diffusers 0.29.2__py3-none-any.whl → 0.30.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- diffusers/__init__.py +94 -3
- diffusers/commands/env.py +1 -5
- diffusers/configuration_utils.py +4 -9
- diffusers/dependency_versions_table.py +2 -2
- diffusers/image_processor.py +1 -2
- diffusers/loaders/__init__.py +17 -2
- diffusers/loaders/ip_adapter.py +10 -7
- diffusers/loaders/lora_base.py +752 -0
- diffusers/loaders/lora_pipeline.py +2222 -0
- diffusers/loaders/peft.py +213 -5
- diffusers/loaders/single_file.py +1 -12
- diffusers/loaders/single_file_model.py +31 -10
- diffusers/loaders/single_file_utils.py +262 -2
- diffusers/loaders/textual_inversion.py +1 -6
- diffusers/loaders/unet.py +23 -208
- diffusers/models/__init__.py +20 -0
- diffusers/models/activations.py +22 -0
- diffusers/models/attention.py +386 -7
- diffusers/models/attention_processor.py +1795 -629
- diffusers/models/autoencoders/__init__.py +2 -0
- diffusers/models/autoencoders/autoencoder_kl.py +14 -3
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1035 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +1 -0
- diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
- diffusers/models/autoencoders/vq_model.py +4 -4
- diffusers/models/controlnet.py +2 -3
- diffusers/models/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnet_sd3.py +11 -11
- diffusers/models/controlnet_sparsectrl.py +789 -0
- diffusers/models/controlnet_xs.py +40 -10
- diffusers/models/downsampling.py +68 -0
- diffusers/models/embeddings.py +319 -36
- diffusers/models/model_loading_utils.py +1 -3
- diffusers/models/modeling_flax_utils.py +1 -6
- diffusers/models/modeling_utils.py +4 -16
- diffusers/models/normalization.py +203 -12
- diffusers/models/transformers/__init__.py +6 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +527 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +345 -0
- diffusers/models/transformers/hunyuan_transformer_2d.py +19 -15
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +102 -1
- diffusers/models/transformers/prior_transformer.py +1 -1
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/transformer_flux.py +455 -0
- diffusers/models/transformers/transformer_sd3.py +18 -4
- diffusers/models/unets/unet_1d_blocks.py +1 -1
- diffusers/models/unets/unet_2d_condition.py +8 -1
- diffusers/models/unets/unet_3d_blocks.py +51 -920
- diffusers/models/unets/unet_3d_condition.py +4 -1
- diffusers/models/unets/unet_i2vgen_xl.py +4 -1
- diffusers/models/unets/unet_kandinsky3.py +1 -1
- diffusers/models/unets/unet_motion_model.py +1330 -84
- diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
- diffusers/models/unets/unet_stable_cascade.py +1 -3
- diffusers/models/unets/uvit_2d.py +1 -1
- diffusers/models/upsampling.py +64 -0
- diffusers/models/vq_model.py +8 -4
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +100 -3
- diffusers/pipelines/animatediff/__init__.py +4 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +50 -40
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1076 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +17 -27
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1008 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +51 -38
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +1 -0
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +591 -0
- diffusers/pipelines/auto_pipeline.py +97 -19
- diffusers/pipelines/cogvideo/__init__.py +48 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +687 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
- diffusers/pipelines/controlnet/pipeline_controlnet.py +24 -30
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +31 -30
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +24 -153
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +19 -28
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +18 -28
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +29 -32
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1042 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +35 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +10 -6
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +0 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +2 -2
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +11 -6
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +11 -6
