diffusers 0.29.2__py3-none-any.whl → 0.30.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (220) hide show
  1. diffusers/__init__.py +94 -3
  2. diffusers/commands/env.py +1 -5
  3. diffusers/configuration_utils.py +4 -9
  4. diffusers/dependency_versions_table.py +2 -2
  5. diffusers/image_processor.py +1 -2
  6. diffusers/loaders/__init__.py +17 -2
  7. diffusers/loaders/ip_adapter.py +10 -7
  8. diffusers/loaders/lora_base.py +752 -0
  9. diffusers/loaders/lora_pipeline.py +2222 -0
  10. diffusers/loaders/peft.py +213 -5
  11. diffusers/loaders/single_file.py +1 -12
  12. diffusers/loaders/single_file_model.py +31 -10
  13. diffusers/loaders/single_file_utils.py +262 -2
  14. diffusers/loaders/textual_inversion.py +1 -6
  15. diffusers/loaders/unet.py +23 -208
  16. diffusers/models/__init__.py +20 -0
  17. diffusers/models/activations.py +22 -0
  18. diffusers/models/attention.py +386 -7
  19. diffusers/models/attention_processor.py +1795 -629
  20. diffusers/models/autoencoders/__init__.py +2 -0
  21. diffusers/models/autoencoders/autoencoder_kl.py +14 -3
  22. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1035 -0
  23. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
  24. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  25. diffusers/models/autoencoders/autoencoder_tiny.py +1 -0
  26. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  27. diffusers/models/autoencoders/vq_model.py +4 -4
  28. diffusers/models/controlnet.py +2 -3
  29. diffusers/models/controlnet_hunyuan.py +401 -0
  30. diffusers/models/controlnet_sd3.py +11 -11
  31. diffusers/models/controlnet_sparsectrl.py +789 -0
  32. diffusers/models/controlnet_xs.py +40 -10
  33. diffusers/models/downsampling.py +68 -0
  34. diffusers/models/embeddings.py +319 -36
  35. diffusers/models/model_loading_utils.py +1 -3
  36. diffusers/models/modeling_flax_utils.py +1 -6
  37. diffusers/models/modeling_utils.py +4 -16
  38. diffusers/models/normalization.py +203 -12
  39. diffusers/models/transformers/__init__.py +6 -0
  40. diffusers/models/transformers/auraflow_transformer_2d.py +527 -0
  41. diffusers/models/transformers/cogvideox_transformer_3d.py +345 -0
  42. diffusers/models/transformers/hunyuan_transformer_2d.py +19 -15
  43. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  44. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  45. diffusers/models/transformers/pixart_transformer_2d.py +102 -1
  46. diffusers/models/transformers/prior_transformer.py +1 -1
  47. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  48. diffusers/models/transformers/transformer_flux.py +455 -0
  49. diffusers/models/transformers/transformer_sd3.py +18 -4
  50. diffusers/models/unets/unet_1d_blocks.py +1 -1
  51. diffusers/models/unets/unet_2d_condition.py +8 -1
  52. diffusers/models/unets/unet_3d_blocks.py +51 -920
  53. diffusers/models/unets/unet_3d_condition.py +4 -1
  54. diffusers/models/unets/unet_i2vgen_xl.py +4 -1
  55. diffusers/models/unets/unet_kandinsky3.py +1 -1
  56. diffusers/models/unets/unet_motion_model.py +1330 -84
  57. diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
  58. diffusers/models/unets/unet_stable_cascade.py +1 -3
  59. diffusers/models/unets/uvit_2d.py +1 -1
  60. diffusers/models/upsampling.py +64 -0
  61. diffusers/models/vq_model.py +8 -4
  62. diffusers/optimization.py +1 -1
  63. diffusers/pipelines/__init__.py +100 -3
  64. diffusers/pipelines/animatediff/__init__.py +4 -0
  65. diffusers/pipelines/animatediff/pipeline_animatediff.py +50 -40
  66. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1076 -0
  67. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +17 -27
  68. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1008 -0
  69. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +51 -38
  70. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  71. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +1 -0
  72. diffusers/pipelines/aura_flow/__init__.py +48 -0
  73. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +591 -0
  74. diffusers/pipelines/auto_pipeline.py +97 -19
  75. diffusers/pipelines/cogvideo/__init__.py +48 -0
  76. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +687 -0
  77. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  78. diffusers/pipelines/controlnet/pipeline_controlnet.py +24 -30
  79. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +31 -30
  80. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +24 -153
  81. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +19 -28
  82. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +18 -28
  83. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +29 -32
  84. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  85. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  86. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1042 -0
  87. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +35 -0
  88. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +10 -6
  89. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +0 -4
  90. diffusers/pipelines/deepfloyd_if/pipeline_if.py +2 -2
  91. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +2 -2
  92. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +2 -2
  93. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +2 -2
  94. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +2 -2
  95. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +2 -2
  96. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -6
  97. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -6
  98. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +6 -6
  99. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
