diffusers 0.29.2__py3-none-any.whl → 0.30.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (220) hide show
  1. diffusers/__init__.py +94 -3
  2. diffusers/commands/env.py +1 -5
  3. diffusers/configuration_utils.py +4 -9
  4. diffusers/dependency_versions_table.py +2 -2
  5. diffusers/image_processor.py +1 -2
  6. diffusers/loaders/__init__.py +17 -2
  7. diffusers/loaders/ip_adapter.py +10 -7
  8. diffusers/loaders/lora_base.py +752 -0
  9. diffusers/loaders/lora_pipeline.py +2222 -0
  10. diffusers/loaders/peft.py +213 -5
  11. diffusers/loaders/single_file.py +1 -12
  12. diffusers/loaders/single_file_model.py +31 -10
  13. diffusers/loaders/single_file_utils.py +262 -2
  14. diffusers/loaders/textual_inversion.py +1 -6
  15. diffusers/loaders/unet.py +23 -208
  16. diffusers/models/__init__.py +20 -0
  17. diffusers/models/activations.py +22 -0
  18. diffusers/models/attention.py +386 -7
  19. diffusers/models/attention_processor.py +1795 -629
  20. diffusers/models/autoencoders/__init__.py +2 -0
  21. diffusers/models/autoencoders/autoencoder_kl.py +14 -3
  22. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1035 -0
  23. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
  24. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  25. diffusers/models/autoencoders/autoencoder_tiny.py +1 -0
  26. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  27. diffusers/models/autoencoders/vq_model.py +4 -4
  28. diffusers/models/controlnet.py +2 -3
  29. diffusers/models/controlnet_hunyuan.py +401 -0
  30. diffusers/models/controlnet_sd3.py +11 -11
  31. diffusers/models/controlnet_sparsectrl.py +789 -0
  32. diffusers/models/controlnet_xs.py +40 -10
  33. diffusers/models/downsampling.py +68 -0
  34. diffusers/models/embeddings.py +319 -36
  35. diffusers/models/model_loading_utils.py +1 -3
  36. diffusers/models/modeling_flax_utils.py +1 -6
  37. diffusers/models/modeling_utils.py +4 -16
  38. diffusers/models/normalization.py +203 -12
  39. diffusers/models/transformers/__init__.py +6 -0
  40. diffusers/models/transformers/auraflow_transformer_2d.py +527 -0
  41. diffusers/models/transformers/cogvideox_transformer_3d.py +345 -0
  42. diffusers/models/transformers/hunyuan_transformer_2d.py +19 -15
  43. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  44. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  45. diffusers/models/transformers/pixart_transformer_2d.py +102 -1
  46. diffusers/models/transformers/prior_transformer.py +1 -1
  47. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  48. diffusers/models/transformers/transformer_flux.py +455 -0
  49. diffusers/models/transformers/transformer_sd3.py +18 -4
  50. diffusers/models/unets/unet_1d_blocks.py +1 -1
  51. diffusers/models/unets/unet_2d_condition.py +8 -1
  52. diffusers/models/unets/unet_3d_blocks.py +51 -920
  53. diffusers/models/unets/unet_3d_condition.py +4 -1
  54. diffusers/models/unets/unet_i2vgen_xl.py +4 -1
  55. diffusers/models/unets/unet_kandinsky3.py +1 -1
  56. diffusers/models/unets/unet_motion_model.py +1330 -84
  57. diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
  58. diffusers/models/unets/unet_stable_cascade.py +1 -3
  59. diffusers/models/unets/uvit_2d.py +1 -1
  60. diffusers/models/upsampling.py +64 -0
  61. diffusers/models/vq_model.py +8 -4
  62. diffusers/optimization.py +1 -1
  63. diffusers/pipelines/__init__.py +100 -3
  64. diffusers/pipelines/animatediff/__init__.py +4 -0
  65. diffusers/pipelines/animatediff/pipeline_animatediff.py +50 -40
  66. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1076 -0
  67. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +17 -27
  68. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1008 -0
  69. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +51 -38
  70. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  71. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +1 -0
  72. diffusers/pipelines/aura_flow/__init__.py +48 -0
  73. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +591 -0
  74. diffusers/pipelines/auto_pipeline.py +97 -19
  75. diffusers/pipelines/cogvideo/__init__.py +48 -0
  76. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +687 -0
  77. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  78. diffusers/pipelines/controlnet/pipeline_controlnet.py +24 -30
  79. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +31 -30
  80. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +24 -153
  81. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +19 -28
  82. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +18 -28
  83. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +29 -32
  84. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  85. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  86. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1042 -0
  87. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +35 -0
  88. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +10 -6
  89. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +0 -4
  90. diffusers/pipelines/deepfloyd_if/pipeline_if.py +2 -2
  91. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +2 -2
  92. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +2 -2
  93. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +2 -2
  94. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +2 -2
  95. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +2 -2
  96. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -6
  97. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -6
  98. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +6 -6
  99. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
  100. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -10
  101. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +10 -6
  102. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +3 -3
  103. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +1 -1
  104. diffusers/pipelines/flux/__init__.py +47 -0
  105. diffusers/pipelines/flux/pipeline_flux.py +749 -0
  106. diffusers/pipelines/flux/pipeline_output.py +21 -0
  107. diffusers/pipelines/free_init_utils.py +2 -0
  108. diffusers/pipelines/free_noise_utils.py +236 -0
  109. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +2 -2
  110. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +2 -2
  111. diffusers/pipelines/kolors/__init__.py +54 -0
  112. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  113. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1247 -0
  114. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  115. diffusers/pipelines/kolors/text_encoder.py +889 -0
