diffusers 0.29.2__py3-none-any.whl → 0.30.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (220) hide show
  1. diffusers/__init__.py +94 -3
  2. diffusers/commands/env.py +1 -5
  3. diffusers/configuration_utils.py +4 -9
  4. diffusers/dependency_versions_table.py +2 -2
  5. diffusers/image_processor.py +1 -2
  6. diffusers/loaders/__init__.py +17 -2
  7. diffusers/loaders/ip_adapter.py +10 -7
  8. diffusers/loaders/lora_base.py +752 -0
  9. diffusers/loaders/lora_pipeline.py +2222 -0
  10. diffusers/loaders/peft.py +213 -5
  11. diffusers/loaders/single_file.py +1 -12
  12. diffusers/loaders/single_file_model.py +31 -10
  13. diffusers/loaders/single_file_utils.py +262 -2
  14. diffusers/loaders/textual_inversion.py +1 -6
  15. diffusers/loaders/unet.py +23 -208
  16. diffusers/models/__init__.py +20 -0
  17. diffusers/models/activations.py +22 -0
  18. diffusers/models/attention.py +386 -7
  19. diffusers/models/attention_processor.py +1795 -629
  20. diffusers/models/autoencoders/__init__.py +2 -0
  21. diffusers/models/autoencoders/autoencoder_kl.py +14 -3
  22. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1035 -0
  23. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
  24. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  25. diffusers/models/autoencoders/autoencoder_tiny.py +1 -0
  26. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  27. diffusers/models/autoencoders/vq_model.py +4 -4
  28. diffusers/models/controlnet.py +2 -3
  29. diffusers/models/controlnet_hunyuan.py +401 -0
  30. diffusers/models/controlnet_sd3.py +11 -11
  31. diffusers/models/controlnet_sparsectrl.py +789 -0
  32. diffusers/models/controlnet_xs.py +40 -10
  33. diffusers/models/downsampling.py +68 -0
  34. diffusers/models/embeddings.py +319 -36
  35. diffusers/models/model_loading_utils.py +1 -3
  36. diffusers/models/modeling_flax_utils.py +1 -6
  37. diffusers/models/modeling_utils.py +4 -16
  38. diffusers/models/normalization.py +203 -12
  39. diffusers/models/transformers/__init__.py +6 -0
  40. diffusers/models/transformers/auraflow_transformer_2d.py +527 -0
  41. diffusers/models/transformers/cogvideox_transformer_3d.py +345 -0
  42. diffusers/models/transformers/hunyuan_transformer_2d.py +19 -15
  43. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  44. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  45. diffusers/models/transformers/pixart_transformer_2d.py +102 -1
  46. diffusers/models/transformers/prior_transformer.py +1 -1
  47. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  48. diffusers/models/transformers/transformer_flux.py +455 -0
  49. diffusers/models/transformers/transformer_sd3.py +18 -4
  50. diffusers/models/unets/unet_1d_blocks.py +1 -1
  51. diffusers/models/unets/unet_2d_condition.py +8 -1
  52. diffusers/models/unets/unet_3d_blocks.py +51 -920
  53. diffusers/models/unets/unet_3d_condition.py +4 -1
  54. diffusers/models/unets/unet_i2vgen_xl.py +4 -1
  55. diffusers/models/unets/unet_kandinsky3.py +1 -1
  56. diffusers/models/unets/unet_motion_model.py +1330 -84
  57. diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
  58. diffusers/models/unets/unet_stable_cascade.py +1 -3
  59. diffusers/models/unets/uvit_2d.py +1 -1
  60. diffusers/models/upsampling.py +64 -0
  61. diffusers/models/vq_model.py +8 -4
  62. diffusers/optimization.py +1 -1
  63. diffusers/pipelines/__init__.py +100 -3
  64. diffusers/pipelines/animatediff/__init__.py +4 -0
  65. diffusers/pipelines/animatediff/pipeline_animatediff.py +50 -40
  66. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1076 -0
  67. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +17 -27
  68. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1008 -0
  69. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +51 -38
  70. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  71. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +1 -0
  72. diffusers/pipelines/aura_flow/__init__.py +48 -0
  73. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +591 -0
  74. diffusers/pipelines/auto_pipeline.py +97 -19
  75. diffusers/pipelines/cogvideo/__init__.py +48 -0
  76. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +687 -0
  77. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  78. diffusers/pipelines/controlnet/pipeline_controlnet.py +24 -30
  79. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +31 -30
  80. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +24 -153
  81. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +19 -28
  82. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +18 -28
  83. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +29 -32
  84. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  85. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  86. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1042 -0
  87. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +35 -0
  88. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +10 -6
  89. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +0 -4
  90. diffusers/pipelines/deepfloyd_if/pipeline_if.py +2 -2