  100. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -10
  101. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +10 -6
  102. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +3 -3
  103. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +1 -1
  104. diffusers/pipelines/flux/__init__.py +47 -0
  105. diffusers/pipelines/flux/pipeline_flux.py +749 -0
  106. diffusers/pipelines/flux/pipeline_output.py +21 -0
  107. diffusers/pipelines/free_init_utils.py +2 -0
  108. diffusers/pipelines/free_noise_utils.py +236 -0
  109. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +2 -2
  110. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +2 -2
  111. diffusers/pipelines/kolors/__init__.py +54 -0
  112. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  113. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1247 -0
  114. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  115. diffusers/pipelines/kolors/text_encoder.py +889 -0
  116. diffusers/pipelines/kolors/tokenizer.py +334 -0
  117. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +30 -29
  118. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +23 -29
  119. diffusers/pipelines/latte/__init__.py +48 -0
  120. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  121. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +4 -4
  122. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +0 -4
  123. diffusers/pipelines/lumina/__init__.py +48 -0
  124. diffusers/pipelines/lumina/pipeline_lumina.py +897 -0
  125. diffusers/pipelines/pag/__init__.py +67 -0
  126. diffusers/pipelines/pag/pag_utils.py +237 -0
  127. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1329 -0
  128. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1612 -0
  129. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +953 -0
  130. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  131. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +872 -0
  132. diffusers/pipelines/pag/pipeline_pag_sd.py +1050 -0
  133. diffusers/pipelines/pag/pipeline_pag_sd_3.py +985 -0
  134. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +862 -0
  135. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1333 -0
  136. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1529 -0
  137. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1753 -0
  138. diffusers/pipelines/pia/pipeline_pia.py +30 -37
  139. diffusers/pipelines/pipeline_flax_utils.py +4 -9
  140. diffusers/pipelines/pipeline_loading_utils.py +0 -3
  141. diffusers/pipelines/pipeline_utils.py +2 -14
  142. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +0 -1
  143. diffusers/pipelines/stable_audio/__init__.py +50 -0
  144. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  145. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +745 -0
  146. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +2 -0
  147. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  148. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +23 -29
  149. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +15 -8
  150. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +30 -29
  151. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +23 -152
  152. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +8 -4
  153. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +11 -11
  154. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +8 -6
  155. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +6 -6
  156. diffusers/pipelines/stable_diffusion_3/__init__.py +2 -0
  157. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +34 -3
  158. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +33 -7
  159. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1201 -0
  160. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +3 -3
  161. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +6 -6
  162. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -5
  163. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +5 -5
  164. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +6 -6
  165. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +0 -4
  166. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +23 -29
  167. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +27 -29
  168. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +3 -3
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +17 -27
  170. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +26 -29
  171. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +17 -145
  172. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +0 -4
  173. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +6 -6
  174. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -28
  175. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +8 -6
  176. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +8 -6
  177. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +6 -4
  178. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +0 -4
  179. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
  180. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  181. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -4
  182. diffusers/schedulers/__init__.py +8 -0
  183. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  184. diffusers/schedulers/scheduling_ddim.py +1 -1
  185. diffusers/schedulers/scheduling_ddim_cogvideox.py +449 -0
  186. diffusers/schedulers/scheduling_ddpm.py +1 -1
  187. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -1
  188. diffusers/schedulers/scheduling_deis_multistep.py +2 -2
  189. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  190. diffusers/schedulers/scheduling_dpmsolver_multistep.py +1 -1
