diffusers 0.26.3__py3-none-any.whl → 0.27.0__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (299) hide show
  1. diffusers/__init__.py +20 -1
  2. diffusers/commands/__init__.py +1 -1
  3. diffusers/commands/diffusers_cli.py +1 -1
  4. diffusers/commands/env.py +1 -1
  5. diffusers/commands/fp16_safetensors.py +1 -1
  6. diffusers/configuration_utils.py +7 -3
  7. diffusers/dependency_versions_check.py +1 -1
  8. diffusers/dependency_versions_table.py +2 -2
  9. diffusers/experimental/rl/value_guided_sampling.py +1 -1
  10. diffusers/image_processor.py +110 -4
  11. diffusers/loaders/autoencoder.py +7 -8
  12. diffusers/loaders/controlnet.py +17 -8
  13. diffusers/loaders/ip_adapter.py +86 -23
  14. diffusers/loaders/lora.py +105 -310
  15. diffusers/loaders/lora_conversion_utils.py +1 -1
  16. diffusers/loaders/peft.py +1 -1
  17. diffusers/loaders/single_file.py +51 -12
  18. diffusers/loaders/single_file_utils.py +274 -49
  19. diffusers/loaders/textual_inversion.py +23 -4
  20. diffusers/loaders/unet.py +195 -41
  21. diffusers/loaders/utils.py +1 -1
  22. diffusers/models/__init__.py +3 -1
  23. diffusers/models/activations.py +9 -9
  24. diffusers/models/attention.py +26 -36
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +171 -114
  27. diffusers/models/autoencoders/autoencoder_asym_kl.py +1 -1
  28. diffusers/models/autoencoders/autoencoder_kl.py +3 -1
  29. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
  30. diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
  31. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  32. diffusers/models/autoencoders/vae.py +1 -1
  33. diffusers/models/controlnet.py +1 -1
  34. diffusers/models/controlnet_flax.py +1 -1
  35. diffusers/models/downsampling.py +8 -12
  36. diffusers/models/dual_transformer_2d.py +1 -1
  37. diffusers/models/embeddings.py +3 -4
  38. diffusers/models/embeddings_flax.py +1 -1
  39. diffusers/models/lora.py +33 -10
  40. diffusers/models/modeling_flax_pytorch_utils.py +1 -1
  41. diffusers/models/modeling_flax_utils.py +1 -1
  42. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  43. diffusers/models/modeling_utils.py +4 -6
  44. diffusers/models/normalization.py +1 -1
  45. diffusers/models/resnet.py +31 -58
  46. diffusers/models/resnet_flax.py +1 -1
  47. diffusers/models/t5_film_transformer.py +1 -1
  48. diffusers/models/transformer_2d.py +1 -1
  49. diffusers/models/transformer_temporal.py +1 -1
  50. diffusers/models/transformers/dual_transformer_2d.py +1 -1
  51. diffusers/models/transformers/t5_film_transformer.py +1 -1
  52. diffusers/models/transformers/transformer_2d.py +29 -31
  53. diffusers/models/transformers/transformer_temporal.py +1 -1
  54. diffusers/models/unet_1d.py +1 -1
  55. diffusers/models/unet_1d_blocks.py +1 -1
  56. diffusers/models/unet_2d.py +1 -1
  57. diffusers/models/unet_2d_blocks.py +1 -1
  58. diffusers/models/unet_2d_condition.py +1 -1
  59. diffusers/models/unets/__init__.py +1 -0
  60. diffusers/models/unets/unet_1d.py +1 -1
  61. diffusers/models/unets/unet_1d_blocks.py +1 -1
  62. diffusers/models/unets/unet_2d.py +4 -4
  63. diffusers/models/unets/unet_2d_blocks.py +238 -98
  64. diffusers/models/unets/unet_2d_blocks_flax.py +1 -1
  65. diffusers/models/unets/unet_2d_condition.py +420 -323
  66. diffusers/models/unets/unet_2d_condition_flax.py +21 -12
  67. diffusers/models/unets/unet_3d_blocks.py +50 -40
  68. diffusers/models/unets/unet_3d_condition.py +47 -8
  69. diffusers/models/unets/unet_i2vgen_xl.py +75 -30
  70. diffusers/models/unets/unet_kandinsky3.py +1 -1
  71. diffusers/models/unets/unet_motion_model.py +48 -8
  72. diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
  73. diffusers/models/unets/unet_stable_cascade.py +610 -0
  74. diffusers/models/unets/uvit_2d.py +1 -1
  75. diffusers/models/upsampling.py +10 -16
  76. diffusers/models/vae_flax.py +1 -1
  77. diffusers/models/vq_model.py +1 -1
  78. diffusers/optimization.py +1 -1
  79. diffusers/pipelines/__init__.py +26 -0
  80. diffusers/pipelines/amused/pipeline_amused.py +1 -1
  81. diffusers/pipelines/amused/pipeline_amused_img2img.py +1 -1
  82. diffusers/pipelines/amused/pipeline_amused_inpaint.py +1 -1
  83. diffusers/pipelines/animatediff/pipeline_animatediff.py +162 -417
  84. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +165 -137
  85. diffusers/pipelines/animatediff/pipeline_output.py +7 -6
  86. diffusers/pipelines/audioldm/pipeline_audioldm.py +3 -19
  87. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  88. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +3 -3
  89. diffusers/pipelines/auto_pipeline.py +7 -16
  90. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  91. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  92. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +2 -2
  93. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  94. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  95. diffusers/pipelines/controlnet/pipeline_controlnet.py +90 -90
  96. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  97. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +98 -90
  98. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +92 -90
  99. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +145 -70
  100. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +126 -89
  101. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +108 -96
  102. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  103. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -1
  104. diffusers/pipelines/ddim/pipeline_ddim.py +1 -1
  105. diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -1
  106. diffusers/pipelines/deepfloyd_if/pipeline_if.py +4 -4
  107. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +4 -4
  108. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +5 -5
  109. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +4 -4
  110. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +5 -5
  111. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +5 -5
  112. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +10 -120
  113. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +10 -91
