diffusers 0.26.3__py3-none-any.whl → 0.27.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +20 -1
- diffusers/commands/__init__.py +1 -1
- diffusers/commands/diffusers_cli.py +1 -1
- diffusers/commands/env.py +1 -1
- diffusers/commands/fp16_safetensors.py +1 -1
- diffusers/configuration_utils.py +7 -3
- diffusers/dependency_versions_check.py +1 -1
- diffusers/dependency_versions_table.py +2 -2
- diffusers/experimental/rl/value_guided_sampling.py +1 -1
- diffusers/image_processor.py +110 -4
- diffusers/loaders/autoencoder.py +7 -8
- diffusers/loaders/controlnet.py +17 -8
- diffusers/loaders/ip_adapter.py +86 -23
- diffusers/loaders/lora.py +105 -310
- diffusers/loaders/lora_conversion_utils.py +1 -1
- diffusers/loaders/peft.py +1 -1
- diffusers/loaders/single_file.py +51 -12
- diffusers/loaders/single_file_utils.py +274 -49
- diffusers/loaders/textual_inversion.py +23 -4
- diffusers/loaders/unet.py +195 -41
- diffusers/loaders/utils.py +1 -1
- diffusers/models/__init__.py +3 -1
- diffusers/models/activations.py +9 -9
- diffusers/models/attention.py +26 -36
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +171 -114
- diffusers/models/autoencoders/autoencoder_asym_kl.py +1 -1
- diffusers/models/autoencoders/autoencoder_kl.py +3 -1
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
- diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
- diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
- diffusers/models/autoencoders/vae.py +1 -1
- diffusers/models/controlnet.py +1 -1
- diffusers/models/controlnet_flax.py +1 -1
- diffusers/models/downsampling.py +8 -12
- diffusers/models/dual_transformer_2d.py +1 -1
- diffusers/models/embeddings.py +3 -4
- diffusers/models/embeddings_flax.py +1 -1
- diffusers/models/lora.py +33 -10
- diffusers/models/modeling_flax_pytorch_utils.py +1 -1
- diffusers/models/modeling_flax_utils.py +1 -1
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +4 -6
- diffusers/models/normalization.py +1 -1
- diffusers/models/resnet.py +31 -58
- diffusers/models/resnet_flax.py +1 -1
- diffusers/models/t5_film_transformer.py +1 -1
- diffusers/models/transformer_2d.py +1 -1
- diffusers/models/transformer_temporal.py +1 -1
- diffusers/models/transformers/dual_transformer_2d.py +1 -1
- diffusers/models/transformers/t5_film_transformer.py +1 -1
- diffusers/models/transformers/transformer_2d.py +29 -31
- diffusers/models/transformers/transformer_temporal.py +1 -1
- diffusers/models/unet_1d.py +1 -1
- diffusers/models/unet_1d_blocks.py +1 -1
- diffusers/models/unet_2d.py +1 -1
- diffusers/models/unet_2d_blocks.py +1 -1
- diffusers/models/unet_2d_condition.py +1 -1
- diffusers/models/unets/__init__.py +1 -0
- diffusers/models/unets/unet_1d.py +1 -1
- diffusers/models/unets/unet_1d_blocks.py +1 -1
- diffusers/models/unets/unet_2d.py +4 -4
- diffusers/models/unets/unet_2d_blocks.py +238 -98
- diffusers/models/unets/unet_2d_blocks_flax.py +1 -1
- diffusers/models/unets/unet_2d_condition.py +420 -323
- diffusers/models/unets/unet_2d_condition_flax.py +21 -12
- diffusers/models/unets/unet_3d_blocks.py +50 -40
- diffusers/models/unets/unet_3d_condition.py +47 -8
- diffusers/models/unets/unet_i2vgen_xl.py +75 -30
- diffusers/models/unets/unet_kandinsky3.py +1 -1
- diffusers/models/unets/unet_motion_model.py +48 -8
- diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
- diffusers/models/unets/unet_stable_cascade.py +610 -0
- diffusers/models/unets/uvit_2d.py +1 -1
- diffusers/models/upsampling.py +10 -16
- diffusers/models/vae_flax.py +1 -1
- diffusers/models/vq_model.py +1 -1
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +26 -0
- diffusers/pipelines/amused/pipeline_amused.py +1 -1
- diffusers/pipelines/amused/pipeline_amused_img2img.py +1 -1
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +1 -1
- diffusers/pipelines/animatediff/pipeline_animatediff.py +162 -417
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +165 -137
- diffusers/pipelines/animatediff/pipeline_output.py +7 -6
- diffusers/pipelines/audioldm/pipeline_audioldm.py +3 -19
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +3 -3
- diffusers/pipelines/auto_pipeline.py +7 -16
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +2 -2
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
- diffusers/pipelines/controlnet/pipeline_controlnet.py +90 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +98 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +92 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +145 -70
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +126 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +108 -96
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -1
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -1
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +4 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +4 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +5 -5
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +4 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +5 -5
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +5 -5
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +10 -120
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +10 -91
- diffusers/pipelines/deprecated/audio_diffusion/mel.py +1 -1
- diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py +1 -1
- diffusers/pipelines/deprecated/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py +1 -1
- diffusers/pipelines/deprecated/pndm/pipeline_pndm.py +1 -1
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +1 -1
- diffusers/pipelines/deprecated/score_sde_ve/pipeline_score_sde_ve.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/continuous_encoder.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/midi_utils.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/notes_encoder.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -1
