diffusers 0.26.3__py3-none-any.whl → 0.27.0__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (299) hide show
  1. diffusers/__init__.py +20 -1
  2. diffusers/commands/__init__.py +1 -1
  3. diffusers/commands/diffusers_cli.py +1 -1
  4. diffusers/commands/env.py +1 -1
  5. diffusers/commands/fp16_safetensors.py +1 -1
  6. diffusers/configuration_utils.py +7 -3
  7. diffusers/dependency_versions_check.py +1 -1
  8. diffusers/dependency_versions_table.py +2 -2
  9. diffusers/experimental/rl/value_guided_sampling.py +1 -1
  10. diffusers/image_processor.py +110 -4
  11. diffusers/loaders/autoencoder.py +7 -8
  12. diffusers/loaders/controlnet.py +17 -8
  13. diffusers/loaders/ip_adapter.py +86 -23
  14. diffusers/loaders/lora.py +105 -310
  15. diffusers/loaders/lora_conversion_utils.py +1 -1
  16. diffusers/loaders/peft.py +1 -1
  17. diffusers/loaders/single_file.py +51 -12
  18. diffusers/loaders/single_file_utils.py +274 -49
  19. diffusers/loaders/textual_inversion.py +23 -4
  20. diffusers/loaders/unet.py +195 -41
  21. diffusers/loaders/utils.py +1 -1
  22. diffusers/models/__init__.py +3 -1
  23. diffusers/models/activations.py +9 -9
  24. diffusers/models/attention.py +26 -36
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +171 -114
  27. diffusers/models/autoencoders/autoencoder_asym_kl.py +1 -1
  28. diffusers/models/autoencoders/autoencoder_kl.py +3 -1
  29. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
  30. diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
  31. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  32. diffusers/models/autoencoders/vae.py +1 -1
  33. diffusers/models/controlnet.py +1 -1
  34. diffusers/models/controlnet_flax.py +1 -1
  35. diffusers/models/downsampling.py +8 -12
  36. diffusers/models/dual_transformer_2d.py +1 -1
  37. diffusers/models/embeddings.py +3 -4
  38. diffusers/models/embeddings_flax.py +1 -1
  39. diffusers/models/lora.py +33 -10
  40. diffusers/models/modeling_flax_pytorch_utils.py +1 -1
  41. diffusers/models/modeling_flax_utils.py +1 -1
  42. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  43. diffusers/models/modeling_utils.py +4 -6
  44. diffusers/models/normalization.py +1 -1
  45. diffusers/models/resnet.py +31 -58
  46. diffusers/models/resnet_flax.py +1 -1
  47. diffusers/models/t5_film_transformer.py +1 -1
  48. diffusers/models/transformer_2d.py +1 -1
  49. diffusers/models/transformer_temporal.py +1 -1
  50. diffusers/models/transformers/dual_transformer_2d.py +1 -1
  51. diffusers/models/transformers/t5_film_transformer.py +1 -1
  52. diffusers/models/transformers/transformer_2d.py +29 -31
  53. diffusers/models/transformers/transformer_temporal.py +1 -1
  54. diffusers/models/unet_1d.py +1 -1
  55. diffusers/models/unet_1d_blocks.py +1 -1
  56. diffusers/models/unet_2d.py +1 -1
  57. diffusers/models/unet_2d_blocks.py +1 -1
  58. diffusers/models/unet_2d_condition.py +1 -1
  59. diffusers/models/unets/__init__.py +1 -0
  60. diffusers/models/unets/unet_1d.py +1 -1
  61. diffusers/models/unets/unet_1d_blocks.py +1 -1
  62. diffusers/models/unets/unet_2d.py +4 -4
  63. diffusers/models/unets/unet_2d_blocks.py +238 -98
  64. diffusers/models/unets/unet_2d_blocks_flax.py +1 -1
  65. diffusers/models/unets/unet_2d_condition.py +420 -323
  66. diffusers/models/unets/unet_2d_condition_flax.py +21 -12
  67. diffusers/models/unets/unet_3d_blocks.py +50 -40
  68. diffusers/models/unets/unet_3d_condition.py +47 -8
  69. diffusers/models/unets/unet_i2vgen_xl.py +75 -30
  70. diffusers/models/unets/unet_kandinsky3.py +1 -1
  71. diffusers/models/unets/unet_motion_model.py +48 -8
  72. diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
  73. diffusers/models/unets/unet_stable_cascade.py +610 -0
  74. diffusers/models/unets/uvit_2d.py +1 -1
  75. diffusers/models/upsampling.py +10 -16
  76. diffusers/models/vae_flax.py +1 -1
  77. diffusers/models/vq_model.py +1 -1
  78. diffusers/optimization.py +1 -1
  79. diffusers/pipelines/__init__.py +26 -0
  80. diffusers/pipelines/amused/pipeline_amused.py +1 -1
  81. diffusers/pipelines/amused/pipeline_amused_img2img.py +1 -1
  82. diffusers/pipelines/amused/pipeline_amused_inpaint.py +1 -1
  83. diffusers/pipelines/animatediff/pipeline_animatediff.py +162 -417
  84. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +165 -137
  85. diffusers/pipelines/animatediff/pipeline_output.py +7 -6
  86. diffusers/pipelines/audioldm/pipeline_audioldm.py +3 -19
  87. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  88. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +3 -3
  89. diffusers/pipelines/auto_pipeline.py +7 -16
  90. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  91. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  92. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +2 -2
  93. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  94. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  95. diffusers/pipelines/controlnet/pipeline_controlnet.py +90 -90
  96. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  97. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +98 -90
  98. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +92 -90
  99. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +145 -70
  100. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +126 -89
  101. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +108 -96
  102. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  103. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -1
  104. diffusers/pipelines/ddim/pipeline_ddim.py +1 -1
  105. diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -1
  106. diffusers/pipelines/deepfloyd_if/pipeline_if.py +4 -4
  107. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +4 -4
  108. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +5 -5
  109. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +4 -4
  110. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +5 -5
  111. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +5 -5
  112. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +10 -120
  113. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +10 -91
  114. diffusers/pipelines/deprecated/audio_diffusion/mel.py +1 -1