  191. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +1 -1
  192. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +64 -19
  193. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +2 -2
  194. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +63 -39
  195. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +321 -0
  196. diffusers/schedulers/scheduling_ipndm.py +1 -1
  197. diffusers/schedulers/scheduling_unipc_multistep.py +1 -1
  198. diffusers/schedulers/scheduling_utils.py +1 -3
  199. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  200. diffusers/training_utils.py +99 -14
  201. diffusers/utils/__init__.py +2 -2
  202. diffusers/utils/dummy_pt_objects.py +210 -0
  203. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  204. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  205. diffusers/utils/dummy_torch_and_transformers_objects.py +315 -0
  206. diffusers/utils/dynamic_modules_utils.py +1 -11
  207. diffusers/utils/export_utils.py +1 -4
  208. diffusers/utils/hub_utils.py +45 -42
  209. diffusers/utils/import_utils.py +19 -16
  210. diffusers/utils/loading_utils.py +76 -3
  211. diffusers/utils/testing_utils.py +11 -8
  212. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/METADATA +73 -83
  213. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/RECORD +217 -164
  214. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/WHEEL +1 -1
  215. diffusers/loaders/autoencoder.py +0 -146
  216. diffusers/loaders/controlnet.py +0 -136
  217. diffusers/loaders/lora.py +0 -1728
  218. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/LICENSE +0 -0
  219. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/entry_points.txt +0 -0
  220. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,862 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import torch
19
+ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
20
+
21
+ from ...image_processor import PipelineImageInput
22
+ from ...loaders import IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
23
+ from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel, UNetMotionModel
24
+ from ...models.lora import adjust_lora_scale_text_encoder
25
+ from ...models.unets.unet_motion_model import MotionAdapter
26
+ from ...schedulers import KarrasDiffusionSchedulers
27
+ from ...utils import (
28
+ USE_PEFT_BACKEND,
29
+ logging,
30
+ replace_example_docstring,
31
+ scale_lora_layers,
32
+ unscale_lora_layers,
33
+ )
34
+ from ...utils.torch_utils import randn_tensor
35
+ from ...video_processor import VideoProcessor
36
+ from ..animatediff.pipeline_output import AnimateDiffPipelineOutput
37
+ from ..free_init_utils import FreeInitMixin
38
+ from ..free_noise_utils import AnimateDiffFreeNoiseMixin
39
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
40
+ from .pag_utils import PAGMixin
41
+
42
+
43
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
44
+
45
+ EXAMPLE_DOC_STRING = """
46
+ Examples:
47
+ ```py
48
+ >>> import torch
49
+ >>> from diffusers import AnimateDiffPAGPipeline, MotionAdapter, DDIMScheduler
50
+ >>> from diffusers.utils import export_to_gif
51
+
52
+ >>> model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
53
+ >>> motion_adapter_id = "guoyww/animatediff-motion-adapter-v1-5-2"
54
+ >>> motion_adapter = MotionAdapter.from_pretrained(motion_adapter_id)
55
+ >>> scheduler = DDIMScheduler.from_pretrained(
56
+ ... model_id, subfolder="scheduler", beta_schedule="linear", steps_offset=1, clip_sample=False
57
+ ... )
58
+ >>> pipe = AnimateDiffPAGPipeline.from_pretrained(
59
+ ... model_id,
60
+ ... motion_adapter=motion_adapter,
61
+ ... scheduler=scheduler,
62
+ ... pag_applied_layers=["mid"],
63
+ ... torch_dtype=torch.float16,
64
+ ... ).to("cuda")
65
+
66
+ >>> video = pipe(
67
+ ... prompt="car, futuristic cityscape with neon lights, street, no human",
68
+ ... negative_prompt="low quality, bad quality",
69
+ ... num_inference_steps=25,
70
+ ... guidance_scale=6.0,
71
+ ... pag_scale=3.0,
72
+ ... generator=torch.Generator().manual_seed(42),
73
+ ... ).frames[0]
74
+
75
+ >>> export_to_gif(video, "animatediff_pag.gif")
76
+ ```
77
+ """
78
+
79
+
80
+ class AnimateDiffPAGPipeline(
81
+ DiffusionPipeline,
82
+ StableDiffusionMixin,
83
+ TextualInversionLoaderMixin,
84
+ IPAdapterMixin,
85
+ StableDiffusionLoraLoaderMixin,
86
+ FreeInitMixin,
87
+ AnimateDiffFreeNoiseMixin,
88
+ PAGMixin,
89
+ ):
90
+ r"""
91
+ Pipeline for text-to-video generation using
92
+ [AnimateDiff](https://huggingface.co/docs/diffusers/en/api/pipelines/animatediff) and [Perturbed Attention
93
+ Guidance](https://huggingface.co/docs/diffusers/en/using-diffusers/pag).
94
+
95
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
96
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
97
+
98
+ The pipeline also inherits the following loading methods:
99
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
100
+ - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
101
+ - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
102
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
103
+
104
+ Args:
105
+ vae ([`AutoencoderKL`]):
106
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
107
+ text_encoder ([`CLIPTextModel`]):
108
+ Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
109
+ tokenizer (`CLIPTokenizer`):
110
+ A [`~transformers.CLIPTokenizer`] to tokenize text.
111
+ unet ([`UNet2DConditionModel`]):
112
+ A [`UNet2DConditionModel`] used to create a UNetMotionModel to denoise the encoded video latents.
113
+ motion_adapter ([`MotionAdapter`]):
114
+ A [`MotionAdapter`] to be used in combination with `unet` to denoise the encoded video latents.