  91. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +2 -2
  92. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +2 -2
  93. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +2 -2
  94. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +2 -2
  95. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +2 -2
  96. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -6
  97. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -6
  98. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +6 -6
  99. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
  100. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -10
  101. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +10 -6
  102. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +3 -3
  103. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +1 -1
  104. diffusers/pipelines/flux/__init__.py +47 -0
  105. diffusers/pipelines/flux/pipeline_flux.py +749 -0
  106. diffusers/pipelines/flux/pipeline_output.py +21 -0
  107. diffusers/pipelines/free_init_utils.py +2 -0
  108. diffusers/pipelines/free_noise_utils.py +236 -0
  109. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +2 -2
  110. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +2 -2
  111. diffusers/pipelines/kolors/__init__.py +54 -0
  112. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  113. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1247 -0
  114. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  115. diffusers/pipelines/kolors/text_encoder.py +889 -0
  116. diffusers/pipelines/kolors/tokenizer.py +334 -0
  117. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +30 -29
  118. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +23 -29
  119. diffusers/pipelines/latte/__init__.py +48 -0
  120. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  121. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +4 -4
  122. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +0 -4
  123. diffusers/pipelines/lumina/__init__.py +48 -0
  124. diffusers/pipelines/lumina/pipeline_lumina.py +897 -0
  125. diffusers/pipelines/pag/__init__.py +67 -0
  126. diffusers/pipelines/pag/pag_utils.py +237 -0
  127. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1329 -0
  128. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1612 -0
  129. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +953 -0
  130. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  131. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +872 -0
  132. diffusers/pipelines/pag/pipeline_pag_sd.py +1050 -0
  133. diffusers/pipelines/pag/pipeline_pag_sd_3.py +985 -0
  134. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +862 -0
  135. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1333 -0
  136. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1529 -0
  137. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1753 -0
  138. diffusers/pipelines/pia/pipeline_pia.py +30 -37
  139. diffusers/pipelines/pipeline_flax_utils.py +4 -9
  140. diffusers/pipelines/pipeline_loading_utils.py +0 -3
  141. diffusers/pipelines/pipeline_utils.py +2 -14
  142. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +0 -1
  143. diffusers/pipelines/stable_audio/__init__.py +50 -0
  144. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  145. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +745 -0
  146. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +2 -0
  147. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  148. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +23 -29
  149. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +15 -8
  150. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +30 -29
  151. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +23 -152
  152. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +8 -4
  153. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +11 -11
  154. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +8 -6
  155. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +6 -6
  156. diffusers/pipelines/stable_diffusion_3/__init__.py +2 -0
  157. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +34 -3
  158. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +33 -7
  159. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1201 -0
  160. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +3 -3
  161. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +6 -6
  162. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -5
  163. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +5 -5
  164. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +6 -6
  165. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +0 -4
  166. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +23 -29
  167. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +27 -29
  168. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +3 -3
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +17 -27
  170. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +26 -29
  171. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +17 -145
  172. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +0 -4
  173. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +6 -6
