diffusers 0.29.2__py3-none-any.whl → 0.30.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (220) hide show
  1. diffusers/__init__.py +94 -3
  2. diffusers/commands/env.py +1 -5
  3. diffusers/configuration_utils.py +4 -9
  4. diffusers/dependency_versions_table.py +2 -2
  5. diffusers/image_processor.py +1 -2
  6. diffusers/loaders/__init__.py +17 -2
  7. diffusers/loaders/ip_adapter.py +10 -7
  8. diffusers/loaders/lora_base.py +752 -0
  9. diffusers/loaders/lora_pipeline.py +2222 -0
  10. diffusers/loaders/peft.py +213 -5
  11. diffusers/loaders/single_file.py +1 -12
  12. diffusers/loaders/single_file_model.py +31 -10
  13. diffusers/loaders/single_file_utils.py +262 -2
  14. diffusers/loaders/textual_inversion.py +1 -6
  15. diffusers/loaders/unet.py +23 -208
  16. diffusers/models/__init__.py +20 -0
  17. diffusers/models/activations.py +22 -0
  18. diffusers/models/attention.py +386 -7
  19. diffusers/models/attention_processor.py +1795 -629
  20. diffusers/models/autoencoders/__init__.py +2 -0
  21. diffusers/models/autoencoders/autoencoder_kl.py +14 -3
  22. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1035 -0
  23. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
  24. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  25. diffusers/models/autoencoders/autoencoder_tiny.py +1 -0
  26. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  27. diffusers/models/autoencoders/vq_model.py +4 -4
  28. diffusers/models/controlnet.py +2 -3
  29. diffusers/models/controlnet_hunyuan.py +401 -0
  30. diffusers/models/controlnet_sd3.py +11 -11
  31. diffusers/models/controlnet_sparsectrl.py +789 -0
  32. diffusers/models/controlnet_xs.py +40 -10
  33. diffusers/models/downsampling.py +68 -0
  34. diffusers/models/embeddings.py +319 -36
  35. diffusers/models/model_loading_utils.py +1 -3
  36. diffusers/models/modeling_flax_utils.py +1 -6
  37. diffusers/models/modeling_utils.py +4 -16
  38. diffusers/models/normalization.py +203 -12
  39. diffusers/models/transformers/__init__.py +6 -0
  40. diffusers/models/transformers/auraflow_transformer_2d.py +527 -0
  41. diffusers/models/transformers/cogvideox_transformer_3d.py +345 -0
  42. diffusers/models/transformers/hunyuan_transformer_2d.py +19 -15
  43. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  44. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  45. diffusers/models/transformers/pixart_transformer_2d.py +102 -1
  46. diffusers/models/transformers/prior_transformer.py +1 -1
  47. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  48. diffusers/models/transformers/transformer_flux.py +455 -0
  49. diffusers/models/transformers/transformer_sd3.py +18 -4
  50. diffusers/models/unets/unet_1d_blocks.py +1 -1
  51. diffusers/models/unets/unet_2d_condition.py +8 -1
  52. diffusers/models/unets/unet_3d_blocks.py +51 -920
  53. diffusers/models/unets/unet_3d_condition.py +4 -1
  54. diffusers/models/unets/unet_i2vgen_xl.py +4 -1
  55. diffusers/models/unets/unet_kandinsky3.py +1 -1
  56. diffusers/models/unets/unet_motion_model.py +1330 -84
  57. diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
  58. diffusers/models/unets/unet_stable_cascade.py +1 -3
  59. diffusers/models/unets/uvit_2d.py +1 -1
  60. diffusers/models/upsampling.py +64 -0
  61. diffusers/models/vq_model.py +8 -4
  62. diffusers/optimization.py +1 -1
  63. diffusers/pipelines/__init__.py +100 -3
  64. diffusers/pipelines/animatediff/__init__.py +4 -0
  65. diffusers/pipelines/animatediff/pipeline_animatediff.py +50 -40
  66. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1076 -0
  67. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +17 -27
  68. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1008 -0
  69. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +51 -38
  70. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  71. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +1 -0
  72. diffusers/pipelines/aura_flow/__init__.py +48 -0
  73. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +591 -0
  74. diffusers/pipelines/auto_pipeline.py +97 -19
  75. diffusers/pipelines/cogvideo/__init__.py +48 -0
  76. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +687 -0
  77. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  78. diffusers/pipelines/controlnet/pipeline_controlnet.py +24 -30
  79. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +31 -30
  80. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +24 -153
  81. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +19 -28
  82. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +18 -28
  83. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +29 -32
  84. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  85. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  86. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1042 -0
  87. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +35 -0
  88. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +10 -6
  89. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +0 -4
  90. diffusers/pipelines/deepfloyd_if/pipeline_if.py +2 -2
  91. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +2 -2
  92. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +2 -2
  93. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +2 -2
  94. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +2 -2
  95. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +2 -2
  96. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -6
  97. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -6
  98. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +6 -6
  99. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
  100. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -10
  101. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +10 -6
  102. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +3 -3
  103. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +1 -1
  104. diffusers/pipelines/flux/__init__.py +47 -0
  105. diffusers/pipelines/flux/pipeline_flux.py +749 -0
  106. diffusers/pipelines/flux/pipeline_output.py +21 -0
  107. diffusers/pipelines/free_init_utils.py +2 -0
  108. diffusers/pipelines/free_noise_utils.py +236 -0
  109. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +2 -2
  110. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +2 -2
  111. diffusers/pipelines/kolors/__init__.py +54 -0
  112. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  113. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1247 -0
  114. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  115. diffusers/pipelines/kolors/text_encoder.py +889 -0
  116. diffusers/pipelines/kolors/tokenizer.py +334 -0
  117. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +30 -29
  118. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +23 -29
  119. diffusers/pipelines/latte/__init__.py +48 -0
  120. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  121. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +4 -4
  122. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +0 -4
  123. diffusers/pipelines/lumina/__init__.py +48 -0
  124. diffusers/pipelines/lumina/pipeline_lumina.py +897 -0