115
+ scheduler ([`SchedulerMixin`]):
116
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
117
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
118
+ """
119
+
120
+ model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
121
+ _optional_components = ["feature_extractor", "image_encoder", "motion_adapter"]
122
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
123
+
124
+ def __init__(
125
+ self,
126
+ vae: AutoencoderKL,
127
+ text_encoder: CLIPTextModel,
128
+ tokenizer: CLIPTokenizer,
129
+ unet: Union[UNet2DConditionModel, UNetMotionModel],
130
+ motion_adapter: MotionAdapter,
131
+ scheduler: KarrasDiffusionSchedulers,
132
+ feature_extractor: CLIPImageProcessor = None,
133
+ image_encoder: CLIPVisionModelWithProjection = None,
134
+ pag_applied_layers: Union[str, List[str]] = "mid_block.*attn1", # ["mid"], ["down_blocks.1"]
135
+ ):
136
+ super().__init__()
137
+ if isinstance(unet, UNet2DConditionModel):
138
+ unet = UNetMotionModel.from_unet2d(unet, motion_adapter)
139
+
140
+ self.register_modules(
141
+ vae=vae,
142
+ text_encoder=text_encoder,
143
+ tokenizer=tokenizer,
144
+ unet=unet,
145
+ motion_adapter=motion_adapter,
146
+ scheduler=scheduler,
147
+ feature_extractor=feature_extractor,
148
+ image_encoder=image_encoder,
149
+ )
150
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
151
+ self.video_processor = VideoProcessor(do_resize=False, vae_scale_factor=self.vae_scale_factor)
152
+
153
+ self.set_pag_applied_layers(pag_applied_layers)
154
+
155
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt with num_images_per_prompt -> num_videos_per_prompt
156
+ def encode_prompt(
157
+ self,
158
+ prompt,
159
+ device,
160
+ num_images_per_prompt,
161
+ do_classifier_free_guidance,
162
+ negative_prompt=None,
163
+ prompt_embeds: Optional[torch.Tensor] = None,
164
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
165
+ lora_scale: Optional[float] = None,
166
+ clip_skip: Optional[int] = None,
167
+ ):
168
+ r"""
169
+ Encodes the prompt into text encoder hidden states.
170
+
171
+ Args:
172
+ prompt (`str` or `List[str]`, *optional*):
173
+ prompt to be encoded
174
+ device: (`torch.device`):
175
+ torch device
176
+ num_images_per_prompt (`int`):
177
+ number of images that should be generated per prompt
178
+ do_classifier_free_guidance (`bool`):
179
+ whether to use classifier free guidance or not
180
+ negative_prompt (`str` or `List[str]`, *optional*):
181
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
182
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
183
+ less than `1`).
184
+ prompt_embeds (`torch.Tensor`, *optional*):
185
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
186
+ provided, text embeddings will be generated from `prompt` input argument.
187
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
188
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
189
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
190
+ argument.
191
+ lora_scale (`float`, *optional*):
192
+ A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
193
+ clip_skip (`int`, *optional*):
194
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
195
+ the output of the pre-final layer will be used for computing the prompt embeddings.
196
+ """
197
+ # set lora scale so that monkey patched LoRA
198
+ # function of text encoder can correctly access it
199
+ if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
200
+ self._lora_scale = lora_scale
201
+
202
+ # dynamically adjust the LoRA scale
203
+ if not USE_PEFT_BACKEND:
204
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
205
+ else:
206
+ scale_lora_layers(self.text_encoder, lora_scale)
207
+
208
+ if prompt is not None and isinstance(prompt, str):
209
+ batch_size = 1
210
+ elif prompt is not None and isinstance(prompt, list):
211
+ batch_size = len(prompt)
212
+ else:
213
+ batch_size = prompt_embeds.shape[0]
214
+
215
+ if prompt_embeds is None:
216
+ # textual inversion: process multi-vector tokens if necessary
217
+ if isinstance(self, TextualInversionLoaderMixin):
218
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
219
+
220
+ text_inputs = self.tokenizer(
221
+ prompt,
222
+ padding="max_length",
223
+ max_length=self.tokenizer.model_max_length,
224
+ truncation=True,
225
+ return_tensors="pt",
226
+ )
227
+ text_input_ids = text_inputs.input_ids
228
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
229
+
230
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
231
+ text_input_ids, untruncated_ids
232
+ ):
233
+ removed_text = self.tokenizer.batch_decode(
234
+ untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
235
+ )
236
+ logger.warning(
237
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
238
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
239
+ )
240
+
241
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
242
+ attention_mask = text_inputs.attention_mask.to(device)
243
+ else:
244
+ attention_mask = None
245
+
246
+ if clip_skip is None:
247
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
248
+ prompt_embeds = prompt_embeds[0]
249
+ else:
250
+ prompt_embeds = self.text_encoder(
251
+ text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
252
+ )
253
+ # Access the `hidden_states` first, that contains a tuple of
254
+ # all the hidden states from the encoder layers. Then index into
255
+ # the tuple to access the hidden states from the desired layer.
256
+ prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
257
+ # We also need to apply the final LayerNorm here to not mess with the
258
+ # representations. The `last_hidden_states` that we typically use for
259
+ # obtaining the final prompt representations passes through the LayerNorm
260
+ # layer.
261
+ prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
262
+
263
+ if self.text_encoder is not None:
264
+ prompt_embeds_dtype = self.text_encoder.dtype
265
+ elif self.unet is not None:
266
+ prompt_embeds_dtype = self.unet.dtype
267
+ else:
268
+ prompt_embeds_dtype = prompt_embeds.dtype
269
+
270
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
271
+
272
+ bs_embed, seq_len, _ = prompt_embeds.shape
273
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
274
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
275
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
276
+
277
+ # get unconditional embeddings for classifier free guidance
278
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
279
+ uncond_tokens: List[str]
280
+ if negative_prompt is None:
281
+ uncond_tokens = [""] * batch_size
282
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
283
+ raise TypeError(
284
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
285
+ f" {type(prompt)}."