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +6 -6
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +6 -6
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +10 -10
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +10 -6
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +3 -3
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +1 -1
- diffusers/pipelines/flux/__init__.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +749 -0
- diffusers/pipelines/flux/pipeline_output.py +21 -0
- diffusers/pipelines/free_init_utils.py +2 -0
- diffusers/pipelines/free_noise_utils.py +236 -0
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +2 -2
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +2 -2
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1247 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +334 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +30 -29
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +23 -29
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +4 -4
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +0 -4
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +897 -0
- diffusers/pipelines/pag/__init__.py +67 -0
- diffusers/pipelines/pag/pag_utils.py +237 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1329 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1612 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +953 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +872 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1050 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +985 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +862 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1333 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1529 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1753 -0
- diffusers/pipelines/pia/pipeline_pia.py +30 -37
- diffusers/pipelines/pipeline_flax_utils.py +4 -9
- diffusers/pipelines/pipeline_loading_utils.py +0 -3
- diffusers/pipelines/pipeline_utils.py +2 -14
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +0 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +745 -0
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +2 -0
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +23 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +15 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +23 -152
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +8 -4
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +11 -11
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +8 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +6 -6
- diffusers/pipelines/stable_diffusion_3/__init__.py +2 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +34 -3
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +33 -7
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1201 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +3 -3
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +6 -6
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -5
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +5 -5
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +6 -6
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +0 -4
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +23 -29
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +27 -29
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +3 -3
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +17 -27
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +26 -29
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +17 -145
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +0 -4
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +6 -6
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +18 -28
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +8 -6
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +8 -6
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +6 -4
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +0 -4
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +3 -3
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +5 -4
- diffusers/schedulers/__init__.py +8 -0
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +1 -1
- diffusers/schedulers/scheduling_ddim_cogvideox.py +449 -0
- diffusers/schedulers/scheduling_ddpm.py +1 -1
- diffusers/schedulers/scheduling_ddpm_parallel.py +1 -1
