diffusers 0.26.3__py3-none-any.whl → 0.27.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +20 -1
- diffusers/commands/__init__.py +1 -1
- diffusers/commands/diffusers_cli.py +1 -1
- diffusers/commands/env.py +1 -1
- diffusers/commands/fp16_safetensors.py +1 -1
- diffusers/configuration_utils.py +7 -3
- diffusers/dependency_versions_check.py +1 -1
- diffusers/dependency_versions_table.py +2 -2
- diffusers/experimental/rl/value_guided_sampling.py +1 -1
- diffusers/image_processor.py +110 -4
- diffusers/loaders/autoencoder.py +7 -8
- diffusers/loaders/controlnet.py +17 -8
- diffusers/loaders/ip_adapter.py +86 -23
- diffusers/loaders/lora.py +105 -310
- diffusers/loaders/lora_conversion_utils.py +1 -1
- diffusers/loaders/peft.py +1 -1
- diffusers/loaders/single_file.py +51 -12
- diffusers/loaders/single_file_utils.py +274 -49
- diffusers/loaders/textual_inversion.py +23 -4
- diffusers/loaders/unet.py +195 -41
- diffusers/loaders/utils.py +1 -1
- diffusers/models/__init__.py +3 -1
- diffusers/models/activations.py +9 -9
- diffusers/models/attention.py +26 -36
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +171 -114
- diffusers/models/autoencoders/autoencoder_asym_kl.py +1 -1
- diffusers/models/autoencoders/autoencoder_kl.py +3 -1
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
- diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
- diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
- diffusers/models/autoencoders/vae.py +1 -1
- diffusers/models/controlnet.py +1 -1
- diffusers/models/controlnet_flax.py +1 -1
- diffusers/models/downsampling.py +8 -12
- diffusers/models/dual_transformer_2d.py +1 -1
- diffusers/models/embeddings.py +3 -4
- diffusers/models/embeddings_flax.py +1 -1
- diffusers/models/lora.py +33 -10
- diffusers/models/modeling_flax_pytorch_utils.py +1 -1
- diffusers/models/modeling_flax_utils.py +1 -1
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +4 -6
- diffusers/models/normalization.py +1 -1
- diffusers/models/resnet.py +31 -58
- diffusers/models/resnet_flax.py +1 -1
- diffusers/models/t5_film_transformer.py +1 -1
- diffusers/models/transformer_2d.py +1 -1
- diffusers/models/transformer_temporal.py +1 -1
- diffusers/models/transformers/dual_transformer_2d.py +1 -1
- diffusers/models/transformers/t5_film_transformer.py +1 -1
- diffusers/models/transformers/transformer_2d.py +29 -31
- diffusers/models/transformers/transformer_temporal.py +1 -1
- diffusers/models/unet_1d.py +1 -1
- diffusers/models/unet_1d_blocks.py +1 -1
- diffusers/models/unet_2d.py +1 -1
- diffusers/models/unet_2d_blocks.py +1 -1
- diffusers/models/unet_2d_condition.py +1 -1
- diffusers/models/unets/__init__.py +1 -0
- diffusers/models/unets/unet_1d.py +1 -1
- diffusers/models/unets/unet_1d_blocks.py +1 -1
- diffusers/models/unets/unet_2d.py +4 -4
- diffusers/models/unets/unet_2d_blocks.py +238 -98
- diffusers/models/unets/unet_2d_blocks_flax.py +1 -1
- diffusers/models/unets/unet_2d_condition.py +420 -323
- diffusers/models/unets/unet_2d_condition_flax.py +21 -12
- diffusers/models/unets/unet_3d_blocks.py +50 -40
- diffusers/models/unets/unet_3d_condition.py +47 -8
- diffusers/models/unets/unet_i2vgen_xl.py +75 -30
- diffusers/models/unets/unet_kandinsky3.py +1 -1
- diffusers/models/unets/unet_motion_model.py +48 -8
- diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
- diffusers/models/unets/unet_stable_cascade.py +610 -0
- diffusers/models/unets/uvit_2d.py +1 -1
- diffusers/models/upsampling.py +10 -16
- diffusers/models/vae_flax.py +1 -1
- diffusers/models/vq_model.py +1 -1
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +26 -0
- diffusers/pipelines/amused/pipeline_amused.py +1 -1
- diffusers/pipelines/amused/pipeline_amused_img2img.py +1 -1
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +1 -1
- diffusers/pipelines/animatediff/pipeline_animatediff.py +162 -417
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +165 -137
- diffusers/pipelines/animatediff/pipeline_output.py +7 -6
- diffusers/pipelines/audioldm/pipeline_audioldm.py +3 -19
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +3 -3
- diffusers/pipelines/auto_pipeline.py +7 -16
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +2 -2
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
- diffusers/pipelines/controlnet/pipeline_controlnet.py +90 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +98 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +92 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +145 -70