286
+ )
287
+ elif isinstance(negative_prompt, str):
288
+ uncond_tokens = [negative_prompt]
289
+ elif batch_size != len(negative_prompt):
290
+ raise ValueError(
291
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
292
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
293
+ " the batch size of `prompt`."
294
+ )
295
+ else:
296
+ uncond_tokens = negative_prompt
297
+
298
+ # textual inversion: process multi-vector tokens if necessary
299
+ if isinstance(self, TextualInversionLoaderMixin):
300
+ uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
301
+
302
+ max_length = prompt_embeds.shape[1]
303
+ uncond_input = self.tokenizer(
304
+ uncond_tokens,
305
+ padding="max_length",
306
+ max_length=max_length,
307
+ truncation=True,
308
+ return_tensors="pt",
309
+ )
310
+
311
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
312
+ attention_mask = uncond_input.attention_mask.to(device)
313
+ else:
314
+ attention_mask = None
315
+
316
+ negative_prompt_embeds = self.text_encoder(
317
+ uncond_input.input_ids.to(device),
318
+ attention_mask=attention_mask,
319
+ )
320
+ negative_prompt_embeds = negative_prompt_embeds[0]
321
+
322
+ if do_classifier_free_guidance:
323
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
324
+ seq_len = negative_prompt_embeds.shape[1]
325
+
326
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
327
+
328
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
329
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
330
+
331
+ if self.text_encoder is not None:
332
+ if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
333
+ # Retrieve the original scale by scaling back the LoRA layers
334
+ unscale_lora_layers(self.text_encoder, lora_scale)
335
+
336
+ return prompt_embeds, negative_prompt_embeds
337
+
338
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
339
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
340
+ dtype = next(self.image_encoder.parameters()).dtype
341
+
342
+ if not isinstance(image, torch.Tensor):
343
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
344
+
345
+ image = image.to(device=device, dtype=dtype)
346
+ if output_hidden_states:
347
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
348
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
349
+ uncond_image_enc_hidden_states = self.image_encoder(
350
+ torch.zeros_like(image), output_hidden_states=True
351
+ ).hidden_states[-2]
352
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
353
+ num_images_per_prompt, dim=0
354
+ )
355
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
356
+ else:
357
+ image_embeds = self.image_encoder(image).image_embeds
358
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
359
+ uncond_image_embeds = torch.zeros_like(image_embeds)
360
+
361
+ return image_embeds, uncond_image_embeds
362
+
363
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
364
+ def prepare_ip_adapter_image_embeds(
365
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
366
+ ):
367
+ image_embeds = []
368
+ if do_classifier_free_guidance:
369
+ negative_image_embeds = []
370
+ if ip_adapter_image_embeds is None:
371
+ if not isinstance(ip_adapter_image, list):
372
+ ip_adapter_image = [ip_adapter_image]
373
+
374
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
375
+ raise ValueError(
376
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
377
+ )
378
+
379
+ for single_ip_adapter_image, image_proj_layer in zip(
380
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
381
+ ):
382
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
383
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
384
+ single_ip_adapter_image, device, 1, output_hidden_state
385
+ )
386
+
387
+ image_embeds.append(single_image_embeds[None, :])
388
+ if do_classifier_free_guidance:
389
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
390
+ else:
391
+ for single_image_embeds in ip_adapter_image_embeds:
392
+ if do_classifier_free_guidance:
393
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
394
+ negative_image_embeds.append(single_negative_image_embeds)
395
+ image_embeds.append(single_image_embeds)
396
+
397
+ ip_adapter_image_embeds = []
398
+ for i, single_image_embeds in enumerate(image_embeds):
399
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
400
+ if do_classifier_free_guidance:
401
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
402
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
403
+
404
+ single_image_embeds = single_image_embeds.to(device=device)
405
+ ip_adapter_image_embeds.append(single_image_embeds)
406
+
407
+ return ip_adapter_image_embeds
408
+
409
+ # Copied from diffusers.pipelines.animatediff.pipeline_animatediff.AnimateDiffPipeline.decode_latents
410
+ def decode_latents(self, latents, decode_chunk_size: int = 16):
411
+ latents = 1 / self.vae.config.scaling_factor * latents
412
+
413
+ batch_size, channels, num_frames, height, width = latents.shape
414
+ latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)
415
+
416
+ video = []
417
+ for i in range(0, latents.shape[0], decode_chunk_size):
418
+ batch_latents = latents[i : i + decode_chunk_size]
419
+ batch_latents = self.vae.decode(batch_latents).sample
420
+ video.append(batch_latents)
421
+
422
+ video = torch.cat(video)
423
+ video = video[None, :].reshape((batch_size, num_frames, -1) + video.shape[2:]).permute(0, 2, 1, 3, 4)
424
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
425
+ video = video.float()
426
+ return video
427
+
428
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
429
+ def prepare_extra_step_kwargs(self, generator, eta):
430
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
431
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
432
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