- diffusers/schedulers/scheduling_deis_multistep.py +2 -2
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +1 -1
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +1 -1
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +64 -19
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +2 -2
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +63 -39
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +321 -0
- diffusers/schedulers/scheduling_ipndm.py +1 -1
- diffusers/schedulers/scheduling_unipc_multistep.py +1 -1
- diffusers/schedulers/scheduling_utils.py +1 -3
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/training_utils.py +99 -14
- diffusers/utils/__init__.py +2 -2
- diffusers/utils/dummy_pt_objects.py +210 -0
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +315 -0
- diffusers/utils/dynamic_modules_utils.py +1 -11
- diffusers/utils/export_utils.py +1 -4
- diffusers/utils/hub_utils.py +45 -42
- diffusers/utils/import_utils.py +19 -16
- diffusers/utils/loading_utils.py +76 -3
- diffusers/utils/testing_utils.py +11 -8
- {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/METADATA +73 -83
- {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/RECORD +217 -164
- {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1728
- {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/LICENSE +0 -0
- {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/entry_points.txt +0 -0
- {diffusers-0.29.2.dist-info → diffusers-0.30.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,334 @@
|
|
1
|
+
# Copyright 2024 ChatGLM3-6B Model Team, Kwai-Kolors Team and The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import json
|
16
|
+
import os
|
17
|
+
import re
|
18
|
+
from typing import Dict, List, Optional, Union
|
19
|
+
|
20
|
+
from sentencepiece import SentencePieceProcessor
|
21
|
+
from transformers import PreTrainedTokenizer
|
22
|
+
from transformers.tokenization_utils_base import BatchEncoding, EncodedInput
|
23
|
+
from transformers.utils import PaddingStrategy
|
24
|
+
|
25
|
+
|
26
|
+
class SPTokenizer:
|
27
|
+
def __init__(self, model_path: str):
|
28
|
+
# reload tokenizer
|
29
|
+
assert os.path.isfile(model_path), model_path
|
30
|
+
self.sp_model = SentencePieceProcessor(model_file=model_path)
|
31
|
+
|
32
|
+
# BOS / EOS token IDs
|
33
|
+
self.n_words: int = self.sp_model.vocab_size()
|
34
|
+
self.bos_id: int = self.sp_model.bos_id()
|
35
|
+
self.eos_id: int = self.sp_model.eos_id()
|
36
|
+
self.pad_id: int = self.sp_model.unk_id()
|
37
|
+
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
|
38
|
+
|
39
|
+
role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
|
40
|
+
special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
|
41
|
+
self.special_tokens = {}
|
42
|
+
self.index_special_tokens = {}
|
43
|
+
for token in special_tokens:
|
44
|
+
self.special_tokens[token] = self.n_words
|
45
|
+
self.index_special_tokens[self.n_words] = token
|
46
|
+
self.n_words += 1
|
47
|
+
self.role_special_token_expression = "|".join([re.escape(token) for token in role_special_tokens])
|
48
|
+
|
49
|
+
def tokenize(self, s: str, encode_special_tokens=False):
|
50
|
+
if encode_special_tokens:
|
51
|
+
last_index = 0
|
52
|
+
t = []
|
53
|
+
for match in re.finditer(self.role_special_token_expression, s):
|
54
|
+
if last_index < match.start():
|
55
|
+
t.extend(self.sp_model.EncodeAsPieces(s[last_index : match.start()]))
|
56
|
+
t.append(s[match.start() : match.end()])
|
57
|
+
last_index = match.end()
|
58
|
+
if last_index < len(s):
|
59
|
+
t.extend(self.sp_model.EncodeAsPieces(s[last_index:]))
|
60
|
+
return t
|
61
|
+
else:
|
62
|
+
return self.sp_model.EncodeAsPieces(s)
|
63
|
+
|
64
|
+
def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
|
65
|
+
assert isinstance(s, str)
|
66
|
+
t = self.sp_model.encode(s)
|
67
|
+
if bos:
|
68
|
+
t = [self.bos_id] + t
|
69
|
+
if eos:
|
70
|
+
t = t + [self.eos_id]
|
71
|
+
return t
|
72
|
+
|
73
|
+
def decode(self, t: List[int]) -> str:
|
74
|
+
text, buffer = "", []
|
75
|
+
for token in t:
|
76
|
+
if token in self.index_special_tokens:
|
77
|
+
if buffer:
|
78
|
+
text += self.sp_model.decode(buffer)
|
79
|
+
buffer = []
|
80
|
+
text += self.index_special_tokens[token]
|
81
|
+
else:
|
82
|
+
buffer.append(token)
|
83
|
+
if buffer:
|
84
|
+
text += self.sp_model.decode(buffer)