  116. diffusers/pipelines/kolors/tokenizer.py +334 -0
  117. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +30 -29
  118. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +23 -29
  119. diffusers/pipelines/latte/__init__.py +48 -0
  120. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  121. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +4 -4
  122. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +0 -4
  123. diffusers/pipelines/lumina/__init__.py +48 -0
  124. diffusers/pipelines/lumina/pipeline_lumina.py +897 -0
  125. diffusers/pipelines/pag/__init__.py +67 -0
  126. diffusers/pipelines/pag/pag_utils.py +237 -0
  127. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1329 -0
  128. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1612 -0
  129. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +953 -0
  130. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  131. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +872 -0
  132. diffusers/pipelines/pag/pipeline_pag_sd.py +1050 -0
  133. diffusers/pipelines/pag/pipeline_pag_sd_3.py +985 -0
  134. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +862 -0
  135. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1333 -0
  136. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1529 -0
  137. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1753 -0
  138. diffusers/pipelines/pia/pipeline_pia.py +30 -37
  139. diffusers/pipelines/pipeline_flax_utils.py +4 -9
  140. diffusers/pipelines/pipeline_loading_utils.py +0 -3
  141. diffusers/pipelines/pipeline_utils.py +2 -14
  142. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +0 -1
  143. diffusers/pipelines/stable_audio/__init__.py +50 -0
  144. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  145. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +745 -0
  146. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +2 -0
  147. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  148. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +23 -29
  149. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +15 -8
  150. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +30 -29
  151. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +23 -152
  152. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +8 -4
  153. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +11 -11
  154. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +8 -6
  155. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +6 -6
  156. diffusers/pipelines/stable_diffusion_3/__init__.py +2 -0
  157. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +34 -3
  158. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +33 -7
  159. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1201 -0
  160. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +3 -3
  161. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +6 -6
  162. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -5
  163. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +5 -5
  164. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +6 -6
  165. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +0 -4
  166. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +23 -29
  167. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +27 -29
  168. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +3 -3
  169. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +17 -27
  170. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +26 -29
  171. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +17 -145
  172. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +0 -4
  173. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +6 -6
  174. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -28
  175. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +8 -6
  176. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +8 -6
  177. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +6 -4
  178. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +0 -4
  179. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
  180. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  181. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -4
  182. diffusers/schedulers/__init__.py +8 -0
  183. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  184. diffusers/schedulers/scheduling_ddim.py +1 -1
  185. diffusers/schedulers/scheduling_ddim_cogvideox.py +449 -0
  186. diffusers/schedulers/scheduling_ddpm.py +1 -1
  187. diffusers/schedulers/scheduling_ddpm_parallel.py +1 -1
  188. diffusers/schedulers/scheduling_deis_multistep.py +2 -2
  189. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  190. diffusers/schedulers/scheduling_dpmsolver_multistep.py +1 -1
  191. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +1 -1
  192. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +64 -19
  193. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +2 -2
  194. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +63 -39
  195. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +321 -0
  196. diffusers/schedulers/scheduling_ipndm.py +1 -1
  197. diffusers/schedulers/scheduling_unipc_multistep.py +1 -1
  198. diffusers/schedulers/scheduling_utils.py +1 -3
  199. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  200. diffusers/training_utils.py +99 -14
  201. diffusers/utils/__init__.py +2 -2
  202. diffusers/utils/dummy_pt_objects.py +210 -0
  203. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  204. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  205. diffusers/utils/dummy_torch_and_transformers_objects.py +315 -0
  206. diffusers/utils/dynamic_modules_utils.py +1 -11
  207. diffusers/utils/export_utils.py +1 -4
  208. diffusers/utils/hub_utils.py +45 -42
  209. diffusers/utils/import_utils.py +19 -16
  210. diffusers/utils/loading_utils.py +76 -3
  211. diffusers/utils/testing_utils.py +11 -8
  212. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/METADATA +73 -83
  213. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/RECORD +217 -164
  214. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/WHEEL +1 -1
  215. diffusers/loaders/autoencoder.py +0 -146
  216. diffusers/loaders/controlnet.py +0 -136
  217. diffusers/loaders/lora.py +0 -1728
  218. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/LICENSE +0 -0
  219. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/entry_points.txt +0 -0
  220. {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,881 @@
1
+ # Copyright 2024 the Latte Team and The HuggingFace Team.