  125. diffusers/pipelines/pag/__init__.py +67 -0
  126. diffusers/pipelines/pag/pag_utils.py +237 -0
  127. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1329 -0
  128. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1612 -0
  129. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +953 -0
  130. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  131. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +872 -0
  132. diffusers/pipelines/pag/pipeline_pag_sd.py +1050 -0
  133. diffusers/pipelines/pag/pipeline_pag_sd_3.py +985 -0
  134. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +862 -0
  135. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1333 -0
  136. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1529 -0
  137. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1753 -0
  138. diffusers/pipelines/pia/pipeline_pia.py +30 -37
  139. diffusers/pipelines/pipeline_flax_utils.py +4 -9
  140. diffusers/pipelines/pipeline_loading_utils.py +0 -3
  141. diffusers/pipelines/pipeline_utils.py +2 -14
  142. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +0 -1
  143. diffusers/pipelines/stable_audio/__init__.py +50 -0
  144. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  145. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +745 -0
  146. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +2 -0
  147. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  148. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +23 -29
  149. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +15 -8
  150. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +30 -29
  151. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +23 -152
  152. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +8 -4
  153. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +11 -11
  154. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +8 -6
  155. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +6 -6
  156. diffusers/pipelines/stable_diffusion_3/__init__.py +2 -0
  157. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +34 -3
  158. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +33 -7
  159. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1201 -0
  160. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +3 -3
  161. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +6 -6
  162. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -5
  163. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +5 -5
  164. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +6 -6
  165. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +0 -4
  166. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +23 -29
  167. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +27 -29
  168. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +3 -3
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +17 -27
  170. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +26 -29
  171. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +17 -145
  172. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +0 -4
  173. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +6 -6
  174. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -28
  175. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +8 -6
  176. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +8 -6
  177. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +6 -4
  178. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +0 -4
  179. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
  180. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  181. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -4
  182. diffusers/schedulers/__init__.py +8 -0
  183. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  184. diffusers/schedulers/scheduling_ddim.py +1 -1
  185. diffusers/schedulers/scheduling_ddim_cogvideox.py +449 -0
  186. diffusers/schedulers/scheduling_ddpm.py +1 -1
  187. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -1
  188. diffusers/schedulers/scheduling_deis_multistep.py +2 -2
  189. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  190. diffusers/schedulers/scheduling_dpmsolver_multistep.py +1 -1
  191. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +1 -1
  192. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +64 -19
  193. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +2 -2
  194. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +63 -39
  195. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +321 -0
  196. diffusers/schedulers/scheduling_ipndm.py +1 -1
  197. diffusers/schedulers/scheduling_unipc_multistep.py +1 -1
  198. diffusers/schedulers/scheduling_utils.py +1 -3
  199. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  200. diffusers/training_utils.py +99 -14
  201. diffusers/utils/__init__.py +2 -2
  202. diffusers/utils/dummy_pt_objects.py +210 -0
  203. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  204. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  205. diffusers/utils/dummy_torch_and_transformers_objects.py +315 -0
  206. diffusers/utils/dynamic_modules_utils.py +1 -11
  207. diffusers/utils/export_utils.py +1 -4
  208. diffusers/utils/hub_utils.py +45 -42
  209. diffusers/utils/import_utils.py +19 -16
  210. diffusers/utils/loading_utils.py +76 -3
  211. diffusers/utils/testing_utils.py +11 -8
  212. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/METADATA +73 -83
  213. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/RECORD +217 -164
  214. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/WHEEL +1 -1
  215. diffusers/loaders/autoencoder.py +0 -146
  216. diffusers/loaders/controlnet.py +0 -136
  217. diffusers/loaders/lora.py +0 -1728
  218. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/LICENSE +0 -0
  219. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/entry_points.txt +0 -0
  220. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,745 @@
1
+ # Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Callable, List, Optional, Union
17
+
18
+ import torch
19
+ from transformers import (
20
+ T5EncoderModel,
21
+ T5Tokenizer,
22
+ T5TokenizerFast,
23
+ )
24
+
25
+ from ...models import AutoencoderOobleck, StableAudioDiTModel
26
+ from ...models.embeddings import get_1d_rotary_pos_embed
27
+ from ...schedulers import EDMDPMSolverMultistepScheduler
28
+ from ...utils import (
29
+ logging,
30
+ replace_example_docstring,
31
+ )
32
+ from ...utils.torch_utils import randn_tensor
33
+ from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
34
+ from .modeling_stable_audio import StableAudioProjectionModel
35
+
36
+
37
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
38
+
39
+ EXAMPLE_DOC_STRING = """
40
+ Examples:
41
+ ```py
42
+ >>> import scipy
43
+ >>> import torch
44
+ >>> import soundfile as sf
45
+ >>> from diffusers import StableAudioPipeline
46
+
47
+ >>> repo_id = "stabilityai/stable-audio-open-1.0"
48
+ >>> pipe = StableAudioPipeline.from_pretrained(repo_id, torch_dtype=torch.float16)
49
+ >>> pipe = pipe.to("cuda")
50
+
51
+ >>> # define the prompts
52
+ >>> prompt = "The sound of a hammer hitting a wooden surface."
