diffusers 0.26.3__py3-none-any.whl → 0.27.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +20 -1
- diffusers/commands/__init__.py +1 -1
- diffusers/commands/diffusers_cli.py +1 -1
- diffusers/commands/env.py +1 -1
- diffusers/commands/fp16_safetensors.py +1 -1
- diffusers/configuration_utils.py +7 -3
- diffusers/dependency_versions_check.py +1 -1
- diffusers/dependency_versions_table.py +2 -2
- diffusers/experimental/rl/value_guided_sampling.py +1 -1
- diffusers/image_processor.py +110 -4
- diffusers/loaders/autoencoder.py +7 -8
- diffusers/loaders/controlnet.py +17 -8
- diffusers/loaders/ip_adapter.py +86 -23
- diffusers/loaders/lora.py +105 -310
- diffusers/loaders/lora_conversion_utils.py +1 -1
- diffusers/loaders/peft.py +1 -1
- diffusers/loaders/single_file.py +51 -12
- diffusers/loaders/single_file_utils.py +274 -49
- diffusers/loaders/textual_inversion.py +23 -4
- diffusers/loaders/unet.py +195 -41
- diffusers/loaders/utils.py +1 -1
- diffusers/models/__init__.py +3 -1
- diffusers/models/activations.py +9 -9
- diffusers/models/attention.py +26 -36
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +171 -114
- diffusers/models/autoencoders/autoencoder_asym_kl.py +1 -1
- diffusers/models/autoencoders/autoencoder_kl.py +3 -1
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
- diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
- diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
- diffusers/models/autoencoders/vae.py +1 -1
- diffusers/models/controlnet.py +1 -1
- diffusers/models/controlnet_flax.py +1 -1
- diffusers/models/downsampling.py +8 -12
- diffusers/models/dual_transformer_2d.py +1 -1
- diffusers/models/embeddings.py +3 -4
- diffusers/models/embeddings_flax.py +1 -1
- diffusers/models/lora.py +33 -10
- diffusers/models/modeling_flax_pytorch_utils.py +1 -1
- diffusers/models/modeling_flax_utils.py +1 -1
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +4 -6
- diffusers/models/normalization.py +1 -1
- diffusers/models/resnet.py +31 -58
- diffusers/models/resnet_flax.py +1 -1
- diffusers/models/t5_film_transformer.py +1 -1
- diffusers/models/transformer_2d.py +1 -1
- diffusers/models/transformer_temporal.py +1 -1
- diffusers/models/transformers/dual_transformer_2d.py +1 -1
- diffusers/models/transformers/t5_film_transformer.py +1 -1
- diffusers/models/transformers/transformer_2d.py +29 -31
- diffusers/models/transformers/transformer_temporal.py +1 -1
- diffusers/models/unet_1d.py +1 -1
- diffusers/models/unet_1d_blocks.py +1 -1
- diffusers/models/unet_2d.py +1 -1
- diffusers/models/unet_2d_blocks.py +1 -1
- diffusers/models/unet_2d_condition.py +1 -1
- diffusers/models/unets/__init__.py +1 -0
- diffusers/models/unets/unet_1d.py +1 -1
- diffusers/models/unets/unet_1d_blocks.py +1 -1
- diffusers/models/unets/unet_2d.py +4 -4
- diffusers/models/unets/unet_2d_blocks.py +238 -98
- diffusers/models/unets/unet_2d_blocks_flax.py +1 -1
- diffusers/models/unets/unet_2d_condition.py +420 -323
- diffusers/models/unets/unet_2d_condition_flax.py +21 -12
- diffusers/models/unets/unet_3d_blocks.py +50 -40
- diffusers/models/unets/unet_3d_condition.py +47 -8
- diffusers/models/unets/unet_i2vgen_xl.py +75 -30
- diffusers/models/unets/unet_kandinsky3.py +1 -1
- diffusers/models/unets/unet_motion_model.py +48 -8
- diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
- diffusers/models/unets/unet_stable_cascade.py +610 -0
- diffusers/models/unets/uvit_2d.py +1 -1
- diffusers/models/upsampling.py +10 -16
- diffusers/models/vae_flax.py +1 -1
- diffusers/models/vq_model.py +1 -1
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +26 -0
- diffusers/pipelines/amused/pipeline_amused.py +1 -1
- diffusers/pipelines/amused/pipeline_amused_img2img.py +1 -1
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +1 -1
- diffusers/pipelines/animatediff/pipeline_animatediff.py +162 -417
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +165 -137
- diffusers/pipelines/animatediff/pipeline_output.py +7 -6
- diffusers/pipelines/audioldm/pipeline_audioldm.py +3 -19
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +3 -3
- diffusers/pipelines/auto_pipeline.py +7 -16
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +2 -2
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
- diffusers/pipelines/controlnet/pipeline_controlnet.py +90 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +98 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +92 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +145 -70
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +126 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +108 -96
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -1
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -1
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +4 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +4 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +5 -5
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +4 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +5 -5
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +5 -5
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +10 -120
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +10 -91
- diffusers/pipelines/deprecated/audio_diffusion/mel.py +1 -1
- diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py +1 -1
- diffusers/pipelines/deprecated/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py +1 -1
- diffusers/pipelines/deprecated/pndm/pipeline_pndm.py +1 -1
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +1 -1
- diffusers/pipelines/deprecated/score_sde_ve/pipeline_score_sde_ve.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/continuous_encoder.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/midi_utils.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/notes_encoder.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -1
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +5 -4
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +5 -4
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +7 -22
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +5 -39
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +5 -5
- diffusers/pipelines/deprecated/stochastic_karras_ve/pipeline_stochastic_karras_ve.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +31 -22
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -2
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +1 -1
- diffusers/pipelines/dit/pipeline_dit.py +1 -1
- diffusers/pipelines/free_init_utils.py +184 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +22 -104
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +2 -2
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +2 -2
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +104 -93
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +112 -74
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
- diffusers/pipelines/ledits_pp/__init__.py +55 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +1505 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +1797 -0
- diffusers/pipelines/ledits_pp/pipeline_output.py +43 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +3 -19
- diffusers/pipelines/onnx_utils.py +1 -1
- diffusers/pipelines/paint_by_example/image_encoder.py +1 -1
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +3 -3
- diffusers/pipelines/pia/pipeline_pia.py +168 -327
- diffusers/pipelines/pipeline_flax_utils.py +1 -1
- diffusers/pipelines/pipeline_loading_utils.py +508 -0
- diffusers/pipelines/pipeline_utils.py +188 -534
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +56 -10
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +3 -3
- diffusers/pipelines/shap_e/camera.py +1 -1
- diffusers/pipelines/shap_e/pipeline_shap_e.py +1 -1
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +1 -1
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_cascade/__init__.py +50 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +482 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +311 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +638 -0
- diffusers/pipelines/stable_diffusion/clip_image_project_model.py +1 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +4 -1
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +90 -146
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +5 -4
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +4 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -119
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -119
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +13 -59
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +3 -31
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +5 -33
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -21
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +7 -21
- diffusers/pipelines/stable_diffusion/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion/safety_checker_flax.py +1 -1
- diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py +1 -1
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +5 -21
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +9 -38
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -34
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +6 -35
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +7 -6
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +4 -124
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +282 -80
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +94 -46
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +3 -3
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +6 -22
- diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +96 -148
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +98 -154
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +98 -153
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +25 -87
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +89 -80
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +5 -49
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +80 -88
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +8 -6
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +15 -86
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +20 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +5 -5
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +3 -19
- diffusers/pipelines/unclip/pipeline_unclip.py +1 -1
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -1
- diffusers/pipelines/unclip/text_proj.py +1 -1
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +35 -35
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +4 -21
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py +2 -2
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +4 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +8 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +2 -2
- diffusers/schedulers/__init__.py +7 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +1 -1
- diffusers/schedulers/deprecated/scheduling_sde_vp.py +1 -1
- diffusers/schedulers/scheduling_consistency_models.py +42 -19
- diffusers/schedulers/scheduling_ddim.py +2 -4
- diffusers/schedulers/scheduling_ddim_flax.py +13 -5
- diffusers/schedulers/scheduling_ddim_inverse.py +2 -4
- diffusers/schedulers/scheduling_ddim_parallel.py +2 -4
- diffusers/schedulers/scheduling_ddpm.py +2 -4
- diffusers/schedulers/scheduling_ddpm_flax.py +1 -1
- diffusers/schedulers/scheduling_ddpm_parallel.py +2 -4
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +1 -1
- diffusers/schedulers/scheduling_deis_multistep.py +46 -19
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +107 -21
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +1 -1
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +9 -7
- diffusers/schedulers/scheduling_dpmsolver_sde.py +35 -35
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +49 -18
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +683 -0
- diffusers/schedulers/scheduling_edm_euler.py +381 -0
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +43 -15
- diffusers/schedulers/scheduling_euler_discrete.py +42 -17
- diffusers/schedulers/scheduling_euler_discrete_flax.py +1 -1
- diffusers/schedulers/scheduling_heun_discrete.py +35 -35
- diffusers/schedulers/scheduling_ipndm.py +37 -11
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +44 -44
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +44 -44
- diffusers/schedulers/scheduling_karras_ve_flax.py +1 -1