2
+ # All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import html
17
+ import inspect
18
+ import re
19
+ import urllib.parse as ul
20
+ from dataclasses import dataclass
21
+ from typing import Callable, Dict, List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ from transformers import T5EncoderModel, T5Tokenizer
25
+
26
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
27
+ from ...models import AutoencoderKL, LatteTransformer3DModel
28
+ from ...pipelines.pipeline_utils import DiffusionPipeline
29
+ from ...schedulers import KarrasDiffusionSchedulers
30
+ from ...utils import (
31
+ BACKENDS_MAPPING,
32
+ BaseOutput,
33
+ is_bs4_available,
34
+ is_ftfy_available,
35
+ logging,
36
+ replace_example_docstring,
37
+ )
38
+ from ...utils.torch_utils import is_compiled_module, randn_tensor
39
+ from ...video_processor import VideoProcessor
40
+
41
+
42
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
43
+
44
+ if is_bs4_available():
45
+ from bs4 import BeautifulSoup
46
+
47
+ if is_ftfy_available():
48
+ import ftfy
49
+
50
+
51
+ EXAMPLE_DOC_STRING = """
52
+ Examples:
53
+ ```py
54
+ >>> import torch
55
+ >>> from diffusers import LattePipeline
56
+ >>> from diffusers.utils import export_to_gif
57
+
58
+ >>> # You can replace the checkpoint id with "maxin-cn/Latte-1" too.
59
+ >>> pipe = LattePipeline.from_pretrained("maxin-cn/Latte-1", torch_dtype=torch.float16).to("cuda")
60
+ >>> # Enable memory optimizations.
61
+ >>> pipe.enable_model_cpu_offload()
62
+
63
+ >>> prompt = "A small cactus with a happy face in the Sahara desert."
64
+ >>> videos = pipe(prompt).frames[0]
65
+ >>> export_to_gif(videos, "latte.gif")
66
+ ```
67
+ """
68
+
69
+
70
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
71
+ def retrieve_timesteps(
72
+ scheduler,
73
+ num_inference_steps: Optional[int] = None,
74
+ device: Optional[Union[str, torch.device]] = None,
75
+ timesteps: Optional[List[int]] = None,
76
+ sigmas: Optional[List[float]] = None,
77
+ **kwargs,
78
+ ):
79
+ """
80
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
81
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
82
+
83
+ Args:
84
+ scheduler (`SchedulerMixin`):
85
+ The scheduler to get timesteps from.
86
+ num_inference_steps (`int`):
87
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
88
+ must be `None`.
89
+ device (`str` or `torch.device`, *optional*):
90
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
91
+ timesteps (`List[int]`, *optional*):
92
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
93
+ `num_inference_steps` and `sigmas` must be `None`.
94
+ sigmas (`List[float]`, *optional*):
95
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
96
+ `num_inference_steps` and `timesteps` must be `None`.
97
+
98
+ Returns:
99
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
100
+ second element is the number of inference steps.
101
+ """
102
+ if timesteps is not None and sigmas is not None:
103
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
104
+ if timesteps is not None:
105
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
106
+ if not accepts_timesteps:
107
+ raise ValueError(
108
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
109
+ f" timestep schedules. Please check whether you are using the correct scheduler."
110
+ )
111
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
112
+ timesteps = scheduler.timesteps
113
+ num_inference_steps = len(timesteps)
114
+ elif sigmas is not None:
115
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
116
+ if not accept_sigmas:
117
+ raise ValueError(
118
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
119
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
120
+ )
121
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
122
+ timesteps = scheduler.timesteps
123
+ num_inference_steps = len(timesteps)
124
+ else:
125
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
126
+ timesteps = scheduler.timesteps
127
+ return timesteps, num_inference_steps
128
+
129
+
130
+ @dataclass
131
+ class LattePipelineOutput(BaseOutput):
132
+ frames: torch.Tensor
133
+
134
+
135
+ class LattePipeline(DiffusionPipeline):
136
+ r"""
137
+ Pipeline for text-to-video generation using Latte.
138
+
139
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
140
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
141
+
142
+ Args:
143
+ vae ([`AutoencoderKL`]):
144
+ Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
145
+ text_encoder ([`T5EncoderModel`]):
146
+ Frozen text-encoder. Latte uses
147
+ [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
148
+ [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
149
+ tokenizer (`T5Tokenizer`):
150
+ Tokenizer of class
151
+ [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
152
+ transformer ([`LatteTransformer3DModel`]):
153
+ A text conditioned `LatteTransformer3DModel` to denoise the encoded video latents.
154
+ scheduler ([`SchedulerMixin`]):
155
+ A scheduler to be used in combination with `transformer` to denoise the encoded video latents.
