diffusers 0.29.2__py3-none-any.whl → 0.30.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- diffusers/__init__.py +94 -3
- diffusers/commands/env.py +1 -5
- diffusers/configuration_utils.py +4 -9
- diffusers/dependency_versions_table.py +2 -2
- diffusers/image_processor.py +1 -2
- diffusers/loaders/__init__.py +17 -2
- diffusers/loaders/ip_adapter.py +10 -7
- diffusers/loaders/lora_base.py +752 -0
- diffusers/loaders/lora_pipeline.py +2222 -0
- diffusers/loaders/peft.py +213 -5
- diffusers/loaders/single_file.py +1 -12
- diffusers/loaders/single_file_model.py +31 -10
- diffusers/loaders/single_file_utils.py +262 -2
- diffusers/loaders/textual_inversion.py +1 -6
- diffusers/loaders/unet.py +23 -208
- diffusers/models/__init__.py +20 -0
- diffusers/models/activations.py +22 -0
- diffusers/models/attention.py +386 -7
- diffusers/models/attention_processor.py +1795 -629
- diffusers/models/autoencoders/__init__.py +2 -0
- diffusers/models/autoencoders/autoencoder_kl.py +14 -3
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1035 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +1 -0
- diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
- diffusers/models/autoencoders/vq_model.py +4 -4
- diffusers/models/controlnet.py +2 -3
- diffusers/models/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnet_sd3.py +11 -11
- diffusers/models/controlnet_sparsectrl.py +789 -0
- diffusers/models/controlnet_xs.py +40 -10
- diffusers/models/downsampling.py +68 -0
- diffusers/models/embeddings.py +319 -36
- diffusers/models/model_loading_utils.py +1 -3
- diffusers/models/modeling_flax_utils.py +1 -6
- diffusers/models/modeling_utils.py +4 -16
- diffusers/models/normalization.py +203 -12
- diffusers/models/transformers/__init__.py +6 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +527 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +345 -0
- diffusers/models/transformers/hunyuan_transformer_2d.py +19 -15
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +102 -1
- diffusers/models/transformers/prior_transformer.py +1 -1
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/transformer_flux.py +455 -0
- diffusers/models/transformers/transformer_sd3.py +18 -4
- diffusers/models/unets/unet_1d_blocks.py +1 -1
- diffusers/models/unets/unet_2d_condition.py +8 -1
- diffusers/models/unets/unet_3d_blocks.py +51 -920
- diffusers/models/unets/unet_3d_condition.py +4 -1
- diffusers/models/unets/unet_i2vgen_xl.py +4 -1
- diffusers/models/unets/unet_kandinsky3.py +1 -1
- diffusers/models/unets/unet_motion_model.py +1330 -84
- diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
- diffusers/models/unets/unet_stable_cascade.py +1 -3
- diffusers/models/unets/uvit_2d.py +1 -1
- diffusers/models/upsampling.py +64 -0
- diffusers/models/vq_model.py +8 -4
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +100 -3
- diffusers/pipelines/animatediff/__init__.py +4 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +50 -40
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1076 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +17 -27
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1008 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +51 -38
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +1 -0
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +591 -0
- diffusers/pipelines/auto_pipeline.py +97 -19
- diffusers/pipelines/cogvideo/__init__.py +48 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +687 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
- diffusers/pipelines/controlnet/pipeline_controlnet.py +24 -30
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +31 -30
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +24 -153
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +19 -28
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +18 -28
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +29 -32
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1042 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +35 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +10 -6
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +0 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +2 -2
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -6
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -6
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +6 -6
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -10
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +10 -6
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +3 -3
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +1 -1
- diffusers/pipelines/flux/__init__.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +749 -0
- diffusers/pipelines/flux/pipeline_output.py +21 -0
- diffusers/pipelines/free_init_utils.py +2 -0
- diffusers/pipelines/free_noise_utils.py +236 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +2 -2
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +2 -2
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1247 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +334 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +30 -29
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +23 -29
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +4 -4
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +0 -4
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +897 -0
- diffusers/pipelines/pag/__init__.py +67 -0
- diffusers/pipelines/pag/pag_utils.py +237 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1329 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1612 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +953 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +872 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1050 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +985 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +862 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1333 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1529 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1753 -0
- diffusers/pipelines/pia/pipeline_pia.py +30 -37
- diffusers/pipelines/pipeline_flax_utils.py +4 -9
- diffusers/pipelines/pipeline_loading_utils.py +0 -3
- diffusers/pipelines/pipeline_utils.py +2 -14
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +0 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +745 -0
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +2 -0
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +23 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +15 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +23 -152
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +8 -4
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +11 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +8 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +6 -6
- diffusers/pipelines/stable_diffusion_3/__init__.py +2 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +34 -3
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +33 -7
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1201 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +3 -3
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +6 -6
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -5
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +5 -5
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +6 -6
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +0 -4
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +23 -29
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +27 -29
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +3 -3
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +17 -27
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +26 -29
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +17 -145
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +0 -4
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +6 -6
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -28