- diffusers/schedulers/scheduling_lcm.py +38 -14
- diffusers/schedulers/scheduling_lms_discrete.py +43 -15
- diffusers/schedulers/scheduling_lms_discrete_flax.py +1 -1
- diffusers/schedulers/scheduling_pndm.py +2 -4
- diffusers/schedulers/scheduling_pndm_flax.py +2 -4
- diffusers/schedulers/scheduling_repaint.py +1 -1
- diffusers/schedulers/scheduling_sasolver.py +41 -9
- diffusers/schedulers/scheduling_sde_ve.py +1 -1
- diffusers/schedulers/scheduling_sde_ve_flax.py +1 -1
- diffusers/schedulers/scheduling_tcd.py +686 -0
- diffusers/schedulers/scheduling_unclip.py +1 -1
- diffusers/schedulers/scheduling_unipc_multistep.py +46 -19
- diffusers/schedulers/scheduling_utils.py +2 -1
- diffusers/schedulers/scheduling_utils_flax.py +1 -1
- diffusers/schedulers/scheduling_vq_diffusion.py +1 -1
- diffusers/training_utils.py +9 -2
- diffusers/utils/__init__.py +2 -1
- diffusers/utils/accelerate_utils.py +1 -1
- diffusers/utils/constants.py +1 -1
- diffusers/utils/doc_utils.py +1 -1
- diffusers/utils/dummy_pt_objects.py +60 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +75 -0
- diffusers/utils/dynamic_modules_utils.py +1 -1
- diffusers/utils/export_utils.py +3 -3
- diffusers/utils/hub_utils.py +60 -16
- diffusers/utils/import_utils.py +15 -1
- diffusers/utils/loading_utils.py +2 -0
- diffusers/utils/logging.py +1 -1
- diffusers/utils/model_card_template.md +24 -0
- diffusers/utils/outputs.py +14 -7
- diffusers/utils/peft_utils.py +1 -1
- diffusers/utils/state_dict_utils.py +1 -1
- diffusers/utils/testing_utils.py +2 -0
- diffusers/utils/torch_utils.py +1 -1
- {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/METADATA +46 -46
- diffusers-0.27.0.dist-info/RECORD +399 -0
- {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/WHEEL +1 -1
- diffusers-0.26.3.dist-info/RECORD +0 -384
- {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/LICENSE +0 -0
- {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/entry_points.txt +0 -0
- {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1797 @@
|
|
1
|
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import inspect
|
16
|
+
import math
|
17
|
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
18
|
+
|
19
|
+
import torch
|
20
|
+
import torch.nn.functional as F
|
21
|
+
from transformers import (
|
22
|
+
CLIPImageProcessor,
|
23
|
+
CLIPTextModel,
|
24
|
+
CLIPTextModelWithProjection,
|
25
|
+
CLIPTokenizer,
|
26
|
+
CLIPVisionModelWithProjection,
|
27
|
+
)
|
28
|
+
|
29
|
+
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
30
|
+
from ...loaders import (
|
31
|
+
FromSingleFileMixin,
|
32
|
+
IPAdapterMixin,
|
33
|
+
StableDiffusionXLLoraLoaderMixin,
|
34
|
+
TextualInversionLoaderMixin,
|
35
|
+
)
|
36
|
+
from ...models import AutoencoderKL, UNet2DConditionModel
|
37
|
+
from ...models.attention_processor import (
|
38
|
+
Attention,
|
39
|
+
AttnProcessor,
|
40
|
+
AttnProcessor2_0,
|
41
|
+
LoRAAttnProcessor2_0,
|
42
|
+
LoRAXFormersAttnProcessor,
|
43
|
+
XFormersAttnProcessor,
|
44
|
+
)
|
45
|
+
from ...models.lora import adjust_lora_scale_text_encoder
|
46
|
+
from ...schedulers import DDIMScheduler, DPMSolverMultistepScheduler
|
47
|
+
from ...utils import (
|
48
|
+
USE_PEFT_BACKEND,
|
49
|
+
is_invisible_watermark_available,
|
50
|
+
is_torch_xla_available,
|
51
|
+
logging,
|
52
|
+
replace_example_docstring,
|
53
|
+
scale_lora_layers,
|
54
|
+
unscale_lora_layers,
|
55
|
+
)
|
56
|
+
from ...utils.torch_utils import randn_tensor
|
57
|
+
from ..pipeline_utils import DiffusionPipeline
|
58
|
+
from .pipeline_output import LEditsPPDiffusionPipelineOutput, LEditsPPInversionPipelineOutput
|
59
|
+
|
60
|
+
|
61
|
+
if is_invisible_watermark_available():
|
62
|
+
from ..stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
|
63
|
+
|
64
|
+
if is_torch_xla_available():
|
65
|
+
import torch_xla.core.xla_model as xm
|
66
|
+
|
67
|
+
XLA_AVAILABLE = True
|
68
|
+
else:
|
69
|
+
XLA_AVAILABLE = False
|
70
|
+
|
71
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
72
|
+
|
73
|
+
EXAMPLE_DOC_STRING = """
|
74
|
+
Examples:
|
75
|
+
```py
|
76
|
+
>>> import torch
|
77
|
+
>>> import PIL
|
78
|
+
>>> import requests
|
79
|
+
>>> from io import BytesIO
|
80
|
+
|
81
|
+
>>> from diffusers import LEditsPPPipelineStableDiffusionXL
|
82
|
+
|
83
|
+
>>> pipe = LEditsPPPipelineStableDiffusionXL.from_pretrained(
|
84
|
+
... "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
85
|
+
... )
|
86
|
+
>>> pipe = pipe.to("cuda")
|
87
|
+
|
88
|
+
>>> def download_image(url):
|
89
|
+
... response = requests.get(url)
|
90
|
+
... return PIL.Image.open(BytesIO(response.content)).convert("RGB")
|
91
|
+
|
92
|
+
>>> img_url = "https://www.aiml.informatik.tu-darmstadt.de/people/mbrack/tennis.jpg"
|
93
|
+
>>> image = download_image(img_url)
|
94
|
+
|
95
|
+
>>> _ = pipe.invert(
|
96
|
+
... image = image,
|
97
|
+
... num_inversion_steps=50,
|
98
|
+
... skip=0.2
|
99
|
+
... )
|
100
|
+
|
101
|
+
>>> edited_image = pipe(
|
102
|
+
... editing_prompt=["tennis ball","tomato"],
|
103
|
+
... reverse_editing_direction=[True,False],
|
104
|
+
... edit_guidance_scale=[5.0,10.0],
|
105
|
+
... edit_threshold=[0.9,0.85],
|
106
|
+
).images[0]
|
107
|
+
```
|
108
|
+
"""
|
109
|
+
|
110
|
+
|
111
|
+
# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LeditsAttentionStore
|
112
|
+
class LeditsAttentionStore:
|
113
|
+
@staticmethod
|
114
|
+
def get_empty_store():
|
115
|
+
return {"down_cross": [], "mid_cross": [], "up_cross": [], "down_self": [], "mid_self": [], "up_self": []}
|
116
|
+
|
117
|
+
def __call__(self, attn, is_cross: bool, place_in_unet: str, editing_prompts, PnP=False):
|
118
|
+
# attn.shape = batch_size * head_size, seq_len query, seq_len_key
|
119
|
+
if attn.shape[1] <= self.max_size:
|
120
|
+
bs = 1 + int(PnP) + editing_prompts
|
121
|
+
skip = 2 if PnP else 1 # skip PnP & unconditional
|
122
|
+
attn = torch.stack(attn.split(self.batch_size)).permute(1, 0, 2, 3)
|
123
|
+
source_batch_size = int(attn.shape[1] // bs)
|
124
|
+
self.forward(attn[:, skip * source_batch_size :], is_cross, place_in_unet)
|
125
|
+
|
126
|
+
def forward(self, attn, is_cross: bool, place_in_unet: str):
|
127
|
+
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
|
128
|
+
|
129
|
+
self.step_store[key].append(attn)
|
130
|
+
|
131
|
+
def between_steps(self, store_step=True):
|
132
|
+
if store_step:
|
133
|
+
if self.average:
|
134
|
+
if len(self.attention_store) == 0:
|
135
|
+
self.attention_store = self.step_store
|
136
|
+
else:
|
137
|
+
for key in self.attention_store:
|
138
|
+
for i in range(len(self.attention_store[key])):
|
139
|
+
self.attention_store[key][i] += self.step_store[key][i]
|
140
|
+
else:
|
141
|
+
if len(self.attention_store) == 0:
|
142
|
+
self.attention_store = [self.step_store]
|
143
|
+
else:
|
144
|
+
self.attention_store.append(self.step_store)
|
145
|
+
|
146
|
+
self.cur_step += 1
|
147
|
+
self.step_store = self.get_empty_store()
|
148
|
+
|
149
|
+
def get_attention(self, step: int):
|
150
|
+
if self.average:
|
151
|
+
attention = {
|
152
|
+
key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store
|
153
|
+
}
|
154
|
+
else:
|
155
|
+
assert step is not None
|
156
|
+
attention = self.attention_store[step]
|
157
|
+
return attention
|
158
|
+
|
159
|
+
def aggregate_attention(
|
160
|
+
self, attention_maps, prompts, res: Union[int, Tuple[int]], from_where: List[str], is_cross: bool, select: int
|
161
|
+
):
|
162
|
+
out = [[] for x in range(self.batch_size)]
|
163
|
+
if isinstance(res, int):
|
164
|
+
num_pixels = res**2
|
165
|
+
resolution = (res, res)
|
166
|
+
else:
|
167
|
+
num_pixels = res[0] * res[1]
|
168
|
+
resolution = res[:2]
|
169
|
+
|
170
|
+
for location in from_where:
|
171
|
+
for bs_item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
|
172
|
+
for batch, item in enumerate(bs_item):
|
173
|
+
if item.shape[1] == num_pixels:
|
174
|
+
cross_maps = item.reshape(len(prompts), -1, *resolution, item.shape[-1])[select]
|
175
|
+
out[batch].append(cross_maps)
|
176
|
+
|
177
|
+
out = torch.stack([torch.cat(x, dim=0) for x in out])
|
178
|
+
# average over heads
|
179
|
+
out = out.sum(1) / out.shape[1]
|
180
|
+
return out
|
181
|
+
|
182
|
+
def __init__(self, average: bool, batch_size=1, max_resolution=16, max_size: int = None):
|
183
|
+
self.step_store = self.get_empty_store()
|
184
|
+
self.attention_store = []
|
185
|
+
self.cur_step = 0
|
186
|
+
self.average = average
|
187
|
+
self.batch_size = batch_size
|
188
|
+
if max_size is None:
|
189
|
+
self.max_size = max_resolution**2
|
190
|
+
elif max_size is not None and max_resolution is None:
|
191
|
+
self.max_size = max_size
|
192
|
+
else:
|
193
|
+
raise ValueError("Only allowed to set one of max_resolution or max_size")
|
194
|
+
|
195
|
+
|
196
|
+
# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LeditsGaussianSmoothing
|
197
|
+
class LeditsGaussianSmoothing:
|
198
|
+
def __init__(self, device):
|
199
|
+
kernel_size = [3, 3]
|
200
|
+
sigma = [0.5, 0.5]
|
201
|
+
|
202
|
+
# The gaussian kernel is the product of the gaussian function of each dimension.
|
203
|
+
kernel = 1
|
204
|
+
meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size])
|
205
|
+
for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
|
206
|
+
mean = (size - 1) / 2
|
207
|
+
kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-(((mgrid - mean) / (2 * std)) ** 2))
|
208
|
+
|
209
|
+
# Make sure sum of values in gaussian kernel equals 1.
|
210
|
+
kernel = kernel / torch.sum(kernel)
|
211
|
+
|
212
|
+
# Reshape to depthwise convolutional weight
|
213
|
+
kernel = kernel.view(1, 1, *kernel.size())
|
214
|
+
kernel = kernel.repeat(1, *[1] * (kernel.dim() - 1))
|
215
|
+
|
216
|
+
self.weight = kernel.to(device)
|
217
|
+
|
218
|
+
def __call__(self, input):
|
219
|
+
"""
|
220
|
+
Arguments:
|
221
|
+
Apply gaussian filter to input.
|
222
|
+
input (torch.Tensor): Input to apply gaussian filter on.
|
223
|
+
Returns:
|
224
|
+
filtered (torch.Tensor): Filtered output.
|
225
|
+
"""
|
226
|
+
return F.conv2d(input, weight=self.weight.to(input.dtype))
|
227
|
+
|
228
|
+
|
229
|
+
# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LEDITSCrossAttnProcessor
|
230
|
+
class LEDITSCrossAttnProcessor:
|
231
|
+
def __init__(self, attention_store, place_in_unet, pnp, editing_prompts):
|
232
|
+
self.attnstore = attention_store
|
233
|
+
self.place_in_unet = place_in_unet
|
234
|
+
self.editing_prompts = editing_prompts
|
235
|
+
self.pnp = pnp
|
236
|
+
|
237
|
+
def __call__(
|
238
|
+
self,
|
239
|
+
attn: Attention,
|
240
|
+
hidden_states,
|
241
|
+
encoder_hidden_states,
|
242
|
+
attention_mask=None,
|
243
|
+
temb=None,
|
244
|
+
):
|
245
|
+
batch_size, sequence_length, _ = (
|
246
|
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
247
|
+
)
|
248
|
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
249
|
+
|
250
|
+
query = attn.to_q(hidden_states)
|
251
|
+
|
252
|
+
if encoder_hidden_states is None:
|
253
|
+
encoder_hidden_states = hidden_states
|
254
|
+
elif attn.norm_cross:
|
255
|
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
256
|
+
|
257
|
+
key = attn.to_k(encoder_hidden_states)
|
258
|
+
value = attn.to_v(encoder_hidden_states)
|
259
|
+
|
260
|
+
query = attn.head_to_batch_dim(query)
|
261
|
+
key = attn.head_to_batch_dim(key)
|
262
|
+
value = attn.head_to_batch_dim(value)
|
263
|
+
|
264
|
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
265
|
+
self.attnstore(
|
266
|
+
attention_probs,
|
267
|
+
is_cross=True,
|
268
|
+
place_in_unet=self.place_in_unet,
|
269
|
+
editing_prompts=self.editing_prompts,
|
270
|
+
PnP=self.pnp,
|
271
|
+
)
|
272
|
+
|
273
|
+
hidden_states = torch.bmm(attention_probs, value)
|
274
|
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
275
|
+
|
276
|
+
# linear proj
|
277
|
+
hidden_states = attn.to_out[0](hidden_states)
|
278
|
+
# dropout
|
279
|
+
hidden_states = attn.to_out[1](hidden_states)
|
280
|
+
|
281
|
+
hidden_states = hidden_states / attn.rescale_output_factor
|
282
|
+
return hidden_states
|
283
|
+
|
284
|
+
|
285
|
+
class LEditsPPPipelineStableDiffusionXL(
|
286
|
+
DiffusionPipeline,
|
287
|
+
FromSingleFileMixin,
|
288
|
+
StableDiffusionXLLoraLoaderMixin,
|
289
|
+
TextualInversionLoaderMixin,
|
290
|
+
IPAdapterMixin,
|
291
|
+
):
|
292
|
+
"""
|
293
|
+
Pipeline for textual image editing using LEDits++ with Stable Diffusion XL.