53
+ >>> negative_prompt = "Low quality."
54
+
55
+ >>> # set the seed for generator
56
+ >>> generator = torch.Generator("cuda").manual_seed(0)
57
+
58
+ >>> # run the generation
59
+ >>> audio = pipe(
60
+ ... prompt,
61
+ ... negative_prompt=negative_prompt,
62
+ ... num_inference_steps=200,
63
+ ... audio_end_in_s=10.0,
64
+ ... num_waveforms_per_prompt=3,
65
+ ... generator=generator,
66
+ ... ).audios
67
+
68
+ >>> output = audio[0].T.float().cpu().numpy()
69
+ >>> sf.write("hammer.wav", output, pipe.vae.sampling_rate)
70
+ ```
71
+ """
72
+
73
+
74
+ class StableAudioPipeline(DiffusionPipeline):
75
+ r"""
76
+ Pipeline for text-to-audio generation using StableAudio.
77
+
78
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
79
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
80
+
81
+ Args:
82
+ vae ([`AutoencoderOobleck`]):
83
+ Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
84
+ text_encoder ([`~transformers.T5EncoderModel`]):
85
+ Frozen text-encoder. StableAudio uses the encoder of
86
+ [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
87
+ [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) variant.
88
+ projection_model ([`StableAudioProjectionModel`]):
89
+ A trained model used to linearly project the hidden-states from the text encoder model and the start and
90
+ end seconds. The projected hidden-states from the encoder and the conditional seconds are concatenated to
91
+ give the input to the transformer model.
92
+ tokenizer ([`~transformers.T5Tokenizer`]):
93
+ Tokenizer to tokenize text for the frozen text-encoder.
94
+ transformer ([`StableAudioDiTModel`]):
95
+ A `StableAudioDiTModel` to denoise the encoded audio latents.
96
+ scheduler ([`EDMDPMSolverMultistepScheduler`]):
97
+ A scheduler to be used in combination with `transformer` to denoise the encoded audio latents.
98
+ """
99
+
100
+ model_cpu_offload_seq = "text_encoder->projection_model->transformer->vae"
101
+
102
+ def __init__(
103
+ self,
104
+ vae: AutoencoderOobleck,
105
+ text_encoder: T5EncoderModel,
106
+ projection_model: StableAudioProjectionModel,
107
+ tokenizer: Union[T5Tokenizer, T5TokenizerFast],
108
+ transformer: StableAudioDiTModel,
109
+ scheduler: EDMDPMSolverMultistepScheduler,
110
+ ):
111
+ super().__init__()
112
+
113
+ self.register_modules(
114
+ vae=vae,
115
+ text_encoder=text_encoder,
116
+ projection_model=projection_model,
117
+ tokenizer=tokenizer,
118
+ transformer=transformer,
119
+ scheduler=scheduler,
120
+ )
121
+ self.rotary_embed_dim = self.transformer.config.attention_head_dim // 2
122
+
123
+ # Copied from diffusers.pipelines.pipeline_utils.StableDiffusionMixin.enable_vae_slicing
124
+ def enable_vae_slicing(self):
125
+ r"""
126
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
127
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
128
+ """
129
+ self.vae.enable_slicing()
130
+
131
+ # Copied from diffusers.pipelines.pipeline_utils.StableDiffusionMixin.disable_vae_slicing
132
+ def disable_vae_slicing(self):
133
+ r"""
134
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
135
+ computing decoding in one step.