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +8 -6
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +8 -6
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +6 -4
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +0 -4
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -4
- diffusers/schedulers/__init__.py +8 -0
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +1 -1
- diffusers/schedulers/scheduling_ddim_cogvideox.py +449 -0
- diffusers/schedulers/scheduling_ddpm.py +1 -1
- diffusers/schedulers/scheduling_ddpm_parallel.py +1 -1
- diffusers/schedulers/scheduling_deis_multistep.py +2 -2
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +1 -1
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +1 -1
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +64 -19
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +2 -2
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +63 -39
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +321 -0
- diffusers/schedulers/scheduling_ipndm.py +1 -1
- diffusers/schedulers/scheduling_unipc_multistep.py +1 -1
- diffusers/schedulers/scheduling_utils.py +1 -3
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/training_utils.py +99 -14
- diffusers/utils/__init__.py +2 -2
- diffusers/utils/dummy_pt_objects.py +210 -0
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +315 -0
- diffusers/utils/dynamic_modules_utils.py +1 -11
- diffusers/utils/export_utils.py +1 -4
- diffusers/utils/hub_utils.py +45 -42
- diffusers/utils/import_utils.py +19 -16
- diffusers/utils/loading_utils.py +76 -3
- diffusers/utils/testing_utils.py +11 -8
- {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/METADATA +73 -83
- {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/RECORD +217 -164
- {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1728
- {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/LICENSE +0 -0
- {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/entry_points.txt +0 -0
- {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1076 @@
|
|
1
|
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import inspect
|
16
|
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
17
|
+
|
18
|
+
import torch
|
19
|
+
import torch.nn.functional as F
|
20
|
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
21
|
+
|
22
|
+
from ...image_processor import PipelineImageInput
|
23
|
+
from ...loaders import IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
24
|
+
from ...models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel, UNetMotionModel
|
25
|
+
from ...models.lora import adjust_lora_scale_text_encoder
|
26
|
+
from ...models.unets.unet_motion_model import MotionAdapter
|
27
|
+
from ...schedulers import KarrasDiffusionSchedulers
|
28
|
+
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
|
29
|
+
from ...utils.torch_utils import is_compiled_module, randn_tensor
|
30
|
+
from ...video_processor import VideoProcessor
|
31
|
+
from ..controlnet.multicontrolnet import MultiControlNetModel
|
32
|
+
from ..free_init_utils import FreeInitMixin
|
33
|
+
from ..free_noise_utils import AnimateDiffFreeNoiseMixin
|
34
|
+
from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
35
|
+
from .pipeline_output import AnimateDiffPipelineOutput
|
36
|
+
|
37
|
+
|
38
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
39
|
+
|
40
|
+
EXAMPLE_DOC_STRING = """
|
41
|
+
Examples:
|
42
|
+
```py
|
43
|
+
>>> import torch
|
44
|
+
>>> from diffusers import (
|
45
|
+
... AnimateDiffControlNetPipeline,
|
46
|
+
... AutoencoderKL,
|
47
|
+
... ControlNetModel,
|
48
|
+
... MotionAdapter,
|
49
|
+
... LCMScheduler,
|
50
|
+
... )
|
51
|
+
>>> from diffusers.utils import export_to_gif, load_video
|
52
|
+
|
53
|
+
>>> # Additionally, you will need a preprocess videos before they can be used with the ControlNet
|
54
|
+
>>> # HF maintains just the right package for it: `pip install controlnet_aux`
|
55
|
+
>>> from controlnet_aux.processor import ZoeDetector
|
56
|
+
|
57
|
+
>>> # Download controlnets from https://huggingface.co/lllyasviel/ControlNet-v1-1 to use .from_single_file
|
58
|
+
>>> # Download Diffusers-format controlnets, such as https://huggingface.co/lllyasviel/sd-controlnet-depth, to use .from_pretrained()
|
59
|
+
>>> controlnet = ControlNetModel.from_single_file("control_v11f1p_sd15_depth.pth", torch_dtype=torch.float16)
|
60
|
+
|
61
|
+
>>> # We use AnimateLCM for this example but one can use the original motion adapters as well (for example, https://huggingface.co/guoyww/animatediff-motion-adapter-v1-5-3)
|
62
|
+
>>> motion_adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM")
|
63
|
+
|
64
|
+
>>> vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
|
65
|
+
>>> pipe: AnimateDiffControlNetPipeline = AnimateDiffControlNetPipeline.from_pretrained(
|
66
|
+
... "SG161222/Realistic_Vision_V5.1_noVAE",
|
67
|
+
... motion_adapter=motion_adapter,
|
68
|
+
... controlnet=controlnet,
|
69
|
+
... vae=vae,
|
70
|
+
... ).to(device="cuda", dtype=torch.float16)
|
71
|
+
>>> pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear")
|
72
|
+
>>> pipe.load_lora_weights(
|
73
|
+
... "wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm-lora"
|
74
|
+
... )
|
75
|
+
>>> pipe.set_adapters(["lcm-lora"], [0.8])
|
76
|
+
|
77
|
+
>>> depth_detector = ZoeDetector.from_pretrained("lllyasviel/Annotators").to("cuda")
|
78
|
+
>>> video = load_video(
|
79
|
+
... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-vid2vid-input-1.gif"
|
80
|
+
... )
|
81
|
+
>>> conditioning_frames = []
|
82
|
+
|
83
|
+
>>> with pipe.progress_bar(total=len(video)) as progress_bar:
|
84
|
+
... for frame in video:
|
85
|
+
... conditioning_frames.append(depth_detector(frame))
|
86
|
+
... progress_bar.update()
|
87
|
+
|
88
|
+
>>> prompt = "a panda, playing a guitar, sitting in a pink boat, in the ocean, mountains in background, realistic, high quality"
|
89
|
+
>>> negative_prompt = "bad quality, worst quality"
|
90
|
+
|
91
|
+
>>> video = pipe(
|
92
|
+
... prompt=prompt,
|
93
|
+
... negative_prompt=negative_prompt,
|
94
|
+
... num_frames=len(video),
|
95
|
+
... num_inference_steps=10,
|
96
|
+
... guidance_scale=2.0,
|
97
|
+
... conditioning_frames=conditioning_frames,
|
98
|
+
... generator=torch.Generator().manual_seed(42),
|
99
|
+
... ).frames[0]
|
100
|
+
|
101
|
+
>>> export_to_gif(video, "animatediff_controlnet.gif", fps=8)
|
102
|
+
```
|
103
|
+
"""
|
104
|
+
|
105
|
+
|
106
|
+
class AnimateDiffControlNetPipeline(
|
107
|
+
DiffusionPipeline,
|
108
|
+
StableDiffusionMixin,
|
109
|
+
TextualInversionLoaderMixin,
|
110
|
+
IPAdapterMixin,
|
111
|
+
StableDiffusionLoraLoaderMixin,
|
112
|
+
FreeInitMixin,
|
113
|
+
AnimateDiffFreeNoiseMixin,
|
114
|
+
):
|
115
|
+
r"""
|
116
|
+
Pipeline for text-to-video generation with ControlNet guidance.
|
117
|
+
|
118
|
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
119
|
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
120
|
+
|
121
|
+
The pipeline also inherits the following loading methods:
|
122
|
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
123
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
124
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
125
|
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
126
|
+
|
127
|
+
Args:
|
128
|
+
vae ([`AutoencoderKL`]):
|
129
|
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
130
|
+
text_encoder ([`CLIPTextModel`]):
|
131
|
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
132
|
+
tokenizer (`CLIPTokenizer`):
|
133
|
+
A [`~transformers.CLIPTokenizer`] to tokenize text.
|
134
|
+
unet ([`UNet2DConditionModel`]):
|
135
|
+
A [`UNet2DConditionModel`] used to create a UNetMotionModel to denoise the encoded video latents.
|
136
|
+
motion_adapter ([`MotionAdapter`]):
|
137
|
+
A [`MotionAdapter`] to be used in combination with `unet` to denoise the encoded video latents.