|
294
|
+
|
295
|
+
This model inherits from [`DiffusionPipeline`] and builds on the [`StableDiffusionXLPipeline`]. Check the superclass
|
296
|
+
documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular
|
297
|
+
device, etc.).
|
298
|
+
|
299
|
+
In addition the pipeline inherits the following loading methods:
|
300
|
+
- *LoRA*: [`LEditsPPPipelineStableDiffusionXL.load_lora_weights`]
|
301
|
+
- *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
|
302
|
+
|
303
|
+
as well as the following saving methods:
|
304
|
+
- *LoRA*: [`loaders.StableDiffusionXLPipeline.save_lora_weights`]
|
305
|
+
|
306
|
+
Args:
|
307
|
+
vae ([`AutoencoderKL`]):
|
308
|
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
309
|
+
text_encoder ([`~transformers.CLIPTextModel`]):
|
310
|
+
Frozen text-encoder. Stable Diffusion XL uses the text portion of
|
311
|
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
312
|
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
313
|
+
text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]):
|
314
|
+
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
|
315
|
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
316
|
+
specifically the
|
317
|
+
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
318
|
+
variant.
|
319
|
+
tokenizer ([`~transformers.CLIPTokenizer`]):
|
320
|
+
Tokenizer of class
|
321
|
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
322
|
+
tokenizer_2 ([`~transformers.CLIPTokenizer`]):
|
323
|
+
Second Tokenizer of class
|
324
|
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
325
|
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
326
|
+
scheduler ([`DPMSolverMultistepScheduler`] or [`DDIMScheduler`]):
|
327
|
+
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
|
328
|
+
[`DPMSolverMultistepScheduler`] or [`DDIMScheduler`]. If any other scheduler is passed it will automatically
|
329
|
+
be set to [`DPMSolverMultistepScheduler`].
|
330
|
+
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
331
|
+
Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
|
332
|
+
`stabilityai/stable-diffusion-xl-base-1-0`.
|
333
|
+
add_watermarker (`bool`, *optional*):
|
334
|
+
Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
|
335
|
+
watermark output images. If not defined, it will default to True if the package is installed, otherwise no
|
336
|
+
watermarker will be used.
|
337
|
+
"""
|
338
|
+
|
339
|
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
|
340
|
+
_optional_components = [
|
341
|
+
"tokenizer",
|
342
|
+
"tokenizer_2",
|
343
|
+
"text_encoder",
|
344
|
+
"text_encoder_2",
|
345
|
+
"image_encoder",
|
346
|
+
"feature_extractor",
|
347
|
+
]
|
348
|
+
_callback_tensor_inputs = [
|
349
|
+
"latents",
|
350
|
+
"prompt_embeds",
|
351
|
+
"negative_prompt_embeds",
|
352
|
+
"add_text_embeds",
|
353
|
+
"add_time_ids",
|
354
|
+
"negative_pooled_prompt_embeds",
|
355
|
+
"negative_add_time_ids",
|
356
|
+
]
|
357
|
+
|
358
|
+
def __init__(
|
359
|
+
self,
|
360
|
+
vae: AutoencoderKL,
|
361
|
+
text_encoder: CLIPTextModel,
|
362
|
+
text_encoder_2: CLIPTextModelWithProjection,
|
363
|
+
tokenizer: CLIPTokenizer,
|
364
|
+
tokenizer_2: CLIPTokenizer,
|
365
|
+
unet: UNet2DConditionModel,
|
366
|
+
scheduler: Union[DPMSolverMultistepScheduler, DDIMScheduler],
|
367
|
+
image_encoder: CLIPVisionModelWithProjection = None,
|
368
|
+
feature_extractor: CLIPImageProcessor = None,
|
369
|
+
force_zeros_for_empty_prompt: bool = True,
|
370
|
+
add_watermarker: Optional[bool] = None,
|
371
|
+
):
|
372
|
+
super().__init__()
|
373
|
+
|
374
|
+
self.register_modules(
|
375
|
+
vae=vae,
|
376
|
+
text_encoder=text_encoder,
|
377
|
+
text_encoder_2=text_encoder_2,
|
378
|
+
tokenizer=tokenizer,
|
379
|
+
tokenizer_2=tokenizer_2,
|
380
|
+
unet=unet,
|
381
|
+
scheduler=scheduler,
|
382
|
+
image_encoder=image_encoder,
|
383
|
+
feature_extractor=feature_extractor,
|
384
|
+
)
|
385
|
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
386
|
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
387
|
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
388
|
+
|
389
|
+
if not isinstance(scheduler, DDIMScheduler) and not isinstance(scheduler, DPMSolverMultistepScheduler):
|
390
|
+
self.scheduler = DPMSolverMultistepScheduler.from_config(
|
391
|
+
scheduler.config, algorithm_type="sde-dpmsolver++", solver_order=2
|
392
|
+
)
|
393
|
+
logger.warning(
|
394
|
+
"This pipeline only supports DDIMScheduler and DPMSolverMultistepScheduler. "
|
395
|
+
"The scheduler has been changed to DPMSolverMultistepScheduler."
|
396
|
+
)
|
397
|
+
|
398
|
+
self.default_sample_size = self.unet.config.sample_size
|
399
|
+
|
400
|
+
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
|
401
|
+
|
402
|
+
if add_watermarker:
|
403
|
+
self.watermark = StableDiffusionXLWatermarker()
|
404
|
+
else:
|
405
|
+
self.watermark = None
|
406
|
+
self.inversion_steps = None
|
407
|
+
|
408
|
+
def encode_prompt(
|
409
|
+
self,
|
410
|
+
device: Optional[torch.device] = None,
|
411
|
+
num_images_per_prompt: int = 1,
|
412
|
+
negative_prompt: Optional[str] = None,
|
413
|
+
negative_prompt_2: Optional[str] = None,
|
414
|
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
415
|
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
416
|
+
lora_scale: Optional[float] = None,
|
417
|
+
clip_skip: Optional[int] = None,
|
418
|
+
enable_edit_guidance: bool = True,
|
419
|
+
editing_prompt: Optional[str] = None,
|
420
|
+
editing_prompt_embeds: Optional[torch.FloatTensor] = None,
|
421
|
+
editing_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
422
|
+
) -> object:
|
423
|
+
r"""
|
424
|
+
Encodes the prompt into text encoder hidden states.
|
425
|
+
|
426
|
+
Args:
|
427
|
+
device: (`torch.device`):
|
428
|
+
torch device
|
429
|
+
num_images_per_prompt (`int`):
|
430
|
+
number of images that should be generated per prompt
|
431
|
+
negative_prompt (`str` or `List[str]`, *optional*):
|
432
|
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
433
|
+
`negative_prompt_embeds` instead.
|
434
|
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
435
|
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
436
|
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
437
|
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
438
|
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
439
|
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
440
|
+
argument.
|
441
|
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
442
|
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
443
|
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
444
|
+
input argument.
|
445
|
+
lora_scale (`float`, *optional*):
|
446
|
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
447
|
+
clip_skip (`int`, *optional*):
|
448
|
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
449
|
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
450
|
+
enable_edit_guidance (`bool`):
|
451
|
+
Whether to guide towards an editing prompt or not.
|
452
|
+
editing_prompt (`str` or `List[str]`, *optional*):
|
453
|
+
Editing prompt(s) to be encoded. If not defined and 'enable_edit_guidance' is True, one has to pass
|
454
|
+
`editing_prompt_embeds` instead.
|
455
|
+
editing_prompt_embeds (`torch.FloatTensor`, *optional*):
|
456
|
+
Pre-generated edit text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
457
|
+
weighting. If not provided and 'enable_edit_guidance' is True, editing_prompt_embeds will be generated from `editing_prompt` input
|
458
|
+
argument.
|
459
|
+
editing_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
460
|
+
Pre-generated edit pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
461
|
+
weighting. If not provided, pooled editing_pooled_prompt_embeds will be generated from `editing_prompt`
|
462
|
+
input argument.
|
463
|
+
"""
|
464
|
+
device = device or self._execution_device
|
465
|
+
|
466
|
+
# set lora scale so that monkey patched LoRA
|
467
|
+
# function of text encoder can correctly access it
|
468
|
+
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
|
469
|
+
self._lora_scale = lora_scale
|
470
|
+
|
471
|
+
# dynamically adjust the LoRA scale
|
472
|
+
if self.text_encoder is not None:
|
473
|
+
if not USE_PEFT_BACKEND:
|
474
|
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
475
|
+
else:
|
476
|
+
scale_lora_layers(self.text_encoder, lora_scale)
|
477
|
+
|
478
|
+
if self.text_encoder_2 is not None:
|
479
|
+
if not USE_PEFT_BACKEND:
|
480
|
+
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
|
481
|
+
else:
|
482
|
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
483
|
+
|
484
|
+
batch_size = self.batch_size
|
485
|
+
|
486
|
+
# Define tokenizers and text encoders
|
487
|
+
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
488
|
+
text_encoders = (
|
489
|
+
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
490
|
+
)
|
491
|
+
num_edit_tokens = 0
|
492
|
+
|
493
|
+
# get unconditional embeddings for classifier free guidance
|
494
|
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
495
|
+
|
496
|
+
if negative_prompt_embeds is None:
|
497
|
+
negative_prompt = negative_prompt or ""
|
498
|
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
499
|
+
|
500
|
+
# normalize str to list
|
501
|
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
502
|
+
negative_prompt_2 = (
|
503
|
+
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
504
|
+
)
|
505
|
+
|
506
|
+
uncond_tokens: List[str]
|
507
|
+
|
508
|
+
if batch_size != len(negative_prompt):
|
509
|
+
raise ValueError(
|
510
|
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but image inversion "
|
511
|
+
f" has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
512
|
+
" the batch size of the input images."
|
513
|
+
)
|
514
|
+
else:
|
515
|
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
516
|
+
|
517
|
+
negative_prompt_embeds_list = []
|
518
|
+
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
|
519
|
+
if isinstance(self, TextualInversionLoaderMixin):
|
520
|
+
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
|
521
|
+
|
522
|
+
uncond_input = tokenizer(
|
523
|
+
negative_prompt,
|
524
|
+
padding="max_length",
|
525
|
+
max_length=tokenizer.model_max_length,
|
526
|
+
truncation=True,
|
527
|
+
return_tensors="pt",
|
528
|
+
)
|
529
|
+
|
530
|
+
negative_prompt_embeds = text_encoder(
|
531
|
+
uncond_input.input_ids.to(device),
|
532
|
+
output_hidden_states=True,
|
533
|
+
)
|
534
|
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
535
|
+
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
536
|
+
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
537
|
+
|
538
|
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
539
|
+
|
540
|
+
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
541
|
+
|
542
|
+
if zero_out_negative_prompt:
|
543
|
+
negative_prompt_embeds = torch.zeros_like(negative_prompt_embeds)
|
544
|
+
negative_pooled_prompt_embeds = torch.zeros_like(negative_pooled_prompt_embeds)
|
545
|
+
|
546
|
+
if enable_edit_guidance and editing_prompt_embeds is None:
|
547
|
+
editing_prompt_2 = editing_prompt
|
548
|
+
|
549
|
+
editing_prompts = [editing_prompt, editing_prompt_2]
|
550
|
+
edit_prompt_embeds_list = []
|
551
|
+
|
552
|
+
for editing_prompt, tokenizer, text_encoder in zip(editing_prompts, tokenizers, text_encoders):
|
553
|
+
if isinstance(self, TextualInversionLoaderMixin):
|
554
|
+
editing_prompt = self.maybe_convert_prompt(editing_prompt, tokenizer)
|
555
|
+
|
556
|
+
max_length = negative_prompt_embeds.shape[1]
|
557
|
+
edit_concepts_input = tokenizer(
|
558
|
+
# [x for item in editing_prompt for x in repeat(item, batch_size)],
|
559
|
+
editing_prompt,
|
560
|
+
padding="max_length",
|
561
|
+
max_length=max_length,
|
562
|
+
truncation=True,
|
563
|
+
return_tensors="pt",
|
564
|
+
return_length=True,
|
565
|
+
)
|
566
|
+
num_edit_tokens = edit_concepts_input.length - 2
|
567
|
+
|
568
|
+
edit_concepts_embeds = text_encoder(
|
569
|
+
edit_concepts_input.input_ids.to(device),
|
570
|
+
output_hidden_states=True,
|
571
|
+
)
|
572
|
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
573
|
+
editing_pooled_prompt_embeds = edit_concepts_embeds[0]
|
574
|
+
if clip_skip is None:
|
575
|
+
edit_concepts_embeds = edit_concepts_embeds.hidden_states[-2]
|
576
|
+
else:
