diffusers 0.29.2__py3-none-any.whl → 0.30.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (220) hide show
  1. diffusers/__init__.py +94 -3
  2. diffusers/commands/env.py +1 -5
  3. diffusers/configuration_utils.py +4 -9
  4. diffusers/dependency_versions_table.py +2 -2
  5. diffusers/image_processor.py +1 -2
  6. diffusers/loaders/__init__.py +17 -2
  7. diffusers/loaders/ip_adapter.py +10 -7
  8. diffusers/loaders/lora_base.py +752 -0
  9. diffusers/loaders/lora_pipeline.py +2222 -0
  10. diffusers/loaders/peft.py +213 -5
  11. diffusers/loaders/single_file.py +1 -12
  12. diffusers/loaders/single_file_model.py +31 -10
  13. diffusers/loaders/single_file_utils.py +262 -2
  14. diffusers/loaders/textual_inversion.py +1 -6
  15. diffusers/loaders/unet.py +23 -208
  16. diffusers/models/__init__.py +20 -0
  17. diffusers/models/activations.py +22 -0
  18. diffusers/models/attention.py +386 -7
  19. diffusers/models/attention_processor.py +1795 -629
  20. diffusers/models/autoencoders/__init__.py +2 -0
  21. diffusers/models/autoencoders/autoencoder_kl.py +14 -3
  22. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1035 -0
  23. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
  24. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  25. diffusers/models/autoencoders/autoencoder_tiny.py +1 -0
  26. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  27. diffusers/models/autoencoders/vq_model.py +4 -4
  28. diffusers/models/controlnet.py +2 -3
  29. diffusers/models/controlnet_hunyuan.py +401 -0
  30. diffusers/models/controlnet_sd3.py +11 -11
  31. diffusers/models/controlnet_sparsectrl.py +789 -0
  32. diffusers/models/controlnet_xs.py +40 -10
  33. diffusers/models/downsampling.py +68 -0
  34. diffusers/models/embeddings.py +319 -36
  35. diffusers/models/model_loading_utils.py +1 -3
  36. diffusers/models/modeling_flax_utils.py +1 -6
  37. diffusers/models/modeling_utils.py +4 -16
  38. diffusers/models/normalization.py +203 -12
  39. diffusers/models/transformers/__init__.py +6 -0
  40. diffusers/models/transformers/auraflow_transformer_2d.py +527 -0
  41. diffusers/models/transformers/cogvideox_transformer_3d.py +345 -0
  42. diffusers/models/transformers/hunyuan_transformer_2d.py +19 -15
  43. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  44. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  45. diffusers/models/transformers/pixart_transformer_2d.py +102 -1
  46. diffusers/models/transformers/prior_transformer.py +1 -1
  47. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  48. diffusers/models/transformers/transformer_flux.py +455 -0
  49. diffusers/models/transformers/transformer_sd3.py +18 -4
  50. diffusers/models/unets/unet_1d_blocks.py +1 -1
  51. diffusers/models/unets/unet_2d_condition.py +8 -1
  52. diffusers/models/unets/unet_3d_blocks.py +51 -920
  53. diffusers/models/unets/unet_3d_condition.py +4 -1
  54. diffusers/models/unets/unet_i2vgen_xl.py +4 -1
  55. diffusers/models/unets/unet_kandinsky3.py +1 -1
  56. diffusers/models/unets/unet_motion_model.py +1330 -84
  57. diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
  58. diffusers/models/unets/unet_stable_cascade.py +1 -3
  59. diffusers/models/unets/uvit_2d.py +1 -1
  60. diffusers/models/upsampling.py +64 -0
  61. diffusers/models/vq_model.py +8 -4
  62. diffusers/optimization.py +1 -1
  63. diffusers/pipelines/__init__.py +100 -3
  64. diffusers/pipelines/animatediff/__init__.py +4 -0
  65. diffusers/pipelines/animatediff/pipeline_animatediff.py +50 -40
  66. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1076 -0
  67. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +17 -27
  68. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1008 -0
  69. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +51 -38
  70. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  71. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +1 -0
  72. diffusers/pipelines/aura_flow/__init__.py +48 -0
  73. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +591 -0
  74. diffusers/pipelines/auto_pipeline.py +97 -19
  75. diffusers/pipelines/cogvideo/__init__.py +48 -0
  76. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +687 -0
  77. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  78. diffusers/pipelines/controlnet/pipeline_controlnet.py +24 -30
  79. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +31 -30
  80. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +24 -153
  81. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +19 -28
  82. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +18 -28
  83. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +29 -32
  84. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  85. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  86. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1042 -0
  87. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +35 -0
  88. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +10 -6
  89. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +0 -4
  90. diffusers/pipelines/deepfloyd_if/pipeline_if.py +2 -2
  91. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +2 -2
  92. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +2 -2
  93. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +2 -2
  94. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +2 -2
  95. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +2 -2
  96. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -6
  97. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -6
  98. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +6 -6
  99. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
  100. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -10
  101. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +10 -6
  102. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +3 -3
  103. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +1 -1
  104. diffusers/pipelines/flux/__init__.py +47 -0
  105. diffusers/pipelines/flux/pipeline_flux.py +749 -0
  106. diffusers/pipelines/flux/pipeline_output.py +21 -0
  107. diffusers/pipelines/free_init_utils.py +2 -0
  108. diffusers/pipelines/free_noise_utils.py +236 -0
  109. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +2 -2
  110. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +2 -2
  111. diffusers/pipelines/kolors/__init__.py +54 -0
  112. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  113. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1247 -0
  114. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  115. diffusers/pipelines/kolors/text_encoder.py +889 -0
  116. diffusers/pipelines/kolors/tokenizer.py +334 -0
  117. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +30 -29
  118. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +23 -29
  119. diffusers/pipelines/latte/__init__.py +48 -0
  120. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  121. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +4 -4
  122. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +0 -4
  123. diffusers/pipelines/lumina/__init__.py +48 -0
