2
2
|
#
|
3
3
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
4
|
# you may not use this file except in compliance with the License.
|
@@ -14,14 +14,13 @@
|
|
14
14
|
from typing import Dict, Optional, Union
|
15
15
|
|
16
16
|
import torch
|
17
|
-
import torch.nn.functional as F
|
18
17
|
from torch import nn
|
19
18
|
|
20
19
|
from ...configuration_utils import ConfigMixin, register_to_config
|
21
20
|
from ...utils import logging
|
22
21
|
from ...utils.torch_utils import maybe_allow_in_graph
|
23
22
|
from ..attention import FeedForward
|
24
|
-
from ..attention_processor import Attention, AttentionProcessor, HunyuanAttnProcessor2_0
|
23
|
+
from ..attention_processor import Attention, AttentionProcessor, FusedHunyuanAttnProcessor2_0, HunyuanAttnProcessor2_0
|
25
24
|
from ..embeddings import (
|
26
25
|
HunyuanCombinedTimestepTextSizeStyleEmbedding,
|
27
26
|
PatchEmbed,
|
@@ -29,20 +28,12 @@ from ..embeddings import (
|
|
29
28
|
)
|
30
29
|
from ..modeling_outputs import Transformer2DModelOutput
|
31
30
|
from ..modeling_utils import ModelMixin
|
32
|
-
from ..normalization import AdaLayerNormContinuous
|
31
|
+
from ..normalization import AdaLayerNormContinuous, FP32LayerNorm
|
33
32
|
|
34
33
|
|
35
34
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
36
35
|
|
37
36
|
|
38
|
-
class FP32LayerNorm(nn.LayerNorm):
|
39
|
-
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
40
|
-
origin_dtype = inputs.dtype
|
41
|
-
return F.layer_norm(
|
42
|
-
inputs.float(), self.normalized_shape, self.weight.float(), self.bias.float(), self.eps
|
43
|
-
).to(origin_dtype)
|
44
|
-
|
45
|
-
|
46
37
|
class AdaLayerNormShift(nn.Module):
|
47
38
|
r"""
|
48
39
|
Norm layer modified to incorporate timestep embeddings.
|
@@ -249,6 +240,8 @@ class HunyuanDiT2DModel(ModelMixin, ConfigMixin):
|
|
249
240
|
The length of the clip text embedding.
|
250
241
|
text_len_t5 (`int`, *optional*):
|
251
242
|
The length of the T5 text embedding.
|
243
|
+
use_style_cond_and_image_meta_size (`bool`, *optional*):
|
244
|
+
Whether or not to use style condition and image meta size. True for version <=1.1, False for version >= 1.2
|
252
245
|
"""
|
253
246
|
|
254
247
|
@register_to_config
|
@@ -270,6 +263,7 @@ class HunyuanDiT2DModel(ModelMixin, ConfigMixin):
|
|
270
263
|
pooled_projection_dim: int = 1024,
|
271
264
|
text_len: int = 77,
|
272
265
|
text_len_t5: int = 256,
|
266
|
+
use_style_cond_and_image_meta_size: bool = True,
|
273
267
|
):
|
274
268
|
super().__init__()
|
275
269
|
self.out_channels = in_channels * 2 if learn_sigma else in_channels
|
@@ -301,6 +295,7 @@ class HunyuanDiT2DModel(ModelMixin, ConfigMixin):
|
|
301
295
|
pooled_projection_dim=pooled_projection_dim,
|
302
296
|
seq_len=text_len_t5,
|
303
297
|
cross_attention_dim=cross_attention_dim_t5,
|
298
|
+
use_style_cond_and_image_meta_size=use_style_cond_and_image_meta_size,
|
304
299
|
)
|
305
300
|
|
306
301
|
# HunyuanDiT Blocks
|
@@ -322,7 +317,7 @@ class HunyuanDiT2DModel(ModelMixin, ConfigMixin):
|
|
322
317
|
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
|
323
318
|
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
324
319
|
|
325
|
-
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
|
320
|
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedHunyuanAttnProcessor2_0
|
326
321
|
def fuse_qkv_projections(self):
|
327
322
|
"""
|
328
323
|
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
@@ -346,6 +341,8 @@ class HunyuanDiT2DModel(ModelMixin, ConfigMixin):
|
|
346
341
|
if isinstance(module, Attention):
|
347
342
|
module.fuse_projections(fuse=True)
|
348
343
|
|
344
|
+
self.set_attn_processor(FusedHunyuanAttnProcessor2_0())
|
345
|
+
|
349
346
|
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
350
347
|
def unfuse_qkv_projections(self):
|
351
348
|
"""Disables the fused QKV projection if enabled.
|
@@ -373,7 +370,7 @@ class HunyuanDiT2DModel(ModelMixin, ConfigMixin):
|
|
373
370
|
|
374
371
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
375
372
|
if hasattr(module, "get_processor"):
|
376
|
-
processors[f"{name}.processor"] = module.get_processor(
|
373
|
+
processors[f"{name}.processor"] = module.get_processor()
|
377
374
|
|
378
375
|
for sub_name, child in module.named_children():
|
379
376
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
@@ -437,6 +434,7 @@ class HunyuanDiT2DModel(ModelMixin, ConfigMixin):
|
|
437
434
|
image_meta_size=None,
|
438
435
|
style=None,
|
439
436
|
image_rotary_emb=None,
|
437
|
+
controlnet_block_samples=None,
|
440
438
|
return_dict=True,
|
441
439
|
):
|
442
440
|
"""
|
@@ -491,7 +489,10 @@ class HunyuanDiT2DModel(ModelMixin, ConfigMixin):
|
|
491
489
|
skips = []
|
492
490
|
for layer, block in enumerate(self.blocks):
|
493
491
|
if layer > self.config.num_layers // 2:
|
494
|
-
|
492
|
+
if controlnet_block_samples is not None:
|
493
|
+
skip = skips.pop() + controlnet_block_samples.pop()
|
494
|
+
else:
|
495
|
+
skip = skips.pop()
|
495
496
|
hidden_states = block(
|
496
497
|
hidden_states,
|
497
498
|
temb=temb,
|
@@ -510,6 +511,9 @@ class HunyuanDiT2DModel(ModelMixin, ConfigMixin):
|
|
510
511
|
if layer < (self.config.num_layers // 2 - 1):
|
511
512
|
skips.append(hidden_states)
|
512
513
|
|
514
|
+
if controlnet_block_samples is not None and len(controlnet_block_samples) != 0:
|
515
|
+
raise ValueError("The number of controls is not equal to the number of skip connections.")
|
516
|
+
|
513
517
|
# final layer
|
514
518
|
hidden_states = self.norm_out(hidden_states, temb.to(torch.float32))
|
515
519
|
hidden_states = self.proj_out(hidden_states)
|