433
+ # and should be between [0, 1]
434
+
435
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
436
+ extra_step_kwargs = {}
437
+ if accepts_eta:
438
+ extra_step_kwargs["eta"] = eta
439
+
440
+ # check if the scheduler accepts generator
441
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
442
+ if accepts_generator:
443
+ extra_step_kwargs["generator"] = generator
444
+ return extra_step_kwargs
445
+
446
+ # Copied from diffusers.pipelines.pia.pipeline_pia.PIAPipeline.check_inputs
447
+ def check_inputs(
448
+ self,
449
+ prompt,
450
+ height,
451
+ width,
452
+ negative_prompt=None,
453
+ prompt_embeds=None,
454
+ negative_prompt_embeds=None,
455
+ ip_adapter_image=None,
456
+ ip_adapter_image_embeds=None,
457
+ callback_on_step_end_tensor_inputs=None,
458
+ ):
459
+ if height % 8 != 0 or width % 8 != 0:
460
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
461
+
462
+ if callback_on_step_end_tensor_inputs is not None and not all(
463
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
464
+ ):
465
+ raise ValueError(
466
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
467
+ )
468
+
469
+ if prompt is not None and prompt_embeds is not None:
470
+ raise ValueError(
471
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
472
+ " only forward one of the two."
473
+ )
474
+ elif prompt is None and prompt_embeds is None:
475
+ raise ValueError(
476
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
477
+ )
478
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
479
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
480
+
481
+ if negative_prompt is not None and negative_prompt_embeds is not None:
482
+ raise ValueError(
483
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
484
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
485
+ )
486
+
487
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
488
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
489
+ raise ValueError(
490
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
491
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
492
+ f" {negative_prompt_embeds.shape}."
493
+ )
494
+
495
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
496
+ raise ValueError(
497
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
498
+ )
499
+
500
+ if ip_adapter_image_embeds is not None:
501
+ if not isinstance(ip_adapter_image_embeds, list):
502
+ raise ValueError(
503
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
504
+ )
505
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
506
+ raise ValueError(
507
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
508
+ )
509
+
510
+ # Copied from diffusers.pipelines.animatediff.pipeline_animatediff.AnimateDiffPipeline.prepare_latents
511
+ def prepare_latents(
512
+ self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
513
+ ):
514
+ # If FreeNoise is enabled, generate latents as described in Equation (7) of [FreeNoise](https://arxiv.org/abs/2310.15169)
515
+ if self.free_noise_enabled:
516
+ latents = self._prepare_latents_free_noise(
517
+ batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents
518
+ )
519
+
520
+ if isinstance(generator, list) and len(generator) != batch_size:
521
+ raise ValueError(
522
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
523
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
524
+ )
525
+
526
+ shape = (
527
+ batch_size,
528
+ num_channels_latents,
529
+ num_frames,
530
+ height // self.vae_scale_factor,
531
+ width // self.vae_scale_factor,
532
+ )
533
+
534
+ if latents is None:
535
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
536
+ else:
537
+ latents = latents.to(device)
538
+
539
+ # scale the initial noise by the standard deviation required by the scheduler
540
+ latents = latents * self.scheduler.init_noise_sigma
541
+ return latents
542
+
543
+ @property
544
+ def guidance_scale(self):
545
+ return self._guidance_scale
546
+
547
+ @property
548
+ def clip_skip(self):
549
+ return self._clip_skip
550
+
551
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
552
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
553
+ # corresponds to doing no classifier free guidance.
554
+ @property
555
+ def do_classifier_free_guidance(self):
556
+ return self._guidance_scale > 1
557
+
558
+ @property
559
+ def cross_attention_kwargs(self):
560
+ return self._cross_attention_kwargs
561
+
562
+ @property
563
+ def num_timesteps(self):
564
+ return self._num_timesteps
565
+
566
+ @torch.no_grad()
567
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
568
+ def __call__(
569
+ self,
570
+ prompt: Optional[Union[str, List[str]]] = None,
571
+ num_frames: Optional[int] = 16,
572
+ height: Optional[int] = None,
573
+ width: Optional[int] = None,
574
+ num_inference_steps: int = 50,
575
+ guidance_scale: float = 7.5,
576
+ negative_prompt: Optional[Union[str, List[str]]] = None,
577
+ num_videos_per_prompt: Optional[int] = 1,
578
+ eta: float = 0.0,
579
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
580
+ latents: Optional[torch.Tensor] = None,
581
+ prompt_embeds: Optional[torch.Tensor] = None,
582
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
583
+ ip_adapter_image: Optional[PipelineImageInput] = None,
584
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
585
+ output_type: Optional[str] = "pil",
586
+ return_dict: bool = True,
587
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
588
+ clip_skip: Optional[int] = None,
589
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
590
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
591
+ decode_chunk_size: int = 16,
592
+ pag_scale: float = 3.0,
593
+ pag_adaptive_scale: float = 0.0,
594
+ ):
595
+ r"""
596
+ The call function to the pipeline for generation.