  124. diffusers/pipelines/lumina/pipeline_lumina.py +897 -0
  125. diffusers/pipelines/pag/__init__.py +67 -0
  126. diffusers/pipelines/pag/pag_utils.py +237 -0
  127. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1329 -0
  128. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1612 -0
  129. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +953 -0
  130. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  131. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +872 -0
  132. diffusers/pipelines/pag/pipeline_pag_sd.py +1050 -0
  133. diffusers/pipelines/pag/pipeline_pag_sd_3.py +985 -0
  134. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +862 -0
  135. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1333 -0
  136. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1529 -0
  137. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1753 -0
  138. diffusers/pipelines/pia/pipeline_pia.py +30 -37
  139. diffusers/pipelines/pipeline_flax_utils.py +4 -9
  140. diffusers/pipelines/pipeline_loading_utils.py +0 -3
  141. diffusers/pipelines/pipeline_utils.py +2 -14
  142. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +0 -1
  143. diffusers/pipelines/stable_audio/__init__.py +50 -0
  144. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  145. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +745 -0
  146. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +2 -0
  147. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  148. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +23 -29
  149. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +15 -8
  150. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +30 -29
  151. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +23 -152
  152. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +8 -4
  153. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +11 -11
  154. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +8 -6
  155. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +6 -6
  156. diffusers/pipelines/stable_diffusion_3/__init__.py +2 -0
  157. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +34 -3
  158. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +33 -7
  159. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1201 -0
  160. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +3 -3
  161. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +6 -6
  162. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -5
  163. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +5 -5
  164. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +6 -6
  165. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +0 -4
  166. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +23 -29
  167. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +27 -29
  168. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +3 -3
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +17 -27
  170. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +26 -29
  171. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +17 -145
  172. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +0 -4
  173. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +6 -6
  174. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -28
  175. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +8 -6
  176. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +8 -6
  177. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +6 -4
  178. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +0 -4
  179. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
  180. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  181. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -4
  182. diffusers/schedulers/__init__.py +8 -0
  183. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  184. diffusers/schedulers/scheduling_ddim.py +1 -1
  185. diffusers/schedulers/scheduling_ddim_cogvideox.py +449 -0
  186. diffusers/schedulers/scheduling_ddpm.py +1 -1
  187. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -1
  188. diffusers/schedulers/scheduling_deis_multistep.py +2 -2
  189. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  190. diffusers/schedulers/scheduling_dpmsolver_multistep.py +1 -1
  191. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +1 -1
  192. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +64 -19
  193. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +2 -2
  194. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +63 -39
  195. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +321 -0
  196. diffusers/schedulers/scheduling_ipndm.py +1 -1
  197. diffusers/schedulers/scheduling_unipc_multistep.py +1 -1
  198. diffusers/schedulers/scheduling_utils.py +1 -3
  199. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  200. diffusers/training_utils.py +99 -14
  201. diffusers/utils/__init__.py +2 -2
  202. diffusers/utils/dummy_pt_objects.py +210 -0
  203. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  204. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  205. diffusers/utils/dummy_torch_and_transformers_objects.py +315 -0
  206. diffusers/utils/dynamic_modules_utils.py +1 -11
  207. diffusers/utils/export_utils.py +1 -4
  208. diffusers/utils/hub_utils.py +45 -42
  209. diffusers/utils/import_utils.py +19 -16
  210. diffusers/utils/loading_utils.py +76 -3
  211. diffusers/utils/testing_utils.py +11 -8
  212. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/METADATA +73 -83
  213. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/RECORD +217 -164
  214. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/WHEEL +1 -1
  215. diffusers/loaders/autoencoder.py +0 -146
  216. diffusers/loaders/controlnet.py +0 -136
  217. diffusers/loaders/lora.py +0 -1728
  218. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/LICENSE +0 -0
  219. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/entry_points.txt +0 -0
  220. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1076 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
17
+
18
+ import torch
19
+ import torch.nn.functional as F
20
+ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
21
+
22
+ from ...image_processor import PipelineImageInput
23
+ from ...loaders import IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
24
+ from ...models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel, UNetMotionModel
25
+ from ...models.lora import adjust_lora_scale_text_encoder
26
+ from ...models.unets.unet_motion_model import MotionAdapter
27
+ from ...schedulers import KarrasDiffusionSchedulers
28
+ from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
29
+ from ...utils.torch_utils import is_compiled_module, randn_tensor
30
+ from ...video_processor import VideoProcessor
31
+ from ..controlnet.multicontrolnet import MultiControlNetModel
32
+ from ..free_init_utils import FreeInitMixin
33
+ from ..free_noise_utils import AnimateDiffFreeNoiseMixin
34
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
35
+ from .pipeline_output import AnimateDiffPipelineOutput
36
+
37
+
38
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