|
138
|
+
scheduler ([`SchedulerMixin`]):
|
139
|
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
140
|
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
141
|
+
"""
|
142
|
+
|
143
|
+
model_cpu_offload_seq = "text_encoder->unet->vae"
|
144
|
+
_optional_components = ["feature_extractor", "image_encoder"]
|
145
|
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
146
|
+
|
147
|
+
def __init__(
|
148
|
+
self,
|
149
|
+
vae: AutoencoderKL,
|
150
|
+
text_encoder: CLIPTextModel,
|
151
|
+
tokenizer: CLIPTokenizer,
|
152
|
+
unet: Union[UNet2DConditionModel, UNetMotionModel],
|
153
|
+
motion_adapter: MotionAdapter,
|
154
|
+
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
|
155
|
+
scheduler: KarrasDiffusionSchedulers,
|
156
|
+
feature_extractor: Optional[CLIPImageProcessor] = None,
|
157
|
+
image_encoder: Optional[CLIPVisionModelWithProjection] = None,
|
158
|
+
):
|
159
|
+
super().__init__()
|
160
|
+
if isinstance(unet, UNet2DConditionModel):
|
161
|
+
unet = UNetMotionModel.from_unet2d(unet, motion_adapter)
|
162
|
+
|
163
|
+
if isinstance(controlnet, (list, tuple)):
|
164
|
+
controlnet = MultiControlNetModel(controlnet)
|
165
|
+
|
166
|
+
self.register_modules(
|
167
|
+
vae=vae,
|
168
|
+
text_encoder=text_encoder,
|
169
|
+
tokenizer=tokenizer,
|
170
|
+
unet=unet,
|
171
|
+
motion_adapter=motion_adapter,
|
172
|
+
controlnet=controlnet,
|
173
|
+
scheduler=scheduler,
|
174
|
+
feature_extractor=feature_extractor,
|
175
|
+
image_encoder=image_encoder,
|
176
|
+
)
|
177
|
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
178
|
+
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor)
|
179
|
+
self.control_video_processor = VideoProcessor(
|
180
|
+
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
|
181
|
+
)
|
182
|
+
|
183
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt with num_images_per_prompt -> num_videos_per_prompt
|
184
|
+
def encode_prompt(
|
185
|
+
self,
|
186
|
+
prompt,
|
187
|
+
device,
|
188
|
+
num_images_per_prompt,
|
189
|
+
do_classifier_free_guidance,
|
190
|
+
negative_prompt=None,
|
191
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
192
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
193
|
+
lora_scale: Optional[float] = None,
|
194
|
+
clip_skip: Optional[int] = None,
|
195
|
+
):
|
196
|
+
r"""
|
197
|
+
Encodes the prompt into text encoder hidden states.
|
198
|
+
|
199
|
+
Args:
|
200
|
+
prompt (`str` or `List[str]`, *optional*):
|
201
|
+
prompt to be encoded
|
202
|
+
device: (`torch.device`):
|
203
|
+
torch device
|
204
|
+
num_images_per_prompt (`int`):
|
205
|
+
number of images that should be generated per prompt
|
206
|
+
do_classifier_free_guidance (`bool`):
|
207
|
+
whether to use classifier free guidance or not
|
208
|
+
negative_prompt (`str` or `List[str]`, *optional*):
|
209
|
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
210
|
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
211
|
+
less than `1`).
|
212
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
213
|
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
214
|
+
provided, text embeddings will be generated from `prompt` input argument.
|
215
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
216
|
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
217
|
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
218
|
+
argument.
|
219
|
+
lora_scale (`float`, *optional*):
|
220
|
+
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
221
|
+
clip_skip (`int`, *optional*):
|
222
|
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
223
|
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
224
|
+
"""
|
225
|
+
# set lora scale so that monkey patched LoRA
|
226
|
+
# function of text encoder can correctly access it
|
227
|
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
228
|
+
self._lora_scale = lora_scale
|
229
|
+
|
230
|
+
# dynamically adjust the LoRA scale
|
231
|
+
if not USE_PEFT_BACKEND:
|
232
|
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
233
|
+
else:
|
234
|
+
scale_lora_layers(self.text_encoder, lora_scale)
|
235
|
+
|
236
|
+
if prompt is not None and isinstance(prompt, str):
|
237
|
+
batch_size = 1
|
238
|
+
elif prompt is not None and isinstance(prompt, list):
|
239
|
+
batch_size = len(prompt)
|
240
|
+
else:
|
241
|
+
batch_size = prompt_embeds.shape[0]
|
242
|
+
|
243
|
+
if prompt_embeds is None:
|
244
|
+
# textual inversion: process multi-vector tokens if necessary
|
245
|
+
if isinstance(self, TextualInversionLoaderMixin):
|
246
|
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
247
|
+
|
248
|
+
text_inputs = self.tokenizer(
|
249
|
+
prompt,
|
250
|
+
padding="max_length",
|
251
|
+
max_length=self.tokenizer.model_max_length,
|
252
|
+
truncation=True,
|
253
|
+
return_tensors="pt",
|
254
|
+
)
|
255
|
+
text_input_ids = text_inputs.input_ids
|
256
|
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
257
|
+
|
258
|
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
259
|
+
text_input_ids, untruncated_ids
|
260
|
+
):
|
261
|
+
removed_text = self.tokenizer.batch_decode(
|
262
|
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
263
|
+
)
|
264
|
+
logger.warning(
|
265
|
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
266
|
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
267
|
+
)
|
268
|
+
|
269
|
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
270
|
+
attention_mask = text_inputs.attention_mask.to(device)
|
271
|
+
else:
|
272
|
+
attention_mask = None
|
273
|
+
|
274
|
+
if clip_skip is None:
|
275
|
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
|
276
|
+
prompt_embeds = prompt_embeds[0]
|
277
|
+
else:
|
278
|
+
prompt_embeds = self.text_encoder(
|
279
|
+
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
|
280
|
+
)
|
281
|
+
# Access the `hidden_states` first, that contains a tuple of
|
282
|
+
# all the hidden states from the encoder layers. Then index into
|
283
|
+
# the tuple to access the hidden states from the desired layer.
|
284
|
+
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
|
285
|
+
# We also need to apply the final LayerNorm here to not mess with the
|
286
|
+
# representations. The `last_hidden_states` that we typically use for
|
287
|
+
# obtaining the final prompt representations passes through the LayerNorm
|
288
|
+
# layer.
|
289
|
+
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
290
|
+
|
291
|
+
if self.text_encoder is not None:
|
292
|
+
prompt_embeds_dtype = self.text_encoder.dtype
|
293
|
+
elif self.unet is not None:
|
294
|
+
prompt_embeds_dtype = self.unet.dtype
|
295
|
+
else:
|
296
|
+
prompt_embeds_dtype = prompt_embeds.dtype
|
297
|
+
|
298
|
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
299
|
+
|
300
|
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
301
|
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
302
|
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
303
|
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
304
|
+
|
305
|
+
# get unconditional embeddings for classifier free guidance
|
306
|
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
307
|
+
uncond_tokens: List[str]
|
308
|
+
if negative_prompt is None:
|
309
|
+
uncond_tokens = [""] * batch_size
|
310
|
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
311
|
+
raise TypeError(
|
312
|
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
313
|
+
f" {type(prompt)}."