  114. diffusers/pipelines/deprecated/audio_diffusion/mel.py +1 -1
  115. diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py +1 -1
  116. diffusers/pipelines/deprecated/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py +1 -1
  117. diffusers/pipelines/deprecated/pndm/pipeline_pndm.py +1 -1
  118. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +1 -1
  119. diffusers/pipelines/deprecated/score_sde_ve/pipeline_score_sde_ve.py +1 -1
  120. diffusers/pipelines/deprecated/spectrogram_diffusion/continuous_encoder.py +1 -1
  121. diffusers/pipelines/deprecated/spectrogram_diffusion/midi_utils.py +1 -1
  122. diffusers/pipelines/deprecated/spectrogram_diffusion/notes_encoder.py +1 -1
  123. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -1
  124. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +5 -4
  125. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +5 -4
  126. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +7 -22
  127. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +5 -39
  128. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +5 -5
  129. diffusers/pipelines/deprecated/stochastic_karras_ve/pipeline_stochastic_karras_ve.py +1 -1
  130. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +31 -22
  131. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -1
  132. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -1
  133. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -2
  134. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +1 -1
  135. diffusers/pipelines/dit/pipeline_dit.py +1 -1
  136. diffusers/pipelines/free_init_utils.py +184 -0
  137. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +22 -104
  138. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +1 -1
  139. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +1 -1
  140. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +1 -1
  141. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +2 -2
  142. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +1 -1
  143. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
  144. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +1 -1
  145. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +1 -1
  146. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +1 -1
  147. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
  148. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +2 -2
  149. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +104 -93
  150. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +112 -74
  151. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  152. diffusers/pipelines/ledits_pp/__init__.py +55 -0
  153. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +1505 -0
  154. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +1797 -0
  155. diffusers/pipelines/ledits_pp/pipeline_output.py +43 -0
  156. diffusers/pipelines/musicldm/pipeline_musicldm.py +3 -19
  157. diffusers/pipelines/onnx_utils.py +1 -1
  158. diffusers/pipelines/paint_by_example/image_encoder.py +1 -1
  159. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +3 -3
  160. diffusers/pipelines/pia/pipeline_pia.py +168 -327
  161. diffusers/pipelines/pipeline_flax_utils.py +1 -1
  162. diffusers/pipelines/pipeline_loading_utils.py +508 -0
  163. diffusers/pipelines/pipeline_utils.py +188 -534
  164. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +56 -10
  165. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +3 -3
  166. diffusers/pipelines/shap_e/camera.py +1 -1
  167. diffusers/pipelines/shap_e/pipeline_shap_e.py +1 -1
  168. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +1 -1
  169. diffusers/pipelines/shap_e/renderer.py +1 -1
  170. diffusers/pipelines/stable_cascade/__init__.py +50 -0
  171. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +482 -0
  172. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +311 -0
  173. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +638 -0
  174. diffusers/pipelines/stable_diffusion/clip_image_project_model.py +1 -1
  175. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +4 -1
  176. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  177. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +2 -2
  178. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +1 -1
  179. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +1 -1
  180. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +1 -1
  181. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -1
  182. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +1 -1
  183. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +90 -146
  184. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +5 -4
  185. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +4 -32
  186. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -119
  187. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -119
  188. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +13 -59
  189. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +3 -31
  190. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +5 -33
  191. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -21
  192. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +7 -21
  193. diffusers/pipelines/stable_diffusion/safety_checker.py +1 -1
  194. diffusers/pipelines/stable_diffusion/safety_checker_flax.py +1 -1
  195. diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py +1 -1
  196. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +5 -21
  197. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +9 -38
  198. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -34
  199. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +6 -35
  200. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +7 -6
  201. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +4 -124
  202. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +282 -80
  203. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +94 -46
  204. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +3 -3
  205. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  206. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +6 -22
  207. diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