597
+
598
+ Args:
599
+ prompt (`str` or `List[str]`, *optional*):
600
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
601
+ height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
602
+ The height in pixels of the generated video.
603
+ width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
604
+ The width in pixels of the generated video.
605
+ num_frames (`int`, *optional*, defaults to 16):
606
+ The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
607
+ amounts to 2 seconds of video.
608
+ num_inference_steps (`int`, *optional*, defaults to 50):
609
+ The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
610
+ expense of slower inference.
611
+ guidance_scale (`float`, *optional*, defaults to 7.5):
612
+ A higher guidance scale value encourages the model to generate images closely linked to the text
613
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
614
+ negative_prompt (`str` or `List[str]`, *optional*):
615
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
616
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
617
+ eta (`float`, *optional*, defaults to 0.0):
618
+ Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
619
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
620
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
621
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
622
+ generation deterministic.
623
+ latents (`torch.Tensor`, *optional*):
624
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
625
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
626
+ tensor is generated by sampling using the supplied random `generator`. Latents should be of shape
627
+ `(batch_size, num_channel, num_frames, height, width)`.
628
+ prompt_embeds (`torch.Tensor`, *optional*):
629
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
630
+ provided, text embeddings are generated from the `prompt` input argument.
631
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
632
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
633
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
634
+ ip_adapter_image: (`PipelineImageInput`, *optional*):
635
+ Optional image input to work with IP Adapters.
636
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
637
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
638
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
639
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
640
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
641
+ output_type (`str`, *optional*, defaults to `"pil"`):
642
+ The output format of the generated video. Choose between `torch.Tensor`, `PIL.Image` or `np.array`.
643
+ return_dict (`bool`, *optional*, defaults to `True`):
644
+ Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead
645
+ of a plain tuple.
646
+ cross_attention_kwargs (`dict`, *optional*):
647
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
648
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
649
+ clip_skip (`int`, *optional*):
650
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
651
+ the output of the pre-final layer will be used for computing the prompt embeddings.
652
+ callback_on_step_end (`Callable`, *optional*):
653
+ A function that calls at the end of each denoising steps during the inference. The function is called
654
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
655
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
656
+ `callback_on_step_end_tensor_inputs`.
657
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
658
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
659
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
660
+ `._callback_tensor_inputs` attribute of your pipeline class.
661
+ pag_scale (`float`, *optional*, defaults to 3.0):
662
+ The scale factor for the perturbed attention guidance. If it is set to 0.0, the perturbed attention
663
+ guidance will not be used.
664
+ pag_adaptive_scale (`float`, *optional*, defaults to 0.0):
665
+ The adaptive scale factor for the perturbed attention guidance. If it is set to 0.0, `pag_scale` is
666
+ used.
667
+
668
+ Examples:
669
+
670
+ Returns:
671
+ [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] or `tuple`:
672
+ If `return_dict` is `True`, [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] is
673
+ returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
674
+ """
675
+
676
+ # 0. Default height and width to unet
677
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
678
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
679
+
680
+ num_videos_per_prompt = 1
681
+
682
+ # 1. Check inputs. Raise error if not correct
683
+ self.check_inputs(
684
+ prompt,
685
+ height,
686
+ width,
687
+ negative_prompt,
688
+ prompt_embeds,
689
+ negative_prompt_embeds,
690
+ ip_adapter_image,
691
+ ip_adapter_image_embeds,
692
+ callback_on_step_end_tensor_inputs,
693
+ )
694
+
695
+ self._guidance_scale = guidance_scale
696
+ self._clip_skip = clip_skip
697
+ self._cross_attention_kwargs = cross_attention_kwargs
698
+ self._pag_scale = pag_scale
699
+ self._pag_adaptive_scale = pag_adaptive_scale
700
+
701
+ # 2. Define call parameters
702
+ if prompt is not None and isinstance(prompt, str):
703
+ batch_size = 1
704
+ elif prompt is not None and isinstance(prompt, list):
705
+ batch_size = len(prompt)
706
+ else:
707
+ batch_size = prompt_embeds.shape[0]
708
+
709
+ device = self._execution_device
710
+
711
+ # 3. Encode input prompt
712
+ text_encoder_lora_scale = (
713
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
714
+ )
715
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
716
+ prompt,
717
+ device,
718
+ num_videos_per_prompt,
719
+ self.do_classifier_free_guidance,
720
+ negative_prompt,
721
+ prompt_embeds=prompt_embeds,
722
+ negative_prompt_embeds=negative_prompt_embeds,
723
+ lora_scale=text_encoder_lora_scale,
724
+ clip_skip=self.clip_skip,
725
+ )
726
+
727
+ # For classifier free guidance, we need to do two forward passes.