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +126 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +108 -96
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -1
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -1
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +4 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +4 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +5 -5
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +4 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +5 -5
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +5 -5
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +10 -120
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +10 -91
- diffusers/pipelines/deprecated/audio_diffusion/mel.py +1 -1
- diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py +1 -1
- diffusers/pipelines/deprecated/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py +1 -1
- diffusers/pipelines/deprecated/pndm/pipeline_pndm.py +1 -1
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +1 -1
- diffusers/pipelines/deprecated/score_sde_ve/pipeline_score_sde_ve.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/continuous_encoder.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/midi_utils.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/notes_encoder.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -1
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +5 -4
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +5 -4
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +7 -22
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +5 -39
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +5 -5
- diffusers/pipelines/deprecated/stochastic_karras_ve/pipeline_stochastic_karras_ve.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +31 -22
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -2
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +1 -1
- diffusers/pipelines/dit/pipeline_dit.py +1 -1
- diffusers/pipelines/free_init_utils.py +184 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +22 -104
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +2 -2
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +2 -2
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +104 -93
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +112 -74
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
- diffusers/pipelines/ledits_pp/__init__.py +55 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +1505 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +1797 -0
- diffusers/pipelines/ledits_pp/pipeline_output.py +43 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +3 -19
- diffusers/pipelines/onnx_utils.py +1 -1
- diffusers/pipelines/paint_by_example/image_encoder.py +1 -1
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +3 -3
- diffusers/pipelines/pia/pipeline_pia.py +168 -327
- diffusers/pipelines/pipeline_flax_utils.py +1 -1
- diffusers/pipelines/pipeline_loading_utils.py +508 -0
- diffusers/pipelines/pipeline_utils.py +188 -534
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +56 -10
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +3 -3
- diffusers/pipelines/shap_e/camera.py +1 -1
- diffusers/pipelines/shap_e/pipeline_shap_e.py +1 -1
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +1 -1
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_cascade/__init__.py +50 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +482 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +311 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +638 -0
- diffusers/pipelines/stable_diffusion/clip_image_project_model.py +1 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +4 -1
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +90 -146
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +5 -4
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +4 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -119
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -119
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +13 -59
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +3 -31
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +5 -33
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -21
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +7 -21
- diffusers/pipelines/stable_diffusion/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion/safety_checker_flax.py +1 -1
- diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py +1 -1