136
+ """
137
+ self.vae.disable_slicing()
138
+
139
+ def encode_prompt(
140
+ self,
141
+ prompt,
142
+ device,
143
+ do_classifier_free_guidance,
144
+ negative_prompt=None,
145
+ prompt_embeds: Optional[torch.Tensor] = None,
146
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
147
+ attention_mask: Optional[torch.LongTensor] = None,
148
+ negative_attention_mask: Optional[torch.LongTensor] = None,
149
+ ):
150
+ if prompt is not None and isinstance(prompt, str):
151
+ batch_size = 1
152
+ elif prompt is not None and isinstance(prompt, list):
153
+ batch_size = len(prompt)
154
+ else:
155
+ batch_size = prompt_embeds.shape[0]
156
+
157
+ if prompt_embeds is None:
158
+ # 1. Tokenize text
159
+ text_inputs = self.tokenizer(
160
+ prompt,
161
+ padding="max_length",
162
+ max_length=self.tokenizer.model_max_length,
163
+ truncation=True,
164
+ return_tensors="pt",
165
+ )
166
+ text_input_ids = text_inputs.input_ids
167
+ attention_mask = text_inputs.attention_mask
168
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
169
+
170
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
171
+ text_input_ids, untruncated_ids
172
+ ):
173
+ removed_text = self.tokenizer.batch_decode(
174
+ untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
175
+ )
176
+ logger.warning(
177
+ f"The following part of your input was truncated because {self.text_encoder.config.model_type} can "
178
+ f"only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}"
179
+ )
180
+
181
+ text_input_ids = text_input_ids.to(device)
182
+ attention_mask = attention_mask.to(device)
183
+
184
+ # 2. Text encoder forward
185
+ self.text_encoder.eval()
186
+ prompt_embeds = self.text_encoder(
187
+ text_input_ids,
188
+ attention_mask=attention_mask,
189
+ )
190
+ prompt_embeds = prompt_embeds[0]
191
+
192
+ if do_classifier_free_guidance and negative_prompt is not None:
193
+ uncond_tokens: List[str]
194
+ if type(prompt) is not type(negative_prompt):
195
+ raise TypeError(
196
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
197
+ f" {type(prompt)}."
198
+ )
199
+ elif isinstance(negative_prompt, str):
200
+ uncond_tokens = [negative_prompt]
201
+ elif batch_size != len(negative_prompt):
202
+ raise ValueError(
203
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
204
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
205
+ " the batch size of `prompt`."
206
+ )
207
+ else:
208
+ uncond_tokens = negative_prompt
209
+
210
+ # 1. Tokenize text
211
+ uncond_input = self.tokenizer(
212
+ uncond_tokens,
213
+ padding="max_length",
214
+ max_length=self.tokenizer.model_max_length,
215
+ truncation=True,
216
+ return_tensors="pt",
217
+ )
218
+
219
+ uncond_input_ids = uncond_input.input_ids.to(device)
220
+ negative_attention_mask = uncond_input.attention_mask.to(device)
221
+
222
+ # 2. Text encoder forward
223
+ self.text_encoder.eval()
224
+ negative_prompt_embeds = self.text_encoder(
225
+ uncond_input_ids,
226
+ attention_mask=negative_attention_mask,
227
+ )
228
+ negative_prompt_embeds = negative_prompt_embeds[0]
229
+
230
+ if negative_attention_mask is not None:
231
+ # set the masked tokens to the null embed
232
+ negative_prompt_embeds = torch.where(
233
+ negative_attention_mask.to(torch.bool).unsqueeze(2), negative_prompt_embeds, 0.0
234
+ )
235
+
236
+ # 3. Project prompt_embeds and negative_prompt_embeds
237
+ if do_classifier_free_guidance and negative_prompt_embeds is not None:
238
+ # For classifier free guidance, we need to do two forward passes.
239
+ # Here we concatenate the negative and text embeddings into a single batch
240
+ # to avoid doing two forward passes
241
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
242
+ if attention_mask is not None and negative_attention_mask is None:
243
+ negative_attention_mask = torch.ones_like(attention_mask)
244
+ elif attention_mask is None and negative_attention_mask is not None:
245
+ attention_mask = torch.ones_like(negative_attention_mask)
246
+
247
+ if attention_mask is not None:
248
+ attention_mask = torch.cat([negative_attention_mask, attention_mask])
249
+
250
+ prompt_embeds = self.projection_model(
251
+ text_hidden_states=prompt_embeds,
252
+ ).text_hidden_states
253
+ if attention_mask is not None:
254
+ prompt_embeds = prompt_embeds * attention_mask.unsqueeze(-1).to(prompt_embeds.dtype)
255
+ prompt_embeds = prompt_embeds * attention_mask.unsqueeze(-1).to(prompt_embeds.dtype)
256
+
257
+ return prompt_embeds
258
+
259
+ def encode_duration(
260
+ self,
261
+ audio_start_in_s,
262
+ audio_end_in_s,
263
+ device,
264
+ do_classifier_free_guidance,
265
+ batch_size,
266
+ ):
267
+ audio_start_in_s = audio_start_in_s if isinstance(audio_start_in_s, list) else [audio_start_in_s]
268
+ audio_end_in_s = audio_end_in_s if isinstance(audio_end_in_s, list) else [audio_end_in_s]
269
+
270
+ if len(audio_start_in_s) == 1:
271
+ audio_start_in_s = audio_start_in_s * batch_size
272
+ if len(audio_end_in_s) == 1:
273
+ audio_end_in_s = audio_end_in_s * batch_size
274
+
275
+ # Cast the inputs to floats
276
+ audio_start_in_s = [float(x) for x in audio_start_in_s]
277
+ audio_start_in_s = torch.tensor(audio_start_in_s).to(device)
278
+
279
+ audio_end_in_s = [float(x) for x in audio_end_in_s]
280
+ audio_end_in_s = torch.tensor(audio_end_in_s).to(device)
281
+
282
+ projection_output = self.projection_model(
283
+ start_seconds=audio_start_in_s,
284
+ end_seconds=audio_end_in_s,
285
+ )
286
+ seconds_start_hidden_states = projection_output.seconds_start_hidden_states
287
+ seconds_end_hidden_states = projection_output.seconds_end_hidden_states
288
+
289
+ # For classifier free guidance, we need to do two forward passes.