|
85
|
+
return text
|
86
|
+
|
87
|
+
def decode_tokens(self, tokens: List[str]) -> str:
|
88
|
+
text = self.sp_model.DecodePieces(tokens)
|
89
|
+
return text
|
90
|
+
|
91
|
+
def convert_token_to_id(self, token):
|
92
|
+
"""Converts a token (str) in an id using the vocab."""
|
93
|
+
if token in self.special_tokens:
|
94
|
+
return self.special_tokens[token]
|
95
|
+
return self.sp_model.PieceToId(token)
|
96
|
+
|
97
|
+
def convert_id_to_token(self, index):
|
98
|
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
99
|
+
if index in self.index_special_tokens:
|
100
|
+
return self.index_special_tokens[index]
|
101
|
+
if index in [self.eos_id, self.bos_id, self.pad_id] or index < 0:
|
102
|
+
return ""
|
103
|
+
return self.sp_model.IdToPiece(index)
|
104
|
+
|
105
|
+
|
106
|
+
class ChatGLMTokenizer(PreTrainedTokenizer):
|
107
|
+
vocab_files_names = {"vocab_file": "tokenizer.model"}
|
108
|
+
|
109
|
+
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
110
|
+
|
111
|
+
def __init__(
|
112
|
+
self,
|
113
|
+
vocab_file,
|
114
|
+
padding_side="left",
|
115
|
+
clean_up_tokenization_spaces=False,
|
116
|
+
encode_special_tokens=False,
|
117
|
+
**kwargs,
|
118
|
+
):
|
119
|
+
self.name = "GLMTokenizer"
|
120
|
+
|
121
|
+
self.vocab_file = vocab_file
|
122
|
+
self.tokenizer = SPTokenizer(vocab_file)
|
123
|
+
self.special_tokens = {
|
124
|
+
"<bos>": self.tokenizer.bos_id,
|
125
|
+
"<eos>": self.tokenizer.eos_id,
|
126
|
+
"<pad>": self.tokenizer.pad_id,
|
127
|
+
}
|
128
|
+
self.encode_special_tokens = encode_special_tokens
|
129
|
+
super().__init__(
|
130
|
+
padding_side=padding_side,
|
131
|
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
132
|
+
encode_special_tokens=encode_special_tokens,
|
133
|
+
**kwargs,
|
134
|
+
)
|
135
|
+
|
136
|
+
def get_command(self, token):
|
137
|
+
if token in self.special_tokens:
|
138
|
+
return self.special_tokens[token]
|
139
|
+
assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}"
|
140
|
+
return self.tokenizer.special_tokens[token]
|
141
|
+
|
142
|
+
@property
|
143
|
+
def unk_token(self) -> str:
|
144
|
+
return "<unk>"
|
145
|
+
|
146
|
+
@unk_token.setter
|
147
|
+
def unk_token(self, value: str):
|
148
|
+
self._unk_token = value
|
149
|
+
|
150
|
+
@property
|
151
|
+
def pad_token(self) -> str:
|
152
|
+
return "<unk>"
|
153
|
+
|
154
|
+
@pad_token.setter
|
155
|
+
def pad_token(self, value: str):
|
156
|
+
self._pad_token = value
|
157
|
+
|
158
|
+
@property
|
159
|
+
def pad_token_id(self):
|
160
|
+
return self.get_command("<pad>")
|
161
|
+
|
162
|
+
@property
|
163
|
+
def eos_token(self) -> str:
|
164
|
+
return "</s>"
|
165
|
+
|
166
|
+
@eos_token.setter
|
167
|
+
def eos_token(self, value: str):
|
168
|
+
self._eos_token = value
|
169
|
+
|
170
|
+
@property
|
171
|
+
def eos_token_id(self):
|
172
|
+
return self.get_command("<eos>")
|
173
|
+
|
174
|
+
@property
|
175
|
+
def vocab_size(self):
|
176
|
+
return self.tokenizer.n_words
|
177
|
+
|
178
|
+
def get_vocab(self):
|
179
|
+
"""Returns vocab as a dict"""
|
180
|
+
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
181
|
+
vocab.update(self.added_tokens_encoder)
|
182
|
+
return vocab
|
183
|
+
|
184
|
+
def _tokenize(self, text, **kwargs):
|
185
|
+
return self.tokenizer.tokenize(text, encode_special_tokens=self.encode_special_tokens)
|
186
|
+
|
187
|
+
def _convert_token_to_id(self, token):
|
188
|
+
"""Converts a token (str) in an id using the vocab."""
|
189
|
+
return self.tokenizer.convert_token_to_id(token)
|
190
|
+
|
191
|
+
def _convert_id_to_token(self, index):
|
192
|
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
193
|
+
return self.tokenizer.convert_id_to_token(index)
|
194
|
+
|
195
|
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
196
|
+
return self.tokenizer.decode_tokens(tokens)
|
197
|
+
|
198
|
+
def save_vocabulary(self, save_directory, filename_prefix=None):
|
199
|
+
"""
|
200
|
+
Save the vocabulary and special tokens file to a directory.
|
201
|
+
|
202
|
+
Args:
|
203
|
+
save_directory (`str`):
|
204
|
+
The directory in which to save the vocabulary.
|
205
|
+
filename_prefix (`str`, *optional*):
|
206
|
+
An optional prefix to add to the named of the saved files.
|
207
|
+
|
208
|
+
Returns:
|
209
|
+
`Tuple(str)`: Paths to the files saved.