  174. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -28
  175. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +8 -6
  176. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +8 -6
  177. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +6 -4
  178. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +0 -4
  179. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
  180. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  181. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -4
  182. diffusers/schedulers/__init__.py +8 -0
  183. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  184. diffusers/schedulers/scheduling_ddim.py +1 -1
  185. diffusers/schedulers/scheduling_ddim_cogvideox.py +449 -0
  186. diffusers/schedulers/scheduling_ddpm.py +1 -1
  187. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -1
  188. diffusers/schedulers/scheduling_deis_multistep.py +2 -2
  189. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  190. diffusers/schedulers/scheduling_dpmsolver_multistep.py +1 -1
  191. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +1 -1
  192. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +64 -19
  193. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +2 -2
  194. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +63 -39
  195. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +321 -0
  196. diffusers/schedulers/scheduling_ipndm.py +1 -1
  197. diffusers/schedulers/scheduling_unipc_multistep.py +1 -1
  198. diffusers/schedulers/scheduling_utils.py +1 -3
  199. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  200. diffusers/training_utils.py +99 -14
  201. diffusers/utils/__init__.py +2 -2
  202. diffusers/utils/dummy_pt_objects.py +210 -0
  203. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  204. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  205. diffusers/utils/dummy_torch_and_transformers_objects.py +315 -0
  206. diffusers/utils/dynamic_modules_utils.py +1 -11
  207. diffusers/utils/export_utils.py +1 -4
  208. diffusers/utils/hub_utils.py +45 -42
  209. diffusers/utils/import_utils.py +19 -16
  210. diffusers/utils/loading_utils.py +76 -3
  211. diffusers/utils/testing_utils.py +11 -8
  212. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/METADATA +73 -83
  213. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/RECORD +217 -164
  214. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/WHEEL +1 -1
  215. diffusers/loaders/autoencoder.py +0 -146
  216. diffusers/loaders/controlnet.py +0 -136
  217. diffusers/loaders/lora.py +0 -1728
  218. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/LICENSE +0 -0
  219. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/entry_points.txt +0 -0
  220. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,749 @@
1
+ # Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
21
+
22
+ from ...image_processor import VaeImageProcessor
23
+ from ...loaders import FluxLoraLoaderMixin
24
+ from ...models.autoencoders import AutoencoderKL
25
+ from ...models.transformers import FluxTransformer2DModel
26
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
27
+ from ...utils import (
28
+ USE_PEFT_BACKEND,
29
+ is_torch_xla_available,
30
+ logging,
31
+ replace_example_docstring,
32
+ scale_lora_layers,
33
+ unscale_lora_layers,
34
+ )
35
+ from ...utils.torch_utils import randn_tensor
36
+ from ..pipeline_utils import DiffusionPipeline
37
+ from .pipeline_output import FluxPipelineOutput
38
+
39
+
40
+ if is_torch_xla_available():
41
+ import torch_xla.core.xla_model as xm
42
+
43
+ XLA_AVAILABLE = True
44
+ else:
45
+ XLA_AVAILABLE = False
46
+
47
+
48
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
49
+
50
+ EXAMPLE_DOC_STRING = """
51
+ Examples:
52
+ ```py
53
+ >>> import torch
54
+ >>> from diffusers import FluxPipeline
55
+
56
+ >>> pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
57
+ >>> pipe.to("cuda")
58
+ >>> prompt = "A cat holding a sign that says hello world"
59
+ >>> # Depending on the variant being used, the pipeline call will slightly vary.
60
+ >>> # Refer to the pipeline documentation for more details.
61
+ >>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0]
62
+ >>> image.save("flux.png")
63
+ ```
64
+ """
65
+
66
+
67
+ def calculate_shift(
68
+ image_seq_len,
69
+ base_seq_len: int = 256,
70
+ max_seq_len: int = 4096,
71
+ base_shift: float = 0.5,
72
+ max_shift: float = 1.16,
73
+ ):
74
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
75
+ b = base_shift - m * base_seq_len
76
+ mu = image_seq_len * m + b
77
+ return mu
78
+
79
+
80
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
81
+ def retrieve_timesteps(
82
+ scheduler,
83
+ num_inference_steps: Optional[int] = None,
84
+ device: Optional[Union[str, torch.device]] = None,
85
+ timesteps: Optional[List[int]] = None,
86
+ sigmas: Optional[List[float]] = None,
87
+ **kwargs,
88
+ ):
89
+ """
90
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
91
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
92
+
93
+ Args:
94
+ scheduler (`SchedulerMixin`):
95
+ The scheduler to get timesteps from.