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +5 -21
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +9 -38
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -34
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +6 -35
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +7 -6
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +4 -124
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +282 -80
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +94 -46
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +3 -3
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +6 -22
- diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +96 -148
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +98 -154
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +98 -153
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +25 -87
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +89 -80
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +5 -49
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +80 -88
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +8 -6
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +15 -86
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +20 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +5 -5
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +3 -19
- diffusers/pipelines/unclip/pipeline_unclip.py +1 -1
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -1
- diffusers/pipelines/unclip/text_proj.py +1 -1
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +35 -35
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +4 -21
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py +2 -2
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +4 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +8 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +2 -2
- diffusers/schedulers/__init__.py +7 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +1 -1
- diffusers/schedulers/deprecated/scheduling_sde_vp.py +1 -1
- diffusers/schedulers/scheduling_consistency_models.py +42 -19
- diffusers/schedulers/scheduling_ddim.py +2 -4
- diffusers/schedulers/scheduling_ddim_flax.py +13 -5
- diffusers/schedulers/scheduling_ddim_inverse.py +2 -4
- diffusers/schedulers/scheduling_ddim_parallel.py +2 -4
- diffusers/schedulers/scheduling_ddpm.py +2 -4
- diffusers/schedulers/scheduling_ddpm_flax.py +1 -1
- diffusers/schedulers/scheduling_ddpm_parallel.py +2 -4
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +1 -1
- diffusers/schedulers/scheduling_deis_multistep.py +46 -19
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +107 -21
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +1 -1
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +9 -7
- diffusers/schedulers/scheduling_dpmsolver_sde.py +35 -35
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +49 -18
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +683 -0
- diffusers/schedulers/scheduling_edm_euler.py +381 -0
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +43 -15
- diffusers/schedulers/scheduling_euler_discrete.py +42 -17
- diffusers/schedulers/scheduling_euler_discrete_flax.py +1 -1
- diffusers/schedulers/scheduling_heun_discrete.py +35 -35
- diffusers/schedulers/scheduling_ipndm.py +37 -11
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +44 -44
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +44 -44
- diffusers/schedulers/scheduling_karras_ve_flax.py +1 -1
- diffusers/schedulers/scheduling_lcm.py +38 -14
- diffusers/schedulers/scheduling_lms_discrete.py +43 -15
- diffusers/schedulers/scheduling_lms_discrete_flax.py +1 -1
- diffusers/schedulers/scheduling_pndm.py +2 -4
- diffusers/schedulers/scheduling_pndm_flax.py +2 -4
- diffusers/schedulers/scheduling_repaint.py +1 -1
- diffusers/schedulers/scheduling_sasolver.py +41 -9
- diffusers/schedulers/scheduling_sde_ve.py +1 -1
- diffusers/schedulers/scheduling_sde_ve_flax.py +1 -1
- diffusers/schedulers/scheduling_tcd.py +686 -0
- diffusers/schedulers/scheduling_unclip.py +1 -1
- diffusers/schedulers/scheduling_unipc_multistep.py +46 -19
- diffusers/schedulers/scheduling_utils.py +2 -1
- diffusers/schedulers/scheduling_utils_flax.py +1 -1
- diffusers/schedulers/scheduling_vq_diffusion.py +1 -1
- diffusers/training_utils.py +9 -2
- diffusers/utils/__init__.py +2 -1
- diffusers/utils/accelerate_utils.py +1 -1
- diffusers/utils/constants.py +1 -1
- diffusers/utils/doc_utils.py +1 -1
- diffusers/utils/dummy_pt_objects.py +60 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +75 -0