290
+ # Here we repeat the audio hidden states to avoid doing two forward passes
291
+ if do_classifier_free_guidance:
292
+ seconds_start_hidden_states = torch.cat([seconds_start_hidden_states, seconds_start_hidden_states], dim=0)
293
+ seconds_end_hidden_states = torch.cat([seconds_end_hidden_states, seconds_end_hidden_states], dim=0)
294
+
295
+ return seconds_start_hidden_states, seconds_end_hidden_states
296
+
297
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
298
+ def prepare_extra_step_kwargs(self, generator, eta):
299
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
300
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
301
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
302
+ # and should be between [0, 1]
303
+
304
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
305
+ extra_step_kwargs = {}
306
+ if accepts_eta:
307
+ extra_step_kwargs["eta"] = eta
308
+
309
+ # check if the scheduler accepts generator
310
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
311
+ if accepts_generator:
312
+ extra_step_kwargs["generator"] = generator
313
+ return extra_step_kwargs
314
+
315
+ def check_inputs(
316
+ self,
317
+ prompt,
318
+ audio_start_in_s,
319
+ audio_end_in_s,
320
+ callback_steps,
321
+ negative_prompt=None,
322
+ prompt_embeds=None,
323
+ negative_prompt_embeds=None,
324
+ attention_mask=None,
325
+ negative_attention_mask=None,
326
+ initial_audio_waveforms=None,
327
+ initial_audio_sampling_rate=None,
328
+ ):
329
+ if audio_end_in_s < audio_start_in_s:
330
+ raise ValueError(
331
+ f"`audio_end_in_s={audio_end_in_s}' must be higher than 'audio_start_in_s={audio_start_in_s}` but "
332
+ )
333
+
334
+ if (
335
+ audio_start_in_s < self.projection_model.config.min_value
336
+ or audio_start_in_s > self.projection_model.config.max_value
337
+ ):
338
+ raise ValueError(
339
+ f"`audio_start_in_s` must be greater than or equal to {self.projection_model.config.min_value}, and lower than or equal to {self.projection_model.config.max_value} but "
340
+ f"is {audio_start_in_s}."
341
+ )
342
+
343
+ if (
344
+ audio_end_in_s < self.projection_model.config.min_value
345
+ or audio_end_in_s > self.projection_model.config.max_value
346
+ ):
347
+ raise ValueError(
348
+ f"`audio_end_in_s` must be greater than or equal to {self.projection_model.config.min_value}, and lower than or equal to {self.projection_model.config.max_value} but "
349
+ f"is {audio_end_in_s}."
350
+ )
351
+
352
+ if (callback_steps is None) or (
353
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
354
+ ):
355
+ raise ValueError(
356
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
357
+ f" {type(callback_steps)}."
358
+ )
359
+
360
+ if prompt is not None and prompt_embeds is not None:
361
+ raise ValueError(
362
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
363
+ " only forward one of the two."
364
+ )
365
+ elif prompt is None and (prompt_embeds is None):
366
+ raise ValueError(
367
+ "Provide either `prompt`, or `prompt_embeds`. Cannot leave"
368
+ "`prompt` undefined without specifying `prompt_embeds`."
369
+ )
370
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
371
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
372
+
373
+ if negative_prompt is not None and negative_prompt_embeds is not None:
374
+ raise ValueError(
375
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
376
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
377
+ )
378
+
379
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
380
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
381
+ raise ValueError(
382
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
383
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
384
+ f" {negative_prompt_embeds.shape}."
385
+ )
386
+ if attention_mask is not None and attention_mask.shape != prompt_embeds.shape[:2]:
387
+ raise ValueError(
388
+ "`attention_mask should have the same batch size and sequence length as `prompt_embeds`, but got:"
389
+ f"`attention_mask: {attention_mask.shape} != `prompt_embeds` {prompt_embeds.shape}"
390
+ )
391
+
392
+ if initial_audio_sampling_rate is None and initial_audio_waveforms is not None:
393
+ raise ValueError(
394
+ "`initial_audio_waveforms' is provided but the sampling rate is not. Make sure to pass `initial_audio_sampling_rate`."
395
+ )
396
+
397
+ if initial_audio_sampling_rate is not None and initial_audio_sampling_rate != self.vae.sampling_rate:
398
+ raise ValueError(
399
+ f"`initial_audio_sampling_rate` must be {self.vae.hop_length}' but is `{initial_audio_sampling_rate}`."