  208. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +96 -148
  209. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +98 -154
  210. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +98 -153
  211. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +25 -87
  212. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +89 -80
  213. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +5 -49
  214. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +80 -88
  215. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +8 -6
  216. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +15 -86
  217. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +20 -93
  218. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +5 -5
  219. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +3 -19
  220. diffusers/pipelines/unclip/pipeline_unclip.py +1 -1
  221. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -1
  222. diffusers/pipelines/unclip/text_proj.py +1 -1
  223. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +35 -35
  224. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
  225. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +4 -21
  226. diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py +2 -2
  227. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +4 -5
  228. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +8 -8
  229. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +1 -1
  230. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +2 -2
  231. diffusers/schedulers/__init__.py +7 -1
  232. diffusers/schedulers/deprecated/scheduling_karras_ve.py +1 -1
  233. diffusers/schedulers/deprecated/scheduling_sde_vp.py +1 -1
  234. diffusers/schedulers/scheduling_consistency_models.py +42 -19
  235. diffusers/schedulers/scheduling_ddim.py +2 -4
  236. diffusers/schedulers/scheduling_ddim_flax.py +13 -5
  237. diffusers/schedulers/scheduling_ddim_inverse.py +2 -4
  238. diffusers/schedulers/scheduling_ddim_parallel.py +2 -4
  239. diffusers/schedulers/scheduling_ddpm.py +2 -4
  240. diffusers/schedulers/scheduling_ddpm_flax.py +1 -1
  241. diffusers/schedulers/scheduling_ddpm_parallel.py +2 -4
  242. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +1 -1
  243. diffusers/schedulers/scheduling_deis_multistep.py +46 -19
  244. diffusers/schedulers/scheduling_dpmsolver_multistep.py +107 -21
  245. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +1 -1
  246. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +9 -7
  247. diffusers/schedulers/scheduling_dpmsolver_sde.py +35 -35
  248. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +49 -18
  249. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +683 -0
  250. diffusers/schedulers/scheduling_edm_euler.py +381 -0
  251. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +43 -15
  252. diffusers/schedulers/scheduling_euler_discrete.py +42 -17
  253. diffusers/schedulers/scheduling_euler_discrete_flax.py +1 -1
  254. diffusers/schedulers/scheduling_heun_discrete.py +35 -35
  255. diffusers/schedulers/scheduling_ipndm.py +37 -11
  256. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +44 -44
  257. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +44 -44
  258. diffusers/schedulers/scheduling_karras_ve_flax.py +1 -1
  259. diffusers/schedulers/scheduling_lcm.py +38 -14
  260. diffusers/schedulers/scheduling_lms_discrete.py +43 -15
  261. diffusers/schedulers/scheduling_lms_discrete_flax.py +1 -1
  262. diffusers/schedulers/scheduling_pndm.py +2 -4
  263. diffusers/schedulers/scheduling_pndm_flax.py +2 -4
  264. diffusers/schedulers/scheduling_repaint.py +1 -1
  265. diffusers/schedulers/scheduling_sasolver.py +41 -9
  266. diffusers/schedulers/scheduling_sde_ve.py +1 -1
  267. diffusers/schedulers/scheduling_sde_ve_flax.py +1 -1
  268. diffusers/schedulers/scheduling_tcd.py +686 -0
  269. diffusers/schedulers/scheduling_unclip.py +1 -1
  270. diffusers/schedulers/scheduling_unipc_multistep.py +46 -19
  271. diffusers/schedulers/scheduling_utils.py +2 -1
  272. diffusers/schedulers/scheduling_utils_flax.py +1 -1
  273. diffusers/schedulers/scheduling_vq_diffusion.py +1 -1
  274. diffusers/training_utils.py +9 -2
  275. diffusers/utils/__init__.py +2 -1
  276. diffusers/utils/accelerate_utils.py +1 -1
  277. diffusers/utils/constants.py +1 -1
  278. diffusers/utils/doc_utils.py +1 -1
  279. diffusers/utils/dummy_pt_objects.py +60 -0
  280. diffusers/utils/dummy_torch_and_transformers_objects.py +75 -0
  281. diffusers/utils/dynamic_modules_utils.py +1 -1
  282. diffusers/utils/export_utils.py +3 -3
  283. diffusers/utils/hub_utils.py +60 -16
  284. diffusers/utils/import_utils.py +15 -1
  285. diffusers/utils/loading_utils.py +2 -0
  286. diffusers/utils/logging.py +1 -1
  287. diffusers/utils/model_card_template.md +24 -0
  288. diffusers/utils/outputs.py +14 -7
  289. diffusers/utils/peft_utils.py +1 -1
  290. diffusers/utils/state_dict_utils.py +1 -1
  291. diffusers/utils/testing_utils.py +2 -0
  292. diffusers/utils/torch_utils.py +1 -1
  293. {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/METADATA +46 -46
  294. diffusers-0.27.0.dist-info/RECORD +399 -0
  295. {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/WHEEL +1 -1
  296. diffusers-0.26.3.dist-info/RECORD +0 -384
  297. {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/LICENSE +0 -0
  298. {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/entry_points.txt +0 -0
  299. {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,4 @@
1
- # Copyright 2023 The Intel Labs Team Authors and the HuggingFace Team. All rights reserved.
1
+ # Copyright 2024 The Intel Labs Team Authors and the HuggingFace Team. All rights reserved.
2
2
  #
3
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
4
  # you may not use this file except in compliance with the License.
@@ -36,7 +36,7 @@ from ...utils import (
36
36
  unscale_lora_layers,
37
37
  )
38
38
  from ...utils.torch_utils import randn_tensor
39
- from ..pipeline_utils import DiffusionPipeline
39
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
40
40
  from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
41
41
 