|
210
|
+
"""
|
211
|
+
if os.path.isdir(save_directory):
|
212
|
+
vocab_file = os.path.join(save_directory, self.vocab_files_names["vocab_file"])
|
213
|
+
else:
|
214
|
+
vocab_file = save_directory
|
215
|
+
|
216
|
+
with open(self.vocab_file, "rb") as fin:
|
217
|
+
proto_str = fin.read()
|
218
|
+
|
219
|
+
with open(vocab_file, "wb") as writer:
|
220
|
+
writer.write(proto_str)
|
221
|
+
|
222
|
+
return (vocab_file,)
|
223
|
+
|
224
|
+
def get_prefix_tokens(self):
|
225
|
+
prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")]
|
226
|
+
return prefix_tokens
|
227
|
+
|
228
|
+
def build_single_message(self, role, metadata, message):
|
229
|
+
assert role in ["system", "user", "assistant", "observation"], role
|
230
|
+
role_tokens = [self.get_command(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n")
|
231
|
+
message_tokens = self.tokenizer.encode(message)
|
232
|
+
tokens = role_tokens + message_tokens
|
233
|
+
return tokens
|
234
|
+
|
235
|
+
def build_chat_input(self, query, history=None, role="user"):
|
236
|
+
if history is None:
|
237
|
+
history = []
|
238
|
+
input_ids = []
|
239
|
+
for item in history:
|
240
|
+
content = item["content"]
|
241
|
+
if item["role"] == "system" and "tools" in item:
|
242
|
+
content = content + "\n" + json.dumps(item["tools"], indent=4, ensure_ascii=False)
|
243
|
+
input_ids.extend(self.build_single_message(item["role"], item.get("metadata", ""), content))
|
244
|
+
input_ids.extend(self.build_single_message(role, "", query))
|
245
|
+
input_ids.extend([self.get_command("<|assistant|>")])
|
246
|
+
return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
|
247
|
+
|
248
|
+
def build_inputs_with_special_tokens(
|
249
|
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
250
|
+
) -> List[int]:
|
251
|
+
"""
|
252
|
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
253
|
+
adding special tokens. A BERT sequence has the following format:
|
254
|
+
|
255
|
+
- single sequence: `[CLS] X [SEP]`
|
256
|
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
257
|
+
|
258
|
+
Args:
|
259
|
+
token_ids_0 (`List[int]`):
|
260
|
+
List of IDs to which the special tokens will be added.
|
261
|
+
token_ids_1 (`List[int]`, *optional*):
|
262
|
+
Optional second list of IDs for sequence pairs.
|
263
|
+
|
264
|
+
Returns:
|
265
|
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
266
|
+
"""
|
267
|
+
prefix_tokens = self.get_prefix_tokens()
|
268
|
+
token_ids_0 = prefix_tokens + token_ids_0
|
269
|
+
if token_ids_1 is not None:
|
270
|
+
token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")]
|
271
|
+
return token_ids_0
|
272
|
+
|
273
|
+
def _pad(
|
274
|
+
self,
|
275
|
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
276
|
+
max_length: Optional[int] = None,
|
277
|
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
278
|
+
pad_to_multiple_of: Optional[int] = None,
|
279
|
+
return_attention_mask: Optional[bool] = None,
|
280
|
+
) -> dict:
|
281
|
+
"""
|
282
|
+
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
283
|
+
|
284
|
+
Args:
|
285
|
+
encoded_inputs:
|
286
|
+
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
287
|
+
max_length: maximum length of the returned list and optionally padding length (see below).
|
288
|
+
Will truncate by taking into account the special tokens.
|
289
|
+
padding_strategy: PaddingStrategy to use for padding.
|
290
|
+
|
291
|
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
292
|
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
293
|
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
294
|
+
The tokenizer padding sides are defined in self.padding_side:
|
295
|
+
|
296
|
+
- 'left': pads on the left of the sequences
|
297
|
+
- 'right': pads on the right of the sequences
|
298
|
+
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
299
|
+
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
300
|
+
`>= 7.5` (Volta).
|
301
|
+
return_attention_mask:
|
302
|
+
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
303
|
+
"""
|
304
|
+
# Load from model defaults
|
305
|
+
assert self.padding_side == "left"
|
306
|
+
|
307
|
+
required_input = encoded_inputs[self.model_input_names[0]]
|
308
|
+
seq_length = len(required_input)
|
309
|
+
|
310
|
+
if padding_strategy == PaddingStrategy.LONGEST:
|
311
|
+
max_length = len(required_input)