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +5 -4
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +5 -4
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +7 -22
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +5 -39
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +5 -5
- diffusers/pipelines/deprecated/stochastic_karras_ve/pipeline_stochastic_karras_ve.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +31 -22
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -2
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +1 -1
- diffusers/pipelines/dit/pipeline_dit.py +1 -1
- diffusers/pipelines/free_init_utils.py +184 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +22 -104
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +2 -2
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +2 -2
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +104 -93
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +112 -74
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
- diffusers/pipelines/ledits_pp/__init__.py +55 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +1505 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +1797 -0
- diffusers/pipelines/ledits_pp/pipeline_output.py +43 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +3 -19
- diffusers/pipelines/onnx_utils.py +1 -1
- diffusers/pipelines/paint_by_example/image_encoder.py +1 -1
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +3 -3
- diffusers/pipelines/pia/pipeline_pia.py +168 -327
- diffusers/pipelines/pipeline_flax_utils.py +1 -1
- diffusers/pipelines/pipeline_loading_utils.py +508 -0
- diffusers/pipelines/pipeline_utils.py +188 -534
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +56 -10
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +3 -3
- diffusers/pipelines/shap_e/camera.py +1 -1
- diffusers/pipelines/shap_e/pipeline_shap_e.py +1 -1
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +1 -1
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_cascade/__init__.py +50 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +482 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +311 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +638 -0
- diffusers/pipelines/stable_diffusion/clip_image_project_model.py +1 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +4 -1
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +90 -146
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +5 -4
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +4 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -119
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -119
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +13 -59
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +3 -31
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +5 -33
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -21
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +7 -21
- diffusers/pipelines/stable_diffusion/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion/safety_checker_flax.py +1 -1
- diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py +1 -1
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +5 -21
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +9 -38
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -34
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +6 -35
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +7 -6
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +4 -124
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +282 -80
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +94 -46
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +3 -3
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +6 -22
- diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +96 -148
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +98 -154
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +98 -153
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +25 -87
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +89 -80
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +5 -49
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +80 -88
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +8 -6
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +15 -86
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +20 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +5 -5
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +3 -19
- diffusers/pipelines/unclip/pipeline_unclip.py +1 -1
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -1
- diffusers/pipelines/unclip/text_proj.py +1 -1
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +35 -35
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +4 -21
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py +2 -2
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +4 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +8 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +2 -2
- diffusers/schedulers/__init__.py +7 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +1 -1
- diffusers/schedulers/deprecated/scheduling_sde_vp.py +1 -1
- diffusers/schedulers/scheduling_consistency_models.py +42 -19
- diffusers/schedulers/scheduling_ddim.py +2 -4
- diffusers/schedulers/scheduling_ddim_flax.py +13 -5
- diffusers/schedulers/scheduling_ddim_inverse.py +2 -4
- diffusers/schedulers/scheduling_ddim_parallel.py +2 -4
- diffusers/schedulers/scheduling_ddpm.py +2 -4
- diffusers/schedulers/scheduling_ddpm_flax.py +1 -1
- diffusers/schedulers/scheduling_ddpm_parallel.py +2 -4
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +1 -1
- diffusers/schedulers/scheduling_deis_multistep.py +46 -19