156
+ """
157
+
158
+ bad_punct_regex = re.compile(r"[#®•©™&@·º½¾¿¡§~\)\(\]\[\}\{\|\\/\\*]{1,}")
159
+
160
+ _optional_components = ["tokenizer", "text_encoder"]
161
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
162
+
163
+ _callback_tensor_inputs = [
164
+ "latents",
165
+ "prompt_embeds",
166
+ "negative_prompt_embeds",
167
+ ]
168
+
169
+ def __init__(
170
+ self,
171
+ tokenizer: T5Tokenizer,
172
+ text_encoder: T5EncoderModel,
173
+ vae: AutoencoderKL,
174
+ transformer: LatteTransformer3DModel,
175
+ scheduler: KarrasDiffusionSchedulers,
176
+ ):
177
+ super().__init__()
178
+
179
+ self.register_modules(
180
+ tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
181
+ )
182
+
183
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
184
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor)
185
+
186
+ # Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/utils.py
187
+ def mask_text_embeddings(self, emb, mask):
188
+ if emb.shape[0] == 1:
189
+ keep_index = mask.sum().item()
190
+ return emb[:, :, :keep_index, :], keep_index # 1, 120, 4096 -> 1 7 4096
191
+ else:
192
+ masked_feature = emb * mask[:, None, :, None] # 1 120 4096
193
+ return masked_feature, emb.shape[2]
194
+
195
+ # Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt
196
+ def encode_prompt(
197
+ self,
198
+ prompt: Union[str, List[str]],
199
+ do_classifier_free_guidance: bool = True,
200
+ negative_prompt: str = "",
201
+ num_images_per_prompt: int = 1,
202
+ device: Optional[torch.device] = None,
203
+ prompt_embeds: Optional[torch.FloatTensor] = None,
204
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
205
+ clean_caption: bool = False,
206
+ mask_feature: bool = True,
207
+ dtype=None,
208
+ ):
209
+ r"""
210
+ Encodes the prompt into text encoder hidden states.
211
+
212
+ Args:
213
+ prompt (`str` or `List[str]`, *optional*):
214
+ prompt to be encoded
215
+ negative_prompt (`str` or `List[str]`, *optional*):
216
+ The prompt not to guide the video generation. If not defined, one has to pass `negative_prompt_embeds`
217
+ instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
218
+ Latte, this should be "".
219
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
220
+ whether to use classifier free guidance or not
221
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
222
+ number of video that should be generated per prompt
223
+ device: (`torch.device`, *optional*):
224
+ torch device to place the resulting embeddings on
225
+ prompt_embeds (`torch.FloatTensor`, *optional*):
226
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
227
+ provided, text embeddings will be generated from `prompt` input argument.
228
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
229
+ Pre-generated negative text embeddings. For Latte, it's should be the embeddings of the "" string.
230
+ clean_caption (bool, defaults to `False`):
231
+ If `True`, the function will preprocess and clean the provided caption before encoding.
232
+ mask_feature: (bool, defaults to `True`):
233
+ If `True`, the function will mask the text embeddings.
234
+ """
235
+ embeds_initially_provided = prompt_embeds is not None and negative_prompt_embeds is not None
236
+
237
+ if device is None:
238
+ device = self._execution_device
239
+
240
+ if prompt is not None and isinstance(prompt, str):
241
+ batch_size = 1
242
+ elif prompt is not None and isinstance(prompt, list):
243
+ batch_size = len(prompt)
244
+ else:
245
+ batch_size = prompt_embeds.shape[0]
246
+
247
+ max_length = 120
248
+ if prompt_embeds is None:
249
+ prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
250
+ text_inputs = self.tokenizer(
251
+ prompt,
252
+ padding="max_length",
253
+ max_length=max_length,
254
+ truncation=True,
255
+ return_attention_mask=True,
256
+ add_special_tokens=True,
257
+ return_tensors="pt",
258
+ )
259
+ text_input_ids = text_inputs.input_ids
260
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
261
+
262
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
263
+ text_input_ids, untruncated_ids
264
+ ):
265
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
266
+ logger.warning(
267
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
268
+ f" {max_length} tokens: {removed_text}"
269
+ )
270
+
271
+ attention_mask = text_inputs.attention_mask.to(device)
272
+ prompt_embeds_attention_mask = attention_mask
273
+
274
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
275
+ prompt_embeds = prompt_embeds[0]
276
+ else:
277
+ prompt_embeds_attention_mask = torch.ones_like(prompt_embeds)
278
+
279
+ if self.text_encoder is not None:
280
+ dtype = self.text_encoder.dtype
281
+ elif self.transformer is not None:
282
+ dtype = self.transformer.dtype
283
+ else:
284
+ dtype = None
285
+
286
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
287
+
288
+ bs_embed, seq_len, _ = prompt_embeds.shape
289
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
290
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
291
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
292
+ prompt_embeds_attention_mask = prompt_embeds_attention_mask.view(bs_embed, -1)
293
+ prompt_embeds_attention_mask = prompt_embeds_attention_mask.repeat(num_images_per_prompt, 1)
294
+
295
+ # get unconditional embeddings for classifier free guidance
296
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
297
+ uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt
298
+ uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption)
299
+ max_length = prompt_embeds.shape[1]
300
+ uncond_input = self.tokenizer(
301
+ uncond_tokens,
302
+ padding="max_length",
303
+ max_length=max_length,
304
+ truncation=True,
305
+ return_attention_mask=True,
306
+ add_special_tokens=True,
307
+ return_tensors="pt",
308
+ )
309
+ attention_mask = uncond_input.attention_mask.to(device)
310
+
311
+ negative_prompt_embeds = self.text_encoder(
312
+ uncond_input.input_ids.to(device),
313
+ attention_mask=attention_mask,
314
+ )
315
+ negative_prompt_embeds = negative_prompt_embeds[0]
316
+
317
+ if do_classifier_free_guidance:
318
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
319
+ seq_len = negative_prompt_embeds.shape[1]
320
+
321
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
322
+
323
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
324
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
325
+
326
+ # For classifier free guidance, we need to do two forward passes.