|
314
|
+
)
|
315
|
+
elif isinstance(negative_prompt, str):
|
316
|
+
uncond_tokens = [negative_prompt]
|
317
|
+
elif batch_size != len(negative_prompt):
|
318
|
+
raise ValueError(
|
319
|
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
320
|
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
321
|
+
" the batch size of `prompt`."
|
322
|
+
)
|
323
|
+
else:
|
324
|
+
uncond_tokens = negative_prompt
|
325
|
+
|
326
|
+
# textual inversion: process multi-vector tokens if necessary
|
327
|
+
if isinstance(self, TextualInversionLoaderMixin):
|
328
|
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
329
|
+
|
330
|
+
max_length = prompt_embeds.shape[1]
|
331
|
+
uncond_input = self.tokenizer(
|
332
|
+
uncond_tokens,
|
333
|
+
padding="max_length",
|
334
|
+
max_length=max_length,
|
335
|
+
truncation=True,
|
336
|
+
return_tensors="pt",
|
337
|
+
)
|
338
|
+
|
339
|
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
340
|
+
attention_mask = uncond_input.attention_mask.to(device)
|
341
|
+
else:
|
342
|
+
attention_mask = None
|
343
|
+
|
344
|
+
negative_prompt_embeds = self.text_encoder(
|
345
|
+
uncond_input.input_ids.to(device),
|
346
|
+
attention_mask=attention_mask,
|
347
|
+
)
|
348
|
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
349
|
+
|
350
|
+
if do_classifier_free_guidance:
|
351
|
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
352
|
+
seq_len = negative_prompt_embeds.shape[1]
|
353
|
+
|
354
|
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
355
|
+
|
356
|
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
357
|
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
358
|
+
|
359
|
+
if self.text_encoder is not None:
|
360
|
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
361
|
+
# Retrieve the original scale by scaling back the LoRA layers
|
362
|
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
363
|
+
|
364
|
+
return prompt_embeds, negative_prompt_embeds
|
365
|
+
|
366
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
367
|
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
368
|
+
dtype = next(self.image_encoder.parameters()).dtype
|
369
|
+
|
370
|
+
if not isinstance(image, torch.Tensor):
|
371
|
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
372
|
+
|
373
|
+
image = image.to(device=device, dtype=dtype)
|
374
|
+
if output_hidden_states:
|
375
|
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
376
|
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
377
|
+
uncond_image_enc_hidden_states = self.image_encoder(
|
378
|
+
torch.zeros_like(image), output_hidden_states=True
|
379
|
+
).hidden_states[-2]
|
380
|
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
381
|
+
num_images_per_prompt, dim=0
|
382
|
+
)
|
383
|
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
384
|
+
else:
|
385
|
+
image_embeds = self.image_encoder(image).image_embeds
|
386
|
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
387
|
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
388
|
+
|
389
|
+
return image_embeds, uncond_image_embeds
|
390
|
+
|
391
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
392
|
+
def prepare_ip_adapter_image_embeds(
|
393
|
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
394
|
+
):
|
395
|
+
image_embeds = []
|
396
|
+
if do_classifier_free_guidance:
|
397
|
+
negative_image_embeds = []
|
398
|
+
if ip_adapter_image_embeds is None:
|
399
|
+
if not isinstance(ip_adapter_image, list):
|
400
|
+
ip_adapter_image = [ip_adapter_image]
|
401
|
+
|
402
|
+
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
403
|
+
raise ValueError(
|
404
|
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
405
|
+
)
|
406
|
+
|
407
|
+
for single_ip_adapter_image, image_proj_layer in zip(
|
408
|
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
409
|
+
):
|
410
|
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
411
|
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
412
|
+
single_ip_adapter_image, device, 1, output_hidden_state
|
413
|
+
)
|
414
|
+
|
415
|
+
image_embeds.append(single_image_embeds[None, :])
|
416
|
+
if do_classifier_free_guidance:
|
417
|
+
negative_image_embeds.append(single_negative_image_embeds[None, :])
|
418
|
+
else:
|
419
|
+
for single_image_embeds in ip_adapter_image_embeds:
|
420
|
+
if do_classifier_free_guidance:
|
421
|
+
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
422
|
+
negative_image_embeds.append(single_negative_image_embeds)
|
423
|
+
image_embeds.append(single_image_embeds)
|
424
|
+
|
425
|
+
ip_adapter_image_embeds = []
|
426
|
+
for i, single_image_embeds in enumerate(image_embeds):
|
427
|
+
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
428
|
+
if do_classifier_free_guidance:
|
429
|
+
single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
|
430
|
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
|
431
|
+
|
432
|
+
single_image_embeds = single_image_embeds.to(device=device)
|
433
|
+
ip_adapter_image_embeds.append(single_image_embeds)
|
434
|
+
|
435
|
+
return ip_adapter_image_embeds
|
436
|
+
|
437
|
+
# Copied from diffusers.pipelines.animatediff.pipeline_animatediff.AnimateDiffPipeline.decode_latents
|
438
|
+
def decode_latents(self, latents, decode_chunk_size: int = 16):
|
439
|
+
latents = 1 / self.vae.config.scaling_factor * latents
|
440
|
+
|
441
|
+
batch_size, channels, num_frames, height, width = latents.shape
|
442
|
+
latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)
|
443
|
+
|
444
|
+
video = []
|
445
|
+
for i in range(0, latents.shape[0], decode_chunk_size):
|
446
|
+
batch_latents = latents[i : i + decode_chunk_size]
|
447
|
+
batch_latents = self.vae.decode(batch_latents).sample
|
448
|
+
video.append(batch_latents)
|
449
|
+
|
450
|
+
video = torch.cat(video)
|
451
|
+
video = video[None, :].reshape((batch_size, num_frames, -1) + video.shape[2:]).permute(0, 2, 1, 3, 4)
|
452
|
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
453
|
+
video = video.float()
|
454
|
+
return video
|
455
|
+
|
456
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
457
|
+
def prepare_extra_step_kwargs(self, generator, eta):
|
458
|
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
459
|
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
460
|
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
461
|
+
# and should be between [0, 1]
|