39
+
40
+ EXAMPLE_DOC_STRING = """
41
+ Examples:
42
+ ```py
43
+ >>> import torch
44
+ >>> from diffusers import (
45
+ ... AnimateDiffControlNetPipeline,
46
+ ... AutoencoderKL,
47
+ ... ControlNetModel,
48
+ ... MotionAdapter,
49
+ ... LCMScheduler,
50
+ ... )
51
+ >>> from diffusers.utils import export_to_gif, load_video
52
+
53
+ >>> # Additionally, you will need a preprocess videos before they can be used with the ControlNet
54
+ >>> # HF maintains just the right package for it: `pip install controlnet_aux`
55
+ >>> from controlnet_aux.processor import ZoeDetector
56
+
57
+ >>> # Download controlnets from https://huggingface.co/lllyasviel/ControlNet-v1-1 to use .from_single_file
58
+ >>> # Download Diffusers-format controlnets, such as https://huggingface.co/lllyasviel/sd-controlnet-depth, to use .from_pretrained()
59
+ >>> controlnet = ControlNetModel.from_single_file("control_v11f1p_sd15_depth.pth", torch_dtype=torch.float16)
60
+
61
+ >>> # We use AnimateLCM for this example but one can use the original motion adapters as well (for example, https://huggingface.co/guoyww/animatediff-motion-adapter-v1-5-3)
62
+ >>> motion_adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM")
63
+
64
+ >>> vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
65
+ >>> pipe: AnimateDiffControlNetPipeline = AnimateDiffControlNetPipeline.from_pretrained(
66
+ ... "SG161222/Realistic_Vision_V5.1_noVAE",
67
+ ... motion_adapter=motion_adapter,
68
+ ... controlnet=controlnet,
69
+ ... vae=vae,
70
+ ... ).to(device="cuda", dtype=torch.float16)
71
+ >>> pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear")
72
+ >>> pipe.load_lora_weights(
73
+ ... "wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm-lora"
74
+ ... )
75
+ >>> pipe.set_adapters(["lcm-lora"], [0.8])
76
+
77
+ >>> depth_detector = ZoeDetector.from_pretrained("lllyasviel/Annotators").to("cuda")
78
+ >>> video = load_video(
79
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-vid2vid-input-1.gif"
80
+ ... )
81
+ >>> conditioning_frames = []
82
+
83
+ >>> with pipe.progress_bar(total=len(video)) as progress_bar:
84
+ ... for frame in video:
85
+ ... conditioning_frames.append(depth_detector(frame))
86
+ ... progress_bar.update()
87
+
88
+ >>> prompt = "a panda, playing a guitar, sitting in a pink boat, in the ocean, mountains in background, realistic, high quality"
89
+ >>> negative_prompt = "bad quality, worst quality"
90
+
91
+ >>> video = pipe(
92
+ ... prompt=prompt,
93
+ ... negative_prompt=negative_prompt,
94
+ ... num_frames=len(video),
95
+ ... num_inference_steps=10,
96
+ ... guidance_scale=2.0,
97
+ ... conditioning_frames=conditioning_frames,
98
+ ... generator=torch.Generator().manual_seed(42),
99
+ ... ).frames[0]
100
+
101
+ >>> export_to_gif(video, "animatediff_controlnet.gif", fps=8)
102
+ ```
103
+ """
104
+
105
+
106
+ class AnimateDiffControlNetPipeline(
107
+ DiffusionPipeline,
108
+ StableDiffusionMixin,
109
+ TextualInversionLoaderMixin,
110
+ IPAdapterMixin,
111
+ StableDiffusionLoraLoaderMixin,
112
+ FreeInitMixin,
113
+ AnimateDiffFreeNoiseMixin,
114
+ ):
115
+ r"""
116
+ Pipeline for text-to-video generation with ControlNet guidance.
117
+
118
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
119
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
120
+
121
+ The pipeline also inherits the following loading methods:
122
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
123
+ - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
124
+ - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
125
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
126
+
127
+ Args:
128
+ vae ([`AutoencoderKL`]):
129
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
130
+ text_encoder ([`CLIPTextModel`]):
131
+ Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
132
+ tokenizer (`CLIPTokenizer`):
133
+ A [`~transformers.CLIPTokenizer`] to tokenize text.
134
+ unet ([`UNet2DConditionModel`]):
135
+ A [`UNet2DConditionModel`] used to create a UNetMotionModel to denoise the encoded video latents.
136
+ motion_adapter ([`MotionAdapter`]):
137
+ A [`MotionAdapter`] to be used in combination with `unet` to denoise the encoded video latents.
138
+ scheduler ([`SchedulerMixin`]):
139
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
140
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
141
+ """
142
+
143
+ model_cpu_offload_seq = "text_encoder->unet->vae"
144
+ _optional_components = ["feature_extractor", "image_encoder"]
145
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
146
+
147
+ def __init__(
148
+ self,
149
+ vae: AutoencoderKL,
150
+ text_encoder: CLIPTextModel,
151
+ tokenizer: CLIPTokenizer,
152
+ unet: Union[UNet2DConditionModel, UNetMotionModel],
153
+ motion_adapter: MotionAdapter,
154
+ controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
155
+ scheduler: KarrasDiffusionSchedulers,
156
+ feature_extractor: Optional[CLIPImageProcessor] = None,
157
+ image_encoder: Optional[CLIPVisionModelWithProjection] = None,
158
+ ):
159
+ super().__init__()
160
+ if isinstance(unet, UNet2DConditionModel):
161
+ unet = UNetMotionModel.from_unet2d(unet, motion_adapter)
162
+
163
+ if isinstance(controlnet, (list, tuple)):
164
+ controlnet = MultiControlNetModel(controlnet)
165
+
166
+ self.register_modules(
167
+ vae=vae,
168
+ text_encoder=text_encoder,
169
+ tokenizer=tokenizer,
170
+ unet=unet,
171
+ motion_adapter=motion_adapter,
172
+ controlnet=controlnet,
173
+ scheduler=scheduler,
174
+ feature_extractor=feature_extractor,
175
+ image_encoder=image_encoder,
176
+ )
177
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
178
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor)
179
+ self.control_video_processor = VideoProcessor(
180
+ vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
181
+ )
182
+
183
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt with num_images_per_prompt -> num_videos_per_prompt
184
+ def encode_prompt(
185
+ self,
186
+ prompt,
187
+ device,
188
+ num_images_per_prompt,
189
+ do_classifier_free_guidance,
190
+ negative_prompt=None,
191
+ prompt_embeds: Optional[torch.Tensor] = None,
192
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
193
+ lora_scale: Optional[float] = None,
194
+ clip_skip: Optional[int] = None,
195
+ ):
196
+ r"""
197
+ Encodes the prompt into text encoder hidden states.
198
+
199
+ Args:
200
+ prompt (`str` or `List[str]`, *optional*):
201
+ prompt to be encoded
202
+ device: (`torch.device`):
203
+ torch device
204
+ num_images_per_prompt (`int`):
205
+ number of images that should be generated per prompt
206
+ do_classifier_free_guidance (`bool`):
207
+ whether to use classifier free guidance or not
208
+ negative_prompt (`str` or `List[str]`, *optional*):
209
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
210
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
211
+ less than `1`).
212
+ prompt_embeds (`torch.Tensor`, *optional*):
213
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
214
+ provided, text embeddings will be generated from `prompt` input argument.