327
+ # Here we concatenate the unconditional and text embeddings into a single batch
328
+ # to avoid doing two forward passes
329
+ else:
330
+ negative_prompt_embeds = None
331
+
332
+ # Perform additional masking.
333
+ if mask_feature and not embeds_initially_provided:
334
+ prompt_embeds = prompt_embeds.unsqueeze(1)
335
+ masked_prompt_embeds, keep_indices = self.mask_text_embeddings(prompt_embeds, prompt_embeds_attention_mask)
336
+ masked_prompt_embeds = masked_prompt_embeds.squeeze(1)
337
+ masked_negative_prompt_embeds = (
338
+ negative_prompt_embeds[:, :keep_indices, :] if negative_prompt_embeds is not None else None
339
+ )
340
+
341
+ return masked_prompt_embeds, masked_negative_prompt_embeds
342
+
343
+ return prompt_embeds, negative_prompt_embeds
344
+
345
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
346
+ def prepare_extra_step_kwargs(self, generator, eta):
347
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
348
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
349
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
350
+ # and should be between [0, 1]
351
+
352
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
353
+ extra_step_kwargs = {}
354
+ if accepts_eta:
355
+ extra_step_kwargs["eta"] = eta
356
+
357
+ # check if the scheduler accepts generator
358
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
359
+ if accepts_generator:
360
+ extra_step_kwargs["generator"] = generator
361
+ return extra_step_kwargs
362
+
363
+ def check_inputs(
364
+ self,
365
+ prompt,
366
+ height,
367
+ width,
368
+ negative_prompt,
369
+ callback_on_step_end_tensor_inputs,
370
+ prompt_embeds=None,
371
+ negative_prompt_embeds=None,
372
+ ):
373
+ if height % 8 != 0 or width % 8 != 0:
374
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
375
+
376
+ if callback_on_step_end_tensor_inputs is not None and not all(
377
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
378
+ ):
379
+ raise ValueError(
380
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
381
+ )
382
+ if prompt is not None and prompt_embeds is not None:
383
+ raise ValueError(
384
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
385
+ " only forward one of the two."
386
+ )
387
+ elif prompt is None and prompt_embeds is None:
388
+ raise ValueError(
389
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
390
+ )
391
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
392
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
393
+
394
+ if prompt is not None and negative_prompt_embeds is not None:
395
+ raise ValueError(
396
+ f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
397
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
398
+ )
399
+
400
+ if negative_prompt is not None and negative_prompt_embeds is not None:
401
+ raise ValueError(
402
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
403
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
404
+ )
405
+
406
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
407
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
408
+ raise ValueError(
409
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
410
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
411
+ f" {negative_prompt_embeds.shape}."
412
+ )
413
+
414
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
415
+ def _text_preprocessing(self, text, clean_caption=False):
416
+ if clean_caption and not is_bs4_available():
417
+ logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
418
+ logger.warning("Setting `clean_caption` to False...")
419
+ clean_caption = False
420
+
421
+ if clean_caption and not is_ftfy_available():
422
+ logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
423
+ logger.warning("Setting `clean_caption` to False...")
424
+ clean_caption = False
425
+
426
+ if not isinstance(text, (tuple, list)):
427
+ text = [text]
428
+
429
+ def process(text: str):
430
+ if clean_caption:
431
+ text = self._clean_caption(text)
432
+ text = self._clean_caption(text)
433
+ else:
434
+ text = text.lower().strip()
435
+ return text
436
+
437
+ return [process(t) for t in text]
438
+
439
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
440
+ def _clean_caption(self, caption):
441
+ caption = str(caption)
442
+ caption = ul.unquote_plus(caption)
443
+ caption = caption.strip().lower()
444
+ caption = re.sub("<person>", "person", caption)
445
+ # urls:
446
+ caption = re.sub(
447
+ r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
448
+ "",
449
+ caption,
450
+ ) # regex for urls
451
+ caption = re.sub(
452
+ r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
453
+ "",
454
+ caption,
455
+ ) # regex for urls
456
+ # html:
457
+ caption = BeautifulSoup(caption, features="html.parser").text
458
+
459
+ # @<nickname>
460
+ caption = re.sub(r"@[\w\d]+\b", "", caption)
461
+
462
+ # 31C0—31EF CJK Strokes
463
+ # 31F0—31FF Katakana Phonetic Extensions
464
+ # 3200—32FF Enclosed CJK Letters and Months
465
+ # 3300—33FF CJK Compatibility
466
+ # 3400—4DBF CJK Unified Ideographs Extension A
467
+ # 4DC0—4DFF Yijing Hexagram Symbols
468
+ # 4E00—9FFF CJK Unified Ideographs
469
+ caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
470
+ caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
471
+ caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
472
+ caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
473
+ caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
474
+ caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
475
+ caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
476
+ #######################################################
477
+
478
+ # все виды тире / all types of dash --> "-"
479
+ caption = re.sub(
480
+ r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
481
+ "-",
482
+ caption,
483
+ )
484
+
485
+ # кавычки к одному стандарту
486
+ caption = re.sub(r"[`´«»“”¨]", '"', caption)
487
+ caption = re.sub(r"[‘’]", "'", caption)
488
+
489
+ # &quot;
490
+ caption = re.sub(r"&quot;?", "", caption)
491
+ # &amp
492
+ caption = re.sub(r"&amp", "", caption)
493
+
494
+ # ip adresses:
495
+ caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
496
+
497
+ # article ids:
498
+ caption = re.sub(r"\d:\d\d\s+$", "", caption)
499
+
500
+ # \n
501
+ caption = re.sub(r"\\n", " ", caption)
502
+
503
+ # "#123"
504
+ caption = re.sub(r"#\d{1,3}\b", "", caption)
505
+ # "#12345.."