462
|
+
|
463
|
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
464
|
+
extra_step_kwargs = {}
|
465
|
+
if accepts_eta:
|
466
|
+
extra_step_kwargs["eta"] = eta
|
467
|
+
|
468
|
+
# check if the scheduler accepts generator
|
469
|
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
470
|
+
if accepts_generator:
|
471
|
+
extra_step_kwargs["generator"] = generator
|
472
|
+
return extra_step_kwargs
|
473
|
+
|
474
|
+
def check_inputs(
|
475
|
+
self,
|
476
|
+
prompt,
|
477
|
+
height,
|
478
|
+
width,
|
479
|
+
num_frames,
|
480
|
+
negative_prompt=None,
|
481
|
+
prompt_embeds=None,
|
482
|
+
negative_prompt_embeds=None,
|
483
|
+
callback_on_step_end_tensor_inputs=None,
|
484
|
+
video=None,
|
485
|
+
controlnet_conditioning_scale=1.0,
|
486
|
+
control_guidance_start=0.0,
|
487
|
+
control_guidance_end=1.0,
|
488
|
+
):
|
489
|
+
if height % 8 != 0 or width % 8 != 0:
|
490
|
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
491
|
+
|
492
|
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
493
|
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
494
|
+
):
|
495
|
+
raise ValueError(
|
496
|
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
497
|
+
)
|
498
|
+
|
499
|
+
if prompt is not None and prompt_embeds is not None:
|
500
|
+
raise ValueError(
|
501
|
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
502
|
+
" only forward one of the two."
|
503
|
+
)
|
504
|
+
elif prompt is None and prompt_embeds is None:
|
505
|
+
raise ValueError(
|
506
|
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
507
|
+
)
|
508
|
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
509
|
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
510
|
+
|
511
|
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
512
|
+
raise ValueError(
|
513
|
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
514
|
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
515
|
+
)
|
516
|
+
|
517
|
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
518
|
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
519
|
+
raise ValueError(
|
520
|
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
521
|
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
522
|
+
f" {negative_prompt_embeds.shape}."
|
523
|
+
)
|
524
|
+
|
525
|
+
# `prompt` needs more sophisticated handling when there are multiple
|
526
|
+
# conditionings.
|
527
|
+
if isinstance(self.controlnet, MultiControlNetModel):
|
528
|
+
if isinstance(prompt, list):
|
529
|
+
logger.warning(
|
530
|
+
f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
|
531
|
+
" prompts. The conditionings will be fixed across the prompts."
|
532
|
+
)
|
533
|
+
|
534
|
+
# Check `image`
|
535
|
+
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
|
536
|
+
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
|
537
|
+
)
|
538
|
+
if (
|
539
|
+
isinstance(self.controlnet, ControlNetModel)
|
540
|
+
or is_compiled
|
541
|
+
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
542
|
+
):
|
543
|
+
if not isinstance(video, list):
|
544
|
+
raise TypeError(f"For single controlnet, `image` must be of type `list` but got {type(video)}")
|
545
|
+
if len(video) != num_frames:
|
546
|
+
raise ValueError(f"Excepted image to have length {num_frames} but got {len(video)=}")
|
547
|
+
elif (
|
548
|
+
isinstance(self.controlnet, MultiControlNetModel)
|
549
|
+
or is_compiled
|
550
|
+
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
551
|
+
):
|
552
|
+
if not isinstance(video, list) or not isinstance(video[0], list):
|
553
|
+
raise TypeError(f"For multiple controlnets: `image` must be type list of lists but got {type(video)=}")
|
554
|
+
if len(video[0]) != num_frames:
|
555
|
+
raise ValueError(f"Expected length of image sublist as {num_frames} but got {len(video[0])=}")
|
556
|
+
if any(len(img) != len(video[0]) for img in video):
|
557
|
+
raise ValueError("All conditioning frame batches for multicontrolnet must be same size")
|
558
|
+
else:
|
559
|
+
assert False
|
560
|
+
|
561
|
+
# Check `controlnet_conditioning_scale`
|
562
|
+
if (
|
563
|
+
isinstance(self.controlnet, ControlNetModel)
|
564
|
+
or is_compiled
|
565
|
+
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
566
|
+
):
|
567
|
+
if not isinstance(controlnet_conditioning_scale, float):
|
568
|
+
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
|
569
|
+
elif (
|
570
|
+
isinstance(self.controlnet, MultiControlNetModel)
|
571
|
+
or is_compiled
|
572
|
+
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
573
|
+
):
|
574
|
+
if isinstance(controlnet_conditioning_scale, list):
|
575
|
+
if any(isinstance(i, list) for i in controlnet_conditioning_scale):
|
576
|
+
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
|
577
|
+
elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
|
578
|
+
self.controlnet.nets
|
579
|
+
):
|
580
|
+
raise ValueError(
|
581
|
+
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
|
582
|
+
" the same length as the number of controlnets"
|
583
|
+
)
|
584
|
+
else:
|
585
|
+
assert False
|
586
|
+
|
587
|
+
if not isinstance(control_guidance_start, (tuple, list)):
|
588
|
+
control_guidance_start = [control_guidance_start]
|
589
|
+
|
590
|
+
if not isinstance(control_guidance_end, (tuple, list)):
|
591
|
+
control_guidance_end = [control_guidance_end]
|
592
|
+
|
593
|
+
if len(control_guidance_start) != len(control_guidance_end):
|
594
|
+
raise ValueError(
|
595
|
+
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
|
596
|
+
)
|
597
|
+
|
598
|
+
if isinstance(self.controlnet, MultiControlNetModel):
|
599
|
+
if len(control_guidance_start) != len(self.controlnet.nets):
|
600
|
+
raise ValueError(
|
601
|
+
f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
|
602
|
+
)
|
603
|
+
|
604
|
+
for start, end in zip(control_guidance_start, control_guidance_end):
|
605
|
+
if start >= end:
|
606
|
+
raise ValueError(
|
607
|
+
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
|
608
|
+
)
|
609
|
+
if start < 0.0:
|
610
|
+
raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
|
611
|
+
if end > 1.0:
|
612
|
+
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
|
613
|
+
|
614
|
+
# Copied from diffusers.pipelines.animatediff.pipeline_animatediff.AnimateDiffPipeline.prepare_latents
|
615
|
+
def prepare_latents(
|
616
|
+
self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