|
577
|
+
# "2" because SDXL always indexes from the penultimate layer.
|
578
|
+
edit_concepts_embeds = edit_concepts_embeds.hidden_states[-(clip_skip + 2)]
|
579
|
+
|
580
|
+
edit_prompt_embeds_list.append(edit_concepts_embeds)
|
581
|
+
|
582
|
+
edit_concepts_embeds = torch.concat(edit_prompt_embeds_list, dim=-1)
|
583
|
+
elif not enable_edit_guidance:
|
584
|
+
edit_concepts_embeds = None
|
585
|
+
editing_pooled_prompt_embeds = None
|
586
|
+
|
587
|
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
588
|
+
bs_embed, seq_len, _ = negative_prompt_embeds.shape
|
589
|
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
590
|
+
seq_len = negative_prompt_embeds.shape[1]
|
591
|
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
592
|
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
593
|
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
594
|
+
|
595
|
+
if enable_edit_guidance:
|
596
|
+
bs_embed_edit, seq_len, _ = edit_concepts_embeds.shape
|
597
|
+
edit_concepts_embeds = edit_concepts_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
598
|
+
edit_concepts_embeds = edit_concepts_embeds.repeat(1, num_images_per_prompt, 1)
|
599
|
+
edit_concepts_embeds = edit_concepts_embeds.view(bs_embed_edit * num_images_per_prompt, seq_len, -1)
|
600
|
+
|
601
|
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
602
|
+
bs_embed * num_images_per_prompt, -1
|
603
|
+
)
|
604
|
+
|
605
|
+
if enable_edit_guidance:
|
606
|
+
editing_pooled_prompt_embeds = editing_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
607
|
+
bs_embed_edit * num_images_per_prompt, -1
|
608
|
+
)
|
609
|
+
|
610
|
+
if self.text_encoder is not None:
|
611
|
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
612
|
+
# Retrieve the original scale by scaling back the LoRA layers
|
613
|
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
614
|
+
|
615
|
+
if self.text_encoder_2 is not None:
|
616
|
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
617
|
+
# Retrieve the original scale by scaling back the LoRA layers
|
618
|
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
619
|
+
|
620
|
+
return (
|
621
|
+
negative_prompt_embeds,
|
622
|
+
edit_concepts_embeds,
|
623
|
+
negative_pooled_prompt_embeds,
|
624
|
+
editing_pooled_prompt_embeds,
|
625
|
+
num_edit_tokens,
|
626
|
+
)
|
627
|
+
|
628
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
629
|
+
def prepare_extra_step_kwargs(self, eta, generator=None):
|
630
|
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
631
|
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
632
|
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
633
|
+
# and should be between [0, 1]
|
634
|
+
|
635
|
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
636
|
+
extra_step_kwargs = {}
|
637
|
+
if accepts_eta:
|
638
|
+
extra_step_kwargs["eta"] = eta
|
639
|
+
|
640
|
+
# check if the scheduler accepts generator
|
641
|
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
642
|
+
if accepts_generator:
|
643
|
+
extra_step_kwargs["generator"] = generator
|
644
|
+
return extra_step_kwargs
|
645
|
+
|
646
|
+
def check_inputs(
|
647
|
+
self,
|
648
|
+
negative_prompt=None,
|
649
|
+
negative_prompt_2=None,
|
650
|
+
negative_prompt_embeds=None,
|
651
|
+
negative_pooled_prompt_embeds=None,
|
652
|
+
):
|
653
|
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
654
|
+
raise ValueError(
|
655
|
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
656
|
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
657
|
+
)
|
658
|
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
659
|
+
raise ValueError(
|
660
|
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
661
|
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
662
|
+
)
|
663
|
+
|
664
|
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
665
|
+
raise ValueError(
|
666
|
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
667
|
+
)
|
668
|
+
|
669
|
+
# Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
670
|
+
def prepare_latents(self, device, latents):
|
671
|
+
latents = latents.to(device)
|
672
|
+
|
673
|
+
# scale the initial noise by the standard deviation required by the scheduler
|
674
|
+
latents = latents * self.scheduler.init_noise_sigma
|
675
|
+
return latents
|
676
|
+
|
677
|
+
def _get_add_time_ids(
|
678
|
+
self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
|
679
|
+
):
|
680
|
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
681
|
+
|
682
|
+
passed_add_embed_dim = (
|
683
|
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
|
684
|
+
)
|
685
|
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
686
|
+
|
687
|
+
if expected_add_embed_dim != passed_add_embed_dim:
|
688
|
+
raise ValueError(
|
689
|
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
690
|
+
)
|
691
|
+
|
692
|
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
693
|
+
return add_time_ids
|
694
|
+
|
695
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
696
|
+
def upcast_vae(self):
|
697
|
+
dtype = self.vae.dtype
|
698
|
+
self.vae.to(dtype=torch.float32)
|
699
|
+
use_torch_2_0_or_xformers = isinstance(
|
700
|
+
self.vae.decoder.mid_block.attentions[0].processor,
|
701
|
+
(
|
702
|
+
AttnProcessor2_0,
|
703
|
+
XFormersAttnProcessor,
|
704
|
+
LoRAXFormersAttnProcessor,
|
705
|
+
LoRAAttnProcessor2_0,
|
706
|
+
),
|
707
|
+
)
|
708
|
+
# if xformers or torch_2_0 is used attention block does not need
|
709
|
+
# to be in float32 which can save lots of memory
|
710
|
+
if use_torch_2_0_or_xformers:
|
711
|
+
self.vae.post_quant_conv.to(dtype)
|
712
|
+
self.vae.decoder.conv_in.to(dtype)
|
713
|
+
self.vae.decoder.mid_block.to(dtype)
|
714
|
+
|
715
|
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
716
|
+
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
717
|
+
"""
|
718
|
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
719
|
+
|
720
|
+
Args:
|
721
|
+
timesteps (`torch.Tensor`):
|
722
|
+
generate embedding vectors at these timesteps
|
723
|
+
embedding_dim (`int`, *optional*, defaults to 512):
|
724
|
+
dimension of the embeddings to generate
|
725
|
+
dtype:
|
726
|
+
data type of the generated embeddings
|
727
|
+
|
728
|
+
Returns:
|
729
|
+
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
|
730
|
+
"""
|
731
|
+
assert len(w.shape) == 1
|
732
|
+
w = w * 1000.0
|
733
|
+
|
734
|
+
half_dim = embedding_dim // 2
|
735
|
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
736
|
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
737
|
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
738
|
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
739
|
+
if embedding_dim % 2 == 1: # zero pad
|
740
|
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
741
|
+
assert emb.shape == (w.shape[0], embedding_dim)
|
742
|
+
return emb
|
743
|
+
|
744
|
+
@property
|
745
|
+
def guidance_scale(self):
|
746
|
+
return self._guidance_scale
|
747
|
+
|
748
|
+
@property
|
749
|
+
def guidance_rescale(self):
|
750
|
+
return self._guidance_rescale
|
751
|
+
|
752
|
+
@property
|
753
|
+
def clip_skip(self):
|
754
|
+
return self._clip_skip
|
755
|
+
|
756
|
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
757
|
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
758
|
+
# corresponds to doing no classifier free guidance.
|
759
|
+
@property
|
760
|
+
def do_classifier_free_guidance(self):
|
761
|
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
762
|
+
|
763
|
+
@property
|
764
|
+
def cross_attention_kwargs(self):
|
765
|
+
return self._cross_attention_kwargs
|
766
|
+
|
767
|
+
@property
|
768
|
+
def denoising_end(self):
|
769
|
+
return self._denoising_end
|
770
|
+
|
771
|
+
@property
|
772
|
+
def num_timesteps(self):
|
773
|
+
return self._num_timesteps
|
774
|
+
|
775
|
+
# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LEditsPPPipelineStableDiffusion.prepare_unet
|
776
|
+
def prepare_unet(self, attention_store, PnP: bool = False):
|
777
|
+
attn_procs = {}
|
778
|
+
for name in self.unet.attn_processors.keys():
|
779
|
+
if name.startswith("mid_block"):
|
780
|
+
place_in_unet = "mid"
|
781
|
+
elif name.startswith("up_blocks"):
|
782
|
+
place_in_unet = "up"
|
783
|
+
elif name.startswith("down_blocks"):
|
784
|
+
place_in_unet = "down"
|
785
|
+
else:
|
786
|
+
continue
|
787
|
+
|
788
|
+
if "attn2" in name and place_in_unet != "mid":
|
789
|
+
attn_procs[name] = LEDITSCrossAttnProcessor(
|
790
|
+
attention_store=attention_store,
|
791
|
+
place_in_unet=place_in_unet,
|
792
|
+
pnp=PnP,
|
793
|
+
editing_prompts=self.enabled_editing_prompts,
|
794
|
+
)
|
795
|
+
else:
|
796
|
+
attn_procs[name] = AttnProcessor()
|
797
|
+
|
798
|
+
self.unet.set_attn_processor(attn_procs)
|
799
|
+
|
800
|
+
@torch.no_grad()
|
801
|
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
802
|
+
def __call__(
|
803
|
+
self,
|
804
|
+
denoising_end: Optional[float] = None,
|
805
|
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
806
|
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
807
|
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
808
|
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
809
|
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
810
|
+
output_type: Optional[str] = "pil",
|
811
|
+
return_dict: bool = True,
|
812
|
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
813
|
+
guidance_rescale: float = 0.0,
|
814
|
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
815
|
+
target_size: Optional[Tuple[int, int]] = None,
|
816
|
+
editing_prompt: Optional[Union[str, List[str]]] = None,
|
817
|
+
editing_prompt_embeddings: Optional[torch.Tensor] = None,
|
818
|
+
editing_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
819
|
+
reverse_editing_direction: Optional[Union[bool, List[bool]]] = False,
|
820
|
+
edit_guidance_scale: Optional[Union[float, List[float]]] = 5,
|
821
|
+
edit_warmup_steps: Optional[Union[int, List[int]]] = 0,
|
822
|
+
edit_cooldown_steps: Optional[Union[int, List[int]]] = None,
|
823
|
+
edit_threshold: Optional[Union[float, List[float]]] = 0.9,
|
824
|
+
sem_guidance: Optional[List[torch.Tensor]] = None,
|
825
|
+
use_cross_attn_mask: bool = False,
|
826
|
+
use_intersect_mask: bool = False,
|
827
|
+
user_mask: Optional[torch.FloatTensor] = None,
|
828
|
+
attn_store_steps: Optional[List[int]] = [],
|
829
|
+
store_averaged_over_steps: bool = True,
|
830
|
+
clip_skip: Optional[int] = None,
|
831
|
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
832
|
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
833
|
+
**kwargs,
|
834
|
+
):
|
835
|
+
r"""
|
836
|
+
The call function to the pipeline for editing. The [`~pipelines.ledits_pp.LEditsPPPipelineStableDiffusionXL.invert`]
|
837
|
+
method has to be called beforehand. Edits will always be performed for the last inverted image(s).
|
838
|
+
|
839
|
+
Args:
|
840
|
+
denoising_end (`float`, *optional*):
|
841
|
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
842
|
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
843
|
+
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
844
|
+
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
845
|
+
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
846
|
+
negative_prompt (`str` or `List[str]`, *optional*):
|
847
|
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
848
|
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
849
|
+
less than `1`).
|
850
|
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
851
|
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
852
|
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
853
|
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
854
|
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
855
|
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
856
|
+
argument.
|
857
|
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
858
|
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
859
|
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
860
|
+
input argument.
|
861
|
+
ip_adapter_image: (`PipelineImageInput`, *optional*):
|
862
|
+
Optional image input to work with IP Adapters.
|
863
|
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
864
|
+
The output format of the generate image. Choose between
|
865
|
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
866
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
867
|
+
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
868
|
+
of a plain tuple.
|
869
|
+
callback (`Callable`, *optional*):
|
870
|
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
871
|
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
872
|
+
callback_steps (`int`, *optional*, defaults to 1):
|
873
|
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
874
|
+
called at every step.