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +107 -21
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +1 -1
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +9 -7
- diffusers/schedulers/scheduling_dpmsolver_sde.py +35 -35
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +49 -18
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +683 -0
- diffusers/schedulers/scheduling_edm_euler.py +381 -0
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +43 -15
- diffusers/schedulers/scheduling_euler_discrete.py +42 -17
- diffusers/schedulers/scheduling_euler_discrete_flax.py +1 -1
- diffusers/schedulers/scheduling_heun_discrete.py +35 -35
- diffusers/schedulers/scheduling_ipndm.py +37 -11
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +44 -44
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +44 -44
- diffusers/schedulers/scheduling_karras_ve_flax.py +1 -1
- diffusers/schedulers/scheduling_lcm.py +38 -14
- diffusers/schedulers/scheduling_lms_discrete.py +43 -15
- diffusers/schedulers/scheduling_lms_discrete_flax.py +1 -1
- diffusers/schedulers/scheduling_pndm.py +2 -4
- diffusers/schedulers/scheduling_pndm_flax.py +2 -4
- diffusers/schedulers/scheduling_repaint.py +1 -1
- diffusers/schedulers/scheduling_sasolver.py +41 -9
- diffusers/schedulers/scheduling_sde_ve.py +1 -1
- diffusers/schedulers/scheduling_sde_ve_flax.py +1 -1
- diffusers/schedulers/scheduling_tcd.py +686 -0
- diffusers/schedulers/scheduling_unclip.py +1 -1
- diffusers/schedulers/scheduling_unipc_multistep.py +46 -19
- diffusers/schedulers/scheduling_utils.py +2 -1
- diffusers/schedulers/scheduling_utils_flax.py +1 -1
- diffusers/schedulers/scheduling_vq_diffusion.py +1 -1
- diffusers/training_utils.py +9 -2
- diffusers/utils/__init__.py +2 -1
- diffusers/utils/accelerate_utils.py +1 -1
- diffusers/utils/constants.py +1 -1
- diffusers/utils/doc_utils.py +1 -1
- diffusers/utils/dummy_pt_objects.py +60 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +75 -0
- diffusers/utils/dynamic_modules_utils.py +1 -1
- diffusers/utils/export_utils.py +3 -3
- diffusers/utils/hub_utils.py +60 -16
- diffusers/utils/import_utils.py +15 -1
- diffusers/utils/loading_utils.py +2 -0
- diffusers/utils/logging.py +1 -1
- diffusers/utils/model_card_template.md +24 -0
- diffusers/utils/outputs.py +14 -7
- diffusers/utils/peft_utils.py +1 -1
- diffusers/utils/state_dict_utils.py +1 -1
- diffusers/utils/testing_utils.py +2 -0
- diffusers/utils/torch_utils.py +1 -1
- {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/METADATA +46 -46
- diffusers-0.27.0.dist-info/RECORD +399 -0
- {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/WHEEL +1 -1
- diffusers-0.26.3.dist-info/RECORD +0 -384
- {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/LICENSE +0 -0
- {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/entry_points.txt +0 -0
- {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,4 @@
|
|
1
|
-
# Copyright
|
1
|
+
# Copyright 2024 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved.
|
2
2
|
#
|
3
3
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
4
|
# you may not use this file except in compliance with the License.
|
@@ -13,7 +13,6 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
|
15
15
|
import math
|
16
|
-
from collections import defaultdict
|
17
16
|
from typing import List, Optional, Tuple, Union
|
18
17
|
|
19
18
|
import numpy as np
|
@@ -102,9 +101,7 @@ class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
102
101
|
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
103
102
|
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
104
103
|
steps_offset (`int`, defaults to 0):
|
105
|
-
An offset added to the inference steps
|
106
|
-
`set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
|
107
|
-
Diffusion.
|
104
|
+
An offset added to the inference steps, as required by some model families.
|
108
105
|
"""
|
109
106
|
|
110
107
|
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
@@ -148,8 +145,10 @@ class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
148
145
|
self.use_karras_sigmas = use_karras_sigmas
|
149
146
|
|
150
147
|
self._step_index = None
|
148
|
+
self._begin_index = None
|
151
149
|
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
152
150
|
|
151
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
|
153
152
|
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
154
153
|
if schedule_timesteps is None:
|
155
154
|
schedule_timesteps = self.timesteps
|
@@ -160,11 +159,7 @@ class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
160
159
|
# is always the second index (or the last index if there is only 1)
|
161
160
|
# This way we can ensure we don't accidentally skip a sigma in
|
162
161
|
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
163
|
-
if len(
|
164
|
-
pos = 1 if len(indices) > 1 else 0
|
165
|
-
else:
|
166
|
-
timestep_int = timestep.cpu().item() if torch.is_tensor(timestep) else timestep
|
167
|
-
pos = self._index_counter[timestep_int]
|
162
|
+
pos = 1 if len(indices) > 1 else 0
|
168
163
|
|
169
164
|
return indices[pos].item()
|
170
165
|
|
@@ -183,6 +178,24 @@ class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
183
178
|
"""
|
184
179
|
return self._step_index
|
185
180
|
|
181
|
+
@property
|
182
|
+
def begin_index(self):
|
183
|
+
"""
|
184
|
+
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
185
|
+
"""
|
186
|
+
return self._begin_index
|
187
|
+
|
188
|
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
189
|
+
def set_begin_index(self, begin_index: int = 0):
|
190
|
+
"""
|
191
|
+
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
192
|
+
|
193
|
+
Args:
|
194
|
+
begin_index (`int`):
|
195
|
+
The begin index for the scheduler.