- diffusers/utils/dynamic_modules_utils.py +1 -1
- diffusers/utils/export_utils.py +3 -3
- diffusers/utils/hub_utils.py +60 -16
- diffusers/utils/import_utils.py +15 -1
- diffusers/utils/loading_utils.py +2 -0
- diffusers/utils/logging.py +1 -1
- diffusers/utils/model_card_template.md +24 -0
- diffusers/utils/outputs.py +14 -7
- diffusers/utils/peft_utils.py +1 -1
- diffusers/utils/state_dict_utils.py +1 -1
- diffusers/utils/testing_utils.py +2 -0
- diffusers/utils/torch_utils.py +1 -1
- {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/METADATA +46 -46
- diffusers-0.27.0.dist-info/RECORD +399 -0
- {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/WHEEL +1 -1
- diffusers-0.26.3.dist-info/RECORD +0 -384
- {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/LICENSE +0 -0
- {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/entry_points.txt +0 -0
- {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,4 @@
|
|
1
|
-
# Copyright
|
1
|
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2
2
|
#
|
3
3
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
4
|
# you may not use this file except in compliance with the License.
|
@@ -35,7 +35,6 @@ from ...loaders import (
|
|
35
35
|
from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
36
36
|
from ...models.attention_processor import (
|
37
37
|
AttnProcessor2_0,
|
38
|
-
FusedAttnProcessor2_0,
|
39
38
|
LoRAAttnProcessor2_0,
|
40
39
|
LoRAXFormersAttnProcessor,
|
41
40
|
XFormersAttnProcessor,
|
@@ -53,7 +52,7 @@ from ...utils import (
|
|
53
52
|
unscale_lora_layers,
|
54
53
|
)
|
55
54
|
from ...utils.torch_utils import randn_tensor
|
56
|
-
from ..pipeline_utils import DiffusionPipeline
|
55
|
+
from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
57
56
|
from .pipeline_output import StableDiffusionXLPipelineOutput
|
58
57
|
|
59
58
|
|
@@ -166,6 +165,7 @@ def retrieve_timesteps(
|
|
166
165
|
|
167
166
|
class StableDiffusionXLImg2ImgPipeline(
|
168
167
|
DiffusionPipeline,
|
168
|
+
StableDiffusionMixin,
|
169
169
|
TextualInversionLoaderMixin,
|
170
170
|
FromSingleFileMixin,
|
171
171
|
StableDiffusionXLLoraLoaderMixin,
|
@@ -278,39 +278,6 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
278
278
|
else:
|
279
279
|
self.watermark = None
|
280
280
|
|
281
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
282
|
-
def enable_vae_slicing(self):
|
283
|
-
r"""
|
284
|
-
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
285
|
-
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
286
|
-
"""
|
287
|
-
self.vae.enable_slicing()
|
288
|
-
|
289
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
290
|
-
def disable_vae_slicing(self):
|
291
|
-
r"""
|
292
|
-
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
293
|
-
computing decoding in one step.
|
294
|
-
"""
|
295
|
-
self.vae.disable_slicing()
|
296
|
-
|
297
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
298
|
-
def enable_vae_tiling(self):
|
299
|
-
r"""
|
300
|
-
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
301
|
-
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
302
|
-
processing larger images.
|
303
|
-
"""
|
304
|
-
self.vae.enable_tiling()
|
305
|
-
|
306
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
307
|
-
def disable_vae_tiling(self):
|
308
|
-
r"""
|
309
|
-
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
310
|
-
computing decoding in one step.
|
311
|
-
"""
|
312
|
-
self.vae.disable_tiling()
|
313
|
-
|
314
281
|
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
|
315
282
|
def encode_prompt(
|
316
283
|
self,
|
@@ -407,7 +374,7 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
407
374
|
prompt_2 = prompt_2 or prompt
|
408
375
|
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
409
376
|
|
410
|
-
# textual inversion:
|
377
|
+
# textual inversion: process multi-vector tokens if necessary
|
411
378
|
prompt_embeds_list = []
|
412
379
|
prompts = [prompt, prompt_2]
|
413
380
|
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
@@ -575,6 +542,8 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
575
542
|
negative_prompt_2=None,
|
576
543
|
prompt_embeds=None,
|
577
544
|
negative_prompt_embeds=None,
|
545
|
+
ip_adapter_image=None,
|
546
|
+
ip_adapter_image_embeds=None,
|
578
547
|
callback_on_step_end_tensor_inputs=None,
|
579
548
|
):
|
580
549
|
if strength < 0 or strength > 1:
|
@@ -637,6 +606,21 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
637
606
|
f" {negative_prompt_embeds.shape}."