215
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
216
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
217
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
218
+ argument.
219
+ lora_scale (`float`, *optional*):
220
+ A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
221
+ clip_skip (`int`, *optional*):
222
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
223
+ the output of the pre-final layer will be used for computing the prompt embeddings.
224
+ """
225
+ # set lora scale so that monkey patched LoRA
226
+ # function of text encoder can correctly access it
227
+ if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
228
+ self._lora_scale = lora_scale
229
+
230
+ # dynamically adjust the LoRA scale
231
+ if not USE_PEFT_BACKEND:
232
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
233
+ else:
234
+ scale_lora_layers(self.text_encoder, lora_scale)
235
+
236
+ if prompt is not None and isinstance(prompt, str):
237
+ batch_size = 1
238
+ elif prompt is not None and isinstance(prompt, list):
239
+ batch_size = len(prompt)
240
+ else:
241
+ batch_size = prompt_embeds.shape[0]
242
+
243
+ if prompt_embeds is None:
244
+ # textual inversion: process multi-vector tokens if necessary
245
+ if isinstance(self, TextualInversionLoaderMixin):
246
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
247
+
248
+ text_inputs = self.tokenizer(
249
+ prompt,
250
+ padding="max_length",
251
+ max_length=self.tokenizer.model_max_length,
252
+ truncation=True,
253
+ return_tensors="pt",
254
+ )
255
+ text_input_ids = text_inputs.input_ids
256
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
257
+
258
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
259
+ text_input_ids, untruncated_ids
260
+ ):
261
+ removed_text = self.tokenizer.batch_decode(
262
+ untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
263
+ )
264
+ logger.warning(
265
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
266
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
267
+ )
268
+
269
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
270
+ attention_mask = text_inputs.attention_mask.to(device)
271
+ else:
272
+ attention_mask = None
273
+
274
+ if clip_skip is None:
275
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
276
+ prompt_embeds = prompt_embeds[0]
277
+ else:
278
+ prompt_embeds = self.text_encoder(
279
+ text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
280
+ )
281
+ # Access the `hidden_states` first, that contains a tuple of
282
+ # all the hidden states from the encoder layers. Then index into
283
+ # the tuple to access the hidden states from the desired layer.
284
+ prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
285
+ # We also need to apply the final LayerNorm here to not mess with the
286
+ # representations. The `last_hidden_states` that we typically use for
287
+ # obtaining the final prompt representations passes through the LayerNorm
288
+ # layer.
289
+ prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
290
+
291
+ if self.text_encoder is not None:
292
+ prompt_embeds_dtype = self.text_encoder.dtype
293
+ elif self.unet is not None:
294
+ prompt_embeds_dtype = self.unet.dtype
295
+ else:
296
+ prompt_embeds_dtype = prompt_embeds.dtype
297
+
298
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
299
+
300
+ bs_embed, seq_len, _ = prompt_embeds.shape
301
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
302
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
303
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
304
+
305
+ # get unconditional embeddings for classifier free guidance
306
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
307
+ uncond_tokens: List[str]
308
+ if negative_prompt is None:
309
+ uncond_tokens = [""] * batch_size
310
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
311
+ raise TypeError(
312
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
313
+ f" {type(prompt)}."
314
+ )
315
+ elif isinstance(negative_prompt, str):
316
+ uncond_tokens = [negative_prompt]
317
+ elif batch_size != len(negative_prompt):
318
+ raise ValueError(
319
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
320
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
321
+ " the batch size of `prompt`."
322
+ )
323
+ else:
324
+ uncond_tokens = negative_prompt
325
+
326
+ # textual inversion: process multi-vector tokens if necessary
327
+ if isinstance(self, TextualInversionLoaderMixin):
328
+ uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
329
+
330
+ max_length = prompt_embeds.shape[1]
331
+ uncond_input = self.tokenizer(
332
+ uncond_tokens,
333
+ padding="max_length",
334
+ max_length=max_length,
335
+ truncation=True,
336
+ return_tensors="pt",
337
+ )
338
+
339
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
340
+ attention_mask = uncond_input.attention_mask.to(device)
341
+ else:
342
+ attention_mask = None
343
+
344
+ negative_prompt_embeds = self.text_encoder(
345
+ uncond_input.input_ids.to(device),
346
+ attention_mask=attention_mask,
347
+ )
348
+ negative_prompt_embeds = negative_prompt_embeds[0]
349
+
350
+ if do_classifier_free_guidance:
351
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
352
+ seq_len = negative_prompt_embeds.shape[1]
353
+
354
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
355
+
356
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
357
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
358
+
359
+ if self.text_encoder is not None:
360
+ if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
361
+ # Retrieve the original scale by scaling back the LoRA layers
362
+ unscale_lora_layers(self.text_encoder, lora_scale)
363
+
364
+ return prompt_embeds, negative_prompt_embeds
365
+
366
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
367
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
368
+ dtype = next(self.image_encoder.parameters()).dtype
369
+
370
+ if not isinstance(image, torch.Tensor):
371
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
372
+
373
+ image = image.to(device=device, dtype=dtype)
374
+ if output_hidden_states:
375
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
376
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
377
+ uncond_image_enc_hidden_states = self.image_encoder(
378
+ torch.zeros_like(image), output_hidden_states=True
379
+ ).hidden_states[-2]
380
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
381
+ num_images_per_prompt, dim=0
382
+ )
383
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
384
+ else:
385
+ image_embeds = self.image_encoder(image).image_embeds
386
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
387
+ uncond_image_embeds = torch.zeros_like(image_embeds)
388
+
389
+ return image_embeds, uncond_image_embeds
390
+
391
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
392
+ def prepare_ip_adapter_image_embeds(
393
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
394
+ ):
395
+ image_embeds = []
396
+ if do_classifier_free_guidance:
397
+ negative_image_embeds = []
398
+ if ip_adapter_image_embeds is None:
399