96
+ num_inference_steps (`int`):
97
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
98
+ must be `None`.
99
+ device (`str` or `torch.device`, *optional*):
100
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
101
+ timesteps (`List[int]`, *optional*):
102
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
103
+ `num_inference_steps` and `sigmas` must be `None`.
104
+ sigmas (`List[float]`, *optional*):
105
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
106
+ `num_inference_steps` and `timesteps` must be `None`.
107
+
108
+ Returns:
109
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
110
+ second element is the number of inference steps.
111
+ """
112
+ if timesteps is not None and sigmas is not None:
113
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
114
+ if timesteps is not None:
115
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
116
+ if not accepts_timesteps:
117
+ raise ValueError(
118
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
119
+ f" timestep schedules. Please check whether you are using the correct scheduler."
120
+ )
121
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
122
+ timesteps = scheduler.timesteps
123
+ num_inference_steps = len(timesteps)
124
+ elif sigmas is not None:
125
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
126
+ if not accept_sigmas:
127
+ raise ValueError(
128
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
129
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
130
+ )
131
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
132
+ timesteps = scheduler.timesteps
133
+ num_inference_steps = len(timesteps)
134
+ else:
135
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
136
+ timesteps = scheduler.timesteps
137
+ return timesteps, num_inference_steps
138
+
139
+
140
+ class FluxPipeline(DiffusionPipeline, FluxLoraLoaderMixin):
141
+ r"""
142
+ The Flux pipeline for text-to-image generation.
143
+
144
+ Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
145
+
146
+ Args:
147
+ transformer ([`FluxTransformer2DModel`]):
148
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
149
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
150
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
151
+ vae ([`AutoencoderKL`]):
152
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
153
+ text_encoder ([`CLIPTextModel`]):
154
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
155
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
156
+ text_encoder_2 ([`T5EncoderModel`]):
157
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
158
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
159
+ tokenizer (`CLIPTokenizer`):
160
+ Tokenizer of class
161
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
162
+ tokenizer_2 (`T5TokenizerFast`):
163
+ Second Tokenizer of class
164
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
165
+ """
166
+
167
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
168
+ _optional_components = []
169
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
170
+
171
+ def __init__(
172
+ self,
173
+ scheduler: FlowMatchEulerDiscreteScheduler,
174
+ vae: AutoencoderKL,
175
+ text_encoder: CLIPTextModel,
176
+ tokenizer: CLIPTokenizer,
177
+ text_encoder_2: T5EncoderModel,
178
+ tokenizer_2: T5TokenizerFast,
179
+ transformer: FluxTransformer2DModel,
180
+ ):
181
+ super().__init__()
182
+
183
+ self.register_modules(
184
+ vae=vae,
185
+ text_encoder=text_encoder,
186
+ text_encoder_2=text_encoder_2,
187
+ tokenizer=tokenizer,
188
+ tokenizer_2=tokenizer_2,
189
+ transformer=transformer,
190
+ scheduler=scheduler,
191
+ )
192
+ self.vae_scale_factor = (
193
+ 2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16
194
+ )
195
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
196
+ self.tokenizer_max_length = (
197
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
198
+ )
199
+ self.default_sample_size = 64
200