|
638
607
|
)
|
639
608
|
|
609
|
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
610
|
+
raise ValueError(
|
611
|
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
612
|
+
)
|
613
|
+
|
614
|
+
if ip_adapter_image_embeds is not None:
|
615
|
+
if not isinstance(ip_adapter_image_embeds, list):
|
616
|
+
raise ValueError(
|
617
|
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
618
|
+
)
|
619
|
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
620
|
+
raise ValueError(
|
621
|
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
622
|
+
)
|
623
|
+
|
640
624
|
def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None):
|
641
625
|
# get the original timestep using init_timestep
|
642
626
|
if denoising_start is None:
|
@@ -767,31 +751,54 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
767
751
|
return image_embeds, uncond_image_embeds
|
768
752
|
|
769
753
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
770
|
-
def prepare_ip_adapter_image_embeds(
|
771
|
-
|
772
|
-
|
754
|
+
def prepare_ip_adapter_image_embeds(
|
755
|
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
756
|
+
):
|
757
|
+
if ip_adapter_image_embeds is None:
|
758
|
+
if not isinstance(ip_adapter_image, list):
|
759
|
+
ip_adapter_image = [ip_adapter_image]
|
773
760
|
|
774
|
-
|
775
|
-
|
776
|
-
|
777
|
-
|
761
|
+
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
762
|
+
raise ValueError(
|
763
|
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
764
|
+
)
|
778
765
|
|
779
|
-
|
780
|
-
|
781
|
-
|
782
|
-
|
783
|
-
|
784
|
-
|
785
|
-
|
786
|
-
|
787
|
-
|
788
|
-
|
766
|
+
image_embeds = []
|
767
|
+
for single_ip_adapter_image, image_proj_layer in zip(
|
768
|
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
769
|
+
):
|
770
|
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
771
|
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
772
|
+
single_ip_adapter_image, device, 1, output_hidden_state
|
773
|
+
)
|
774
|
+
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
775
|
+
single_negative_image_embeds = torch.stack(
|
776
|
+
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
777
|
+
)
|
789
778
|
|
790
|
-
|
791
|
-
|
792
|
-
|
779
|
+
if do_classifier_free_guidance:
|
780
|
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
781
|
+
single_image_embeds = single_image_embeds.to(device)
|
793
782
|
|
794
|
-
|
783
|
+
image_embeds.append(single_image_embeds)
|
784
|
+
else:
|
785
|
+
repeat_dims = [1]
|
786
|
+
image_embeds = []
|
787
|
+
for single_image_embeds in ip_adapter_image_embeds:
|
788
|
+
if do_classifier_free_guidance:
|
789
|
+
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
790
|
+
single_image_embeds = single_image_embeds.repeat(
|
791
|
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
792
|
+
)
|
793
|
+
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
794
|
+
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
795
|
+
)
|
796
|
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
797
|
+
else:
|
798
|
+
single_image_embeds = single_image_embeds.repeat(
|
799
|
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
800
|
+
)
|
801
|
+
image_embeds.append(single_image_embeds)
|
795
802
|
|
796
803
|
return image_embeds
|
797
804
|
|
@@ -866,95 +873,6 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
866
873
|
self.vae.decoder.conv_in.to(dtype)
|
867
874
|
self.vae.decoder.mid_block.to(dtype)
|
868
875
|
|
869
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
|
870
|
-
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
871
|
-
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
|
872
|
-
|
873
|
-
The suffixes after the scaling factors represent the stages where they are being applied.
|
874
|
-
|
875
|
-
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
|
876
|
-
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
877
|
-
|
878
|
-
Args:
|
879
|
-
s1 (`float`):
|
880
|
-
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
881
|
-
mitigate "oversmoothing effect" in the enhanced denoising process.
|
882
|
-
s2 (`float`):
|
883
|
-
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
884
|
-
mitigate "oversmoothing effect" in the enhanced denoising process.