+ if not isinstance(ip_adapter_image, list):
400
+ ip_adapter_image = [ip_adapter_image]
401
+
402
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
403
+ raise ValueError(
404
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
405
+ )
406
+
407
+ for single_ip_adapter_image, image_proj_layer in zip(
408
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
409
+ ):
410
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
411
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
412
+ single_ip_adapter_image, device, 1, output_hidden_state
413
+ )
414
+
415
+ image_embeds.append(single_image_embeds[None, :])
416
+ if do_classifier_free_guidance:
417
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
418
+ else:
419
+ for single_image_embeds in ip_adapter_image_embeds:
420
+ if do_classifier_free_guidance:
421
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
422
+ negative_image_embeds.append(single_negative_image_embeds)
423
+ image_embeds.append(single_image_embeds)
424
+
425
+ ip_adapter_image_embeds = []
426
+ for i, single_image_embeds in enumerate(image_embeds):
427
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
428
+ if do_classifier_free_guidance:
429
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
430
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
431
+
432
+ single_image_embeds = single_image_embeds.to(device=device)
433
+ ip_adapter_image_embeds.append(single_image_embeds)
434
+
435
+ return ip_adapter_image_embeds
436
+
437
+ # Copied from diffusers.pipelines.animatediff.pipeline_animatediff.AnimateDiffPipeline.decode_latents
438
+ def decode_latents(self, latents, decode_chunk_size: int = 16):
439
+ latents = 1 / self.vae.config.scaling_factor * latents
440
+
441
+ batch_size, channels, num_frames, height, width = latents.shape
442
+ latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)
443
+
444
+ video = []
445
+ for i in range(0, latents.shape[0], decode_chunk_size):
446
+ batch_latents = latents[i : i + decode_chunk_size]
447
+ batch_latents = self.vae.decode(batch_latents).sample
448
+ video.append(batch_latents)
449
+
450
+ video = torch.cat(video)
451
+ video = video[None, :].reshape((batch_size, num_frames, -1) + video.shape[2:]).permute(0, 2, 1, 3, 4)
452
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
453
+ video = video.float()
454
+ return video
455
+
456
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
457
+ def prepare_extra_step_kwargs(self, generator, eta):
458
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
459
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
460
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
461
+ # and should be between [0, 1]
462
+
463
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
464
+ extra_step_kwargs = {}
465
+ if accepts_eta:
466
+ extra_step_kwargs["eta"] = eta
467
+
468
+ # check if the scheduler accepts generator
469
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
470
+ if accepts_generator:
471
+ extra_step_kwargs["generator"] = generator
472
+ return extra_step_kwargs
473
+
474
+ def check_inputs(
475
+ self,
476
+ prompt,
477
+ height,
478
+ width,
479
+ num_frames,
480
+ negative_prompt=None,
481
+ prompt_embeds=None,
482
+ negative_prompt_embeds=None,
483
+ callback_on_step_end_tensor_inputs=None,
484
+ video=None,
485
+ controlnet_conditioning_scale=1.0,
486
+ control_guidance_start=0.0,
487
+ control_guidance_end=1.0,
488
+ ):
489
+ if height % 8 != 0 or width % 8 != 0:
490
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
491
+
492
+ if callback_on_step_end_tensor_inputs is not None and not all(
493
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
494
+ ):
495
+ raise ValueError(
496
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
497
+ )
498
+
499
+ if prompt is not None and prompt_embeds is not None:
500
+ raise ValueError(
501
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
502
+ " only forward one of the two."
503
+ )
504
+ elif prompt is None and prompt_embeds is None:
505
+ raise ValueError(
506
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
507
+ )
508
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
509
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
510
+
511
+ if negative_prompt is not None and negative_prompt_embeds is not None:
512
+ raise ValueError(
513
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
514
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
515
+ )
516
+
517
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
518
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
519
+ raise ValueError(
520
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
521
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
522
+ f" {negative_prompt_embeds.shape}."
523
+ )
524
+
525
+ # `prompt` needs more sophisticated handling when there are multiple
526
+ # conditionings.
527
+ if isinstance(self.controlnet, MultiControlNetModel):
528
+ if isinstance(prompt, list):
529
+ logger.warning(
530
+ f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
531
+ " prompts. The conditionings will be fixed across the prompts."
532
+ )
533
+
534
+ # Check `image`
535
+ is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
536
+ self.controlnet, torch._dynamo.eval_frame.OptimizedModule
537
+ )
538
+ if (
539
+ isinstance(self.controlnet, ControlNetModel)
540
+ or is_compiled
541
+ and isinstance(self.controlnet._orig_mod, ControlNetModel)
542
+ ):
543
+ if not isinstance(video, list):
544
+ raise TypeError(f"For single controlnet, `image` must be of type `list` but got {type(video)}")
545
+ if len(video) != num_frames:
546
+ raise ValueError(f"Excepted image to have length {num_frames} but got {len(video)=}")
547
+ elif (
548
+ isinstance(self.controlnet, MultiControlNetModel)
549
+ or is_compiled
550
+ and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
551
+ ):
552
+ if not isinstance(video, list) or not isinstance(video[0], list):
553
+ raise TypeError(f"For multiple controlnets: `image` must be type list of lists but got {type(video)=}")
554
+ if len(video[0]) != num_frames:
555
+ raise ValueError(f"Expected length of image sublist as {num_frames} but got {len(video[0])=}")
556
+ if any(len(img) != len(video[0]) for img in video):
557
+ raise ValueError("All conditioning frame batches for multicontrolnet must be same size")
558
+ else:
559
+ assert False
560
+
561
+ # Check `controlnet_conditioning_scale`
562
+ if (
563
+ isinstance(self.controlnet, ControlNetModel)
564
+ or is_compiled
565
+ and isinstance(self.controlnet._orig_mod, ControlNetModel)
566
+ ):
567
+ if not isinstance(controlnet_conditioning_scale, float):
568
+ raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
569
+ elif (
570
+ isinstance(self.controlnet, MultiControlNetModel)
571
+ or is_compiled
572
+ and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
573
+ ):
574
+ if isinstance(controlnet_conditioning_scale, list):
575
+ if any(isinstance(i, list) for i in controlnet_conditioning_scale):
576
+ raise ValueError("A single batch of multiple conditionings are supported at the moment.")