506
+ caption = re.sub(r"#\d{5,}\b", "", caption)
507
+ # "123456.."
508
+ caption = re.sub(r"\b\d{6,}\b", "", caption)
509
+ # filenames:
510
+ caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
511
+
512
+ #
513
+ caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
514
+ caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
515
+
516
+ caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
517
+ caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
518
+
519
+ # this-is-my-cute-cat / this_is_my_cute_cat
520
+ regex2 = re.compile(r"(?:\-|\_)")
521
+ if len(re.findall(regex2, caption)) > 3:
522
+ caption = re.sub(regex2, " ", caption)
523
+
524
+ caption = ftfy.fix_text(caption)
525
+ caption = html.unescape(html.unescape(caption))
526
+
527
+ caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
528
+ caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
529
+ caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
530
+
531
+ caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
532
+ caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
533
+ caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
534
+ caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
535
+ caption = re.sub(r"\bpage\s+\d+\b", "", caption)
536
+
537
+ caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
538
+
539
+ caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
540
+
541
+ caption = re.sub(r"\b\s+\:\s+", r": ", caption)
542
+ caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
543
+ caption = re.sub(r"\s+", " ", caption)
544
+
545
+ caption.strip()
546
+
547
+ caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
548
+ caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
549
+ caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
550
+ caption = re.sub(r"^\.\S+$", "", caption)
551
+
552
+ return caption.strip()
553
+
554
+ # Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_synth.TextToVideoSDPipeline.prepare_latents
555
+ def prepare_latents(
556
+ self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
557
+ ):
558
+ shape = (
559
+ batch_size,
560
+ num_channels_latents,
561
+ num_frames,
562
+ height // self.vae_scale_factor,
563
+ width // self.vae_scale_factor,
564
+ )
565
+ if isinstance(generator, list) and len(generator) != batch_size:
566
+ raise ValueError(
567
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
568
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
569
+ )
570
+
571
+ if latents is None:
572
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
573
+ else:
574
+ latents = latents.to(device)
575
+
576
+ # scale the initial noise by the standard deviation required by the scheduler
577
+ latents = latents * self.scheduler.init_noise_sigma
578
+ return latents
579
+
580
+ @property
581
+ def guidance_scale(self):
582
+ return self._guidance_scale
583
+
584
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
585
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
586
+ # corresponds to doing no classifier free guidance.
587
+ @property
588
+ def do_classifier_free_guidance(self):
589
+ return self._guidance_scale > 1
590
+
591
+ @property
592
+ def num_timesteps(self):
593
+ return self._num_timesteps
594
+
595
+ @property
596
+ def interrupt(self):
597
+ return self._interrupt
598
+
599
+ @torch.no_grad()
600
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
601
+ def __call__(
602
+ self,
603
+ prompt: Union[str, List[str]] = None,
604
+ negative_prompt: str = "",
605
+ num_inference_steps: int = 50,
606
+ timesteps: Optional[List[int]] = None,
607
+ guidance_scale: float = 7.5,
608
+ num_images_per_prompt: int = 1,
609
+ video_length: int = 16,
610
+ height: int = 512,
611
+ width: int = 512,
612
+ eta: float = 0.0,
613
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
614
+ latents: Optional[torch.FloatTensor] = None,
615
+ prompt_embeds: Optional[torch.FloatTensor] = None,
616
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
617
+ output_type: str = "pil",
618
+ return_dict: bool = True,
619
+ callback_on_step_end: Optional[
620
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
621
+ ] = None,
622
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
623
+ clean_caption: bool = True,
624
+ mask_feature: bool = True,
625
+ enable_temporal_attentions: bool = True,
626
+ decode_chunk_size: Optional[int] = None,
627
+ ) -> Union[LattePipelineOutput, Tuple]:
628
+ """
629
+ Function invoked when calling the pipeline for generation.