  115. diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py +1 -1
  116. diffusers/pipelines/deprecated/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py +1 -1
  117. diffusers/pipelines/deprecated/pndm/pipeline_pndm.py +1 -1
  118. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +1 -1
  119. diffusers/pipelines/deprecated/score_sde_ve/pipeline_score_sde_ve.py +1 -1
  120. diffusers/pipelines/deprecated/spectrogram_diffusion/continuous_encoder.py +1 -1
  121. diffusers/pipelines/deprecated/spectrogram_diffusion/midi_utils.py +1 -1
  122. diffusers/pipelines/deprecated/spectrogram_diffusion/notes_encoder.py +1 -1
  123. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -1
  124. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +5 -4
  125. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +5 -4
  126. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +7 -22
  127. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +5 -39
  128. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +5 -5
  129. diffusers/pipelines/deprecated/stochastic_karras_ve/pipeline_stochastic_karras_ve.py +1 -1
  130. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +31 -22
  131. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -1
  132. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -1
  133. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -2
  134. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +1 -1
  135. diffusers/pipelines/dit/pipeline_dit.py +1 -1
  136. diffusers/pipelines/free_init_utils.py +184 -0
  137. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +22 -104
  138. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +1 -1
  139. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +1 -1
  140. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +1 -1
  141. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +2 -2
  142. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +1 -1
  143. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
  144. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +1 -1
  145. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +1 -1
  146. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +1 -1
  147. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
  148. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +2 -2
  149. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +104 -93
  150. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +112 -74
  151. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  152. diffusers/pipelines/ledits_pp/__init__.py +55 -0
  153. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +1505 -0
  154. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +1797 -0
  155. diffusers/pipelines/ledits_pp/pipeline_output.py +43 -0
  156. diffusers/pipelines/musicldm/pipeline_musicldm.py +3 -19
  157. diffusers/pipelines/onnx_utils.py +1 -1
  158. diffusers/pipelines/paint_by_example/image_encoder.py +1 -1
  159. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +3 -3
  160. diffusers/pipelines/pia/pipeline_pia.py +168 -327
  161. diffusers/pipelines/pipeline_flax_utils.py +1 -1
  162. diffusers/pipelines/pipeline_loading_utils.py +508 -0
  163. diffusers/pipelines/pipeline_utils.py +188 -534
  164. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +56 -10
  165. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +3 -3
  166. diffusers/pipelines/shap_e/camera.py +1 -1
  167. diffusers/pipelines/shap_e/pipeline_shap_e.py +1 -1
  168. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +1 -1
  169. diffusers/pipelines/shap_e/renderer.py +1 -1
  170. diffusers/pipelines/stable_cascade/__init__.py +50 -0
  171. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +482 -0
  172. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +311 -0
  173. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +638 -0
  174. diffusers/pipelines/stable_diffusion/clip_image_project_model.py +1 -1
  175. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +4 -1
  176. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  177. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +2 -2
  178. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +1 -1
  179. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +1 -1
  180. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +1 -1
  181. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -1
  182. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +1 -1
  183. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +90 -146
  184. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +5 -4
  185. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +4 -32
  186. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -119
  187. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -119
  188. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +13 -59
  189. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +3 -31
  190. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +5 -33
  191. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -21
  192. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +7 -21
  193. diffusers/pipelines/stable_diffusion/safety_checker.py +1 -1
  194. diffusers/pipelines/stable_diffusion/safety_checker_flax.py +1 -1
  195. diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py +1 -1
  196. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +5 -21
  197. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +9 -38
  198. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -34
  199. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +6 -35
  200. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +7 -6
  201. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +4 -124
  202. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +282 -80
  203. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +94 -46
  204. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +3 -3
  205. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  206. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +6 -22
  207. diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
  208. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +96 -148
  209. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +98 -154