|
875
|
+
cross_attention_kwargs (`dict`, *optional*):
|
876
|
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
877
|
+
`self.processor` in
|
878
|
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
879
|
+
guidance_rescale (`float`, *optional*, defaults to 0.7):
|
880
|
+
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
881
|
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
882
|
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
883
|
+
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
884
|
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
885
|
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
886
|
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
887
|
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
888
|
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
889
|
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
890
|
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
891
|
+
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
|
892
|
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
893
|
+
editing_prompt (`str` or `List[str]`, *optional*):
|
894
|
+
The prompt or prompts to guide the image generation. The image is reconstructed by setting
|
895
|
+
`editing_prompt = None`. Guidance direction of prompt should be specified via `reverse_editing_direction`.
|
896
|
+
editing_prompt_embeddings (`torch.Tensor`, *optional*):
|
897
|
+
Pre-generated edit text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
898
|
+
weighting. If not provided, editing_prompt_embeddings will be generated from `editing_prompt` input
|
899
|
+
argument.
|
900
|
+
editing_pooled_prompt_embeddings (`torch.Tensor`, *optional*):
|
901
|
+
Pre-generated pooled edit text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
902
|
+
weighting. If not provided, editing_prompt_embeddings will be generated from `editing_prompt` input
|
903
|
+
argument.
|
904
|
+
reverse_editing_direction (`bool` or `List[bool]`, *optional*, defaults to `False`):
|
905
|
+
Whether the corresponding prompt in `editing_prompt` should be increased or decreased.
|
906
|
+
edit_guidance_scale (`float` or `List[float]`, *optional*, defaults to 5):
|
907
|
+
Guidance scale for guiding the image generation. If provided as list values should correspond to `editing_prompt`.
|
908
|
+
`edit_guidance_scale` is defined as `s_e` of equation 12 of
|
909
|
+
[LEDITS++ Paper](https://arxiv.org/abs/2301.12247).
|
910
|
+
edit_warmup_steps (`float` or `List[float]`, *optional*, defaults to 10):
|
911
|
+
Number of diffusion steps (for each prompt) for which guidance is not applied.
|
912
|
+
edit_cooldown_steps (`float` or `List[float]`, *optional*, defaults to `None`):
|
913
|
+
Number of diffusion steps (for each prompt) after which guidance is no longer applied.
|
914
|
+
edit_threshold (`float` or `List[float]`, *optional*, defaults to 0.9):
|
915
|
+
Masking threshold of guidance. Threshold should be proportional to the image region that is modified.
|
916
|
+
'edit_threshold' is defined as 'λ' of equation 12 of [LEDITS++ Paper](https://arxiv.org/abs/2301.12247).
|
917
|
+
sem_guidance (`List[torch.Tensor]`, *optional*):
|
918
|
+
List of pre-generated guidance vectors to be applied at generation. Length of the list has to
|
919
|
+
correspond to `num_inference_steps`.
|
920
|
+
use_cross_attn_mask:
|
921
|
+
Whether cross-attention masks are used. Cross-attention masks are always used when use_intersect_mask
|
922
|
+
is set to true. Cross-attention masks are defined as 'M^1' of equation 12 of
|
923
|
+
[LEDITS++ paper](https://arxiv.org/pdf/2311.16711.pdf).
|
924
|
+
use_intersect_mask:
|
925
|
+
Whether the masking term is calculated as intersection of cross-attention masks and masks derived
|
926
|
+
from the noise estimate. Cross-attention mask are defined as 'M^1' and masks derived from the noise
|
927
|
+
estimate are defined as 'M^2' of equation 12 of [LEDITS++ paper](https://arxiv.org/pdf/2311.16711.pdf).
|
928
|
+
user_mask:
|
929
|
+
User-provided mask for even better control over the editing process. This is helpful when LEDITS++'s implicit
|
930
|
+
masks do not meet user preferences.
|
931
|
+
attn_store_steps:
|
932
|
+
Steps for which the attention maps are stored in the AttentionStore. Just for visualization purposes.
|
933
|
+
store_averaged_over_steps:
|
934
|
+
Whether the attention maps for the 'attn_store_steps' are stored averaged over the diffusion steps.
|
935
|
+
If False, attention maps for each step are stores separately. Just for visualization purposes.
|
936
|
+
clip_skip (`int`, *optional*):
|
937
|
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
938
|
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
939
|
+
callback_on_step_end (`Callable`, *optional*):
|
940
|
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
941
|
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
942
|
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
943
|
+
`callback_on_step_end_tensor_inputs`.
|
944
|
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
945
|
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
946
|
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
947
|
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
948
|
+
|
949
|
+
Examples:
|
950
|
+
|
951
|
+
Returns:
|
952
|
+
[`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] or `tuple`:
|
953
|
+
[`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] if `return_dict` is True,
|
954
|
+
otherwise a `tuple. When returning a tuple, the first element is a list with the generated images.
|
955
|
+
"""
|
956
|
+
if self.inversion_steps is None:
|
957
|
+
raise ValueError(
|
958
|
+
"You need to invert an input image first before calling the pipeline. The `invert` method has to be called beforehand. Edits will always be performed for the last inverted image(s)."
|
959
|
+
)
|
960
|
+
|
961
|
+
eta = self.eta
|
962
|
+
num_images_per_prompt = 1
|
963
|
+
latents = self.init_latents
|
964
|
+
|
965
|
+
zs = self.zs
|
966
|
+
self.scheduler.set_timesteps(len(self.scheduler.timesteps))
|
967
|
+
|
968
|
+
if use_intersect_mask:
|
969
|
+
use_cross_attn_mask = True
|
970
|
+
|
971
|
+
if use_cross_attn_mask:
|
972
|
+
self.smoothing = LeditsGaussianSmoothing(self.device)
|
973
|
+
|
974
|
+
if user_mask is not None:
|
975
|
+
user_mask = user_mask.to(self.device)
|
976
|
+
|
977
|
+
# TODO: Check inputs
|
978
|
+
# 1. Check inputs. Raise error if not correct
|
979
|
+
# self.check_inputs(
|
980
|
+
# callback_steps,
|
981
|
+
# negative_prompt,
|
982
|
+
# negative_prompt_2,
|
983
|
+
# prompt_embeds,
|
984
|
+
# negative_prompt_embeds,
|
985
|
+
# pooled_prompt_embeds,
|
986
|
+
# negative_pooled_prompt_embeds,
|
987
|
+
# )
|
988
|
+
self._guidance_rescale = guidance_rescale
|
989
|
+
self._clip_skip = clip_skip
|
990
|
+
self._cross_attention_kwargs = cross_attention_kwargs
|
991
|
+
self._denoising_end = denoising_end
|
992
|
+
|
993
|
+
# 2. Define call parameters
|
994
|
+
batch_size = self.batch_size
|
995
|
+
|
996
|
+
device = self._execution_device
|
997
|
+
|
998
|
+
if editing_prompt:
|
999
|
+
enable_edit_guidance = True
|
1000
|
+
if isinstance(editing_prompt, str):
|
1001
|
+
editing_prompt = [editing_prompt]
|
1002
|
+
self.enabled_editing_prompts = len(editing_prompt)
|
1003
|
+
elif editing_prompt_embeddings is not None:
|
1004
|
+
enable_edit_guidance = True
|
1005
|
+
self.enabled_editing_prompts = editing_prompt_embeddings.shape[0]
|
1006
|
+
else:
|
1007
|
+
self.enabled_editing_prompts = 0
|
1008
|
+
enable_edit_guidance = False
|
1009
|
+
|
1010
|
+
# 3. Encode input prompt
|
1011
|
+
text_encoder_lora_scale = (
|
1012
|
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
1013
|
+
)
|
1014
|
+
(
|
1015
|
+
prompt_embeds,
|
1016
|
+
edit_prompt_embeds,
|
1017
|
+
negative_pooled_prompt_embeds,
|
1018
|
+
pooled_edit_embeds,
|
1019
|
+
num_edit_tokens,
|
1020
|
+
) = self.encode_prompt(
|
1021
|
+
device=device,
|
1022
|
+
num_images_per_prompt=num_images_per_prompt,
|
1023
|
+
negative_prompt=negative_prompt,
|
1024
|
+
negative_prompt_2=negative_prompt_2,
|
1025
|
+
negative_prompt_embeds=negative_prompt_embeds,
|
1026
|
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1027
|
+
lora_scale=text_encoder_lora_scale,
|
1028
|
+
clip_skip=self.clip_skip,
|
1029
|
+
enable_edit_guidance=enable_edit_guidance,
|
1030
|
+
editing_prompt=editing_prompt,
|
1031
|
+
editing_prompt_embeds=editing_prompt_embeddings,
|
1032
|
+
editing_pooled_prompt_embeds=editing_pooled_prompt_embeds,
|
1033
|
+
)
|
1034
|
+
|
1035
|
+
# 4. Prepare timesteps
|
1036
|
+
# self.scheduler.set_timesteps(num_inference_steps, device=device)
|
1037
|
+
|
1038
|
+
timesteps = self.inversion_steps
|
1039
|
+
t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
|
1040
|
+
|
1041
|
+
if use_cross_attn_mask:
|
1042
|
+
self.attention_store = LeditsAttentionStore(
|
1043
|
+
average=store_averaged_over_steps,
|
1044
|
+
batch_size=batch_size,
|
1045
|
+
max_size=(latents.shape[-2] / 4.0) * (latents.shape[-1] / 4.0),
|
1046
|
+
max_resolution=None,
|
1047
|
+
)
|
1048
|
+
self.prepare_unet(self.attention_store)
|
1049
|
+
resolution = latents.shape[-2:]
|
1050
|
+
att_res = (int(resolution[0] / 4), int(resolution[1] / 4))
|
1051
|
+
|
1052
|
+
# 5. Prepare latent variables
|
1053
|
+
latents = self.prepare_latents(device=device, latents=latents)