|
196
|
+
"""
|
197
|
+
self._begin_index = begin_index
|
198
|
+
|
186
199
|
def scale_model_input(
|
187
200
|
self,
|
188
201
|
sample: torch.FloatTensor,
|
@@ -270,13 +283,9 @@ class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
270
283
|
self.dt = None
|
271
284
|
|
272
285
|
self._step_index = None
|
286
|
+
self._begin_index = None
|
273
287
|
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
274
288
|
|
275
|
-
# (YiYi Notes: keep this for now since we are keeping add_noise function which use index_for_timestep)
|
276
|
-
# for exp beta schedules, such as the one for `pipeline_shap_e.py`
|
277
|
-
# we need an index counter
|
278
|
-
self._index_counter = defaultdict(int)
|
279
|
-
|
280
289
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
|
281
290
|
def _sigma_to_t(self, sigma, log_sigmas):
|
282
291
|
# get log sigma
|
@@ -333,21 +342,12 @@ class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
333
342
|
|
334
343
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
|
335
344
|
def _init_step_index(self, timestep):
|
336
|
-
if
|
337
|
-
timestep
|
338
|
-
|
339
|
-
|
340
|
-
|
341
|
-
# The sigma index that is taken for the **very** first `step`
|
342
|
-
# is always the second index (or the last index if there is only 1)
|
343
|
-
# This way we can ensure we don't accidentally skip a sigma in
|
344
|
-
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
345
|
-
if len(index_candidates) > 1:
|
346
|
-
step_index = index_candidates[1]
|
345
|
+
if self.begin_index is None:
|
346
|
+
if isinstance(timestep, torch.Tensor):
|
347
|
+
timestep = timestep.to(self.timesteps.device)
|
348
|
+
self._step_index = self.index_for_timestep(timestep)
|
347
349
|
else:
|
348
|
-
|
349
|
-
|
350
|
-
self._step_index = step_index.item()
|
350
|
+
self._step_index = self._begin_index
|
351
351
|
|
352
352
|
def step(
|
353
353
|
self,
|
@@ -378,11 +378,6 @@ class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
378
378
|
if self.step_index is None:
|
379
379
|
self._init_step_index(timestep)
|
380
380
|
|
381
|
-
# (YiYi notes: keep this for now since we are keeping the add_noise method)
|
382
|
-
# advance index counter by 1
|
383
|
-
timestep_int = timestep.cpu().item() if torch.is_tensor(timestep) else timestep
|
384
|
-
self._index_counter[timestep_int] += 1
|
385
|
-
|
386
381
|
if self.state_in_first_order:
|
387
382
|
sigma = self.sigmas[self.step_index]
|
388
383
|
sigma_next = self.sigmas[self.step_index + 1]
|
@@ -453,6 +448,7 @@ class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
453
448
|
|
454
449
|
return SchedulerOutput(prev_sample=prev_sample)
|
455
450
|
|
451
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
|
456
452
|
def add_noise(
|
457
453
|
self,
|
458
454
|
original_samples: torch.FloatTensor,
|
@@ -469,7 +465,11 @@ class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
469
465
|
schedule_timesteps = self.timesteps.to(original_samples.device)
|
470
466
|
timesteps = timesteps.to(original_samples.device)
|
471
467
|
|
472
|
-
|
468
|
+
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
|
469
|
+
if self.begin_index is None:
|
470
|
+
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
|
471
|
+
else:
|
472
|
+
step_indices = [self.begin_index] * timesteps.shape[0]
|
473
473
|
|
474
474
|
sigma = sigmas[step_indices].flatten()
|
475
475
|
while len(sigma.shape) < len(original_samples.shape):
|
@@ -1,4 +1,4 @@
|
|
1
|
-
# Copyright
|
1
|
+
# Copyright 2024 Zhejiang University Team and The HuggingFace Team. All rights reserved.
|
2
2
|
#
|
3
3
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
4
|
# you may not use this file except in compliance with the License.
|
@@ -56,6 +56,7 @@ class IPNDMScheduler(SchedulerMixin, ConfigMixin):
|
|
56
56
|
# running values
|
57
57
|
self.ets = []
|
58
58
|
self._step_index = None
|
59
|
+
self._begin_index = None
|
59
60
|
|
60
61
|
@property
|
61
62
|
def step_index(self):
|
@@ -64,6 +65,24 @@ class IPNDMScheduler(SchedulerMixin, ConfigMixin):
|
|
64
65
|
"""
|
65
66
|
return self._step_index
|
66
67
|
|
68
|
+
@property
|
69
|
+
def begin_index(self):
|
70
|
+
"""
|
71
|
+
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
72
|
+
"""
|
73
|
+
return self._begin_index
|
74
|
+
|
75
|
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
76
|
+
def set_begin_index(self, begin_index: int = 0):
|
77
|
+
"""
|
78
|
+
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
79
|
+
|
80
|
+
Args:
|
81
|
+
begin_index (`int`):
|
82
|
+
The begin index for the scheduler.