42
42
 
@@ -59,6 +59,66 @@ EXAMPLE_DOC_STRING = """
59
59
  """
60
60
 
61
61
 
62
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
63
+ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
64
+ """
65
+ Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
66
+ Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
67
+ """
68
+ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
69
+ std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
70
+ # rescale the results from guidance (fixes overexposure)
71
+ noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
72
+ # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
73
+ noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
74
+ return noise_cfg
75
+
76
+
77
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
78
+ def retrieve_timesteps(
79
+ scheduler,
80
+ num_inference_steps: Optional[int] = None,
81
+ device: Optional[Union[str, torch.device]] = None,
82
+ timesteps: Optional[List[int]] = None,
83
+ **kwargs,
84
+ ):
85
+ """
86
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
87
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
88
+
89
+ Args:
90
+ scheduler (`SchedulerMixin`):
91
+ The scheduler to get timesteps from.
92
+ num_inference_steps (`int`):
93
+ The number of diffusion steps used when generating samples with a pre-trained model. If used,
94
+ `timesteps` must be `None`.
95
+ device (`str` or `torch.device`, *optional*):
96
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
97
+ timesteps (`List[int]`, *optional*):
98
+ Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
99
+ timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
100
+ must be `None`.
101
+
102
+ Returns:
103
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
104
+ second element is the number of inference steps.
105
+ """
106
+ if timesteps is not None:
107
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
108
+ if not accepts_timesteps:
109
+ raise ValueError(
110
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
111
+ f" timestep schedules. Please check whether you are using the correct scheduler."
112
+ )
113
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
114
+ timesteps = scheduler.timesteps
115
+ num_inference_steps = len(timesteps)
116
+ else:
117
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
118
+ timesteps = scheduler.timesteps
119
+ return timesteps, num_inference_steps
120
+
121
+
62
122
  @dataclass
63
123
  class LDM3DPipelineOutput(BaseOutput):
64
124
  """
@@ -82,7 +142,12 @@ class LDM3DPipelineOutput(BaseOutput):
82
142
 