400
+ "Make sure to resample the `initial_audio_waveforms` and to correct the sampling rate. "
401
+ )
402
+
403
+ def prepare_latents(
404
+ self,
405
+ batch_size,
406
+ num_channels_vae,
407
+ sample_size,
408
+ dtype,
409
+ device,
410
+ generator,
411
+ latents=None,
412
+ initial_audio_waveforms=None,
413
+ num_waveforms_per_prompt=None,
414
+ audio_channels=None,
415
+ ):
416
+ shape = (batch_size, num_channels_vae, sample_size)
417
+ if isinstance(generator, list) and len(generator) != batch_size:
418
+ raise ValueError(
419
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
420
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
421
+ )
422
+
423
+ if latents is None:
424
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
425
+ else:
426
+ latents = latents.to(device)
427
+
428
+ # scale the initial noise by the standard deviation required by the scheduler
429
+ latents = latents * self.scheduler.init_noise_sigma
430
+
431
+ # encode the initial audio for use by the model
432
+ if initial_audio_waveforms is not None:
433
+ # check dimension
434
+ if initial_audio_waveforms.ndim == 2:
435
+ initial_audio_waveforms = initial_audio_waveforms.unsqueeze(1)
436
+ elif initial_audio_waveforms.ndim != 3:
437
+ raise ValueError(
438
+ f"`initial_audio_waveforms` must be of shape `(batch_size, num_channels, audio_length)` or `(batch_size, audio_length)` but has `{initial_audio_waveforms.ndim}` dimensions"
439
+ )
440
+
441
+ audio_vae_length = self.transformer.config.sample_size * self.vae.hop_length
442
+ audio_shape = (batch_size // num_waveforms_per_prompt, audio_channels, audio_vae_length)
443
+
444
+ # check num_channels
445
+ if initial_audio_waveforms.shape[1] == 1 and audio_channels == 2:
446
+ initial_audio_waveforms = initial_audio_waveforms.repeat(1, 2, 1)
447
+ elif initial_audio_waveforms.shape[1] == 2 and audio_channels == 1:
448
+ initial_audio_waveforms = initial_audio_waveforms.mean(1, keepdim=True)
449
+
450
+ if initial_audio_waveforms.shape[:2] != audio_shape[:2]:
451
+ raise ValueError(
452
+ f"`initial_audio_waveforms` must be of shape `(batch_size, num_channels, audio_length)` or `(batch_size, audio_length)` but is of shape `{initial_audio_waveforms.shape}`"
453
+ )
454
+
455
+ # crop or pad
456
+ audio_length = initial_audio_waveforms.shape[-1]
457
+ if audio_length < audio_vae_length:
458
+ logger.warning(
459
+ f"The provided input waveform is shorter ({audio_length}) than the required audio length ({audio_vae_length}) of the model and will thus be padded."
460
+ )
461
+ elif audio_length > audio_vae_length:
462
+ logger.warning(
463
+ f"The provided input waveform is longer ({audio_length}) than the required audio length ({audio_vae_length}) of the model and will thus be cropped."
464
+ )
465
+
466
+ audio = initial_audio_waveforms.new_zeros(audio_shape)
467
+ audio[:, :, : min(audio_length, audio_vae_length)] = initial_audio_waveforms[:, :, :audio_vae_length]
468
+
469
+ encoded_audio = self.vae.encode(audio).latent_dist.sample(generator)
470
+ encoded_audio = encoded_audio.repeat((num_waveforms_per_prompt, 1, 1))
471
+ latents = encoded_audio + latents
472
+ return latents
473
+
474
+ @torch.no_grad()
475
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
476
+ def __call__(
477
+ self,
478
+ prompt: Union[str, List[str]] = None,
479
+ audio_end_in_s: Optional[float] = None,
480
+ audio_start_in_s: Optional[float] = 0.0,
481
+ num_inference_steps: int = 100,
482
+ guidance_scale: float = 7.0,
483
+ negative_prompt: Optional[Union[str, List[str]]] = None,
484
+ num_waveforms_per_prompt: Optional[int] = 1,
485
+ eta: float = 0.0,
486
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
487
+ latents: Optional[torch.Tensor] = None,
488
+ initial_audio_waveforms: Optional[torch.Tensor] = None,
489
+ initial_audio_sampling_rate: Optional[torch.Tensor] = None,
490
+ prompt_embeds: Optional[torch.Tensor] = None,
491
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
492
+ attention_mask: Optional[torch.LongTensor] = None,
493
+ negative_attention_mask: Optional[torch.LongTensor] = None,
494
+ return_dict: bool = True,
495
+ callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
496
+ callback_steps: Optional[int] = 1,
497
+ output_type: Optional[str] = "pt",
498
+ ):
499
+ r"""
500
+ The call function to the pipeline for generation.
501
+
502
+ Args:
503
+ prompt (`str` or `List[str]`, *optional*):
504
+ The prompt or prompts to guide audio generation. If not defined, you need to pass `prompt_embeds`.
505
+ audio_end_in_s (`float`, *optional*, defaults to 47.55):
506
+ Audio end index in seconds.
507
+ audio_start_in_s (`float`, *optional*, defaults to 0):
508
+ Audio start index in seconds.
509
+ num_inference_steps (`int`, *optional*, defaults to 100):
510
+ The number of denoising steps. More denoising steps usually lead to a higher quality audio at the
511
+ expense of slower inference.
512
+ guidance_scale (`float`, *optional*, defaults to 7.0):
513
+ A higher guidance scale value encourages the model to generate audio that is closely linked to the text
514
+ `prompt` at the expense of lower sound quality. Guidance scale is enabled when `guidance_scale > 1`.