|
885
|
-
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
886
|
-
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
887
|
-
"""
|
888
|
-
if not hasattr(self, "unet"):
|
889
|
-
raise ValueError("The pipeline must have `unet` for using FreeU.")
|
890
|
-
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
|
891
|
-
|
892
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
|
893
|
-
def disable_freeu(self):
|
894
|
-
"""Disables the FreeU mechanism if enabled."""
|
895
|
-
self.unet.disable_freeu()
|
896
|
-
|
897
|
-
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.fuse_qkv_projections
|
898
|
-
def fuse_qkv_projections(self, unet: bool = True, vae: bool = True):
|
899
|
-
"""
|
900
|
-
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
|
901
|
-
key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
|
902
|
-
|
903
|
-
<Tip warning={true}>
|
904
|
-
|
905
|
-
This API is 🧪 experimental.
|
906
|
-
|
907
|
-
</Tip>
|
908
|
-
|
909
|
-
Args:
|
910
|
-
unet (`bool`, defaults to `True`): To apply fusion on the UNet.
|
911
|
-
vae (`bool`, defaults to `True`): To apply fusion on the VAE.
|
912
|
-
"""
|
913
|
-
self.fusing_unet = False
|
914
|
-
self.fusing_vae = False
|
915
|
-
|
916
|
-
if unet:
|
917
|
-
self.fusing_unet = True
|
918
|
-
self.unet.fuse_qkv_projections()
|
919
|
-
self.unet.set_attn_processor(FusedAttnProcessor2_0())
|
920
|
-
|
921
|
-
if vae:
|
922
|
-
if not isinstance(self.vae, AutoencoderKL):
|
923
|
-
raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.")
|
924
|
-
|
925
|
-
self.fusing_vae = True
|
926
|
-
self.vae.fuse_qkv_projections()
|
927
|
-
self.vae.set_attn_processor(FusedAttnProcessor2_0())
|
928
|
-
|
929
|
-
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.unfuse_qkv_projections
|
930
|
-
def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True):
|
931
|
-
"""Disable QKV projection fusion if enabled.
|
932
|
-
|
933
|
-
<Tip warning={true}>
|
934
|
-
|
935
|
-
This API is 🧪 experimental.
|
936
|
-
|
937
|
-
</Tip>
|
938
|
-
|
939
|
-
Args:
|
940
|
-
unet (`bool`, defaults to `True`): To apply fusion on the UNet.
|
941
|
-
vae (`bool`, defaults to `True`): To apply fusion on the VAE.
|
942
|
-
|
943
|
-
"""
|
944
|
-
if unet:
|
945
|
-
if not self.fusing_unet:
|
946
|
-
logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.")
|
947
|
-
else:
|
948
|
-
self.unet.unfuse_qkv_projections()
|
949
|
-
self.fusing_unet = False
|
950
|
-
|
951
|
-
if vae:
|
952
|
-
if not self.fusing_vae:
|
953
|
-
logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.")
|
954
|
-
else:
|
955
|
-
self.vae.unfuse_qkv_projections()
|
956
|
-
self.fusing_vae = False
|
957
|
-
|
958
876
|
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
959
877
|
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
960
878
|
"""
|
@@ -1047,6 +965,7 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
1047
965
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1048
966
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1049
967
|
ip_adapter_image: Optional[PipelineImageInput] = None,
|
968
|
+
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
|
1050
969
|
output_type: Optional[str] = "pil",
|
1051
970
|
return_dict: bool = True,
|
1052
971
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
@@ -1145,6 +1064,11 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
1145
1064
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
1146
1065
|
input argument.
|
1147
1066
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
1067
|
+
ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
|
1068
|
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters.
|
1069
|
+
Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding
|
1070
|
+
if `do_classifier_free_guidance` is set to `True`.
|
1071
|
+
If not provided, embeddings are computed from the `ip_adapter_image` input argument.