83
143
 
84
144
  class StableDiffusionLDM3DPipeline(
85
- DiffusionPipeline, TextualInversionLoaderMixin, IPAdapterMixin, LoraLoaderMixin, FromSingleFileMixin
145
+ DiffusionPipeline,
146
+ StableDiffusionMixin,
147
+ TextualInversionLoaderMixin,
148
+ IPAdapterMixin,
149
+ LoraLoaderMixin,
150
+ FromSingleFileMixin,
86
151
  ):
87
152
  r"""
88
153
  Pipeline for text-to-image and 3D generation using LDM3D.
@@ -120,6 +185,7 @@ class StableDiffusionLDM3DPipeline(
120
185
  model_cpu_offload_seq = "text_encoder->unet->vae"
121
186
  _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
122
187
  _exclude_from_cpu_offload = ["safety_checker"]
188
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
123
189
 
124
190
  def __init__(
125
191
  self,
@@ -165,39 +231,6 @@ class StableDiffusionLDM3DPipeline(
165
231
  self.image_processor = VaeImageProcessorLDM3D(vae_scale_factor=self.vae_scale_factor)
166
232
  self.register_to_config(requires_safety_checker=requires_safety_checker)
167
233
 
168
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
169
- def enable_vae_slicing(self):
170
- r"""
171
- Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
172
- compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
173
- """
174
- self.vae.enable_slicing()
175
-
176
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
177
- def disable_vae_slicing(self):
178
- r"""
179
- Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
180
- computing decoding in one step.
181
- """
182
- self.vae.disable_slicing()
183
-
184
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
185
- def enable_vae_tiling(self):
186
- r"""
187
- Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
188
- compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
189
- processing larger images.
190
- """
191
- self.vae.enable_tiling()
192
-
193
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
194
- def disable_vae_tiling(self):
195
- r"""
196
- Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
197
- computing decoding in one step.
198
- """
199
- self.vae.disable_tiling()
200
-
201
234
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
202
235
  def _encode_prompt(
203
236
  self,
@@ -292,7 +325,7 @@ class StableDiffusionLDM3DPipeline(
292
325
  batch_size = prompt_embeds.shape[0]
293
326
 
294
327
  if prompt_embeds is None:
295
- # textual inversion: procecss multi-vector tokens if necessary
328
+ # textual inversion: process multi-vector tokens if necessary
296
329
  if isinstance(self, TextualInversionLoaderMixin):
297
330
  prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
298
331
 
@@ -374,7 +407,7 @@ class StableDiffusionLDM3DPipeline(
374
407
  else:
375
408
  uncond_tokens = negative_prompt
376
409
 
377
- # textual inversion: procecss multi-vector tokens if necessary
410
+ # textual inversion: process multi-vector tokens if necessary
378
411
  if isinstance(self, TextualInversionLoaderMixin):
379
412
  uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
380
413
 
@@ -439,31 +472,54 @@ class StableDiffusionLDM3DPipeline(
439
472
  return image_embeds, uncond_image_embeds
440
473
 
441
474
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
442
- def prepare_ip_adapter_image_embeds(self, ip_adapter_image, device, num_images_per_prompt):
443
- if not isinstance(ip_adapter_image, list):
444
- ip_adapter_image = [ip_adapter_image]
475
+ def prepare_ip_adapter_image_embeds(
476
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
477
+ ):
478
+ if ip_adapter_image_embeds is None:
479
+ if not isinstance(ip_adapter_image, list):
480
+ ip_adapter_image = [ip_adapter_image]
445
481
 
446
- if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
447
- raise ValueError(
448
- f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
449
- )
482
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
483
+ raise ValueError(
484
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
485
+ )
450
486
 
451
- image_embeds = []
452
- for single_ip_adapter_image, image_proj_layer in zip(
453
- ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
454
- ):
455
- output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
456
- single_image_embeds, single_negative_image_embeds = self.encode_image(
457
- single_ip_adapter_image, device, 1, output_hidden_state
458
- )
459
- single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
460
- single_negative_image_embeds = torch.stack([single_negative_image_embeds] * num_images_per_prompt, dim=0)
487
+ image_embeds = []
488
+ for single_ip_adapter_image, image_proj_layer in zip(
489
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
490
+ ):
491
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
492
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
493
+ single_ip_adapter_image, device, 1, output_hidden_state
494
+ )
495
+ single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
496
+ single_negative_image_embeds = torch.stack(
497
+ [single_negative_image_embeds] * num_images_per_prompt, dim=0
498
+ )
461
499
 