+
201
+ def _get_t5_prompt_embeds(
202
+ self,
203
+ prompt: Union[str, List[str]] = None,
204
+ num_images_per_prompt: int = 1,
205
+ max_sequence_length: int = 512,
206
+ device: Optional[torch.device] = None,
207
+ dtype: Optional[torch.dtype] = None,
208
+ ):
209
+ device = device or self._execution_device
210
+ dtype = dtype or self.text_encoder.dtype
211
+
212
+ prompt = [prompt] if isinstance(prompt, str) else prompt
213
+ batch_size = len(prompt)
214
+
215
+ text_inputs = self.tokenizer_2(
216
+ prompt,
217
+ padding="max_length",
218
+ max_length=max_sequence_length,
219
+ truncation=True,
220
+ return_length=False,
221
+ return_overflowing_tokens=False,
222
+ return_tensors="pt",
223
+ )
224
+ text_input_ids = text_inputs.input_ids
225
+ untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
226
+
227
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
228
+ removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
229
+ logger.warning(
230
+ "The following part of your input was truncated because `max_sequence_length` is set to "
231
+ f" {max_sequence_length} tokens: {removed_text}"
232
+ )
233
+
234
+ prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
235
+
236
+ dtype = self.text_encoder_2.dtype
237
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
238
+
239
+ _, seq_len, _ = prompt_embeds.shape
240
+
241
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
242
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
243
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
244
+
245
+ return prompt_embeds
246
+
247
+ def _get_clip_prompt_embeds(
248
+ self,
249
+ prompt: Union[str, List[str]],
250
+ num_images_per_prompt: int = 1,
251
+ device: Optional[torch.device] = None,
252
+ ):
253
+ device = device or self._execution_device
254
+
255
+ prompt = [prompt] if isinstance(prompt, str) else prompt
256
+ batch_size = len(prompt)
257
+
258
+ text_inputs = self.tokenizer(
259
+ prompt,
260
+ padding="max_length",
261
+ max_length=self.tokenizer_max_length,
262
+ truncation=True,
263
+ return_overflowing_tokens=False,
264
+ return_length=False,
265
+ return_tensors="pt",
266
+ )
267
+
268
+ text_input_ids = text_inputs.input_ids
269
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
270
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
271
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
272
+ logger.warning(
273
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
274
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
275
+ )
276
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
277
+
278
+ # Use pooled output of CLIPTextModel
279
+ prompt_embeds = prompt_embeds.pooler_output
280
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
281
+
282
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
283
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
284
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
285
+
286
+ return prompt_embeds
287
+
288
+ def encode_prompt(
289
+ self,
290
+ prompt: Union[str, List[str]],
291
+ prompt_2: Union[str, List[str]],
292
+ device: Optional[torch.device] = None,
293
+ num_images_per_prompt: int = 1,
294
+ prompt_embeds: Optional[torch.FloatTensor] = None,
295
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
296
+ max_sequence_length: int = 512,
297
+ lora_scale: Optional[float] = None,
298
+ ):
299
+ r"""
300
+
301
+ Args:
302
+ prompt (`str` or `List[str]`, *optional*):
303
+ prompt to be encoded
304
+ prompt_2 (`str` or `List[str]`, *optional*):
305
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
306
+ used in all text-encoders
307
+ device: (`torch.device`):
308
+ torch device
309
+ num_images_per_prompt (`int`):
310
+ number of images that should be generated per prompt
311
+ prompt_embeds (`torch.FloatTensor`, *optional*):
312
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
313
+ provided, text embeddings will be generated from `prompt` input argument.