|
1054
|
+
|
1055
|
+
# 6. Prepare extra step kwargs.
|
1056
|
+
extra_step_kwargs = self.prepare_extra_step_kwargs(eta)
|
1057
|
+
|
1058
|
+
if self.text_encoder_2 is None:
|
1059
|
+
text_encoder_projection_dim = int(negative_pooled_prompt_embeds.shape[-1])
|
1060
|
+
else:
|
1061
|
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
1062
|
+
|
1063
|
+
# 7. Prepare added time ids & embeddings
|
1064
|
+
add_text_embeds = negative_pooled_prompt_embeds
|
1065
|
+
add_time_ids = self._get_add_time_ids(
|
1066
|
+
self.size,
|
1067
|
+
crops_coords_top_left,
|
1068
|
+
self.size,
|
1069
|
+
dtype=negative_pooled_prompt_embeds.dtype,
|
1070
|
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
1071
|
+
)
|
1072
|
+
|
1073
|
+
if enable_edit_guidance:
|
1074
|
+
prompt_embeds = torch.cat([prompt_embeds, edit_prompt_embeds], dim=0)
|
1075
|
+
add_text_embeds = torch.cat([add_text_embeds, pooled_edit_embeds], dim=0)
|
1076
|
+
edit_concepts_time_ids = add_time_ids.repeat(edit_prompt_embeds.shape[0], 1)
|
1077
|
+
add_time_ids = torch.cat([add_time_ids, edit_concepts_time_ids], dim=0)
|
1078
|
+
self.text_cross_attention_maps = [editing_prompt] if isinstance(editing_prompt, str) else editing_prompt
|
1079
|
+
|
1080
|
+
prompt_embeds = prompt_embeds.to(device)
|
1081
|
+
add_text_embeds = add_text_embeds.to(device)
|
1082
|
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
1083
|
+
|
1084
|
+
if ip_adapter_image is not None:
|
1085
|
+
# TODO: fix image encoding
|
1086
|
+
image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt)
|
1087
|
+
if self.do_classifier_free_guidance:
|
1088
|
+
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
1089
|
+
image_embeds = image_embeds.to(device)
|
1090
|
+
|
1091
|
+
# 8. Denoising loop
|
1092
|
+
self.sem_guidance = None
|
1093
|
+
self.activation_mask = None
|
1094
|
+
|
1095
|
+
if (
|
1096
|
+
self.denoising_end is not None
|
1097
|
+
and isinstance(self.denoising_end, float)
|
1098
|
+
and self.denoising_end > 0
|
1099
|
+
and self.denoising_end < 1
|
1100
|
+
):
|
1101
|
+
discrete_timestep_cutoff = int(
|
1102
|
+
round(
|
1103
|
+
self.scheduler.config.num_train_timesteps
|
1104
|
+
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
|
1105
|
+
)
|
1106
|
+
)
|
1107
|
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
1108
|
+
timesteps = timesteps[:num_inference_steps]
|
1109
|
+
|
1110
|
+
# 9. Optionally get Guidance Scale Embedding
|
1111
|
+
timestep_cond = None
|
1112
|
+
if self.unet.config.time_cond_proj_dim is not None:
|
1113
|
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
1114
|
+
timestep_cond = self.get_guidance_scale_embedding(
|
1115
|
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
1116
|
+
).to(device=device, dtype=latents.dtype)
|
1117
|
+
|
1118
|
+
self._num_timesteps = len(timesteps)
|
1119
|
+
with self.progress_bar(total=self._num_timesteps) as progress_bar:
|
1120
|
+
for i, t in enumerate(timesteps):
|
1121
|
+
# expand the latents if we are doing classifier free guidance
|
1122
|
+
latent_model_input = torch.cat([latents] * (1 + self.enabled_editing_prompts))
|
1123
|
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1124
|
+
# predict the noise residual
|
1125
|
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1126
|
+
if ip_adapter_image is not None:
|
1127
|
+
added_cond_kwargs["image_embeds"] = image_embeds
|
1128
|
+
noise_pred = self.unet(
|
1129
|
+
latent_model_input,
|
1130
|
+
t,
|
1131
|
+
encoder_hidden_states=prompt_embeds,
|
1132
|
+
cross_attention_kwargs=cross_attention_kwargs,
|
1133
|
+
added_cond_kwargs=added_cond_kwargs,
|
1134
|
+
return_dict=False,
|
1135
|
+
)[0]
|
1136
|
+
|
1137
|
+
noise_pred_out = noise_pred.chunk(1 + self.enabled_editing_prompts) # [b,4, 64, 64]
|
1138
|
+
noise_pred_uncond = noise_pred_out[0]
|
1139
|
+
noise_pred_edit_concepts = noise_pred_out[1:]
|
1140
|
+
|
1141
|
+
noise_guidance_edit = torch.zeros(
|
1142
|
+
noise_pred_uncond.shape,
|
1143
|
+
device=self.device,
|
1144
|
+
dtype=noise_pred_uncond.dtype,
|
1145
|
+
)
|
1146
|
+
|
1147
|
+
if sem_guidance is not None and len(sem_guidance) > i:
|
1148
|
+
noise_guidance_edit += sem_guidance[i].to(self.device)
|
1149
|
+
|
1150
|
+
elif enable_edit_guidance:
|
1151
|
+
if self.activation_mask is None:
|
1152
|
+
self.activation_mask = torch.zeros(
|
1153
|
+
(len(timesteps), self.enabled_editing_prompts, *noise_pred_edit_concepts[0].shape)
|
1154
|
+
)
|
1155
|
+
if self.sem_guidance is None:
|
1156
|
+
self.sem_guidance = torch.zeros((len(timesteps), *noise_pred_uncond.shape))
|
1157
|
+
|
1158
|
+
# noise_guidance_edit = torch.zeros_like(noise_guidance)
|
1159
|
+
for c, noise_pred_edit_concept in enumerate(noise_pred_edit_concepts):
|
1160
|
+
if isinstance(edit_warmup_steps, list):
|
1161
|
+
edit_warmup_steps_c = edit_warmup_steps[c]
|
1162
|
+
else:
|
1163
|
+
edit_warmup_steps_c = edit_warmup_steps
|
1164
|
+
if i < edit_warmup_steps_c:
|
1165
|
+
continue
|
1166
|
+
|
1167
|
+
if isinstance(edit_guidance_scale, list):
|
1168
|
+
edit_guidance_scale_c = edit_guidance_scale[c]
|
1169
|
+
else:
|
1170
|
+
edit_guidance_scale_c = edit_guidance_scale
|
1171
|
+
|
1172
|
+
if isinstance(edit_threshold, list):
|
1173
|
+
edit_threshold_c = edit_threshold[c]
|
1174
|
+
else:
|
1175
|
+
edit_threshold_c = edit_threshold
|
1176
|
+
if isinstance(reverse_editing_direction, list):
|
1177
|
+
reverse_editing_direction_c = reverse_editing_direction[c]
|
1178
|
+
else:
|
1179
|
+
reverse_editing_direction_c = reverse_editing_direction
|
1180
|
+
|
1181
|
+
if isinstance(edit_cooldown_steps, list):
|
1182
|
+
edit_cooldown_steps_c = edit_cooldown_steps[c]
|
1183
|
+
elif edit_cooldown_steps is None:
|
1184
|
+
edit_cooldown_steps_c = i + 1
|
1185
|
+
else:
|
1186
|
+
edit_cooldown_steps_c = edit_cooldown_steps
|
1187
|
+
|
1188
|
+
if i >= edit_cooldown_steps_c:
|
1189
|
+
continue
|
1190
|
+
|
1191
|
+
noise_guidance_edit_tmp = noise_pred_edit_concept - noise_pred_uncond
|
1192
|
+
|
1193
|
+
if reverse_editing_direction_c:
|
1194
|
+
noise_guidance_edit_tmp = noise_guidance_edit_tmp * -1
|
1195
|
+
|
1196
|
+
noise_guidance_edit_tmp = noise_guidance_edit_tmp * edit_guidance_scale_c
|
1197
|
+
|
1198
|
+
if user_mask is not None:
|
1199
|
+
noise_guidance_edit_tmp = noise_guidance_edit_tmp * user_mask
|
1200
|
+
|
1201
|
+
if use_cross_attn_mask:
|
1202
|
+
out = self.attention_store.aggregate_attention(
|
1203
|
+
attention_maps=self.attention_store.step_store,
|
1204
|
+
prompts=self.text_cross_attention_maps,
|
1205
|
+
res=att_res,
|
1206
|
+
from_where=["up", "down"],
|
1207
|
+
is_cross=True,
|
1208
|
+
select=self.text_cross_attention_maps.index(editing_prompt[c]),
|
1209
|
+
)
|
1210
|
+
attn_map = out[:, :, :, 1 : 1 + num_edit_tokens[c]] # 0 -> startoftext
|
1211
|
+
|
1212
|
+
# average over all tokens
|
1213
|
+
if attn_map.shape[3] != num_edit_tokens[c]:
|
1214
|
+
raise ValueError(
|
1215
|
+
f"Incorrect shape of attention_map. Expected size {num_edit_tokens[c]}, but found {attn_map.shape[3]}!"
|
1216
|
+
)
|
1217
|
+
attn_map = torch.sum(attn_map, dim=3)
|
1218
|
+
|
1219
|
+
# gaussian_smoothing
|
1220
|
+
attn_map = F.pad(attn_map.unsqueeze(1), (1, 1, 1, 1), mode="reflect")
|
1221
|
+
attn_map = self.smoothing(attn_map).squeeze(1)
|
1222
|
+
|
1223
|
+
# torch.quantile function expects float32
|
1224
|
+
if attn_map.dtype == torch.float32:
|
1225
|
+
tmp = torch.quantile(attn_map.flatten(start_dim=1), edit_threshold_c, dim=1)
|
1226
|
+
else:
|
1227
|
+
tmp = torch.quantile(
|
1228
|
+
attn_map.flatten(start_dim=1).to(torch.float32), edit_threshold_c, dim=1
|
1229
|
+
).to(attn_map.dtype)
|
1230
|
+
attn_mask = torch.where(
|
1231
|
+
attn_map >= tmp.unsqueeze(1).unsqueeze(1).repeat(1, *att_res), 1.0, 0.0
|
1232
|
+
)
|
1233
|
+
|
1234
|
+
# resolution must match latent space dimension
|
1235
|
+
attn_mask = F.interpolate(
|
1236
|
+
attn_mask.unsqueeze(1),
|
1237
|
+
noise_guidance_edit_tmp.shape[-2:], # 64,64
|
1238
|
+
).repeat(1, 4, 1, 1)
|
1239
|
+
self.activation_mask[i, c] = attn_mask.detach().cpu()
|
1240
|
+
if not use_intersect_mask:
|
1241
|
+
noise_guidance_edit_tmp = noise_guidance_edit_tmp * attn_mask
|
1242
|
+
|
1243
|
+
if use_intersect_mask:
|
1244
|
+
noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp)
|
1245
|
+
noise_guidance_edit_tmp_quantile = torch.sum(
|
1246
|
+
noise_guidance_edit_tmp_quantile, dim=1, keepdim=True
|
1247
|
+
)
|
1248
|
+
noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(
|
1249
|
+
1, self.unet.config.in_channels, 1, 1
|
1250
|
+
)
|
1251
|
+
|
1252
|
+
# torch.quantile function expects float32
|
1253
|
+
if noise_guidance_edit_tmp_quantile.dtype == torch.float32:
|
1254
|
+
tmp = torch.quantile(
|
1255
|
+
noise_guidance_edit_tmp_quantile.flatten(start_dim=2),
|
1256
|
+
edit_threshold_c,
|
1257
|
+
dim=2,
|
1258
|
+
keepdim=False,
|
1259
|
+
)
|
1260
|
+
else:
|
1261
|
+
tmp = torch.quantile(
|
1262
|
+
noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32),
|
1263
|
+
edit_threshold_c,
|
1264
|
+
dim=2,
|
1265
|
+
keepdim=False,
|
1266
|
+
).to(noise_guidance_edit_tmp_quantile.dtype)
|
1267
|
+
|
1268
|
+
intersect_mask = (
|
1269
|
+
torch.where(
|
1270
|
+
noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
|
1271
|
+
torch.ones_like(noise_guidance_edit_tmp),
|
1272
|
+
torch.zeros_like(noise_guidance_edit_tmp),
|
1273
|
+
)
|
1274
|
+
* attn_mask
|
1275
|
+
)
|
1276
|
+
|
1277
|
+
self.activation_mask[i, c] = intersect_mask.detach().cpu()
|
1278
|
+
|
1279
|
+
noise_guidance_edit_tmp = noise_guidance_edit_tmp * intersect_mask
|
1280
|
+
|
1281
|
+
elif not use_cross_attn_mask:
|
1282
|
+
# calculate quantile
|
1283
|
+
noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp)
|
1284
|
+
noise_guidance_edit_tmp_quantile = torch.sum(
|
1285
|
+
noise_guidance_edit_tmp_quantile, dim=1, keepdim=True
|
1286
|
+
)
|
1287
|
+
noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(1, 4, 1, 1)
|
1288
|
+
|
1289
|
+
# torch.quantile function expects float32
|
1290
|
+
if noise_guidance_edit_tmp_quantile.dtype == torch.float32:
|
1291
|
+
tmp = torch.quantile(
|
1292
|
+
noise_guidance_edit_tmp_quantile.flatten(start_dim=2),
|
1293
|
+
edit_threshold_c,
|
1294
|
+
dim=2,
|
1295
|
+
keepdim=False,
|
1296
|
+
)
|
1297
|
+
else:
|
1298
|
+
tmp = torch.quantile(
|
1299
|
+
noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32),
|
1300
|
+
edit_threshold_c,
|
1301
|
+
dim=2,
|
1302
|
+
keepdim=False,
|
1303
|
+
).to(noise_guidance_edit_tmp_quantile.dtype)
|
1304
|
+
|
1305
|
+
self.activation_mask[i, c] = (
|
1306
|
+
torch.where(
|
1307
|
+
noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
|
1308
|
+
torch.ones_like(noise_guidance_edit_tmp),
|
1309
|
+
torch.zeros_like(noise_guidance_edit_tmp),
|
1310
|
+
)
|
1311
|
+
.detach()
|
1312
|
+
.cpu()
|
1313
|
+
)
|
1314
|
+
|
1315
|
+
noise_guidance_edit_tmp = torch.where(