462
- if self.do_classifier_free_guidance:
463
- single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
464
- single_image_embeds = single_image_embeds.to(device)
500
+ if do_classifier_free_guidance:
501
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
502
+ single_image_embeds = single_image_embeds.to(device)
465
503
 
466
- image_embeds.append(single_image_embeds)
504
+ image_embeds.append(single_image_embeds)
505
+ else:
506
+ repeat_dims = [1]
507
+ image_embeds = []
508
+ for single_image_embeds in ip_adapter_image_embeds:
509
+ if do_classifier_free_guidance:
510
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
511
+ single_image_embeds = single_image_embeds.repeat(
512
+ num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
513
+ )
514
+ single_negative_image_embeds = single_negative_image_embeds.repeat(
515
+ num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
516
+ )
517
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
518
+ else:
519
+ single_image_embeds = single_image_embeds.repeat(
520
+ num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
521
+ )
522
+ image_embeds.append(single_image_embeds)
467
523
 
468
524
  return image_embeds
469
525
 
@@ -510,6 +566,8 @@ class StableDiffusionLDM3DPipeline(
510
566
  negative_prompt=None,
511
567
  prompt_embeds=None,
512
568
  negative_prompt_embeds=None,
569
+ ip_adapter_image=None,
570
+ ip_adapter_image_embeds=None,
513
571
  callback_on_step_end_tensor_inputs=None,
514
572
  ):
515
573
  if height % 8 != 0 or width % 8 != 0:
@@ -553,6 +611,21 @@ class StableDiffusionLDM3DPipeline(
553
611
  f" {negative_prompt_embeds.shape}."
554
612
  )
555
613
 
614
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
615
+ raise ValueError(
616
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
617
+ )
618
+
619
+ if ip_adapter_image_embeds is not None:
620
+ if not isinstance(ip_adapter_image_embeds, list):
621
+ raise ValueError(
622
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
623
+ )
624
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
625
+ raise ValueError(
626
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
627
+ )
628
+
556
629
  def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
557
630
  shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
558
631
  if isinstance(generator, list) and len(generator) != batch_size:
@@ -570,6 +643,66 @@ class StableDiffusionLDM3DPipeline(
570
643
  latents = latents * self.scheduler.init_noise_sigma
571
644
  return latents
572
645
 