314
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
315
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
316
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
317
+ lora_scale (`float`, *optional*):
318
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
319
+ """
320
+ device = device or self._execution_device
321
+
322
+ # set lora scale so that monkey patched LoRA
323
+ # function of text encoder can correctly access it
324
+ if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
325
+ self._lora_scale = lora_scale
326
+
327
+ # dynamically adjust the LoRA scale
328
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
329
+ scale_lora_layers(self.text_encoder, lora_scale)
330
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
331
+ scale_lora_layers(self.text_encoder_2, lora_scale)
332
+
333
+ prompt = [prompt] if isinstance(prompt, str) else prompt
334
+ if prompt is not None:
335
+ batch_size = len(prompt)
336
+ else:
337
+ batch_size = prompt_embeds.shape[0]
338
+
339
+ if prompt_embeds is None:
340
+ prompt_2 = prompt_2 or prompt
341
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
342
+
343
+ # We only use the pooled prompt output from the CLIPTextModel
344
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
345
+ prompt=prompt,
346
+ device=device,
347
+ num_images_per_prompt=num_images_per_prompt,
348
+ )
349
+ prompt_embeds = self._get_t5_prompt_embeds(
350
+ prompt=prompt_2,
351
+ num_images_per_prompt=num_images_per_prompt,
352
+ max_sequence_length=max_sequence_length,
353
+ device=device,
354
+ )
355
+
356
+ if self.text_encoder is not None:
357
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
358
+ # Retrieve the original scale by scaling back the LoRA layers
359
+ unscale_lora_layers(self.text_encoder, lora_scale)
360
+
361
+ if self.text_encoder_2 is not None:
362
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
363
+ # Retrieve the original scale by scaling back the LoRA layers
364
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
365
+
366
+ dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
367
+ text_ids = torch.zeros(batch_size, prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
368
+ text_ids = text_ids.repeat(num_images_per_prompt, 1, 1)
369
+
370
+ return prompt_embeds, pooled_prompt_embeds, text_ids
371
+
372
+ def check_inputs(
373
+ self,
374
+ prompt,
375
+ prompt_2,
376
+ height,
377
+ width,
378
+ prompt_embeds=None,
379
+ pooled_prompt_embeds=None,
380
+ callback_on_step_end_tensor_inputs=None,
381
+ max_sequence_length=None,
382
+ ):
383
+ if height % 8 != 0 or width % 8 != 0:
384
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
385
+
386
+ if callback_on_step_end_tensor_inputs is not None and not all(
387
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
388
+ ):
389
+ raise ValueError(
390
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
391
+ )
392
+
393
+ if prompt is not None and prompt_embeds is not None:
394
+ raise ValueError(
395
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
396
+ " only forward one of the two."
397
+ )
398
+ elif prompt_2 is not None and prompt_embeds is not None:
399
+ raise ValueError(
400
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
401
+ " only forward one of the two."
402
+ )
403
+ elif prompt is None and prompt_embeds is None:
404
+ raise ValueError(
405
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
406
+ )
407
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
408
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
409
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
410
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
411
+
412
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
413
+ raise ValueError(
414
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
415
+ )
416
+
417
+ if max_sequence_length is not None and max_sequence_length > 512:
418
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
419
+
420
+ @staticmethod
421
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
422
+ latent_image_ids = torch.zeros(height // 2, width // 2, 3)
423
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
424
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
425
+
426
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
427
+
428
+ latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1)
429
+ latent_image_ids = latent_image_ids.reshape(
430
+ batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels
431
+ )
432
+
433
+ return latent_image_ids.to(device=device, dtype=dtype)
434
+
435
+ @staticmethod
436
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
437
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
438
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
439
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
440
+
441
+ return latents
442
+
443
+ @staticmethod
444
+ def _unpack_latents(latents, height, width, vae_scale_factor):
445
+ batch_size, num_patches, channels = latents.shape
446
+
447
+ height = height // vae_scale_factor
448
+ width = width // vae_scale_factor
449
+
450
+ latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
451
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
452
+
453
+ latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2)
454
+
455
+ return latents
456
+
457
+ def prepare_latents(
458
+ self,
459
+ batch_size,
460
+ num_channels_latents,
461
+ height,
462
+ width,
463
+ dtype,
464
+ device,
465
+ generator,
466
+ latents=None,
467
+ ):
468
+ height = 2 * (int(height) // self.vae_scale_factor)
469
+ width = 2 * (int(width) // self.vae_scale_factor)
470
+
471
+ shape = (batch_size, num_channels_latents, height, width)
472
+
473
+ if latents is not None:
474
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
475
+ return latents.to(device=device, dtype=dtype), latent_image_ids
476
+
477
+ if isinstance(generator, list) and len(generator) != batch_size:
478
+ raise ValueError(
479
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
480
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
481
+ )
482
+
483
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
484
+ latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
485
+
486
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
487
+
488
+ return latents, latent_image_ids
489
+
490
+ @property
491
+ def guidance_scale(self):
492
+ return self._guidance_scale
493
+
494
+ @property
495
+ def joint_attention_kwargs(self):
496
+ return self._joint_attention_kwargs
497
+
498
+ @property
499
+ def num_timesteps(self):
500
+ return self._num_timesteps
501
+
502
+ @property
503
+ def interrupt(self):
504
+ return self._interrupt
505
+
506
+ @torch.no_grad()
507
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
508
+ def __call__(
509
+ self,
510
+ prompt: Union[str, List[str]] = None,
511
+ prompt_2: Optional[Union[str, List[str]]] = None,
512
+ height: Optional[int] = None,
513
+ width: Optional[int] = None,
514
+ num_inference_steps: int = 28,
515
+ timesteps: List[int] = None,
516
+ guidance_scale: float = 7.0,
517
+ num_images_per_prompt: Optional[int] = 1,
518
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
519
+ latents: Optional[torch.FloatTensor] = None,
520
+ prompt_embeds: Optional[torch.FloatTensor] = None,
521
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
522
+ output_type: Optional[str] = "pil",
523
+ return_dict: bool = True,
524
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
525
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
526
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
527
+ max_sequence_length: int = 512,
528
+ ):
529
+ r"""
530
+ Function invoked when calling the pipeline for generation.