|
617
|
+
):
|
618
|
+
# If FreeNoise is enabled, generate latents as described in Equation (7) of [FreeNoise](https://arxiv.org/abs/2310.15169)
|
619
|
+
if self.free_noise_enabled:
|
620
|
+
latents = self._prepare_latents_free_noise(
|
621
|
+
batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents
|
622
|
+
)
|
623
|
+
|
624
|
+
if isinstance(generator, list) and len(generator) != batch_size:
|
625
|
+
raise ValueError(
|
626
|
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
627
|
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
628
|
+
)
|
629
|
+
|
630
|
+
shape = (
|
631
|
+
batch_size,
|
632
|
+
num_channels_latents,
|
633
|
+
num_frames,
|
634
|
+
height // self.vae_scale_factor,
|
635
|
+
width // self.vae_scale_factor,
|
636
|
+
)
|
637
|
+
|
638
|
+
if latents is None:
|
639
|
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
640
|
+
else:
|
641
|
+
latents = latents.to(device)
|
642
|
+
|
643
|
+
# scale the initial noise by the standard deviation required by the scheduler
|
644
|
+
latents = latents * self.scheduler.init_noise_sigma
|
645
|
+
return latents
|
646
|
+
|
647
|
+
def prepare_video(
|
648
|
+
self,
|
649
|
+
video,
|
650
|
+
width,
|
651
|
+
height,
|
652
|
+
batch_size,
|
653
|
+
num_videos_per_prompt,
|
654
|
+
device,
|
655
|
+
dtype,
|
656
|
+
do_classifier_free_guidance=False,
|
657
|
+
guess_mode=False,
|
658
|
+
):
|
659
|
+
video = self.control_video_processor.preprocess_video(video, height=height, width=width).to(
|
660
|
+
dtype=torch.float32
|
661
|
+
)
|
662
|
+
video = video.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
663
|
+
video_batch_size = video.shape[0]
|
664
|
+
|
665
|
+
if video_batch_size == 1:
|
666
|
+
repeat_by = batch_size
|
667
|
+
else:
|
668
|
+
# image batch size is the same as prompt batch size
|
669
|
+
repeat_by = num_videos_per_prompt
|
670
|
+
|
671
|
+
video = video.repeat_interleave(repeat_by, dim=0)
|
672
|
+
video = video.to(device=device, dtype=dtype)
|
673
|
+
|
674
|
+
if do_classifier_free_guidance and not guess_mode:
|
675
|
+
video = torch.cat([video] * 2)
|
676
|
+
|
677
|
+
return video
|
678
|
+
|
679
|
+
@property
|
680
|
+
def guidance_scale(self):
|
681
|
+
return self._guidance_scale
|
682
|
+
|
683
|
+
@property
|
684
|
+
def clip_skip(self):
|
685
|
+
return self._clip_skip
|
686
|
+
|
687
|
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
688
|
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
689
|
+
# corresponds to doing no classifier free guidance.
|
690
|
+
@property
|
691
|
+
def do_classifier_free_guidance(self):
|
692
|
+
return self._guidance_scale > 1
|
693
|
+
|
694
|
+
@property
|
695
|
+
def cross_attention_kwargs(self):
|
696
|
+
return self._cross_attention_kwargs
|
697
|
+
|
698
|
+
@property
|
699
|
+
def num_timesteps(self):
|
700
|
+
return self._num_timesteps
|
701
|
+
|
702
|
+
@torch.no_grad()
|
703
|
+
def __call__(
|
704
|
+
self,
|
705
|
+
prompt: Union[str, List[str]] = None,
|
706
|
+
num_frames: Optional[int] = 16,
|
707
|
+
height: Optional[int] = None,
|
708
|
+
width: Optional[int] = None,
|
709
|
+
num_inference_steps: int = 50,
|
710
|
+
guidance_scale: float = 7.5,
|
711
|
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
712
|
+
num_videos_per_prompt: Optional[int] = 1,
|
713
|
+
eta: float = 0.0,
|
714
|
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
715
|
+
latents: Optional[torch.Tensor] = None,
|
716
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
717
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
718
|
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
719
|
+
ip_adapter_image_embeds: Optional[PipelineImageInput] = None,
|
720
|
+
conditioning_frames: Optional[List[PipelineImageInput]] = None,
|
721
|
+
output_type: Optional[str] = "pil",
|
722
|
+
return_dict: bool = True,
|
723
|
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
724
|
+
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
725
|
+
guess_mode: bool = False,
|
726
|
+
control_guidance_start: Union[float, List[float]] = 0.0,
|
727
|
+
control_guidance_end: Union[float, List[float]] = 1.0,
|
728
|
+
clip_skip: Optional[int] = None,
|
729
|
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
730
|
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
731
|
+
decode_chunk_size: int = 16,
|
732
|
+
):
|
733
|
+
r"""
|
734
|
+
The call function to the pipeline for generation.
|
735
|
+
|
736
|
+
Args:
|
737
|
+
prompt (`str` or `List[str]`, *optional*):
|
738
|
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
739
|
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
740
|
+
The height in pixels of the generated video.
|
741
|
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
742
|
+
The width in pixels of the generated video.
|
743
|
+
num_frames (`int`, *optional*, defaults to 16):
|
744
|
+
The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
|
745
|
+
amounts to 2 seconds of video.
|
746
|
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
747
|
+
The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
|
748
|
+
expense of slower inference.
|
749
|
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
750
|
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
751
|
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
752
|
+
negative_prompt (`str` or `List[str]`, *optional*):
|
753
|
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
754
|
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
755
|
+
eta (`float`, *optional*, defaults to 0.0):
|
756
|
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
757
|
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
758
|
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
759
|
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
760
|
+
generation deterministic.
|
761
|
+
latents (`torch.Tensor`, *optional*):
|
762
|
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
|
763
|
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
764
|
+
tensor is generated by sampling using the supplied random `generator`. Latents should be of shape
|
765
|
+
`(batch_size, num_channel, num_frames, height, width)`.
|
766
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
767
|
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
768
|
+
provided, text embeddings are generated from the `prompt` input argument.