|
312
|
+
|
313
|
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
314
|
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
315
|
+
|
316
|
+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
317
|
+
|
318
|
+
# Initialize attention mask if not present.
|
319
|
+
if "attention_mask" not in encoded_inputs:
|
320
|
+
encoded_inputs["attention_mask"] = [1] * seq_length
|
321
|
+
|
322
|
+
if "position_ids" not in encoded_inputs:
|
323
|
+
encoded_inputs["position_ids"] = list(range(seq_length))
|
324
|
+
|
325
|
+
if needs_to_be_padded:
|
326
|
+
difference = max_length - len(required_input)
|
327
|
+
|
328
|
+
if "attention_mask" in encoded_inputs:
|
329
|
+
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
|
330
|
+
if "position_ids" in encoded_inputs:
|
331
|
+
encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
|
332
|
+
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
333
|
+
|
334
|
+
return encoded_inputs
|
@@ -23,7 +23,7 @@ import torch
|
|
23
23
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
24
24
|
|
25
25
|
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
26
|
-
from ...loaders import FromSingleFileMixin, IPAdapterMixin,
|
26
|
+
from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
27
27
|
from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
28
28
|
from ...models.lora import adjust_lora_scale_text_encoder
|
29
29
|
from ...schedulers import LCMScheduler
|
@@ -148,7 +148,7 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
148
148
|
StableDiffusionMixin,
|
149
149
|
TextualInversionLoaderMixin,
|
150
150
|
IPAdapterMixin,
|
151
|
-
|
151
|
+
StableDiffusionLoraLoaderMixin,
|
152
152
|
FromSingleFileMixin,
|
153
153
|
):
|
154
154
|
r"""
|
@@ -159,8 +159,8 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
159
159
|
|
160
160
|
The pipeline also inherits the following loading methods:
|
161
161
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
162
|
-
- [`~loaders.
|
163
|
-
- [`~loaders.
|
162
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
163
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
164
164
|
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
165
165
|
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
166
166
|
|
@@ -273,7 +273,7 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
273
273
|
"""
|
274
274
|
# set lora scale so that monkey patched LoRA
|
275
275
|
# function of text encoder can correctly access it
|
276
|
-
if lora_scale is not None and isinstance(self,
|
276
|
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
277
277
|
self._lora_scale = lora_scale
|
278
278
|
|
279
279
|
# dynamically adjust the LoRA scale
|
@@ -406,7 +406,7 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
406
406
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
407
407
|
|
408
408
|
if self.text_encoder is not None:
|
409
|
-
if isinstance(self,
|
409
|
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
410
410
|
# Retrieve the original scale by scaling back the LoRA layers
|
411
411
|
unscale_lora_layers(self.text_encoder, lora_scale)
|
412
412
|
|
@@ -441,6 +441,9 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
441
441
|
def prepare_ip_adapter_image_embeds(
|
442
442
|
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
443
443
|
):
|
444
|
+
image_embeds = []
|
445
|
+
if do_classifier_free_guidance:
|
446
|
+
negative_image_embeds = []
|
444
447
|
if ip_adapter_image_embeds is None:
|
445
448
|
if not isinstance(ip_adapter_image, list):
|
446
449
|
ip_adapter_image = [ip_adapter_image]
|
@@ -450,7 +453,6 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
450
453
|
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
451
454
|
)
|
452
455
|
|
453
|
-
image_embeds = []
|
454
456
|
for single_ip_adapter_image, image_proj_layer in zip(
|
455
457
|
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
456
458
|
):
|
@@ -458,36 +460,28 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
458
460
|
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
459
461
|
single_ip_adapter_image, device, 1, output_hidden_state
|
460
462
|
)
|
461
|
-
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
462
|
-
single_negative_image_embeds = torch.stack(
|
463
|
-
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
464
|
-
)
|
465
463
|
|
464
|
+
image_embeds.append(single_image_embeds[None, :])
|
466
465
|
if do_classifier_free_guidance:
|
467
|
-
|
468
|
-
single_image_embeds = single_image_embeds.to(device)