|
83
|
+
"""
|
84
|
+
self._begin_index = begin_index
|
85
|
+
|
67
86
|
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
|
68
87
|
"""
|
69
88
|
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
@@ -90,24 +109,31 @@ class IPNDMScheduler(SchedulerMixin, ConfigMixin):
|
|
90
109
|
|
91
110
|
self.ets = []
|
92
111
|
self._step_index = None
|
112
|
+
self._begin_index = None
|
93
113
|
|
94
|
-
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.
|
95
|
-
def
|
96
|
-
if
|
97
|
-
|
114
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
|
115
|
+
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
116
|
+
if schedule_timesteps is None:
|
117
|
+
schedule_timesteps = self.timesteps
|
98
118
|
|
99
|
-
|
119
|
+
indices = (schedule_timesteps == timestep).nonzero()
|
100
120
|
|
101
121
|
# The sigma index that is taken for the **very** first `step`
|
102
122
|
# is always the second index (or the last index if there is only 1)
|
103
123
|
# This way we can ensure we don't accidentally skip a sigma in
|
104
124
|
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
105
|
-
if len(
|
106
|
-
step_index = index_candidates[1]
|
107
|
-
else:
|
108
|
-
step_index = index_candidates[0]
|
125
|
+
pos = 1 if len(indices) > 1 else 0
|
109
126
|
|
110
|
-
|
127
|
+
return indices[pos].item()
|
128
|
+
|
129
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
|
130
|
+
def _init_step_index(self, timestep):
|
131
|
+
if self.begin_index is None:
|
132
|
+
if isinstance(timestep, torch.Tensor):
|
133
|
+
timestep = timestep.to(self.timesteps.device)
|
134
|
+
self._step_index = self.index_for_timestep(timestep)
|
135
|
+
else:
|
136
|
+
self._step_index = self._begin_index
|
111
137
|
|
112
138
|
def step(
|
113
139
|
self,
|
@@ -1,4 +1,4 @@
|
|
1
|
-
# Copyright
|
1
|
+
# Copyright 2024 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved.
|
2
2
|
#
|
3
3
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
4
|
# you may not use this file except in compliance with the License.
|
@@ -13,7 +13,6 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
|
15
15
|
import math
|
16
|
-
from collections import defaultdict
|
17
16
|
from typing import List, Optional, Tuple, Union
|
18
17
|
|
19
18
|
import numpy as np
|
@@ -100,9 +99,7 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
100
99
|
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
101
100
|
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
102
101
|
steps_offset (`int`, defaults to 0):
|
103
|
-
An offset added to the inference steps
|
104
|
-
`set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
|
105
|
-
Diffusion.
|
102
|
+
An offset added to the inference steps, as required by some model families.
|
106
103
|
"""
|
107
104
|
|
108
105
|
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
@@ -140,27 +137,9 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
140
137
|
# set all values
|
141
138
|
self.set_timesteps(num_train_timesteps, None, num_train_timesteps)
|
142
139
|
self._step_index = None
|
140
|
+
self._begin_index = None
|
143
141
|
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
144
142
|
|
145
|
-
# Copied from diffusers.schedulers.scheduling_heun_discrete.HeunDiscreteScheduler.index_for_timestep
|
146
|
-
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
147
|
-
if schedule_timesteps is None:
|
148
|
-
schedule_timesteps = self.timesteps
|
149
|
-
|
150
|
-
indices = (schedule_timesteps == timestep).nonzero()
|
151
|
-
|
152
|
-
# The sigma index that is taken for the **very** first `step`
|
153
|
-
# is always the second index (or the last index if there is only 1)
|
154
|
-
# This way we can ensure we don't accidentally skip a sigma in
|
155
|
-
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
156
|
-
if len(self._index_counter) == 0:
|
157
|
-
pos = 1 if len(indices) > 1 else 0
|
158
|
-
else:
|
159
|
-
timestep_int = timestep.cpu().item() if torch.is_tensor(timestep) else timestep
|
160
|
-
pos = self._index_counter[timestep_int]
|
161
|
-
|
162
|
-
return indices[pos].item()
|
163
|
-
|
164
143
|
@property
|
165
144
|
def init_noise_sigma(self):
|
166
145
|
# standard deviation of the initial noise distribution
|
@@ -176,6 +155,24 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
176
155
|
"""
|
177
156
|
return self._step_index
|
178
157
|
|
158
|
+
@property
|
159
|
+
def begin_index(self):
|
160
|
+
"""
|
161
|
+
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
162
|
+
"""
|
163
|
+
return self._begin_index
|
164
|
+
|
165
|
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
166
|
+
def set_begin_index(self, begin_index: int = 0):
|
167
|
+
"""
|
168
|
+
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
169
|
+
|
170
|
+
Args:
|
171
|
+
begin_index (`int`):
|
172
|
+
The begin index for the scheduler.