630
+
631
+ Args:
632
+ prompt (`str` or `List[str]`, *optional*):
633
+ The prompt or prompts to guide the video generation. If not defined, one has to pass `prompt_embeds`.
634
+ instead.
635
+ negative_prompt (`str` or `List[str]`, *optional*):
636
+ The prompt or prompts not to guide the video generation. If not defined, one has to pass
637
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
638
+ less than `1`).
639
+ num_inference_steps (`int`, *optional*, defaults to 100):
640
+ The number of denoising steps. More denoising steps usually lead to a higher quality video at the
641
+ expense of slower inference.
642
+ timesteps (`List[int]`, *optional*):
643
+ Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
644
+ timesteps are used. Must be in descending order.
645
+ guidance_scale (`float`, *optional*, defaults to 7.0):
646
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
647
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
648
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
649
+ 1`. Higher guidance scale encourages to generate videos that are closely linked to the text `prompt`,
650
+ usually at the expense of lower video quality.
651
+ video_length (`int`, *optional*, defaults to 16):
652
+ The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
653
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
654
+ The number of videos to generate per prompt.
655
+ height (`int`, *optional*, defaults to self.unet.config.sample_size):
656
+ The height in pixels of the generated video.
657
+ width (`int`, *optional*, defaults to self.unet.config.sample_size):
658
+ The width in pixels of the generated video.
659
+ eta (`float`, *optional*, defaults to 0.0):
660
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
661
+ [`schedulers.DDIMScheduler`], will be ignored for others.
662
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
663
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
664
+ to make generation deterministic.
665
+ latents (`torch.FloatTensor`, *optional*):
666
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for video
667
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
668
+ tensor will ge generated by sampling using the supplied random `generator`.
669
+ prompt_embeds (`torch.FloatTensor`, *optional*):
670
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
671
+ provided, text embeddings will be generated from `prompt` input argument.
672
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
673
+ Pre-generated negative text embeddings. For Latte this negative prompt should be "". If not provided,
674
+ negative_prompt_embeds will be generated from `negative_prompt` input argument.
675
+ output_type (`str`, *optional*, defaults to `"pil"`):
676
+ The output format of the generate video. Choose between
677
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
678
+ return_dict (`bool`, *optional*, defaults to `True`):
679
+ Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
680
+ callback_on_step_end (`Callable[[int, int, Dict], None]`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
681
+ A callback function or a list of callback functions to be called at the end of each denoising step.
682
+ callback_on_step_end_tensor_inputs (`List[str]`, *optional*):
683
+ A list of tensor inputs that should be passed to the callback function. If not defined, all tensor
684
+ inputs will be passed.
685
+ clean_caption (`bool`, *optional*, defaults to `True`):
686
+ Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
687
+ be installed. If the dependencies are not installed, the embeddings will be created from the raw
688
+ prompt.
689
+ mask_feature (`bool` defaults to `True`): If set to `True`, the text embeddings will be masked.
690
+ enable_temporal_attentions (`bool`, *optional*, defaults to `True`): Whether to enable temporal attentions
691
+ decode_chunk_size (`int`, *optional*):
692
+ The number of frames to decode at a time. Higher chunk size leads to better temporal consistency at the
693
+ expense of more memory usage. By default, the decoder decodes all frames at once for maximal quality.
694
+ For lower memory usage, reduce `decode_chunk_size`.
695
+
696
+ Examples:
697
+
698
+ Returns:
699
+ [`~pipelines.latte.pipeline_latte.LattePipelineOutput`] or `tuple`:
700
+ If `return_dict` is `True`, [`~pipelines.latte.pipeline_latte.LattePipelineOutput`] is returned,
701
+ otherwise a `tuple` is returned where the first element is a list with the generated images
702
+ """
703
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
704
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
705
+
706
+ # 0. Default
707
+ decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else video_length
708
+
709
+ # 1. Check inputs. Raise error if not correct
710
+ height = height or self.transformer.config.sample_size * self.vae_scale_factor
711
+ width = width or self.transformer.config.sample_size * self.vae_scale_factor
712
+ self.check_inputs(
713
+ prompt,
714
+ height,
715
+ width,
716
+ negative_prompt,
717
+ callback_on_step_end_tensor_inputs,
718
+ prompt_embeds,
719
+ negative_prompt_embeds,
720
+ )
721
+ self._guidance_scale = guidance_scale
722
+ self._interrupt = False
723
+
724
+ # 2. Default height and width to transformer
725
+ if prompt is not None and isinstance(prompt, str):
726
+ batch_size = 1
727
+ elif prompt is not None and isinstance(prompt, list):
728
+ batch_size = len(prompt)
729
+ else:
730
+ batch_size = prompt_embeds.shape[0]
731
+
732
+ device = self._execution_device
733
+
734
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
735
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
736
+ # corresponds to doing no classifier free guidance.