728
+ # Here we concatenate the unconditional and text embeddings into a single batch
729
+ # to avoid doing two forward passes
730
+ if self.do_perturbed_attention_guidance:
731
+ prompt_embeds = self._prepare_perturbed_attention_guidance(
732
+ prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance
733
+ )
734
+ elif self.do_classifier_free_guidance:
735
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
736
+
737
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
738
+ ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds(
739
+ ip_adapter_image,
740
+ ip_adapter_image_embeds,
741
+ device,
742
+ batch_size * num_videos_per_prompt,
743
+ self.do_classifier_free_guidance,
744
+ )
745
+
746
+ for i, image_embeds in enumerate(ip_adapter_image_embeds):
747
+ negative_image_embeds = None
748
+ if self.do_classifier_free_guidance:
749
+ negative_image_embeds, image_embeds = image_embeds.chunk(2)
750
+ if self.do_perturbed_attention_guidance:
751
+ image_embeds = self._prepare_perturbed_attention_guidance(
752
+ image_embeds, negative_image_embeds, self.do_classifier_free_guidance
753
+ )
754
+ elif self.do_classifier_free_guidance:
755
+ image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0)
756
+ image_embeds = image_embeds.to(device)
757
+ ip_adapter_image_embeds[i] = image_embeds
758
+
759
+ # 4. Prepare timesteps
760
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
761
+ timesteps = self.scheduler.timesteps
762
+
763
+ # 5. Prepare latent variables
764
+ num_channels_latents = self.unet.config.in_channels
765
+ latents = self.prepare_latents(
766
+ batch_size * num_videos_per_prompt,
767
+ num_channels_latents,
768
+ num_frames,
769
+ height,
770
+ width,
771
+ prompt_embeds.dtype,
772
+ device,
773
+ generator,
774
+ latents,
775
+ )
776
+
777
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
778
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
779
+
780
+ # 7. Add image embeds for IP-Adapter
781
+ added_cond_kwargs = (
782
+ {"image_embeds": ip_adapter_image_embeds}
783
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None
784
+ else None
785
+ )
786
+
787
+ if self.do_perturbed_attention_guidance:
788
+ original_attn_proc = self.unet.attn_processors
789
+ self._set_pag_attn_processor(
790
+ pag_applied_layers=self.pag_applied_layers,
791
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
792
+ )
793
+
794
+ num_free_init_iters = self._free_init_num_iters if self.free_init_enabled else 1
795
+ for free_init_iter in range(num_free_init_iters):
796
+ if self.free_init_enabled:
797
+ latents, timesteps = self._apply_free_init(
798
+ latents, free_init_iter, num_inference_steps, device, latents.dtype, generator
799
+ )
800
+
801
+ self._num_timesteps = len(timesteps)
802
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
803
+
804
+ # 8. Denoising loop
805
+ with self.progress_bar(total=self._num_timesteps) as progress_bar:
806
+ for i, t in enumerate(timesteps):
807
+ # expand the latents if we are doing classifier free guidance
808
+ latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0]))
809
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
810
+
811
+ # predict the noise residual
812
+ noise_pred = self.unet(
813
+ latent_model_input,
814
+ t,
815
+ encoder_hidden_states=prompt_embeds,
816
+ cross_attention_kwargs=cross_attention_kwargs,
817
+ added_cond_kwargs=added_cond_kwargs,
818
+ ).sample
819
+
820
+ # perform guidance
821
+ if self.do_perturbed_attention_guidance:
822
+ noise_pred = self._apply_perturbed_attention_guidance(
823
+ noise_pred, self.do_classifier_free_guidance, self.guidance_scale, t
824
+ )
825
+ elif self.do_classifier_free_guidance:
826
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
827
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
828
+
829
+ # compute the previous noisy sample x_t -> x_t-1
830
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
831
+
832
+ if callback_on_step_end is not None:
833
+ callback_kwargs = {}
834
+ for k in callback_on_step_end_tensor_inputs:
835
+ callback_kwargs[k] = locals()[k]
836
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
837
+
838
+ latents = callback_outputs.pop("latents", latents)
839
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
840
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
841
+
842
+ # call the callback, if provided
843
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
844
+ progress_bar.update()
845
+
846
+ # 9. Post processing
847
+ if output_type == "latent":
848
+ video = latents
849
+ else:
850
+ video_tensor = self.decode_latents(latents, decode_chunk_size)
851
+ video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type)
852
+
853
+ # 10. Offload all models
854
+ self.maybe_free_model_hooks()
855
+
856
+ if self.do_perturbed_attention_guidance:
857
+ self.unet.set_attn_processor(original_attn_proc)
858
+
859
+ if not return_dict:
860
+ return (video,)
861
+
862
+ return AnimateDiffPipelineOutput(frames=video)