  210. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +98 -153
  211. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +25 -87
  212. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +89 -80
  213. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +5 -49
  214. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +80 -88
  215. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +8 -6
  216. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +15 -86
  217. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +20 -93
  218. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +5 -5
  219. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +3 -19
  220. diffusers/pipelines/unclip/pipeline_unclip.py +1 -1
  221. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -1
  222. diffusers/pipelines/unclip/text_proj.py +1 -1
  223. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +35 -35
  224. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
  225. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +4 -21
  226. diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py +2 -2
  227. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +4 -5
  228. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +8 -8
  229. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +1 -1
  230. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +2 -2
  231. diffusers/schedulers/__init__.py +7 -1
  232. diffusers/schedulers/deprecated/scheduling_karras_ve.py +1 -1
  233. diffusers/schedulers/deprecated/scheduling_sde_vp.py +1 -1
  234. diffusers/schedulers/scheduling_consistency_models.py +42 -19
  235. diffusers/schedulers/scheduling_ddim.py +2 -4
  236. diffusers/schedulers/scheduling_ddim_flax.py +13 -5
  237. diffusers/schedulers/scheduling_ddim_inverse.py +2 -4
  238. diffusers/schedulers/scheduling_ddim_parallel.py +2 -4
  239. diffusers/schedulers/scheduling_ddpm.py +2 -4
  240. diffusers/schedulers/scheduling_ddpm_flax.py +1 -1
  241. diffusers/schedulers/scheduling_ddpm_parallel.py +2 -4
  242. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +1 -1
  243. diffusers/schedulers/scheduling_deis_multistep.py +46 -19
  244. diffusers/schedulers/scheduling_dpmsolver_multistep.py +107 -21
  245. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +1 -1
  246. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +9 -7
  247. diffusers/schedulers/scheduling_dpmsolver_sde.py +35 -35
  248. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +49 -18
  249. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +683 -0
  250. diffusers/schedulers/scheduling_edm_euler.py +381 -0
  251. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +43 -15
  252. diffusers/schedulers/scheduling_euler_discrete.py +42 -17
  253. diffusers/schedulers/scheduling_euler_discrete_flax.py +1 -1
  254. diffusers/schedulers/scheduling_heun_discrete.py +35 -35
  255. diffusers/schedulers/scheduling_ipndm.py +37 -11
  256. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +44 -44
  257. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +44 -44
  258. diffusers/schedulers/scheduling_karras_ve_flax.py +1 -1
  259. diffusers/schedulers/scheduling_lcm.py +38 -14
  260. diffusers/schedulers/scheduling_lms_discrete.py +43 -15
  261. diffusers/schedulers/scheduling_lms_discrete_flax.py +1 -1
  262. diffusers/schedulers/scheduling_pndm.py +2 -4
  263. diffusers/schedulers/scheduling_pndm_flax.py +2 -4
  264. diffusers/schedulers/scheduling_repaint.py +1 -1
  265. diffusers/schedulers/scheduling_sasolver.py +41 -9
  266. diffusers/schedulers/scheduling_sde_ve.py +1 -1
  267. diffusers/schedulers/scheduling_sde_ve_flax.py +1 -1
  268. diffusers/schedulers/scheduling_tcd.py +686 -0
  269. diffusers/schedulers/scheduling_unclip.py +1 -1
  270. diffusers/schedulers/scheduling_unipc_multistep.py +46 -19
  271. diffusers/schedulers/scheduling_utils.py +2 -1
  272. diffusers/schedulers/scheduling_utils_flax.py +1 -1
  273. diffusers/schedulers/scheduling_vq_diffusion.py +1 -1
  274. diffusers/training_utils.py +9 -2
  275. diffusers/utils/__init__.py +2 -1
  276. diffusers/utils/accelerate_utils.py +1 -1
  277. diffusers/utils/constants.py +1 -1
  278. diffusers/utils/doc_utils.py +1 -1
  279. diffusers/utils/dummy_pt_objects.py +60 -0
  280. diffusers/utils/dummy_torch_and_transformers_objects.py +75 -0
  281. diffusers/utils/dynamic_modules_utils.py +1 -1
  282. diffusers/utils/export_utils.py +3 -3
  283. diffusers/utils/hub_utils.py +60 -16
  284. diffusers/utils/import_utils.py +15 -1
  285. diffusers/utils/loading_utils.py +2 -0
  286. diffusers/utils/logging.py +1 -1
  287. diffusers/utils/model_card_template.md +24 -0
  288. diffusers/utils/outputs.py +14 -7
  289. diffusers/utils/peft_utils.py +1 -1
  290. diffusers/utils/state_dict_utils.py +1 -1
  291. diffusers/utils/testing_utils.py +2 -0
  292. diffusers/utils/torch_utils.py +1 -1
  293. {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/METADATA +46 -46
  294. diffusers-0.27.0.dist-info/RECORD +399 -0
  295. {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/WHEEL +1 -1
  296. diffusers-0.26.3.dist-info/RECORD +0 -384
  297. {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/LICENSE +0 -0
  298. {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/entry_points.txt +0 -0
  299. {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,4 @@
1
- # Copyright 2023 The HuggingFace Team. All rights reserved.
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
2
  #
3
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
4
  # you may not use this file except in compliance with the License.
@@ -35,7 +35,6 @@ from ...loaders import (
35
35
  from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
36
36
  from ...models.attention_processor import (
37
37
  AttnProcessor2_0,
38
- FusedAttnProcessor2_0,
39
38
  LoRAAttnProcessor2_0,
40
39
  LoRAXFormersAttnProcessor,
41
40
  XFormersAttnProcessor,
@@ -53,7 +52,7 @@ from ...utils import (
53
52
  unscale_lora_layers,
54
53
  )
55
54
  from ...utils.torch_utils import randn_tensor
56
- from ..pipeline_utils import DiffusionPipeline
55
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
57
56
  from .pipeline_output import StableDiffusionXLPipelineOutput
58
57
 