737
+ do_classifier_free_guidance = guidance_scale > 1.0
738
+
739
+ # 3. Encode input prompt
740
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
741
+ prompt,
742
+ do_classifier_free_guidance,
743
+ negative_prompt=negative_prompt,
744
+ num_images_per_prompt=num_images_per_prompt,
745
+ device=device,
746
+ prompt_embeds=prompt_embeds,
747
+ negative_prompt_embeds=negative_prompt_embeds,
748
+ clean_caption=clean_caption,
749
+ mask_feature=mask_feature,
750
+ )
751
+ if do_classifier_free_guidance:
752
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
753
+
754
+ # 4. Prepare timesteps
755
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
756
+ self._num_timesteps = len(timesteps)
757
+
758
+ # 5. Prepare latents.
759
+ latent_channels = self.transformer.config.in_channels
760
+ latents = self.prepare_latents(
761
+ batch_size * num_images_per_prompt,
762
+ latent_channels,
763
+ video_length,
764
+ height,
765
+ width,
766
+ prompt_embeds.dtype,
767
+ device,
768
+ generator,
769
+ latents,
770
+ )
771
+
772
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
773
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
774
+
775
+ # 7. Denoising loop
776
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
777
+
778
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
779
+ for i, t in enumerate(timesteps):
780
+ if self.interrupt:
781
+ continue
782
+
783
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
784
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
785
+
786
+ current_timestep = t
787
+ if not torch.is_tensor(current_timestep):
788
+ # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
789
+ # This would be a good case for the `match` statement (Python 3.10+)
790
+ is_mps = latent_model_input.device.type == "mps"
791
+ if isinstance(current_timestep, float):
792
+ dtype = torch.float32 if is_mps else torch.float64
793
+ else:
794
+ dtype = torch.int32 if is_mps else torch.int64
795
+ current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device)
796
+ elif len(current_timestep.shape) == 0:
797
+ current_timestep = current_timestep[None].to(latent_model_input.device)
798
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
799
+ current_timestep = current_timestep.expand(latent_model_input.shape[0])
800
+
801
+ # predict noise model_output
802
+ noise_pred = self.transformer(
803
+ latent_model_input,
804
+ encoder_hidden_states=prompt_embeds,
805
+ timestep=current_timestep,
806
+ enable_temporal_attentions=enable_temporal_attentions,
807
+ return_dict=False,
808
+ )[0]
809
+
810
+ # perform guidance
811
+ if do_classifier_free_guidance:
812
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
813
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
814
+
815
+ # use learned sigma?
816
+ if not (
817
+ hasattr(self.scheduler.config, "variance_type")
818
+ and self.scheduler.config.variance_type in ["learned", "learned_range"]
819
+ ):
820
+ noise_pred = noise_pred.chunk(2, dim=1)[0]
821
+
822
+ # compute previous video: x_t -> x_t-1
823
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
824
+
825
+ # call the callback, if provided
826
+ if callback_on_step_end is not None:
827
+ callback_kwargs = {}
828
+ for k in callback_on_step_end_tensor_inputs:
829
+ callback_kwargs[k] = locals()[k]
830
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
831
+
832
+ latents = callback_outputs.pop("latents", latents)
833
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
834
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
835
+
836
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
837
+ progress_bar.update()
838
+
839
+ if not output_type == "latents":
840
+ video = self.decode_latents(latents, video_length, decode_chunk_size=14)
841
+ video = self.video_processor.postprocess_video(video=video, output_type=output_type)
842
+ else:
843
+ video = latents
844
+
845
+ # Offload all models
846
+ self.maybe_free_model_hooks()
847
+
848
+ if not return_dict:
849
+ return (video,)
850
+
851
+ return LattePipelineOutput(frames=video)
852
+
853
+ # Similar to diffusers.pipelines.stable_video_diffusion.pipeline_stable_video_diffusion.decode_latents
854
+ def decode_latents(self, latents: torch.Tensor, video_length: int, decode_chunk_size: int = 14):
855
+ # [batch, channels, frames, height, width] -> [batch*frames, channels, height, width]
856
+ latents = latents.permute(0, 2, 1, 3, 4).flatten(0, 1)
857
+
858
+ latents = 1 / self.vae.config.scaling_factor * latents
859
+
860
+ forward_vae_fn = self.vae._orig_mod.forward if is_compiled_module(self.vae) else self.vae.forward
861
+ accepts_num_frames = "num_frames" in set(inspect.signature(forward_vae_fn).parameters.keys())
862
+
863
+ # decode decode_chunk_size frames at a time to avoid OOM
864
+ frames = []
865
+ for i in range(0, latents.shape[0], decode_chunk_size):
866
+ num_frames_in = latents[i : i + decode_chunk_size].shape[0]
867
+ decode_kwargs = {}
868
+ if accepts_num_frames:
869
+ # we only pass num_frames_in if it's expected
870
+ decode_kwargs["num_frames"] = num_frames_in
871
+
872
+ frame = self.vae.decode(latents[i : i + decode_chunk_size], **decode_kwargs).sample
873
+ frames.append(frame)
874
+ frames = torch.cat(frames, dim=0)
875
+
876
+ # [batch*frames, channels, height, width] -> [batch, channels, frames, height, width]
877
+ frames = frames.reshape(-1, video_length, *frames.shape[1:]).permute(0, 2, 1, 3, 4)
878
+
879
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
880
+ frames = frames.float()
881
+ return frames