646
+ # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
647
+ def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
648
+ """
649
+ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
650
+
651
+ Args:
652
+ timesteps (`torch.Tensor`):
653
+ generate embedding vectors at these timesteps
654
+ embedding_dim (`int`, *optional*, defaults to 512):
655
+ dimension of the embeddings to generate
656
+ dtype:
657
+ data type of the generated embeddings
658
+
659
+ Returns:
660
+ `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
661
+ """
662
+ assert len(w.shape) == 1
663
+ w = w * 1000.0
664
+
665
+ half_dim = embedding_dim // 2
666
+ emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
667
+ emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
668
+ emb = w.to(dtype)[:, None] * emb[None, :]
669
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
670
+ if embedding_dim % 2 == 1: # zero pad
671
+ emb = torch.nn.functional.pad(emb, (0, 1))
672
+ assert emb.shape == (w.shape[0], embedding_dim)
673
+ return emb
674
+
675
+ @property
676
+ def guidance_scale(self):
677
+ return self._guidance_scale
678
+
679
+ @property
680
+ def guidance_rescale(self):
681
+ return self._guidance_rescale
682
+
683
+ @property
684
+ def clip_skip(self):
685
+ return self._clip_skip
686
+
687
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
688
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
689
+ # corresponds to doing no classifier free guidance.
690
+ @property
691
+ def do_classifier_free_guidance(self):
692
+ return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
693
+
694
+ @property
695
+ def cross_attention_kwargs(self):
696
+ return self._cross_attention_kwargs
697
+
698
+ @property
699
+ def num_timesteps(self):
700
+ return self._num_timesteps
701
+
702
+ @property
703
+ def interrupt(self):
704
+ return self._interrupt
705
+
573
706
  @torch.no_grad()
574
707
  @replace_example_docstring(EXAMPLE_DOC_STRING)
575
708
  def __call__(
@@ -578,6 +711,7 @@ class StableDiffusionLDM3DPipeline(
578
711
  height: Optional[int] = None,
579
712
  width: Optional[int] = None,
580
713
  num_inference_steps: int = 49,
714
+ timesteps: List[int] = None,
581
715
  guidance_scale: float = 5.0,
582
716
  negative_prompt: Optional[Union[str, List[str]]] = None,
583
717
  num_images_per_prompt: Optional[int] = 1,
@@ -587,12 +721,15 @@ class StableDiffusionLDM3DPipeline(
587
721
  prompt_embeds: Optional[torch.FloatTensor] = None,
588
722
  negative_prompt_embeds: Optional[torch.FloatTensor] = None,
589
723
  ip_adapter_image: Optional[PipelineImageInput] = None,
724
+ ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
590
725
  output_type: Optional[str] = "pil",
591
726
  return_dict: bool = True,
592
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
593
- callback_steps: int = 1,
594
727
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
728
+ guidance_rescale: float = 0.0,
595
729
  clip_skip: Optional[int] = None,
730
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
731
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
732
+ **kwargs,
596
733
  ):
597
734
  r"""
598
735
  The call function to the pipeline for generation.
@@ -633,23 +770,31 @@ class StableDiffusionLDM3DPipeline(
633
770
  not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
634
771
  ip_adapter_image: (`PipelineImageInput`, *optional*):
635
772
  Optional image input to work with IP Adapters.
773
+ ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
774
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters.
775
+ Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding
776
+ if `do_classifier_free_guidance` is set to `True`.
777
+ If not provided, embeddings are computed from the `ip_adapter_image` input argument.
636
778
  output_type (`str`, *optional*, defaults to `"pil"`):
637
779
  The output format of the generated image. Choose between `PIL.Image` or `np.array`.
638
780
  return_dict (`bool`, *optional*, defaults to `True`):
639
781
  Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
640
782
  plain tuple.
641
- callback (`Callable`, *optional*):
642
- A function that calls every `callback_steps` steps during inference. The function is called with the
643
- following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
644
- callback_steps (`int`, *optional*, defaults to 1):
645
- The frequency at which the `callback` function is called. If not specified, the callback is called at
646
- every step.
647
783
  cross_attention_kwargs (`dict`, *optional*):
648
784
  A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
649
785
  [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
650
786
  clip_skip (`int`, *optional*):
651
787
  Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
652
788
  the output of the pre-final layer will be used for computing the prompt embeddings.
789
+ callback_on_step_end (`Callable`, *optional*):
790
+ A function that calls at the end of each denoising steps during the inference. The function is called
791
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
792
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
793
+ `callback_on_step_end_tensor_inputs`.
794
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
795
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
796
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
797
+ `._callback_tensor_inputs` attribute of your pipeline class.
653
798
  Examples:
654
799
 
655
800
  Returns:
@@ -659,15 +804,46 @@ class StableDiffusionLDM3DPipeline(
659
804
  second element is a list of `bool`s indicating whether the corresponding generated image contains
660
805
  "not-safe-for-work" (nsfw) content.
661
806
  """
807
+ callback = kwargs.pop("callback", None)
808
+ callback_steps = kwargs.pop("callback_steps", None)
809
+
810
+ if callback is not None:
811
+ deprecate(
812
+ "callback",
813
+ "1.0.0",
814
+ "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
815
+ )
816
+ if callback_steps is not None:
817
+ deprecate(
818
+ "callback_steps",
819
+ "1.0.0",
820
+ "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
821
+ )
822
+
662
823
  # 0. Default height and width to unet
663
824
  height = height or self.unet.config.sample_size * self.vae_scale_factor
664
825
  width = width or self.unet.config.sample_size * self.vae_scale_factor
665
826
 
666
827
  # 1. Check inputs. Raise error if not correct
667
828
  self.check_inputs(
668
- prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
829
+ prompt,
830
+ height,
831
+ width,
832
+ callback_steps,
833
+ negative_prompt,
834
+ prompt_embeds,
835
+ negative_prompt_embeds,
836
+ ip_adapter_image,
837
+ ip_adapter_image_embeds,
838
+ callback_on_step_end_tensor_inputs,
669
839
  )
670
840
 