59
58
 
@@ -166,6 +165,7 @@ def retrieve_timesteps(
166
165
 
167
166
  class StableDiffusionXLImg2ImgPipeline(
168
167
  DiffusionPipeline,
168
+ StableDiffusionMixin,
169
169
  TextualInversionLoaderMixin,
170
170
  FromSingleFileMixin,
171
171
  StableDiffusionXLLoraLoaderMixin,
@@ -278,39 +278,6 @@ class StableDiffusionXLImg2ImgPipeline(
278
278
  else:
279
279
  self.watermark = None
280
280
 
281
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
282
- def enable_vae_slicing(self):
283
- r"""
284
- Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
285
- compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
286
- """
287
- self.vae.enable_slicing()
288
-
289
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
290
- def disable_vae_slicing(self):
291
- r"""
292
- Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
293
- computing decoding in one step.
294
- """
295
- self.vae.disable_slicing()
296
-
297
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
298
- def enable_vae_tiling(self):
299
- r"""
300
- Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
301
- compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
302
- processing larger images.
303
- """
304
- self.vae.enable_tiling()
305
-
306
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
307
- def disable_vae_tiling(self):
308
- r"""
309
- Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
310
- computing decoding in one step.
311
- """
312
- self.vae.disable_tiling()
313
-
314
281
  # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
315
282
  def encode_prompt(
316
283
  self,
@@ -407,7 +374,7 @@ class StableDiffusionXLImg2ImgPipeline(
407
374
  prompt_2 = prompt_2 or prompt
408
375
  prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
409
376
 