|
1316
|
+
noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
|
1317
|
+
noise_guidance_edit_tmp,
|
1318
|
+
torch.zeros_like(noise_guidance_edit_tmp),
|
1319
|
+
)
|
1320
|
+
|
1321
|
+
noise_guidance_edit += noise_guidance_edit_tmp
|
1322
|
+
|
1323
|
+
self.sem_guidance[i] = noise_guidance_edit.detach().cpu()
|
1324
|
+
|
1325
|
+
noise_pred = noise_pred_uncond + noise_guidance_edit
|
1326
|
+
|
1327
|
+
# compute the previous noisy sample x_t -> x_t-1
|
1328
|
+
if enable_edit_guidance and self.guidance_rescale > 0.0:
|
1329
|
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
1330
|
+
noise_pred = rescale_noise_cfg(
|
1331
|
+
noise_pred,
|
1332
|
+
noise_pred_edit_concepts.mean(dim=0, keepdim=False),
|
1333
|
+
guidance_rescale=self.guidance_rescale,
|
1334
|
+
)
|
1335
|
+
|
1336
|
+
idx = t_to_idx[int(t)]
|
1337
|
+
latents = self.scheduler.step(
|
1338
|
+
noise_pred, t, latents, variance_noise=zs[idx], **extra_step_kwargs, return_dict=False
|
1339
|
+
)[0]
|
1340
|
+
|
1341
|
+
# step callback
|
1342
|
+
if use_cross_attn_mask:
|
1343
|
+
store_step = i in attn_store_steps
|
1344
|
+
self.attention_store.between_steps(store_step)
|
1345
|
+
|
1346
|
+
if callback_on_step_end is not None:
|
1347
|
+
callback_kwargs = {}
|
1348
|
+
for k in callback_on_step_end_tensor_inputs:
|
1349
|
+
callback_kwargs[k] = locals()[k]
|
1350
|
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1351
|
+
|
1352
|
+
latents = callback_outputs.pop("latents", latents)
|
1353
|
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1354
|
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1355
|
+
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
|
1356
|
+
negative_pooled_prompt_embeds = callback_outputs.pop(
|
1357
|
+
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
1358
|
+
)
|
1359
|
+
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
|
1360
|
+
# negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids)
|
1361
|
+
|
1362
|
+
# call the callback, if provided
|
1363
|
+
if i == len(timesteps) - 1 or ((i + 1) > 0 and (i + 1) % self.scheduler.order == 0):
|
1364
|
+
progress_bar.update()
|
1365
|
+
|
1366
|
+
if XLA_AVAILABLE:
|
1367
|
+
xm.mark_step()
|
1368
|
+
|
1369
|
+
if not output_type == "latent":
|
1370
|
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
1371
|
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
1372
|
+
|
1373
|
+
if needs_upcasting:
|
1374
|
+
self.upcast_vae()
|
1375
|
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1376
|
+
|
1377
|
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
1378
|
+
|
1379
|
+
# cast back to fp16 if needed
|
1380
|
+
if needs_upcasting:
|
1381
|
+
self.vae.to(dtype=torch.float16)
|
1382
|
+
else:
|
1383
|
+
image = latents
|
1384
|
+
|
1385
|
+
if not output_type == "latent":
|
1386
|
+
# apply watermark if available
|
1387
|
+
if self.watermark is not None:
|
1388
|
+
image = self.watermark.apply_watermark(image)
|
1389
|
+
|
1390
|
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1391
|
+
|
1392
|
+
# Offload all models
|
1393
|
+
self.maybe_free_model_hooks()
|
1394
|
+
|
1395
|
+
if not return_dict:
|
1396
|
+
return (image,)
|
1397
|
+
|
1398
|
+
return LEditsPPDiffusionPipelineOutput(images=image, nsfw_content_detected=None)
|
1399
|
+
|
1400
|
+
@torch.no_grad()
|
1401
|
+
# Modified from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LEditsPPPipelineStableDiffusion.encode_image
|
1402
|
+
def encode_image(self, image, dtype=None, height=None, width=None, resize_mode="default", crops_coords=None):
|
1403
|
+
image = self.image_processor.preprocess(
|
1404
|
+
image=image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
|
1405
|
+
)
|
1406
|
+
resized = self.image_processor.postprocess(image=image, output_type="pil")
|
1407
|
+
|
1408
|
+
if max(image.shape[-2:]) > self.vae.config["sample_size"] * 1.5:
|
1409
|
+
logger.warning(
|
1410
|
+
"Your input images far exceed the default resolution of the underlying diffusion model. "
|
1411
|
+
"The output images may contain severe artifacts! "
|
1412
|
+
"Consider down-sampling the input using the `height` and `width` parameters"
|
1413
|
+
)
|
1414
|
+
image = image.to(self.device, dtype=dtype)
|
1415
|
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
1416
|
+
|
1417
|
+
if needs_upcasting:
|
1418
|
+
image = image.float()
|
1419
|
+
self.upcast_vae()
|
1420
|
+
image = image.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1421
|
+
|
1422
|
+
x0 = self.vae.encode(image).latent_dist.mode()
|
1423
|
+
x0 = x0.to(dtype)
|
1424
|
+
# cast back to fp16 if needed
|
1425
|
+
if needs_upcasting:
|
1426
|
+
self.vae.to(dtype=torch.float16)
|
1427
|
+
|
1428
|
+
x0 = self.vae.config.scaling_factor * x0
|
1429
|
+
return x0, resized
|
1430
|
+
|
1431
|
+
@torch.no_grad()
|
1432
|
+
def invert(
|
1433
|
+
self,
|
1434
|
+
image: PipelineImageInput,
|
1435
|
+
source_prompt: str = "",
|
1436
|
+
source_guidance_scale=3.5,
|
1437
|
+
negative_prompt: str = None,
|
1438
|
+
negative_prompt_2: str = None,
|
1439
|
+
num_inversion_steps: int = 50,
|
1440
|
+
skip: float = 0.15,
|
1441
|
+
generator: Optional[torch.Generator] = None,
|
1442
|
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
1443
|
+
num_zero_noise_steps: int = 3,
|
1444
|
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1445
|
+
):
|
1446
|
+
r"""
|
1447
|
+
The function to the pipeline for image inversion as described by the [LEDITS++ Paper](https://arxiv.org/abs/2301.12247).
|
1448
|
+
If the scheduler is set to [`~schedulers.DDIMScheduler`] the inversion proposed by [edit-friendly DPDM](https://arxiv.org/abs/2304.06140)
|
1449
|
+
will be performed instead.
|
1450
|
+
|
1451
|
+
Args:
|
1452
|
+
image (`PipelineImageInput`):
|
1453
|
+
Input for the image(s) that are to be edited. Multiple input images have to default to the same aspect
|
1454
|
+
ratio.
|
1455
|
+
source_prompt (`str`, defaults to `""`):
|
1456
|
+
Prompt describing the input image that will be used for guidance during inversion. Guidance is disabled
|
1457
|
+
if the `source_prompt` is `""`.
|
1458
|
+
source_guidance_scale (`float`, defaults to `3.5`):
|
1459
|
+
Strength of guidance during inversion.
|
1460
|
+
negative_prompt (`str` or `List[str]`, *optional*):
|
1461
|
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
1462
|
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
1463
|
+
less than `1`).
|
1464
|
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
1465
|
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
1466
|
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
1467
|
+
num_inversion_steps (`int`, defaults to `50`):
|
1468
|
+
Number of total performed inversion steps after discarding the initial `skip` steps.
|
1469
|
+
skip (`float`, defaults to `0.15`):
|
1470
|
+
Portion of initial steps that will be ignored for inversion and subsequent generation. Lower values
|
1471
|
+
will lead to stronger changes to the input image. `skip` has to be between `0` and `1`.
|
1472
|
+
generator (`torch.Generator`, *optional*):
|
1473
|
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
1474
|
+
inversion deterministic.
|
1475
|
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
1476
|
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
1477
|
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
1478
|
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1479
|
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1480
|
+
num_zero_noise_steps (`int`, defaults to `3`):
|
1481
|
+
Number of final diffusion steps that will not renoise the current image. If no steps are set to zero
|
1482
|
+
SD-XL in combination with [`DPMSolverMultistepScheduler`] will produce noise artifacts.
|
1483
|
+
cross_attention_kwargs (`dict`, *optional*):
|
1484
|
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1485
|
+
`self.processor` in
|
1486
|
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1487
|
+
|
1488
|
+
Returns:
|
1489
|
+
[`~pipelines.ledits_pp.LEditsPPInversionPipelineOutput`]:
|
1490
|
+
Output will contain the resized input image(s) and respective VAE reconstruction(s).
|
1491
|
+
"""
|
1492
|
+
|
1493
|
+
# Reset attn processor, we do not want to store attn maps during inversion
|
1494
|
+
self.unet.set_attn_processor(AttnProcessor())
|
1495
|
+
|
1496
|
+
self.eta = 1.0
|
1497
|
+
|
1498
|
+
self.scheduler.config.timestep_spacing = "leading"
|
1499
|
+
self.scheduler.set_timesteps(int(num_inversion_steps * (1 + skip)))
|
1500
|
+
self.inversion_steps = self.scheduler.timesteps[-num_inversion_steps:]
|
1501
|
+
timesteps = self.inversion_steps
|
1502
|
+
|
1503
|
+
num_images_per_prompt = 1
|
1504
|
+
|
1505
|
+
device = self._execution_device
|
1506
|
+
|
1507
|
+
# 0. Ensure that only uncond embedding is used if prompt = ""
|
1508
|
+
if source_prompt == "":
|
1509
|
+
# noise pred should only be noise_pred_uncond
|
1510
|
+
source_guidance_scale = 0.0
|
1511
|
+
do_classifier_free_guidance = False
|
1512
|
+
else:
|
1513
|
+
do_classifier_free_guidance = source_guidance_scale > 1.0
|
1514
|
+
|
1515
|
+
# 1. prepare image
|
1516
|
+
x0, resized = self.encode_image(image, dtype=self.text_encoder_2.dtype)
|
1517
|
+
width = x0.shape[2] * self.vae_scale_factor
|
1518
|
+
height = x0.shape[3] * self.vae_scale_factor
|
1519
|
+
self.size = (height, width)
|
1520
|
+
|
1521
|
+
self.batch_size = x0.shape[0]
|
1522
|
+
|
1523
|
+
# 2. get embeddings
|
1524
|
+
text_encoder_lora_scale = (
|
1525
|
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
1526
|
+
)
|
1527
|
+
|
1528
|
+
if isinstance(source_prompt, str):
|
1529
|
+
source_prompt = [source_prompt] * self.batch_size
|
1530
|
+
|
1531
|
+
(
|
1532
|
+
negative_prompt_embeds,
|
1533
|
+
prompt_embeds,
|
1534
|
+
negative_pooled_prompt_embeds,
|
1535
|
+
edit_pooled_prompt_embeds,
|
1536
|
+
_,
|
1537
|
+
) = self.encode_prompt(
|
1538
|
+
device=device,
|
1539
|
+
num_images_per_prompt=num_images_per_prompt,
|
1540
|
+
negative_prompt=negative_prompt,
|
1541
|
+
negative_prompt_2=negative_prompt_2,
|
1542
|
+
editing_prompt=source_prompt,
|
1543
|
+
lora_scale=text_encoder_lora_scale,
|
1544
|
+
enable_edit_guidance=do_classifier_free_guidance,
|
1545
|
+
)
|
1546
|
+
if self.text_encoder_2 is None:
|
1547
|
+
text_encoder_projection_dim = int(negative_pooled_prompt_embeds.shape[-1])
|
1548
|
+
else:
|
1549
|
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
1550
|
+
|
1551
|
+
# 3. Prepare added time ids & embeddings
|
1552
|
+
add_text_embeds = negative_pooled_prompt_embeds
|
1553
|
+
add_time_ids = self._get_add_time_ids(
|
1554
|
+
self.size,
|
1555
|
+
crops_coords_top_left,
|
1556
|
+
self.size,
|
1557
|
+
dtype=negative_prompt_embeds.dtype,
|
1558
|
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
1559
|
+
)
|
1560
|
+
|
1561
|
+
if do_classifier_free_guidance:
|
1562
|
+