|
469
|
-
|
470
|
-
image_embeds.append(single_image_embeds)
|
466
|
+
negative_image_embeds.append(single_negative_image_embeds[None, :])
|
471
467
|
else:
|
472
|
-
repeat_dims = [1]
|
473
|
-
image_embeds = []
|
474
468
|
for single_image_embeds in ip_adapter_image_embeds:
|
475
469
|
if do_classifier_free_guidance:
|
476
470
|
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
477
|
-
|
478
|
-
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
479
|
-
)
|
480
|
-
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
481
|
-
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
482
|
-
)
|
483
|
-
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
484
|
-
else:
|
485
|
-
single_image_embeds = single_image_embeds.repeat(
|
486
|
-
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
487
|
-
)
|
471
|
+
negative_image_embeds.append(single_negative_image_embeds)
|
488
472
|
image_embeds.append(single_image_embeds)
|
489
473
|
|
490
|
-
|
474
|
+
ip_adapter_image_embeds = []
|
475
|
+
for i, single_image_embeds in enumerate(image_embeds):
|
476
|
+
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
477
|
+
if do_classifier_free_guidance:
|
478
|
+
single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
|
479
|
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
|
480
|
+
|
481
|
+
single_image_embeds = single_image_embeds.to(device=device)
|
482
|
+
ip_adapter_image_embeds.append(single_image_embeds)
|
483
|
+
|
484
|
+
return ip_adapter_image_embeds
|
491
485
|
|
492
486
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
493
487
|
def run_safety_checker(self, image, device, dtype):
|
@@ -526,6 +520,13 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
526
520
|
)
|
527
521
|
|
528
522
|
elif isinstance(generator, list):
|
523
|
+
if image.shape[0] < batch_size and batch_size % image.shape[0] == 0:
|
524
|
+
image = torch.cat([image] * (batch_size // image.shape[0]), dim=0)
|
525
|
+
elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0:
|
526
|
+
raise ValueError(
|
527
|
+
f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} "
|
528
|
+
)
|
529
|
+
|
529
530
|
init_latents = [
|
530
531
|
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
531
532
|
for i in range(batch_size)
|
@@ -22,7 +22,7 @@ import torch
|
|
22
22
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
23
23
|
|
24
24
|
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
25
|
-
from ...loaders import FromSingleFileMixin, IPAdapterMixin,
|
25
|
+
from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
26
26
|
from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
27
27
|
from ...models.lora import adjust_lora_scale_text_encoder
|
28
28
|
from ...schedulers import LCMScheduler
|
@@ -126,7 +126,7 @@ class LatentConsistencyModelPipeline(
|
|
126
126
|
StableDiffusionMixin,
|
127
127
|
TextualInversionLoaderMixin,
|
128
128
|
IPAdapterMixin,
|
129
|
-
|
129
|
+
StableDiffusionLoraLoaderMixin,
|
130
130
|
FromSingleFileMixin,
|
131
131
|
):
|
132
132
|
r"""
|
@@ -137,8 +137,8 @@ class LatentConsistencyModelPipeline(
|
|
137
137
|
|
138
138
|
The pipeline also inherits the following loading methods:
|
139
139
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
140
|
-
- [`~loaders.
|
141
|
-
- [`~loaders.
|
140
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
141
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
142
142
|
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
143
143
|
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
144
144
|
|
@@ -257,7 +257,7 @@ class LatentConsistencyModelPipeline(
|
|
257
257
|
"""
|
258
258
|
# set lora scale so that monkey patched LoRA
|
259
259
|
# function of text encoder can correctly access it
|
260
|
-
if lora_scale is not None and isinstance(self,
|
260
|
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
261
261
|
self._lora_scale = lora_scale
|
262
262
|
|
263
263
|
# dynamically adjust the LoRA scale
|
@@ -390,7 +390,7 @@ class LatentConsistencyModelPipeline(
|
|
390
390
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
391
391
|
|
392
392
|
if self.text_encoder is not None:
|
393
|
-
if isinstance(self,
|
393
|
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
394
394
|
# Retrieve the original scale by scaling back the LoRA layers
|
395
395
|
unscale_lora_layers(self.text_encoder, lora_scale)
|
396
396
|
|
@@ -425,6 +425,9 @@ class LatentConsistencyModelPipeline(
|
|
425
425
|