|
173
|
+
"""
|
174
|
+
self._begin_index = begin_index
|
175
|
+
|
179
176
|
def scale_model_input(
|
180
177
|
self,
|
181
178
|
sample: torch.FloatTensor,
|
@@ -295,11 +292,8 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
295
292
|
|
296
293
|
self.sample = None
|
297
294
|
|
298
|
-
# for exp beta schedules, such as the one for `pipeline_shap_e.py`
|
299
|
-
# we need an index counter
|
300
|
-
self._index_counter = defaultdict(int)
|
301
|
-
|
302
295
|
self._step_index = None
|
296
|
+
self._begin_index = None
|
303
297
|
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
304
298
|
|
305
299
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
|
@@ -356,23 +350,29 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
356
350
|
def state_in_first_order(self):
|
357
351
|
return self.sample is None
|
358
352
|
|
359
|
-
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.
|
360
|
-
def
|
361
|
-
if
|
362
|
-
|
353
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
|
354
|
+
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
355
|
+
if schedule_timesteps is None:
|
356
|
+
schedule_timesteps = self.timesteps
|
363
357
|
|
364
|
-
|
358
|
+
indices = (schedule_timesteps == timestep).nonzero()
|
365
359
|
|
366
360
|
# The sigma index that is taken for the **very** first `step`
|
367
361
|
# is always the second index (or the last index if there is only 1)
|
368
362
|
# This way we can ensure we don't accidentally skip a sigma in
|
369
363
|
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
370
|
-
if len(
|
371
|
-
step_index = index_candidates[1]
|
372
|
-
else:
|
373
|
-
step_index = index_candidates[0]
|
364
|
+
pos = 1 if len(indices) > 1 else 0
|
374
365
|
|
375
|
-
|
366
|
+
return indices[pos].item()
|
367
|
+
|
368
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
|
369
|
+
def _init_step_index(self, timestep):
|
370
|
+
if self.begin_index is None:
|
371
|
+
if isinstance(timestep, torch.Tensor):
|
372
|
+
timestep = timestep.to(self.timesteps.device)
|
373
|
+
self._step_index = self.index_for_timestep(timestep)
|
374
|
+
else:
|
375
|
+
self._step_index = self._begin_index
|
376
376
|
|
377
377
|
def step(
|
378
378
|
self,
|
@@ -406,10 +406,6 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
406
406
|
if self.step_index is None:
|
407
407
|
self._init_step_index(timestep)
|
408
408
|
|
409
|
-
# advance index counter by 1
|
410
|
-
timestep_int = timestep.cpu().item() if torch.is_tensor(timestep) else timestep
|
411
|
-
self._index_counter[timestep_int] += 1
|
412
|
-
|
413
409
|
if self.state_in_first_order:
|
414
410
|
sigma = self.sigmas[self.step_index]
|
415
411
|
sigma_interpol = self.sigmas_interpol[self.step_index]
|
@@ -478,7 +474,7 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
478
474
|
|
479
475
|
return SchedulerOutput(prev_sample=prev_sample)
|
480
476
|
|
481
|
-
# Copied from diffusers.schedulers.
|
477
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
|
482
478
|
def add_noise(
|
483
479
|
self,
|
484
480
|
original_samples: torch.FloatTensor,
|
@@ -495,7 +491,11 @@ class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
495
491
|
schedule_timesteps = self.timesteps.to(original_samples.device)
|
496
492
|
timesteps = timesteps.to(original_samples.device)
|
497
493
|
|
498
|
-
|
494
|
+
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
|
495
|
+
if self.begin_index is None:
|
496
|
+
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
|
497
|
+
else:
|
498
|
+
step_indices = [self.begin_index] * timesteps.shape[0]
|
499
499
|
|
500
500
|
sigma = sigmas[step_indices].flatten()
|
501
501
|
while len(sigma.shape) < len(original_samples.shape):
|
@@ -1,4 +1,4 @@
|
|
1
|
-
# Copyright
|
1
|
+
# Copyright 2024 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved.
|
2
2
|
#
|
3
3
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
4
|
# you may not use this file except in compliance with the License.
|
@@ -13,7 +13,6 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
|
15
15
|
import math
|
16
|
-
from collections import defaultdict
|
17
16
|
from typing import List, Optional, Tuple, Union
|
18
17
|
|
19
18
|
import numpy as np
|
@@ -99,9 +98,7 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
99
98
|
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
100
99
|
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
101
100
|
steps_offset (`int`, defaults to 0):
|
102
|
-
An offset added to the inference steps
|
103
|
-
`set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
|
104
|
-
Diffusion.
|
101
|
+
An offset added to the inference steps, as required by some model families.