negative_prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1563
|
+
add_text_embeds = torch.cat([add_text_embeds, edit_pooled_prompt_embeds], dim=0)
|
1564
|
+
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
|
1565
|
+
|
1566
|
+
negative_prompt_embeds = negative_prompt_embeds.to(device)
|
1567
|
+
|
1568
|
+
add_text_embeds = add_text_embeds.to(device)
|
1569
|
+
add_time_ids = add_time_ids.to(device).repeat(self.batch_size * num_images_per_prompt, 1)
|
1570
|
+
|
1571
|
+
# autoencoder reconstruction
|
1572
|
+
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
|
1573
|
+
self.upcast_vae()
|
1574
|
+
x0_tmp = x0.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1575
|
+
image_rec = self.vae.decode(
|
1576
|
+
x0_tmp / self.vae.config.scaling_factor, return_dict=False, generator=generator
|
1577
|
+
)[0]
|
1578
|
+
elif self.vae.config.force_upcast:
|
1579
|
+
x0_tmp = x0.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1580
|
+
image_rec = self.vae.decode(
|
1581
|
+
x0_tmp / self.vae.config.scaling_factor, return_dict=False, generator=generator
|
1582
|
+
)[0]
|
1583
|
+
else:
|
1584
|
+
image_rec = self.vae.decode(x0 / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0]
|
1585
|
+
|
1586
|
+
image_rec = self.image_processor.postprocess(image_rec, output_type="pil")
|
1587
|
+
|
1588
|
+
# 5. find zs and xts
|
1589
|
+
variance_noise_shape = (num_inversion_steps, *x0.shape)
|
1590
|
+
|
1591
|
+
# intermediate latents
|
1592
|
+
t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
|
1593
|
+
xts = torch.zeros(size=variance_noise_shape, device=self.device, dtype=negative_prompt_embeds.dtype)
|
1594
|
+
|
1595
|
+
for t in reversed(timesteps):
|
1596
|
+
idx = num_inversion_steps - t_to_idx[int(t)] - 1
|
1597
|
+
noise = randn_tensor(shape=x0.shape, generator=generator, device=self.device, dtype=x0.dtype)
|
1598
|
+
xts[idx] = self.scheduler.add_noise(x0, noise, t.unsqueeze(0))
|
1599
|
+
xts = torch.cat([x0.unsqueeze(0), xts], dim=0)
|
1600
|
+
|
1601
|
+
# noise maps
|
1602
|
+
zs = torch.zeros(size=variance_noise_shape, device=self.device, dtype=negative_prompt_embeds.dtype)
|
1603
|
+
|
1604
|
+
self.scheduler.set_timesteps(len(self.scheduler.timesteps))
|
1605
|
+
|
1606
|
+
for t in self.progress_bar(timesteps):
|
1607
|
+
idx = num_inversion_steps - t_to_idx[int(t)] - 1
|
1608
|
+
# 1. predict noise residual
|
1609
|
+
xt = xts[idx + 1]
|
1610
|
+
|
1611
|
+
latent_model_input = torch.cat([xt] * 2) if do_classifier_free_guidance else xt
|
1612
|
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1613
|
+
|
1614
|
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1615
|
+
|
1616
|
+
noise_pred = self.unet(
|
1617
|
+
latent_model_input,
|
1618
|
+
t,
|
1619
|
+
encoder_hidden_states=negative_prompt_embeds,
|
1620
|
+
cross_attention_kwargs=cross_attention_kwargs,
|
1621
|
+
added_cond_kwargs=added_cond_kwargs,
|
1622
|
+
return_dict=False,
|
1623
|
+
)[0]
|
1624
|
+
|
1625
|
+
# 2. perform guidance
|
1626
|
+
if do_classifier_free_guidance:
|
1627
|
+
noise_pred_out = noise_pred.chunk(2)
|
1628
|
+
noise_pred_uncond, noise_pred_text = noise_pred_out[0], noise_pred_out[1]
|
1629
|
+
noise_pred = noise_pred_uncond + source_guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1630
|
+
|
1631
|
+
xtm1 = xts[idx]
|
1632
|
+
z, xtm1_corrected = compute_noise(self.scheduler, xtm1, xt, t, noise_pred, self.eta)
|
1633
|
+
zs[idx] = z
|
1634
|
+
|
1635
|
+
# correction to avoid error accumulation
|
1636
|
+
xts[idx] = xtm1_corrected
|
1637
|
+
|
1638
|
+
self.init_latents = xts[-1]
|
1639
|
+
zs = zs.flip(0)
|
1640
|
+
|
1641
|
+
if num_zero_noise_steps > 0:
|
1642
|
+
zs[-num_zero_noise_steps:] = torch.zeros_like(zs[-num_zero_noise_steps:])
|
1643
|
+
self.zs = zs
|
1644
|
+
return LEditsPPInversionPipelineOutput(images=resized, vae_reconstruction_images=image_rec)
|
1645
|
+
|
1646
|
+
|
1647
|
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.rescale_noise_cfg
|
1648
|
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
1649
|
+
"""
|
1650
|
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
1651
|
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
1652
|
+
"""
|
1653
|
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
1654
|
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
1655
|
+
# rescale the results from guidance (fixes overexposure)
|
1656
|
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
1657
|
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
1658
|
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
1659
|
+
return noise_cfg
|
1660
|
+
|
1661
|
+
|
1662
|
+
# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.compute_noise_ddim
|
1663
|
+
def compute_noise_ddim(scheduler, prev_latents, latents, timestep, noise_pred, eta):
|
1664
|
+
# 1. get previous step value (=t-1)
|
1665
|
+
prev_timestep = timestep - scheduler.config.num_train_timesteps // scheduler.num_inference_steps
|
1666
|
+
|
1667
|
+
# 2. compute alphas, betas
|
1668
|
+
alpha_prod_t = scheduler.alphas_cumprod[timestep]
|
1669
|
+
alpha_prod_t_prev = (
|
1670
|
+
scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else scheduler.final_alpha_cumprod
|
1671
|
+
)
|
1672
|
+
|
1673
|
+
beta_prod_t = 1 - alpha_prod_t
|
1674
|
+
|
1675
|
+
# 3. compute predicted original sample from predicted noise also called
|
1676
|
+
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
1677
|
+
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
|
1678
|
+
|
1679
|
+
# 4. Clip "predicted x_0"
|
1680
|
+
if scheduler.config.clip_sample:
|
1681
|
+
pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
|
1682
|
+
|
1683
|
+
# 5. compute variance: "sigma_t(η)" -> see formula (16)
|
1684
|
+
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
|
1685
|
+
variance = scheduler._get_variance(timestep, prev_timestep)
|
1686
|
+
std_dev_t = eta * variance ** (0.5)
|
1687
|
+
|
1688
|
+
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
1689
|
+
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * noise_pred
|
1690
|
+
|
1691
|
+
# modifed so that updated xtm1 is returned as well (to avoid error accumulation)
|
1692
|
+
mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
|
1693
|
+
if variance > 0.0:
|
1694
|
+
noise = (prev_latents - mu_xt) / (variance ** (0.5) * eta)
|
1695
|
+
else:
|
1696
|
+
noise = torch.tensor([0.0]).to(latents.device)
|
1697
|
+
|
1698
|
+
return noise, mu_xt + (eta * variance**0.5) * noise
|
1699
|
+
|
1700
|
+
|
1701
|
+
# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.compute_noise_sde_dpm_pp_2nd
|
1702
|
+
def compute_noise_sde_dpm_pp_2nd(scheduler, prev_latents, latents, timestep, noise_pred, eta):
|
1703
|
+
def first_order_update(model_output, sample): # timestep, prev_timestep, sample):
|
1704
|
+
sigma_t, sigma_s = scheduler.sigmas[scheduler.step_index + 1], scheduler.sigmas[scheduler.step_index]
|
1705
|
+
alpha_t, sigma_t = scheduler._sigma_to_alpha_sigma_t(sigma_t)
|
1706
|
+
alpha_s, sigma_s = scheduler._sigma_to_alpha_sigma_t(sigma_s)
|
1707
|
+
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
|
1708
|
+
lambda_s = torch.log(alpha_s) - torch.log(sigma_s)
|
1709
|
+
|
1710
|
+
h = lambda_t - lambda_s
|
1711
|
+
|
1712
|
+
mu_xt = (sigma_t / sigma_s * torch.exp(-h)) * sample + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
|
1713
|
+
|
1714
|
+
mu_xt = scheduler.dpm_solver_first_order_update(
|
1715
|
+
model_output=model_output, sample=sample, noise=torch.zeros_like(sample)
|
1716
|
+
)
|
1717
|
+
|
1718
|
+
sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h))
|
1719
|
+
if sigma > 0.0:
|
1720
|
+
noise = (prev_latents - mu_xt) / sigma
|
1721
|
+
else:
|
1722
|
+
noise = torch.tensor([0.0]).to(sample.device)
|
1723
|
+
|
1724
|
+
prev_sample = mu_xt + sigma * noise
|
1725
|
+
return noise, prev_sample
|
1726
|
+
|
1727
|
+
def second_order_update(model_output_list, sample): # timestep_list, prev_timestep, sample):
|
1728
|
+
sigma_t, sigma_s0, sigma_s1 = (
|
1729
|
+
scheduler.sigmas[scheduler.step_index + 1],
|
1730
|
+
scheduler.sigmas[scheduler.step_index],
|
1731
|
+
scheduler.sigmas[scheduler.step_index - 1],
|
1732
|
+
)
|
1733
|
+
|
1734
|
+
alpha_t, sigma_t = scheduler._sigma_to_alpha_sigma_t(sigma_t)
|
1735
|
+
alpha_s0, sigma_s0 = scheduler._sigma_to_alpha_sigma_t(sigma_s0)
|
1736
|
+
alpha_s1, sigma_s1 = scheduler._sigma_to_alpha_sigma_t(sigma_s1)
|
1737
|
+
|
1738
|
+
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
|
1739
|
+
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
|
1740
|
+
lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
|
1741
|
+
|
1742
|
+
m0, m1 = model_output_list[-1], model_output_list[-2]
|
1743
|
+
|
1744
|
+
h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
|
1745
|
+
r0 = h_0 / h
|
1746
|
+
D0, D1 = m0, (1.0 / r0) * (m0 - m1)
|
1747
|
+
|
1748
|
+
mu_xt = (
|
1749
|
+
(sigma_t / sigma_s0 * torch.exp(-h)) * sample
|
1750
|
+
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
|
1751
|
+
+ 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
|
1752
|
+
)
|
1753
|
+
|
1754
|
+
sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h))
|
1755
|
+
if sigma > 0.0:
|
1756
|
+
noise = (prev_latents - mu_xt) / sigma
|
1757
|
+
else:
|
1758
|
+
noise = torch.tensor([0.0]).to(sample.device)
|
1759
|
+
|
1760
|
+
prev_sample = mu_xt + sigma * noise
|
1761
|
+
|
1762
|
+
return noise, prev_sample
|
1763
|
+
|
1764
|
+
if scheduler.step_index is None:
|
1765
|
+
scheduler._init_step_index(timestep)
|
1766
|
+
|
1767
|
+
model_output = scheduler.convert_model_output(model_output=noise_pred, sample=latents)
|
1768
|
+
for i in range(scheduler.config.solver_order - 1):
|
1769
|
+
scheduler.model_outputs[i] = scheduler.model_outputs[i + 1]
|
1770
|
+
scheduler.model_outputs[-1] = model_output
|
1771
|
+
|
1772
|
+
if scheduler.lower_order_nums < 1:
|
1773
|
+
noise, prev_sample = first_order_update(model_output, latents)
|
1774
|
+
else:
|
1775
|
+
noise, prev_sample = second_order_update(scheduler.model_outputs, latents)
|
1776
|
+
|
1777
|
+
if scheduler.lower_order_nums < scheduler.config.solver_order:
|
1778
|
+
scheduler.lower_order_nums += 1
|
1779
|
+
|
1780
|
+
# upon completion increase step index by one
|
1781
|
+
scheduler._step_index += 1
|
1782
|
+
|
1783
|
+
return noise, prev_sample
|
1784
|
+
|
1785
|
+
|
1786
|
+
# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.compute_noise
|
1787
|
+
def compute_noise(scheduler, *args):
|
1788
|
+
if isinstance(scheduler, DDIMScheduler):
|
1789
|
+
return compute_noise_ddim(scheduler, *args)
|
1790
|
+
elif (
|
1791
|
+
isinstance(scheduler, DPMSolverMultistepScheduler)
|
1792
|
+
and scheduler.config.algorithm_type == "sde-dpmsolver++"
|
1793
|
+
and scheduler.config.solver_order == 2
|
1794
|
+
):
|
1795
|
+
return compute_noise_sde_dpm_pp_2nd(scheduler, *args)
|
1796
|
+
else:
|
1797
|
+
raise NotImplementedError
|