841
+ self._guidance_scale = guidance_scale
842
+ self._guidance_rescale = guidance_rescale
843
+ self._clip_skip = clip_skip
844
+ self._cross_attention_kwargs = cross_attention_kwargs
845
+ self._interrupt = False
846
+
671
847
  # 2. Define call parameters
672
848
  if prompt is not None and isinstance(prompt, str):
673
849
  batch_size = 1
@@ -677,14 +853,14 @@ class StableDiffusionLDM3DPipeline(
677
853
  batch_size = prompt_embeds.shape[0]
678
854
 
679
855
  device = self._execution_device
680
- # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
681
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
682
- # corresponds to doing no classifier free guidance.
683
- do_classifier_free_guidance = guidance_scale > 1.0
684
856
 
685
- if ip_adapter_image is not None:
857
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
686
858
  image_embeds = self.prepare_ip_adapter_image_embeds(
687
- ip_adapter_image, device, batch_size * num_images_per_prompt
859
+ ip_adapter_image,
860
+ ip_adapter_image_embeds,
861
+ device,
862
+ batch_size * num_images_per_prompt,
863
+ self.do_classifier_free_guidance,
688
864
  )
689
865
 
690
866
  # 3. Encode input prompt
@@ -692,7 +868,7 @@ class StableDiffusionLDM3DPipeline(
692
868
  prompt,
693
869
  device,
694
870
  num_images_per_prompt,
695
- do_classifier_free_guidance,
871
+ self.do_classifier_free_guidance,
696
872
  negative_prompt,
697
873
  prompt_embeds=prompt_embeds,
698
874
  negative_prompt_embeds=negative_prompt_embeds,
@@ -701,12 +877,11 @@ class StableDiffusionLDM3DPipeline(
701
877
  # For classifier free guidance, we need to do two forward passes.
702
878
  # Here we concatenate the unconditional and text embeddings into a single batch
703
879
  # to avoid doing two forward passes
704
- if do_classifier_free_guidance:
880
+ if self.do_classifier_free_guidance:
705
881
  prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
706
882
 
707
883
  # 4. Prepare timesteps
708
- self.scheduler.set_timesteps(num_inference_steps, device=device)
709
- timesteps = self.scheduler.timesteps
884
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
710
885
 
711
886
  # 5. Prepare latent variables
712
887
  num_channels_latents = self.unet.config.in_channels
@@ -727,12 +902,24 @@ class StableDiffusionLDM3DPipeline(
727
902
  # 6.1 Add image embeds for IP-Adapter
728
903
  added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
729
904
 
905
+ # 6.2 Optionally get Guidance Scale Embedding
906
+ timestep_cond = None
907
+ if self.unet.config.time_cond_proj_dim is not None:
908
+ guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
909
+ timestep_cond = self.get_guidance_scale_embedding(
910
+ guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
911
+ ).to(device=device, dtype=latents.dtype)
912
+
730
913
  # 7. Denoising loop
731
914
  num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
915
+ self._num_timesteps = len(timesteps)
732
916
  with self.progress_bar(total=num_inference_steps) as progress_bar:
733
917
  for i, t in enumerate(timesteps):
918
+ if self.interrupt:
919
+ continue
920
+
734
921
  # expand the latents if we are doing classifier free guidance
735
- latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
922
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
736
923
  latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
737
924
 
738
925
  # predict the noise residual
@@ -740,19 +927,34 @@ class StableDiffusionLDM3DPipeline(
740
927
  latent_model_input,
741
928
  t,
742
929
  encoder_hidden_states=prompt_embeds,
930
+ timestep_cond=timestep_cond,
743
931
  cross_attention_kwargs=cross_attention_kwargs,
744
932
  added_cond_kwargs=added_cond_kwargs,
745
933
  return_dict=False,
746
934
  )[0]
747
935
 
748
936
  # perform guidance
749
- if do_classifier_free_guidance:
937
+ if self.do_classifier_free_guidance:
750
938
  noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
751
939
  noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
752
940
 
941
+ if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
942
+ # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
943
+ noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
944
+
753
945
  # compute the previous noisy sample x_t -> x_t-1
754
946
  latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
755
947
 
948
+ if callback_on_step_end is not None:
949
+ callback_kwargs = {}
950
+ for k in callback_on_step_end_tensor_inputs:
951
+ callback_kwargs[k] = locals()[k]
952
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
953
+
954
+ latents = callback_outputs.pop("latents", latents)
955
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
956
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
957
+
756
958
  # call the callback, if provided
757
959
  if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
758
960
  progress_bar.update()