577
+ elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
578
+ self.controlnet.nets
579
+ ):
580
+ raise ValueError(
581
+ "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
582
+ " the same length as the number of controlnets"
583
+ )
584
+ else:
585
+ assert False
586
+
587
+ if not isinstance(control_guidance_start, (tuple, list)):
588
+ control_guidance_start = [control_guidance_start]
589
+
590
+ if not isinstance(control_guidance_end, (tuple, list)):
591
+ control_guidance_end = [control_guidance_end]
592
+
593
+ if len(control_guidance_start) != len(control_guidance_end):
594
+ raise ValueError(
595
+ f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
596
+ )
597
+
598
+ if isinstance(self.controlnet, MultiControlNetModel):
599
+ if len(control_guidance_start) != len(self.controlnet.nets):
600
+ raise ValueError(
601
+ f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
602
+ )
603
+
604
+ for start, end in zip(control_guidance_start, control_guidance_end):
605
+ if start >= end:
606
+ raise ValueError(
607
+ f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
608
+ )
609
+ if start < 0.0:
610
+ raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
611
+ if end > 1.0:
612
+ raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
613
+
614
+ # Copied from diffusers.pipelines.animatediff.pipeline_animatediff.AnimateDiffPipeline.prepare_latents
615
+ def prepare_latents(
616
+ self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
617
+ ):
618
+ # If FreeNoise is enabled, generate latents as described in Equation (7) of [FreeNoise](https://arxiv.org/abs/2310.15169)
619
+ if self.free_noise_enabled:
620
+ latents = self._prepare_latents_free_noise(
621
+ batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents
622
+ )
623
+
624
+ if isinstance(generator, list) and len(generator) != batch_size:
625
+ raise ValueError(
626
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
627
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
628
+ )
629
+
630
+ shape = (
631
+ batch_size,
632
+ num_channels_latents,
633
+ num_frames,
634
+ height // self.vae_scale_factor,
635
+ width // self.vae_scale_factor,
636
+ )
637
+
638
+ if latents is None:
639
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
640
+ else:
641
+ latents = latents.to(device)
642
+
643
+ # scale the initial noise by the standard deviation required by the scheduler
644
+ latents = latents * self.scheduler.init_noise_sigma
645
+ return latents
646
+
647
+ def prepare_video(
648
+ self,
649
+ video,
650
+ width,
651
+ height,
652
+ batch_size,
653
+ num_videos_per_prompt,
654
+ device,
655
+ dtype,
656
+ do_classifier_free_guidance=False,
657
+ guess_mode=False,
658
+ ):
659
+ video = self.control_video_processor.preprocess_video(video, height=height, width=width).to(
660
+ dtype=torch.float32
661
+ )
662
+ video = video.permute(0, 2, 1, 3, 4).flatten(0, 1)
663
+ video_batch_size = video.shape[0]
664
+
665
+ if video_batch_size == 1:
666
+ repeat_by = batch_size
667
+ else:
668
+ # image batch size is the same as prompt batch size
669
+ repeat_by = num_videos_per_prompt
670
+
671
+ video = video.repeat_interleave(repeat_by, dim=0)
672
+ video = video.to(device=device, dtype=dtype)
673
+
674
+ if do_classifier_free_guidance and not guess_mode:
675
+ video = torch.cat([video] * 2)
676
+
677
+ return video
678
+
679
+ @property
680
+ def guidance_scale(self):
681
+ return self._guidance_scale
682
+
683
+ @property
684
+ def clip_skip(self):
685
+ return self._clip_skip
686
+
687
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
688
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
689
+ # corresponds to doing no classifier free guidance.
690
+ @property
691
+ def do_classifier_free_guidance(self):
692
+ return self._guidance_scale > 1
693
+
694
+ @property
695
+ def cross_attention_kwargs(self):
696
+ return self._cross_attention_kwargs
697
+
698
+ @property
699
+ def num_timesteps(self):
700
+ return self._num_timesteps
701
+
702
+ @torch.no_grad()
703
+ def __call__(
704
+ self,
705
+ prompt: Union[str, List[str]] = None,
706
+ num_frames: Optional[int] = 16,
707
+ height: Optional[int] = None,
708
+ width: Optional[int] = None,
709
+ num_inference_steps: int = 50,
710
+ guidance_scale: float = 7.5,
711
+ negative_prompt: Optional[Union[str, List[str]]] = None,
712
+ num_videos_per_prompt: Optional[int] = 1,
713
+ eta: float = 0.0,
714
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
715
+ latents: Optional[torch.Tensor] = None,
716
+ prompt_embeds: Optional[torch.Tensor] = None,
717
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
718
+ ip_adapter_image: Optional[PipelineImageInput] = None,
719
+ ip_adapter_image_embeds: Optional[PipelineImageInput] = None,
720
+ conditioning_frames: Optional[List[PipelineImageInput]] = None,
721
+ output_type: Optional[str] = "pil",
722
+ return_dict: bool = True,
723
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
724
+ controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
725
+ guess_mode: bool = False,
726
+ control_guidance_start: Union[float, List[float]] = 0.0,
727
+ control_guidance_end: Union[float, List[float]] = 1.0,
728
+ clip_skip: Optional[int] = None,
729
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
730
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
731
+ decode_chunk_size: int = 16,
732
+ ):
733
+ r"""
734
+ The call function to the pipeline for generation.
735
+
736
+ Args:
737
+ prompt (`str` or `List[str]`, *optional*):
738
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
739
+ height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
740
+ The height in pixels of the generated video.
741
+ width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
742
+ The width in pixels of the generated video.
743
+ num_frames (`int`, *optional*, defaults to 16):
744
+ The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
745
+ amounts to 2 seconds of video.
746
+ num_inference_steps (`int`, *optional*, defaults to 50):
747
+ The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
748
+ expense of slower inference.