515
+ negative_prompt (`str` or `List[str]`, *optional*):
516
+ The prompt or prompts to guide what to not include in audio generation. If not defined, you need to
517
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
518
+ num_waveforms_per_prompt (`int`, *optional*, defaults to 1):
519
+ The number of waveforms to generate per prompt.
520
+ eta (`float`, *optional*, defaults to 0.0):
521
+ Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
522
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
523
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
524
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
525
+ generation deterministic.
526
+ latents (`torch.Tensor`, *optional*):
527
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for audio
528
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
529
+ tensor is generated by sampling using the supplied random `generator`.
530
+ initial_audio_waveforms (`torch.Tensor`, *optional*):
531
+ Optional initial audio waveforms to use as the initial audio waveform for generation. Must be of shape
532
+ `(batch_size, num_channels, audio_length)` or `(batch_size, audio_length)`, where `batch_size`
533
+ corresponds to the number of prompts passed to the model.
534
+ initial_audio_sampling_rate (`int`, *optional*):
535
+ Sampling rate of the `initial_audio_waveforms`, if they are provided. Must be the same as the model.
536
+ prompt_embeds (`torch.Tensor`, *optional*):
537
+ Pre-computed text embeddings from the text encoder model. Can be used to easily tweak text inputs,
538
+ *e.g.* prompt weighting. If not provided, text embeddings will be computed from `prompt` input
539
+ argument.
540
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
541
+ Pre-computed negative text embeddings from the text encoder model. Can be used to easily tweak text
542
+ inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from
543
+ `negative_prompt` input argument.
544
+ attention_mask (`torch.LongTensor`, *optional*):
545
+ Pre-computed attention mask to be applied to the `prompt_embeds`. If not provided, attention mask will
546
+ be computed from `prompt` input argument.
547
+ negative_attention_mask (`torch.LongTensor`, *optional*):
548
+ Pre-computed attention mask to be applied to the `negative_text_audio_duration_embeds`.
549
+ return_dict (`bool`, *optional*, defaults to `True`):
550
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
551
+ plain tuple.
552
+ callback (`Callable`, *optional*):
553
+ A function that calls every `callback_steps` steps during inference. The function is called with the
554
+ following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
555
+ callback_steps (`int`, *optional*, defaults to 1):
556
+ The frequency at which the `callback` function is called. If not specified, the callback is called at
557
+ every step.
558
+ output_type (`str`, *optional*, defaults to `"pt"`):
559
+ The output format of the generated audio. Choose between `"np"` to return a NumPy `np.ndarray` or
560
+ `"pt"` to return a PyTorch `torch.Tensor` object. Set to `"latent"` to return the latent diffusion
561
+ model (LDM) output.
562
+
563
+ Examples:
564
+
565
+ Returns:
566
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
567
+ If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
568
+ otherwise a `tuple` is returned where the first element is a list with the generated audio.
569
+ """
570
+ # 0. Convert audio input length from seconds to latent length
571
+ downsample_ratio = self.vae.hop_length
572
+
573
+ max_audio_length_in_s = self.transformer.config.sample_size * downsample_ratio / self.vae.config.sampling_rate
574
+ if audio_end_in_s is None:
575
+ audio_end_in_s = max_audio_length_in_s
576
+
577
+ if audio_end_in_s - audio_start_in_s > max_audio_length_in_s:
578
+ raise ValueError(
579
+ f"The total audio length requested ({audio_end_in_s-audio_start_in_s}s) is longer than the model maximum possible length ({max_audio_length_in_s}). Make sure that 'audio_end_in_s-audio_start_in_s<={max_audio_length_in_s}'."
580
+ )
581
+
582
+ waveform_start = int(audio_start_in_s * self.vae.config.sampling_rate)
583
+ waveform_end = int(audio_end_in_s * self.vae.config.sampling_rate)
584
+ waveform_length = int(self.transformer.config.sample_size)
585
+
586
+ # 1. Check inputs. Raise error if not correct
587
+ self.check_inputs(
588
+ prompt,
589
+ audio_start_in_s,
590
+ audio_end_in_s,
591
+ callback_steps,
592
+ negative_prompt,
593
+ prompt_embeds,
594
+ negative_prompt_embeds,
595
+ attention_mask,
596
+ negative_attention_mask,
597
+ initial_audio_waveforms,
598
+ initial_audio_sampling_rate,
599
+ )
600
+
601
+ # 2. Define call parameters
602
+ if prompt is not None and isinstance(prompt, str):
603
+ batch_size = 1
604
+ elif prompt is not None and isinstance(prompt, list):
605
+ batch_size = len(prompt)
606
+ else:
607
+ batch_size = prompt_embeds.shape[0]
608
+
609
+ device = self._execution_device
610
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
611
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
612
+ # corresponds to doing no classifier free guidance.