|
769
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
770
|
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
771
|
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
772
|
+
ip_adapter_image (`PipelineImageInput`, *optional*):
|
773
|
+
Optional image input to work with IP Adapters.
|
774
|
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
775
|
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
776
|
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
777
|
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
778
|
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
779
|
+
conditioning_frames (`List[PipelineImageInput]`, *optional*):
|
780
|
+
The ControlNet input condition to provide guidance to the `unet` for generation. If multiple
|
781
|
+
ControlNets are specified, images must be passed as a list such that each element of the list can be
|
782
|
+
correctly batched for input to a single ControlNet.
|
783
|
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
784
|
+
The output format of the generated video. Choose between `torch.Tensor`, `PIL.Image` or `np.array`.
|
785
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
786
|
+
Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead
|
787
|
+
of a plain tuple.
|
788
|
+
cross_attention_kwargs (`dict`, *optional*):
|
789
|
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
790
|
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
791
|
+
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
792
|
+
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
|
793
|
+
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
|
794
|
+
the corresponding scale as a list.
|
795
|
+
guess_mode (`bool`, *optional*, defaults to `False`):
|
796
|
+
The ControlNet encoder tries to recognize the content of the input image even if you remove all
|
797
|
+
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
|
798
|
+
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
|
799
|
+
The percentage of total steps at which the ControlNet starts applying.
|
800
|
+
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
|
801
|
+
The percentage of total steps at which the ControlNet stops applying.
|
802
|
+
clip_skip (`int`, *optional*):
|
803
|
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
804
|
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
805
|
+
callback_on_step_end (`Callable`, *optional*):
|
806
|
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
807
|
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
808
|
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
809
|
+
`callback_on_step_end_tensor_inputs`.
|
810
|
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
811
|
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
812
|
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
813
|
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
814
|
+
|
815
|
+
Examples:
|
816
|
+
|
817
|
+
Returns:
|
818
|
+
[`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] or `tuple`:
|
819
|
+
If `return_dict` is `True`, [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] is
|
820
|
+
returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
|
821
|
+
"""
|
822
|
+
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
823
|
+
|
824
|
+
# align format for control guidance
|
825
|
+
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
826
|
+
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
827
|
+
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
828
|
+
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
829
|
+
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
830
|
+
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
831
|
+
control_guidance_start, control_guidance_end = (
|
832
|
+
mult * [control_guidance_start],
|
833
|
+
mult * [control_guidance_end],
|
834
|
+
)
|
835
|
+
|
836
|
+
# 0. Default height and width to unet
|
837
|
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
838
|
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
839
|
+
|
840
|
+
num_videos_per_prompt = 1
|
841
|
+
|
842
|
+
# 1. Check inputs. Raise error if not correct
|
843
|
+
self.check_inputs(
|
844
|
+
prompt=prompt,
|
845
|
+
height=height,
|
846
|
+
width=width,
|
847
|
+
num_frames=num_frames,
|
848
|
+
negative_prompt=negative_prompt,
|
849
|
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
850
|
+
prompt_embeds=prompt_embeds,
|
851
|
+
negative_prompt_embeds=negative_prompt_embeds,
|
852
|
+
video=conditioning_frames,
|
853
|
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
854
|
+
control_guidance_start=control_guidance_start,
|
855
|
+
control_guidance_end=control_guidance_end,
|
856
|
+
)
|
857
|
+
|
858
|
+
self._guidance_scale = guidance_scale
|
859
|
+
self._clip_skip = clip_skip
|
860
|
+
self._cross_attention_kwargs = cross_attention_kwargs
|
861
|
+
|
862
|
+
# 2. Define call parameters
|
863
|
+
if prompt is not None and isinstance(prompt, str):
|
864
|
+
batch_size = 1
|
865
|
+
elif prompt is not None and isinstance(prompt, list):
|
866
|
+
batch_size = len(prompt)
|
867
|
+
else:
|
868
|
+
batch_size = prompt_embeds.shape[0]
|
869
|
+
|
870
|
+
device = self._execution_device
|
871
|
+
|
872
|
+
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
873
|
+
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
874
|
+
|
875
|
+
global_pool_conditions = (
|
876
|
+
controlnet.config.global_pool_conditions
|
877
|
+
if isinstance(controlnet, ControlNetModel)
|
878
|
+
else controlnet.nets[0].config.global_pool_conditions
|
879
|
+
)
|
880
|
+
guess_mode = guess_mode or global_pool_conditions
|
881
|
+
|
882
|
+
# 3. Encode input prompt
|
883
|
+
text_encoder_lora_scale = (
|
884
|
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
885
|
+
)
|
886
|
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
887
|
+
prompt,
|
888
|
+
device,
|
889
|
+
num_videos_per_prompt,
|
890
|
+
self.do_classifier_free_guidance,
|
891
|
+
negative_prompt,
|
892
|
+
prompt_embeds=prompt_embeds,
|
893
|
+
negative_prompt_embeds=negative_prompt_embeds,
|
894
|
+
lora_scale=text_encoder_lora_scale,
|
895
|
+
clip_skip=self.clip_skip,
|
896
|
+
)