749
+ guidance_scale (`float`, *optional*, defaults to 7.5):
750
+ A higher guidance scale value encourages the model to generate images closely linked to the text
751
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
752
+ negative_prompt (`str` or `List[str]`, *optional*):
753
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
754
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
755
+ eta (`float`, *optional*, defaults to 0.0):
756
+ Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
757
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
758
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
759
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
760
+ generation deterministic.
761
+ latents (`torch.Tensor`, *optional*):
762
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
763
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
764
+ tensor is generated by sampling using the supplied random `generator`. Latents should be of shape
765
+ `(batch_size, num_channel, num_frames, height, width)`.
766
+ prompt_embeds (`torch.Tensor`, *optional*):
767
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
768
+ provided, text embeddings are generated from the `prompt` input argument.
769
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
770
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
771
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
772
+ ip_adapter_image (`PipelineImageInput`, *optional*):
773
+ Optional image input to work with IP Adapters.
774
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
775
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
776
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
777
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
778
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
779
+ conditioning_frames (`List[PipelineImageInput]`, *optional*):
780
+ The ControlNet input condition to provide guidance to the `unet` for generation. If multiple
781
+ ControlNets are specified, images must be passed as a list such that each element of the list can be
782
+ correctly batched for input to a single ControlNet.
783
+ output_type (`str`, *optional*, defaults to `"pil"`):
784
+ The output format of the generated video. Choose between `torch.Tensor`, `PIL.Image` or `np.array`.
785
+ return_dict (`bool`, *optional*, defaults to `True`):
786
+ Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead
787
+ of a plain tuple.
788
+ cross_attention_kwargs (`dict`, *optional*):
789
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
790
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
791
+ controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
792
+ The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
793
+ to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
794
+ the corresponding scale as a list.
795
+ guess_mode (`bool`, *optional*, defaults to `False`):
796
+ The ControlNet encoder tries to recognize the content of the input image even if you remove all
797
+ prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
798
+ control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
799
+ The percentage of total steps at which the ControlNet starts applying.
800
+ control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
801
+ The percentage of total steps at which the ControlNet stops applying.
802
+ clip_skip (`int`, *optional*):
803
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
804
+ the output of the pre-final layer will be used for computing the prompt embeddings.
805
+ callback_on_step_end (`Callable`, *optional*):
806
+ A function that calls at the end of each denoising steps during the inference. The function is called
807
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
808
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
809
+ `callback_on_step_end_tensor_inputs`.
810
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
811
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
812
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
813
+ `._callback_tensor_inputs` attribute of your pipeline class.
814
+
815
+ Examples:
816
+
817
+ Returns:
818
+ [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] or `tuple`:
819
+ If `return_dict` is `True`, [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] is
820
+ returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
821
+ """
822
+ controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
823
+
824
+ # align format for control guidance
825
+ if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
826
+ control_guidance_start = len(control_guidance_end) * [control_guidance_start]
827
+ elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
828
+ control_guidance_end = len(control_guidance_start) * [control_guidance_end]
829
+ elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
830
+ mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
831
+ control_guidance_start, control_guidance_end = (
832
+ mult * [control_guidance_start],
833
+ mult * [control_guidance_end],
834
+ )
835
+
836
+ # 0. Default height and width to unet
837
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
838
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
839
+
840
+ num_videos_per_prompt = 1
841
+
842
+ # 1. Check inputs. Raise error if not correct
843
+ self.check_inputs(
844
+ prompt=prompt,
845
+ height=height,
846
+ width=width,
847
+ num_frames=num_frames,
848
+ negative_prompt=negative_prompt,
849
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
850
+ prompt_embeds=prompt_embeds,
851
+ negative_prompt_embeds=negative_prompt_embeds,
852
+ video=conditioning_frames,
853
+ controlnet_conditioning_scale=controlnet_conditioning_scale,
854
+ control_guidance_start=control_guidance_start,
855
+ control_guidance_end=control_guidance_end,
856
+ )
857
+
858
+ self._guidance_scale = guidance_scale
859
+ self._clip_skip = clip_skip
860
+ self._cross_attention_kwargs = cross_attention_kwargs
861
+
862
+ # 2. Define call parameters
863
+ if prompt is not None and isinstance(prompt, str):
864
+ batch_size = 1
865
+ elif prompt is not None and isinstance(prompt, list):
866
+ batch_size = len(prompt)
867
+ else:
868
+ batch_size = prompt_embeds.shape[0]
869
+
870
+ device = self._execution_device
871
+
872
+ if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
873
+ controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
874
+
875
+ global_pool_conditions = (
876
+ controlnet.config.global_pool_conditions
877
+ if isinstance(controlnet, ControlNetModel)
878
+ else controlnet.nets[0].config.global_pool_conditions
879
+ )
880
+ guess_mode = guess_mode or global_pool_conditions
881
+
882
+ # 3. Encode input prompt
883
+ text_encoder_lora_scale = (
884
+ cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
885
+ )
886
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
887
+ prompt,
888
+ device,
889
+ num_videos_per_prompt,
890
+ self.do_classifier_free_guidance,
891
+ negative_prompt,
892
+ prompt_embeds=prompt_embeds,
893
+ negative_prompt_embeds=negative_prompt_embeds,
894
+ lora_scale=text_encoder_lora_scale,
895
+ clip_skip=self.clip_skip,
896
+ )
897
+ # For classifier free guidance, we need to do two forward passes.