613
+ do_classifier_free_guidance = guidance_scale > 1.0
614
+
615
+ # 3. Encode input prompt
616
+ prompt_embeds = self.encode_prompt(
617
+ prompt,
618
+ device,
619
+ do_classifier_free_guidance,
620
+ negative_prompt,
621
+ prompt_embeds,
622
+ negative_prompt_embeds,
623
+ attention_mask,
624
+ negative_attention_mask,
625
+ )
626
+
627
+ # Encode duration
628
+ seconds_start_hidden_states, seconds_end_hidden_states = self.encode_duration(
629
+ audio_start_in_s,
630
+ audio_end_in_s,
631
+ device,
632
+ do_classifier_free_guidance and (negative_prompt is not None or negative_prompt_embeds is not None),
633
+ batch_size,
634
+ )
635
+
636
+ # Create text_audio_duration_embeds and audio_duration_embeds
637
+ text_audio_duration_embeds = torch.cat(
638
+ [prompt_embeds, seconds_start_hidden_states, seconds_end_hidden_states], dim=1
639
+ )
640
+
641
+ audio_duration_embeds = torch.cat([seconds_start_hidden_states, seconds_end_hidden_states], dim=2)
642
+
643
+ # In case of classifier free guidance without negative prompt, we need to create unconditional embeddings and
644
+ # to concatenate it to the embeddings
645
+ if do_classifier_free_guidance and negative_prompt_embeds is None and negative_prompt is None:
646
+ negative_text_audio_duration_embeds = torch.zeros_like(
647
+ text_audio_duration_embeds, device=text_audio_duration_embeds.device
648
+ )
649
+ text_audio_duration_embeds = torch.cat(
650
+ [negative_text_audio_duration_embeds, text_audio_duration_embeds], dim=0
651
+ )
652
+ audio_duration_embeds = torch.cat([audio_duration_embeds, audio_duration_embeds], dim=0)
653
+
654
+ bs_embed, seq_len, hidden_size = text_audio_duration_embeds.shape
655
+ # duplicate audio_duration_embeds and text_audio_duration_embeds for each generation per prompt, using mps friendly method
656
+ text_audio_duration_embeds = text_audio_duration_embeds.repeat(1, num_waveforms_per_prompt, 1)
657
+ text_audio_duration_embeds = text_audio_duration_embeds.view(
658
+ bs_embed * num_waveforms_per_prompt, seq_len, hidden_size
659
+ )
660
+
661
+ audio_duration_embeds = audio_duration_embeds.repeat(1, num_waveforms_per_prompt, 1)
662
+ audio_duration_embeds = audio_duration_embeds.view(
663
+ bs_embed * num_waveforms_per_prompt, -1, audio_duration_embeds.shape[-1]
664
+ )
665
+
666
+ # 4. Prepare timesteps
667
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
668
+ timesteps = self.scheduler.timesteps
669
+
670
+ # 5. Prepare latent variables
671
+ num_channels_vae = self.transformer.config.in_channels
672
+ latents = self.prepare_latents(
673
+ batch_size * num_waveforms_per_prompt,
674
+ num_channels_vae,
675
+ waveform_length,
676
+ text_audio_duration_embeds.dtype,
677
+ device,
678
+ generator,
679
+ latents,
680
+ initial_audio_waveforms,
681
+ num_waveforms_per_prompt,
682
+ audio_channels=self.vae.config.audio_channels,
683
+ )
684
+
685
+ # 6. Prepare extra step kwargs
686
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
687
+
688
+ # 7. Prepare rotary positional embedding
689
+ rotary_embedding = get_1d_rotary_pos_embed(
690
+ self.rotary_embed_dim,
691
+ latents.shape[2] + audio_duration_embeds.shape[1],
692
+ use_real=True,
693
+ repeat_interleave_real=False,
694
+ )
695
+
696
+ # 8. Denoising loop
697
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
698
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
699
+ for i, t in enumerate(timesteps):
700
+ # expand the latents if we are doing classifier free guidance
701
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
702
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
703
+
704
+ # predict the noise residual
705
+ noise_pred = self.transformer(
706
+ latent_model_input,
707
+ t.unsqueeze(0),
708
+ encoder_hidden_states=text_audio_duration_embeds,
709
+ global_hidden_states=audio_duration_embeds,
710
+ rotary_embedding=rotary_embedding,
711
+ return_dict=False,
712
+ )[0]
713
+
714
+ # perform guidance
715
+ if do_classifier_free_guidance:
716
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
717
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
718
+
719
+ # compute the previous noisy sample x_t -> x_t-1
720
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
721
+
722
+ # call the callback, if provided
723
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
724
+ progress_bar.update()
725
+ if callback is not None and i % callback_steps == 0:
726
+ step_idx = i // getattr(self.scheduler, "order", 1)
727
+ callback(step_idx, t, latents)
728
+
729
+ # 9. Post-processing
730
+ if not output_type == "latent":
731
+ audio = self.vae.decode(latents).sample
732
+ else:
733
+ return AudioPipelineOutput(audios=latents)
734
+
735
+ audio = audio[:, :, waveform_start:waveform_end]
736
+
737
+ if output_type == "np":
738
+ audio = audio.cpu().float().numpy()
739
+
740
+ self.maybe_free_model_hooks()
741
+
742
+ if not return_dict:
743
+ return (audio,)
744
+
745
+ return AudioPipelineOutput(audios=audio)