410
- # textual inversion: procecss multi-vector tokens if necessary
377
+ # textual inversion: process multi-vector tokens if necessary
411
378
  prompt_embeds_list = []
412
379
  prompts = [prompt, prompt_2]
413
380
  for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
@@ -575,6 +542,8 @@ class StableDiffusionXLImg2ImgPipeline(
575
542
  negative_prompt_2=None,
576
543
  prompt_embeds=None,
577
544
  negative_prompt_embeds=None,
545
+ ip_adapter_image=None,
546
+ ip_adapter_image_embeds=None,
578
547
  callback_on_step_end_tensor_inputs=None,
579
548
  ):
580
549
  if strength < 0 or strength > 1:
@@ -637,6 +606,21 @@ class StableDiffusionXLImg2ImgPipeline(
637
606
  f" {negative_prompt_embeds.shape}."
638
607
  )
639
608
 
609
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
610
+ raise ValueError(
611
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
612
+ )
613
+
614
+ if ip_adapter_image_embeds is not None:
615
+ if not isinstance(ip_adapter_image_embeds, list):
616
+ raise ValueError(
617
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
618
+ )
619
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
620
+ raise ValueError(
621
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
622
+ )
623
+
640
624
  def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None):
641
625
  # get the original timestep using init_timestep
642
626
  if denoising_start is None:
@@ -767,31 +751,54 @@ class StableDiffusionXLImg2ImgPipeline(
767
751
  return image_embeds, uncond_image_embeds
768
752
 
769
753
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
770
- def prepare_ip_adapter_image_embeds(self, ip_adapter_image, device, num_images_per_prompt):
771
- if not isinstance(ip_adapter_image, list):
772
- ip_adapter_image = [ip_adapter_image]
754
+ def prepare_ip_adapter_image_embeds(
755
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
756
+ ):
757
+ if ip_adapter_image_embeds is None:
758
+ if not isinstance(ip_adapter_image, list):
759
+ ip_adapter_image = [ip_adapter_image]
773
760
 
774
- if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
775
- raise ValueError(
776
- f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
777
- )
761
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
762
+ raise ValueError(
763
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
764
+ )
778
765
 
779
- image_embeds = []
780
- for single_ip_adapter_image, image_proj_layer in zip(
781
- ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
782
- ):
783
- output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
784
- single_image_embeds, single_negative_image_embeds = self.encode_image(
785
- single_ip_adapter_image, device, 1, output_hidden_state
786
- )
787
- single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
788
- single_negative_image_embeds = torch.stack([single_negative_image_embeds] * num_images_per_prompt, dim=0)
766
+ image_embeds = []
767
+ for single_ip_adapter_image, image_proj_layer in zip(
768
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
769
+ ):
770
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
771
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
772
+ single_ip_adapter_image, device, 1, output_hidden_state
773
+ )
774
+ single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
775
+ single_negative_image_embeds = torch.stack(
776
+ [single_negative_image_embeds] * num_images_per_prompt, dim=0
777
+ )
789
778
 
790
- if self.do_classifier_free_guidance:
791
- single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
792
- single_image_embeds = single_image_embeds.to(device)
779
+ if do_classifier_free_guidance:
780
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
781
+ single_image_embeds = single_image_embeds.to(device)
793
782
 
794
- image_embeds.append(single_image_embeds)
783
+ image_embeds.append(single_image_embeds)
784
+ else:
785
+ repeat_dims = [1]
786
+ image_embeds = []
787
+ for single_image_embeds in ip_adapter_image_embeds:
788
+ if do_classifier_free_guidance:
789
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
790
+ single_image_embeds = single_image_embeds.repeat(
791
+ num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
792
+ )
793
+ single_negative_image_embeds = single_negative_image_embeds.repeat(
794
+ num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
795
+ )
796
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
797
+ else:
798
+ single_image_embeds = single_image_embeds.repeat(
799
+ num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
800
+ )
801
+ image_embeds.append(single_image_embeds)
795
802
 
796
803
  return image_embeds
797
804
 
@@ -866,95 +873,6 @@ class StableDiffusionXLImg2ImgPipeline(
866
873
  self.vae.decoder.conv_in.to(dtype)
867
874
  self.vae.decoder.mid_block.to(dtype)
868
875
 