|
1148
1072
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
1149
1073
|
The output format of the generate image. Choose between
|
1150
1074
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
@@ -1245,6 +1169,8 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
1245
1169
|
negative_prompt_2,
|
1246
1170
|
prompt_embeds,
|
1247
1171
|
negative_prompt_embeds,
|
1172
|
+
ip_adapter_image,
|
1173
|
+
ip_adapter_image_embeds,
|
1248
1174
|
callback_on_step_end_tensor_inputs,
|
1249
1175
|
)
|
1250
1176
|
|
@@ -1296,14 +1222,14 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
1296
1222
|
|
1297
1223
|
# 5. Prepare timesteps
|
1298
1224
|
def denoising_value_valid(dnv):
|
1299
|
-
return isinstance(
|
1225
|
+
return isinstance(dnv, float) and 0 < dnv < 1
|
1300
1226
|
|
1301
1227
|
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
1302
1228
|
timesteps, num_inference_steps = self.get_timesteps(
|
1303
1229
|
num_inference_steps,
|
1304
1230
|
strength,
|
1305
1231
|
device,
|
1306
|
-
denoising_start=self.denoising_start if denoising_value_valid else None,
|
1232
|
+
denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None,
|
1307
1233
|
)
|
1308
1234
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
1309
1235
|
|
@@ -1365,9 +1291,13 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
1365
1291
|
add_text_embeds = add_text_embeds.to(device)
|
1366
1292
|
add_time_ids = add_time_ids.to(device)
|
1367
1293
|
|
1368
|
-
if ip_adapter_image is not None:
|
1294
|
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1369
1295
|
image_embeds = self.prepare_ip_adapter_image_embeds(
|
1370
|
-
ip_adapter_image,
|
1296
|
+
ip_adapter_image,
|
1297
|
+
ip_adapter_image_embeds,
|
1298
|
+
device,
|
1299
|
+
batch_size * num_images_per_prompt,
|
1300
|
+
self.do_classifier_free_guidance,
|
1371
1301
|
)
|
1372
1302
|
|
1373
1303
|
# 9. Denoising loop
|
@@ -1416,7 +1346,7 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
1416
1346
|
|
1417
1347
|
# predict the noise residual
|
1418
1348
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1419
|
-
if ip_adapter_image is not None:
|
1349
|
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1420
1350
|
added_cond_kwargs["image_embeds"] = image_embeds
|
1421
1351
|
noise_pred = self.unet(
|
1422
1352
|
latent_model_input,
|
@@ -1474,14 +1404,28 @@ class StableDiffusionXLImg2ImgPipeline(
|
|
1474
1404
|
self.upcast_vae()
|
1475
1405
|
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1476
1406
|
|
1477
|
-
|
1407
|
+
# unscale/denormalize the latents
|
1408
|
+
# denormalize with the mean and std if available and not None
|
1409
|
+
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
|
1410
|
+
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
|
1411
|
+
if has_latents_mean and has_latents_std:
|
1412
|
+
latents_mean = (
|
1413
|
+
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1414
|
+
)
|
1415
|
+
latents_std = (
|
1416
|
+
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1417
|
+
)
|
1418
|
+
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
|
1419
|
+
else:
|
1420
|
+
latents = latents / self.vae.config.scaling_factor
|
1421
|
+
|
1422
|
+
image = self.vae.decode(latents, return_dict=False)[0]
|
1478
1423
|
|
1479
1424
|
# cast back to fp16 if needed
|
1480
1425
|
if needs_upcasting:
|
1481
1426
|
self.vae.to(dtype=torch.float16)
|
1482
1427
|
else:
|
1483
1428
|
image = latents
|
1484
|
-
return StableDiffusionXLPipelineOutput(images=image)
|
1485
1429
|
|
1486
1430
|
# apply watermark if available
|
1487
1431
|
if self.watermark is not None:
|