531
+
532
+ Args:
533
+ prompt (`str` or `List[str]`, *optional*):
534
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
535
+ instead.
536
+ prompt_2 (`str` or `List[str]`, *optional*):
537
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
538
+ will be used instead
539
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
540
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
541
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
542
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
543
+ num_inference_steps (`int`, *optional*, defaults to 50):
544
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
545
+ expense of slower inference.
546
+ timesteps (`List[int]`, *optional*):
547
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
548
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
549
+ passed will be used. Must be in descending order.
550
+ guidance_scale (`float`, *optional*, defaults to 7.0):
551
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
552
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
553
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
554
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
555
+ usually at the expense of lower image quality.
556
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
557
+ The number of images to generate per prompt.
558
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
559
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
560
+ to make generation deterministic.
561
+ latents (`torch.FloatTensor`, *optional*):
562
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
563
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
564
+ tensor will ge generated by sampling using the supplied random `generator`.
565
+ prompt_embeds (`torch.FloatTensor`, *optional*):
566
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
567
+ provided, text embeddings will be generated from `prompt` input argument.
568
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
569
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
570
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
571
+ output_type (`str`, *optional*, defaults to `"pil"`):
572
+ The output format of the generate image. Choose between
573
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
574
+ return_dict (`bool`, *optional*, defaults to `True`):
575
+ Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
576
+ joint_attention_kwargs (`dict`, *optional*):
577
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
578
+ `self.processor` in
579
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
580
+ callback_on_step_end (`Callable`, *optional*):
581
+ A function that calls at the end of each denoising steps during the inference. The function is called
582
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
583
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
584
+ `callback_on_step_end_tensor_inputs`.
585
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
586
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
587
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
588
+ `._callback_tensor_inputs` attribute of your pipeline class.
589
+ max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
590
+
591
+ Examples:
592
+
593
+ Returns:
594
+ [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
595
+ is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
596
+ images.