898
+ # Here we concatenate the unconditional and text embeddings into a single batch
899
+ # to avoid doing two forward passes
900
+ if self.do_classifier_free_guidance:
901
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
902
+
903
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
904
+ image_embeds = self.prepare_ip_adapter_image_embeds(
905
+ ip_adapter_image,
906
+ ip_adapter_image_embeds,
907
+ device,
908
+ batch_size * num_videos_per_prompt,
909
+ self.do_classifier_free_guidance,
910
+ )
911
+
912
+ if isinstance(controlnet, ControlNetModel):
913
+ conditioning_frames = self.prepare_video(
914
+ video=conditioning_frames,
915
+ width=width,
916
+ height=height,
917
+ batch_size=batch_size * num_videos_per_prompt * num_frames,
918
+ num_videos_per_prompt=num_videos_per_prompt,
919
+ device=device,
920
+ dtype=controlnet.dtype,
921
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
922
+ guess_mode=guess_mode,
923
+ )
924
+ elif isinstance(controlnet, MultiControlNetModel):
925
+ cond_prepared_videos = []
926
+ for frame_ in conditioning_frames:
927
+ prepared_video = self.prepare_video(
928
+ video=frame_,
929
+ width=width,
930
+ height=height,
931
+ batch_size=batch_size * num_videos_per_prompt * num_frames,
932
+ num_videos_per_prompt=num_videos_per_prompt,
933
+ device=device,
934
+ dtype=controlnet.dtype,
935
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
936
+ guess_mode=guess_mode,
937
+ )
938
+ cond_prepared_videos.append(prepared_video)
939
+ conditioning_frames = cond_prepared_videos
940
+ else:
941
+ assert False
942
+
943
+ # 4. Prepare timesteps
944
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
945
+ timesteps = self.scheduler.timesteps
946
+
947
+ # 5. Prepare latent variables
948
+ num_channels_latents = self.unet.config.in_channels
949
+ latents = self.prepare_latents(
950
+ batch_size * num_videos_per_prompt,
951
+ num_channels_latents,
952
+ num_frames,
953
+ height,
954
+ width,
955
+ prompt_embeds.dtype,
956
+ device,
957
+ generator,
958
+ latents,
959
+ )
960
+
961
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
962
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
963
+
964
+ # 7. Add image embeds for IP-Adapter
965
+ added_cond_kwargs = (
966
+ {"image_embeds": image_embeds}
967
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None
968
+ else None
969
+ )
970
+
971
+ # 7.1 Create tensor stating which controlnets to keep
972
+ controlnet_keep = []
973
+ for i in range(len(timesteps)):
974
+ keeps = [
975
+ 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
976
+ for s, e in zip(control_guidance_start, control_guidance_end)
977
+ ]
978
+ controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
979
+
980
+ num_free_init_iters = self._free_init_num_iters if self.free_init_enabled else 1
981
+ for free_init_iter in range(num_free_init_iters):
982
+ if self.free_init_enabled:
983
+ latents, timesteps = self._apply_free_init(
984
+ latents, free_init_iter, num_inference_steps, device, latents.dtype, generator
985
+ )
986
+
987
+ self._num_timesteps = len(timesteps)
988
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
989
+
990
+ # 8. Denoising loop
991
+ with self.progress_bar(total=self._num_timesteps) as progress_bar:
992
+ for i, t in enumerate(timesteps):
993
+ # expand the latents if we are doing classifier free guidance
994
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
995
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
996
+
997
+ if guess_mode and self.do_classifier_free_guidance:
998
+ # Infer ControlNet only for the conditional batch.
999
+ control_model_input = latents
1000
+ control_model_input = self.scheduler.scale_model_input(control_model_input, t)
1001
+ controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
1002
+ else:
1003
+ control_model_input = latent_model_input
1004
+ controlnet_prompt_embeds = prompt_embeds
1005
+ controlnet_prompt_embeds = controlnet_prompt_embeds.repeat_interleave(num_frames, dim=0)
1006
+
1007
+ if isinstance(controlnet_keep[i], list):
1008
+ cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
1009
+ else:
1010
+ controlnet_cond_scale = controlnet_conditioning_scale
1011
+ if isinstance(controlnet_cond_scale, list):
1012
+ controlnet_cond_scale = controlnet_cond_scale[0]
1013
+ cond_scale = controlnet_cond_scale * controlnet_keep[i]
1014
+
1015
+ control_model_input = torch.transpose(control_model_input, 1, 2)
1016
+ control_model_input = control_model_input.reshape(
1017
+ (-1, control_model_input.shape[2], control_model_input.shape[3], control_model_input.shape[4])
1018
+ )
1019
+
1020
+ down_block_res_samples, mid_block_res_sample = self.controlnet(
1021
+ control_model_input,
1022
+ t,
1023
+ encoder_hidden_states=controlnet_prompt_embeds,
1024
+ controlnet_cond=conditioning_frames,
1025
+ conditioning_scale=cond_scale,
1026
+ guess_mode=guess_mode,
1027
+ return_dict=False,
1028
+ )
1029
+
1030
+ # predict the noise residual
1031
+ noise_pred = self.unet(
1032
+ latent_model_input,
1033
+ t,
1034
+ encoder_hidden_states=prompt_embeds,
1035
+ cross_attention_kwargs=self.cross_attention_kwargs,
1036
+ added_cond_kwargs=added_cond_kwargs,
1037
+ down_block_additional_residuals=down_block_res_samples,
1038
+ mid_block_additional_residual=mid_block_res_sample,
1039
+ ).sample
1040
+
1041
+ # perform guidance
1042
+ if self.do_classifier_free_guidance:
1043
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1044
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
1045
+
1046
+ # compute the previous noisy sample x_t -> x_t-1
1047
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
1048
+
1049
+ if callback_on_step_end is not None:
1050
+ callback_kwargs = {}
1051
+ for k in callback_on_step_end_tensor_inputs:
1052
+ callback_kwargs[k] = locals()[k]
1053
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1054
+
1055
+ latents = callback_outputs.pop("latents", latents)
1056
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1057
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1058
+
1059
+ # call the callback, if provided
1060
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1061
+ progress_bar.update()
1062
+
1063
+ # 9. Post processing
1064
+ if output_type == "latent":
1065
+ video = latents
1066
+ else:
1067
+ video_tensor = self.decode_latents(latents, decode_chunk_size)
1068
+ video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type)
1069
+
1070
+ # 10. Offload all models
1071
+ self.maybe_free_model_hooks()
1072
+
1073
+ if not return_dict:
1074
+ return (video,)
1075
+
1076
+ return AnimateDiffPipelineOutput(frames=video)