|
105
102
|
"""
|
106
103
|
|
107
104
|
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
@@ -140,27 +137,9 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
140
137
|
self.set_timesteps(num_train_timesteps, None, num_train_timesteps)
|
141
138
|
|
142
139
|
self._step_index = None
|
140
|
+
self._begin_index = None
|
143
141
|
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
144
142
|
|
145
|
-
# Copied from diffusers.schedulers.scheduling_heun_discrete.HeunDiscreteScheduler.index_for_timestep
|
146
|
-
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
147
|
-
if schedule_timesteps is None:
|
148
|
-
schedule_timesteps = self.timesteps
|
149
|
-
|
150
|
-
indices = (schedule_timesteps == timestep).nonzero()
|
151
|
-
|
152
|
-
# The sigma index that is taken for the **very** first `step`
|
153
|
-
# is always the second index (or the last index if there is only 1)
|
154
|
-
# This way we can ensure we don't accidentally skip a sigma in
|
155
|
-
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
156
|
-
if len(self._index_counter) == 0:
|
157
|
-
pos = 1 if len(indices) > 1 else 0
|
158
|
-
else:
|
159
|
-
timestep_int = timestep.cpu().item() if torch.is_tensor(timestep) else timestep
|
160
|
-
pos = self._index_counter[timestep_int]
|
161
|
-
|
162
|
-
return indices[pos].item()
|
163
|
-
|
164
143
|
@property
|
165
144
|
def init_noise_sigma(self):
|
166
145
|
# standard deviation of the initial noise distribution
|
@@ -176,6 +155,24 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
176
155
|
"""
|
177
156
|
return self._step_index
|
178
157
|
|
158
|
+
@property
|
159
|
+
def begin_index(self):
|
160
|
+
"""
|
161
|
+
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
162
|
+
"""
|
163
|
+
return self._begin_index
|
164
|
+
|
165
|
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
166
|
+
def set_begin_index(self, begin_index: int = 0):
|
167
|
+
"""
|
168
|
+
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
169
|
+
|
170
|
+
Args:
|
171
|
+
begin_index (`int`):
|
172
|
+
The begin index for the scheduler.
|
173
|
+
"""
|
174
|
+
self._begin_index = begin_index
|
175
|
+
|
179
176
|
def scale_model_input(
|
180
177
|
self,
|
181
178
|
sample: torch.FloatTensor,
|
@@ -280,34 +277,37 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
280
277
|
|
281
278
|
self.sample = None
|
282
279
|
|
283
|
-
# for exp beta schedules, such as the one for `pipeline_shap_e.py`
|
284
|
-
# we need an index counter
|
285
|
-
self._index_counter = defaultdict(int)
|
286
|
-
|
287
280
|
self._step_index = None
|
281
|
+
self._begin_index = None
|
288
282
|
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
289
283
|
|
290
284
|
@property
|
291
285
|
def state_in_first_order(self):
|
292
286
|
return self.sample is None
|
293
287
|
|
294
|
-
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.
|
295
|
-
def
|
296
|
-
if
|
297
|
-
|
288
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
|
289
|
+
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
290
|
+
if schedule_timesteps is None:
|
291
|
+
schedule_timesteps = self.timesteps
|
298
292
|
|
299
|
-
|
293
|
+
indices = (schedule_timesteps == timestep).nonzero()
|
300
294
|
|
301
295
|
# The sigma index that is taken for the **very** first `step`
|
302
296
|
# is always the second index (or the last index if there is only 1)
|
303
297
|
# This way we can ensure we don't accidentally skip a sigma in
|
304
298
|
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
305
|
-
if len(
|
306
|
-
step_index = index_candidates[1]
|
307
|
-
else:
|
308
|
-
step_index = index_candidates[0]
|
299
|
+
pos = 1 if len(indices) > 1 else 0
|
309
300
|
|
310
|
-
|
301
|
+
return indices[pos].item()
|
302
|
+
|
303
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
|
304
|
+
def _init_step_index(self, timestep):
|
305
|
+
if self.begin_index is None:
|
306
|
+
if isinstance(timestep, torch.Tensor):
|
307
|
+
timestep = timestep.to(self.timesteps.device)
|
308
|
+
self._step_index = self.index_for_timestep(timestep)
|
309
|
+
else:
|
310
|
+
self._step_index = self._begin_index
|
311
311
|
|
312
312
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
|
313
313
|
def _sigma_to_t(self, sigma, log_sigmas):
|
@@ -388,10 +388,6 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
388
388
|
if self.step_index is None:
|
389
389
|
self._init_step_index(timestep)
|
390
390
|
|
391
|
-
# advance index counter by 1
|
392
|
-
timestep_int = timestep.cpu().item() if torch.is_tensor(timestep) else timestep
|
393
|
-
self._index_counter[timestep_int] += 1
|
394
|
-
|
395
391
|
if self.state_in_first_order:
|
396
392
|
sigma = self.sigmas[self.step_index]
|
397
393
|
sigma_interpol = self.sigmas_interpol[self.step_index + 1]
|
@@ -453,7 +449,7 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
453
449
|
|
454
450
|
return SchedulerOutput(prev_sample=prev_sample)