|
897
|
+
# For classifier free guidance, we need to do two forward passes.
|
898
|
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
899
|
+
# to avoid doing two forward passes
|
900
|
+
if self.do_classifier_free_guidance:
|
901
|
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
902
|
+
|
903
|
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
904
|
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
905
|
+
ip_adapter_image,
|
906
|
+
ip_adapter_image_embeds,
|
907
|
+
device,
|
908
|
+
batch_size * num_videos_per_prompt,
|
909
|
+
self.do_classifier_free_guidance,
|
910
|
+
)
|
911
|
+
|
912
|
+
if isinstance(controlnet, ControlNetModel):
|
913
|
+
conditioning_frames = self.prepare_video(
|
914
|
+
video=conditioning_frames,
|
915
|
+
width=width,
|
916
|
+
height=height,
|
917
|
+
batch_size=batch_size * num_videos_per_prompt * num_frames,
|
918
|
+
num_videos_per_prompt=num_videos_per_prompt,
|
919
|
+
device=device,
|
920
|
+
dtype=controlnet.dtype,
|
921
|
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
922
|
+
guess_mode=guess_mode,
|
923
|
+
)
|
924
|
+
elif isinstance(controlnet, MultiControlNetModel):
|
925
|
+
cond_prepared_videos = []
|
926
|
+
for frame_ in conditioning_frames:
|
927
|
+
prepared_video = self.prepare_video(
|
928
|
+
video=frame_,
|
929
|
+
width=width,
|
930
|
+
height=height,
|
931
|
+
batch_size=batch_size * num_videos_per_prompt * num_frames,
|
932
|
+
num_videos_per_prompt=num_videos_per_prompt,
|
933
|
+
device=device,
|
934
|
+
dtype=controlnet.dtype,
|
935
|
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
936
|
+
guess_mode=guess_mode,
|
937
|
+
)
|
938
|
+
cond_prepared_videos.append(prepared_video)
|
939
|
+
conditioning_frames = cond_prepared_videos
|
940
|
+
else:
|
941
|
+
assert False
|
942
|
+
|
943
|
+
# 4. Prepare timesteps
|
944
|
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
945
|
+
timesteps = self.scheduler.timesteps
|
946
|
+
|
947
|
+
# 5. Prepare latent variables
|
948
|
+
num_channels_latents = self.unet.config.in_channels
|
949
|
+
latents = self.prepare_latents(
|
950
|
+
batch_size * num_videos_per_prompt,
|
951
|
+
num_channels_latents,
|
952
|
+
num_frames,
|
953
|
+
height,
|
954
|
+
width,
|
955
|
+
prompt_embeds.dtype,
|
956
|
+
device,
|
957
|
+
generator,
|
958
|
+
latents,
|
959
|
+
)
|
960
|
+
|
961
|
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
962
|
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
963
|
+
|
964
|
+
# 7. Add image embeds for IP-Adapter
|
965
|
+
added_cond_kwargs = (
|
966
|
+
{"image_embeds": image_embeds}
|
967
|
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None
|
968
|
+
else None
|
969
|
+
)
|
970
|
+
|
971
|
+
# 7.1 Create tensor stating which controlnets to keep
|
972
|
+
controlnet_keep = []
|
973
|
+
for i in range(len(timesteps)):
|
974
|
+
keeps = [
|
975
|
+
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
976
|
+
for s, e in zip(control_guidance_start, control_guidance_end)
|
977
|
+
]
|
978
|
+
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
|
979
|
+
|
980
|
+
num_free_init_iters = self._free_init_num_iters if self.free_init_enabled else 1
|
981
|
+
for free_init_iter in range(num_free_init_iters):
|
982
|
+
if self.free_init_enabled:
|
983
|
+
latents, timesteps = self._apply_free_init(
|
984
|
+
latents, free_init_iter, num_inference_steps, device, latents.dtype, generator
|
985
|
+
)
|
986
|
+
|
987
|
+
self._num_timesteps = len(timesteps)
|
988
|
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
989
|
+
|
990
|
+
# 8. Denoising loop
|
991
|
+
with self.progress_bar(total=self._num_timesteps) as progress_bar:
|
992
|
+
for i, t in enumerate(timesteps):
|
993
|
+
# expand the latents if we are doing classifier free guidance
|
994
|
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
995
|
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
996
|
+
|
997
|
+
if guess_mode and self.do_classifier_free_guidance:
|
998
|
+
# Infer ControlNet only for the conditional batch.
|
999
|
+
control_model_input = latents
|
1000
|
+
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
1001
|
+
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
|
1002
|
+
else:
|
1003
|
+
control_model_input = latent_model_input
|
1004
|
+
controlnet_prompt_embeds = prompt_embeds
|
1005
|
+
controlnet_prompt_embeds = controlnet_prompt_embeds.repeat_interleave(num_frames, dim=0)
|
1006
|
+
|
1007
|
+
if isinstance(controlnet_keep[i], list):
|
1008
|
+
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
1009
|
+
else:
|
1010
|
+
controlnet_cond_scale = controlnet_conditioning_scale
|
1011
|
+
if isinstance(controlnet_cond_scale, list):
|
1012
|
+
controlnet_cond_scale = controlnet_cond_scale[0]
|
1013
|
+
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
1014
|
+
|
1015
|
+
control_model_input = torch.transpose(control_model_input, 1, 2)
|
1016
|
+
control_model_input = control_model_input.reshape(
|
1017
|
+
(-1, control_model_input.shape[2], control_model_input.shape[3], control_model_input.shape[4])
|
1018
|
+
)
|
1019
|
+
|
1020
|
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
1021
|
+
control_model_input,
|
1022
|
+
t,
|
1023
|
+
encoder_hidden_states=controlnet_prompt_embeds,
|
1024
|
+
controlnet_cond=conditioning_frames,
|
1025
|
+
conditioning_scale=cond_scale,
|
1026
|
+
guess_mode=guess_mode,
|
1027
|
+
return_dict=False,
|
1028
|
+
)
|
1029
|
+
|
1030
|
+
# predict the noise residual
|
1031
|
+
noise_pred = self.unet(
|
1032
|
+
latent_model_input,
|
1033
|
+
t,
|
1034
|
+
encoder_hidden_states=prompt_embeds,
|
1035
|
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1036
|
+
added_cond_kwargs=added_cond_kwargs,
|
1037
|
+
down_block_additional_residuals=down_block_res_samples,
|
1038
|
+
mid_block_additional_residual=mid_block_res_sample,
|
1039
|
+
).sample
|
1040
|
+
|
1041
|
+
# perform guidance
|
1042
|
+
if self.do_classifier_free_guidance:
|
1043
|
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1044
|
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1045
|
+
|
1046
|
+
# compute the previous noisy sample x_t -> x_t-1
|
1047
|
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
1048
|
+
|
1049
|
+
if callback_on_step_end is not None:
|
1050
|
+
callback_kwargs = {}
|
1051
|
+
for k in callback_on_step_end_tensor_inputs:
|
1052
|
+
callback_kwargs[k] = locals()[k]
|
1053
|
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1054
|
+
|
1055
|
+
latents = callback_outputs.pop("latents", latents)
|
1056
|
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1057
|
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1058
|
+
|
1059
|
+
# call the callback, if provided
|
1060
|
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1061
|
+
progress_bar.update()
|
1062
|
+
|
1063
|
+
# 9. Post processing
|
1064
|
+
if output_type == "latent":
|
1065
|
+
video = latents
|
1066
|
+
else:
|
1067
|
+
video_tensor = self.decode_latents(latents, decode_chunk_size)
|
1068
|
+
video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type)
|
1069
|
+
|
1070
|
+
# 10. Offload all models
|
1071
|
+
self.maybe_free_model_hooks()
|
1072
|
+
|
1073
|
+
if not return_dict:
|
1074
|
+
return (video,)
|
1075
|
+
|
1076
|
+
return AnimateDiffPipelineOutput(frames=video)
|