597
+ """
598
+
599
+ height = height or self.default_sample_size * self.vae_scale_factor
600
+ width = width or self.default_sample_size * self.vae_scale_factor
601
+
602
+ # 1. Check inputs. Raise error if not correct
603
+ self.check_inputs(
604
+ prompt,
605
+ prompt_2,
606
+ height,
607
+ width,
608
+ prompt_embeds=prompt_embeds,
609
+ pooled_prompt_embeds=pooled_prompt_embeds,
610
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
611
+ max_sequence_length=max_sequence_length,
612
+ )
613
+
614
+ self._guidance_scale = guidance_scale
615
+ self._joint_attention_kwargs = joint_attention_kwargs
616
+ self._interrupt = False
617
+
618
+ # 2. Define call parameters
619
+ if prompt is not None and isinstance(prompt, str):
620
+ batch_size = 1
621
+ elif prompt is not None and isinstance(prompt, list):
622
+ batch_size = len(prompt)
623
+ else:
624
+ batch_size = prompt_embeds.shape[0]
625
+
626
+ device = self._execution_device
627
+
628
+ lora_scale = (
629
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
630
+ )
631
+ (
632
+ prompt_embeds,
633
+ pooled_prompt_embeds,
634
+ text_ids,
635
+ ) = self.encode_prompt(
636
+ prompt=prompt,
637
+ prompt_2=prompt_2,
638
+ prompt_embeds=prompt_embeds,
639
+ pooled_prompt_embeds=pooled_prompt_embeds,
640
+ device=device,
641
+ num_images_per_prompt=num_images_per_prompt,
642
+ max_sequence_length=max_sequence_length,
643
+ lora_scale=lora_scale,
644
+ )
645
+
646
+ # 4. Prepare latent variables
647
+ num_channels_latents = self.transformer.config.in_channels // 4
648
+ latents, latent_image_ids = self.prepare_latents(
649
+ batch_size * num_images_per_prompt,
650
+ num_channels_latents,
651
+ height,
652
+ width,
653
+ prompt_embeds.dtype,
654
+ device,
655
+ generator,
656
+ latents,
657
+ )
658
+
659
+ # 5. Prepare timesteps
660
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
661
+ image_seq_len = latents.shape[1]
662
+ mu = calculate_shift(
663
+ image_seq_len,
664
+ self.scheduler.config.base_image_seq_len,
665
+ self.scheduler.config.max_image_seq_len,
666
+ self.scheduler.config.base_shift,
667
+ self.scheduler.config.max_shift,
668
+ )
669
+ timesteps, num_inference_steps = retrieve_timesteps(
670
+ self.scheduler,
671
+ num_inference_steps,
672
+ device,
673
+ timesteps,
674
+ sigmas,
675
+ mu=mu,
676
+ )
677
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
678
+ self._num_timesteps = len(timesteps)
679
+
680
+ # 6. Denoising loop
681
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
682
+ for i, t in enumerate(timesteps):
683
+ if self.interrupt:
684
+ continue
685
+
686
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
687
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
688
+
689
+ # handle guidance
690
+ if self.transformer.config.guidance_embeds:
691
+ guidance = torch.tensor([guidance_scale], device=device)
692
+ guidance = guidance.expand(latents.shape[0])
693
+ else:
694
+ guidance = None
695
+
696
+ noise_pred = self.transformer(
697
+ hidden_states=latents,
698
+ # YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
699
+ timestep=timestep / 1000,
700
+ guidance=guidance,
701
+ pooled_projections=pooled_prompt_embeds,
702
+ encoder_hidden_states=prompt_embeds,
703
+ txt_ids=text_ids,
704
+ img_ids=latent_image_ids,
705
+ joint_attention_kwargs=self.joint_attention_kwargs,
706
+ return_dict=False,
707
+ )[0]
708
+
709
+ # compute the previous noisy sample x_t -> x_t-1
710
+ latents_dtype = latents.dtype
711
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
712
+
713
+ if latents.dtype != latents_dtype:
714
+ if torch.backends.mps.is_available():
715
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
716
+ latents = latents.to(latents_dtype)
717
+
718
+ if callback_on_step_end is not None:
719
+ callback_kwargs = {}
720
+ for k in callback_on_step_end_tensor_inputs:
721
+ callback_kwargs[k] = locals()[k]
722
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
723
+
724
+ latents = callback_outputs.pop("latents", latents)
725
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
726
+
727
+ # call the callback, if provided
728
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
729
+ progress_bar.update()
730
+
731
+ if XLA_AVAILABLE:
732
+ xm.mark_step()
733
+
734
+ if output_type == "latent":
735
+ image = latents
736
+
737
+ else:
738
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
739
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
740
+ image = self.vae.decode(latents, return_dict=False)[0]
741
+ image = self.image_processor.postprocess(image, output_type=output_type)
742
+
743
+ # Offload all models
744
+ self.maybe_free_model_hooks()
745
+
746
+ if not return_dict:
747
+ return (image,)
748
+
749
+ return FluxPipelineOutput(images=image)