|
455
451
|
|
456
|
-
# Copied from diffusers.schedulers.
|
452
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
|
457
453
|
def add_noise(
|
458
454
|
self,
|
459
455
|
original_samples: torch.FloatTensor,
|
@@ -470,7 +466,11 @@ class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
|
|
470
466
|
schedule_timesteps = self.timesteps.to(original_samples.device)
|
471
467
|
timesteps = timesteps.to(original_samples.device)
|
472
468
|
|
473
|
-
|
469
|
+
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
|
470
|
+
if self.begin_index is None:
|
471
|
+
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
|
472
|
+
else:
|
473
|
+
step_indices = [self.begin_index] * timesteps.shape[0]
|
474
474
|
|
475
475
|
sigma = sigmas[step_indices].flatten()
|
476
476
|
while len(sigma.shape) < len(original_samples.shape):
|
@@ -1,4 +1,4 @@
|
|
1
|
-
# Copyright
|
1
|
+
# Copyright 2024 NVIDIA and The HuggingFace Team. All rights reserved.
|
2
2
|
#
|
3
3
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
4
|
# you may not use this file except in compliance with the License.
|
@@ -1,4 +1,4 @@
|
|
1
|
-
# Copyright
|
1
|
+
# Copyright 2024 Stanford University Team and The HuggingFace Team. All rights reserved.
|
2
2
|
#
|
3
3
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
4
|
# you may not use this file except in compliance with the License.
|
@@ -165,9 +165,7 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
|
|
165
165
|
there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
|
166
166
|
otherwise it uses the alpha value at step 0.
|
167
167
|
steps_offset (`int`, defaults to 0):
|
168
|
-
An offset added to the inference steps
|
169
|
-
`set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
|
170
|
-
Diffusion.
|
168
|
+
An offset added to the inference steps, as required by some model families.
|
171
169
|
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
172
170
|
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
173
171
|
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
@@ -250,29 +248,54 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
|
|
250
248
|
self.custom_timesteps = False
|
251
249
|
|
252
250
|
self._step_index = None
|
251
|
+
self._begin_index = None
|
253
252
|
|
254
|
-
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.
|
255
|
-
def
|
256
|
-
if
|
257
|
-
|
253
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
|
254
|
+
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
255
|
+
if schedule_timesteps is None:
|
256
|
+
schedule_timesteps = self.timesteps
|
258
257
|
|
259
|
-
|
258
|
+
indices = (schedule_timesteps == timestep).nonzero()
|
260
259
|
|
261
260
|
# The sigma index that is taken for the **very** first `step`
|
262
261
|
# is always the second index (or the last index if there is only 1)
|
263
262
|
# This way we can ensure we don't accidentally skip a sigma in
|
264
263
|
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
265
|
-
if len(
|
266
|
-
|
267
|
-
|
268
|
-
step_index = index_candidates[0]
|
264
|
+
pos = 1 if len(indices) > 1 else 0
|
265
|
+
|
266
|
+
return indices[pos].item()
|
269
267
|
|
270
|
-
|
268
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
|
269
|
+
def _init_step_index(self, timestep):
|
270
|
+
if self.begin_index is None:
|
271
|
+
if isinstance(timestep, torch.Tensor):
|
272
|
+
timestep = timestep.to(self.timesteps.device)
|
273
|
+
self._step_index = self.index_for_timestep(timestep)
|
274
|
+
else:
|
275
|
+
self._step_index = self._begin_index
|
271
276
|
|
272
277
|
@property
|
273
278
|
def step_index(self):
|
274
279
|
return self._step_index
|
275
280
|
|
281
|
+
@property
|
282
|
+
def begin_index(self):
|
283
|
+
"""
|
284
|
+
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
285
|
+
"""
|
286
|
+
return self._begin_index
|
287
|
+
|
288
|
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
289
|
+
def set_begin_index(self, begin_index: int = 0):
|
290
|
+
"""
|
291
|
+
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
292
|
+
|
293
|
+
Args:
|
294
|
+
begin_index (`int`):
|
295
|
+
The begin index for the scheduler.
|
296
|
+
"""
|
297
|
+
self._begin_index = begin_index
|
298
|
+
|
276
299
|
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
|
277
300
|
"""
|
278
301
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
@@ -462,6 +485,7 @@ class LCMScheduler(SchedulerMixin, ConfigMixin):
|
|
462
485
|
self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.long)
|
463
486
|
|
464
487
|
self._step_index = None
|
488
|
+
self._begin_index = None
|
465
489
|
|
466
490
|
def get_scalings_for_boundary_condition_discrete(self, timestep):
|
467
491
|
self.sigma_data = 0.5 # Default: 0.5
|