def prepare_ip_adapter_image_embeds(
|
426
426
|
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
427
427
|
):
|
428
|
+
image_embeds = []
|
429
|
+
if do_classifier_free_guidance:
|
430
|
+
negative_image_embeds = []
|
428
431
|
if ip_adapter_image_embeds is None:
|
429
432
|
if not isinstance(ip_adapter_image, list):
|
430
433
|
ip_adapter_image = [ip_adapter_image]
|
@@ -434,7 +437,6 @@ class LatentConsistencyModelPipeline(
|
|
434
437
|
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
435
438
|
)
|
436
439
|
|
437
|
-
image_embeds = []
|
438
440
|
for single_ip_adapter_image, image_proj_layer in zip(
|
439
441
|
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
440
442
|
):
|
@@ -442,36 +444,28 @@ class LatentConsistencyModelPipeline(
|
|
442
444
|
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
443
445
|
single_ip_adapter_image, device, 1, output_hidden_state
|
444
446
|
)
|
445
|
-
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
446
|
-
single_negative_image_embeds = torch.stack(
|
447
|
-
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
448
|
-
)
|
449
447
|
|
448
|
+
image_embeds.append(single_image_embeds[None, :])
|
450
449
|
if do_classifier_free_guidance:
|
451
|
-
|
452
|
-
single_image_embeds = single_image_embeds.to(device)
|
453
|
-
|
454
|
-
image_embeds.append(single_image_embeds)
|
450
|
+
negative_image_embeds.append(single_negative_image_embeds[None, :])
|
455
451
|
else:
|
456
|
-
repeat_dims = [1]
|
457
|
-
image_embeds = []
|
458
452
|
for single_image_embeds in ip_adapter_image_embeds:
|
459
453
|
if do_classifier_free_guidance:
|
460
454
|
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
461
|
-
|
462
|
-
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
463
|
-
)
|
464
|
-
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
465
|
-
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
466
|
-
)
|
467
|
-
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
468
|
-
else:
|
469
|
-
single_image_embeds = single_image_embeds.repeat(
|
470
|
-
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
471
|
-
)
|
455
|
+
negative_image_embeds.append(single_negative_image_embeds)
|
472
456
|
image_embeds.append(single_image_embeds)
|
473
457
|
|
474
|
-
|
458
|
+
ip_adapter_image_embeds = []
|
459
|
+
for i, single_image_embeds in enumerate(image_embeds):
|
460
|
+
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
461
|
+
if do_classifier_free_guidance:
|
462
|
+
single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
|
463
|
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
|
464
|
+
|
465
|
+
single_image_embeds = single_image_embeds.to(device=device)
|
466
|
+
ip_adapter_image_embeds.append(single_image_embeds)
|
467
|
+
|
468
|
+
return ip_adapter_image_embeds
|
475
469
|
|
476
470
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
477
471
|
def run_safety_checker(self, image, device, dtype):
|
@@ -0,0 +1,48 @@
|
|
1
|
+
from typing import TYPE_CHECKING
|
2
|
+
|
3
|
+
from ...utils import (
|
4
|
+
DIFFUSERS_SLOW_IMPORT,
|
5
|
+
OptionalDependencyNotAvailable,
|
6
|
+
_LazyModule,
|
7
|
+
get_objects_from_module,
|
8
|
+
is_torch_available,
|
9
|
+
is_transformers_available,
|
10
|
+
)
|
11
|
+
|
12
|
+
|
13
|
+
_dummy_objects = {}
|
14
|
+
_import_structure = {}
|
15
|
+
|
16
|
+
|
17
|
+
try:
|
18
|
+
if not (is_transformers_available() and is_torch_available()):
|
19
|
+
raise OptionalDependencyNotAvailable()
|
20
|
+
except OptionalDependencyNotAvailable:
|
21
|
+
from ...utils import dummy_torch_and_transformers_objects # noqa F403
|
22
|
+
|
23
|
+
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
|
24
|
+
else:
|
25
|
+
_import_structure["pipeline_latte"] = ["LattePipeline"]
|
26
|
+
|
27
|
+
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
28
|
+
try:
|
29
|
+
if not (is_transformers_available() and is_torch_available()):
|
30
|
+
raise OptionalDependencyNotAvailable()
|
31
|
+
|
32
|
+
except OptionalDependencyNotAvailable:
|
33
|
+
from ...utils.dummy_torch_and_transformers_objects import *
|
34
|
+
else:
|
35
|
+
from .pipeline_latte import LattePipeline
|
36
|
+
|
37
|
+
else:
|
38
|
+
import sys
|
39
|
+
|
40
|
+
sys.modules[__name__] = _LazyModule(
|
41
|
+
__name__,
|
42
|
+
globals()["__file__"],
|
43
|
+
_import_structure,
|
44
|
+
module_spec=__spec__,
|
45
|
+
)
|
46
|
+
|
47
|
+
for name, value in _dummy_objects.items():
|
48
|
+
setattr(sys.modules[__name__], name, value)
|