869
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
870
- def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
871
- r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
872
-
873
- The suffixes after the scaling factors represent the stages where they are being applied.
874
-
875
- Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
876
- that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
877
-
878
- Args:
879
- s1 (`float`):
880
- Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
881
- mitigate "oversmoothing effect" in the enhanced denoising process.
882
- s2 (`float`):
883
- Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
884
- mitigate "oversmoothing effect" in the enhanced denoising process.
885
- b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
886
- b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
887
- """
888
- if not hasattr(self, "unet"):
889
- raise ValueError("The pipeline must have `unet` for using FreeU.")
890
- self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
891
-
892
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
893
- def disable_freeu(self):
894
- """Disables the FreeU mechanism if enabled."""
895
- self.unet.disable_freeu()
896
-
897
- # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.fuse_qkv_projections
898
- def fuse_qkv_projections(self, unet: bool = True, vae: bool = True):
899
- """
900
- Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
901
- key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
902
-
903
- <Tip warning={true}>
904
-
905
- This API is 🧪 experimental.
906
-
907
- </Tip>
908
-
909
- Args:
910
- unet (`bool`, defaults to `True`): To apply fusion on the UNet.
911
- vae (`bool`, defaults to `True`): To apply fusion on the VAE.
912
- """
913
- self.fusing_unet = False
914
- self.fusing_vae = False
915
-
916
- if unet:
917
- self.fusing_unet = True
918
- self.unet.fuse_qkv_projections()
919
- self.unet.set_attn_processor(FusedAttnProcessor2_0())
920
-
921
- if vae:
922
- if not isinstance(self.vae, AutoencoderKL):
923
- raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.")
924
-
925
- self.fusing_vae = True
926
- self.vae.fuse_qkv_projections()
927
- self.vae.set_attn_processor(FusedAttnProcessor2_0())
928
-
929
- # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.unfuse_qkv_projections
930
- def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True):
931
- """Disable QKV projection fusion if enabled.
932
-
933
- <Tip warning={true}>
934
-
935
- This API is 🧪 experimental.
936
-
937
- </Tip>
938
-
939
- Args:
940
- unet (`bool`, defaults to `True`): To apply fusion on the UNet.
941
- vae (`bool`, defaults to `True`): To apply fusion on the VAE.
942
-
943
- """
944
- if unet:
945
- if not self.fusing_unet:
946
- logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.")
947
- else:
948
- self.unet.unfuse_qkv_projections()
949
- self.fusing_unet = False
950
-
951
- if vae:
952
- if not self.fusing_vae:
953
- logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.")
954
- else:
955
- self.vae.unfuse_qkv_projections()
956
- self.fusing_vae = False
957
-
958
876
  # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
959
877
  def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
960
878
  """
@@ -1047,6 +965,7 @@ class StableDiffusionXLImg2ImgPipeline(
1047
965
  pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
1048
966
  negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
1049
967
  ip_adapter_image: Optional[PipelineImageInput] = None,
968
+ ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
1050
969
  output_type: Optional[str] = "pil",
1051
970
  return_dict: bool = True,
1052
971
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
@@ -1145,6 +1064,11 @@ class StableDiffusionXLImg2ImgPipeline(
1145
1064
  weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
1146
1065
  input argument.
1147
1066
  ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
1067
+ ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
1068
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters.
1069
+ Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding
1070
+ if `do_classifier_free_guidance` is set to `True`.
1071
+ If not provided, embeddings are computed from the `ip_adapter_image` input argument.
1148
1072
  output_type (`str`, *optional*, defaults to `"pil"`):
1149
1073
  The output format of the generate image. Choose between
1150
1074
  [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
@@ -1245,6 +1169,8 @@ class StableDiffusionXLImg2ImgPipeline(
1245
1169
  negative_prompt_2,
1246
1170
  prompt_embeds,
1247
1171
  negative_prompt_embeds,
1172
+ ip_adapter_image,
1173
+ ip_adapter_image_embeds,
1248
1174
  callback_on_step_end_tensor_inputs,
1249
1175
  )
1250
1176
 
@@ -1296,14 +1222,14 @@ class StableDiffusionXLImg2ImgPipeline(
1296
1222
 
1297
1223
  # 5. Prepare timesteps
1298
1224
  def denoising_value_valid(dnv):
1299
- return isinstance(self.denoising_end, float) and 0 < dnv < 1
1225
+ return isinstance(dnv, float) and 0 < dnv < 1
1300
1226
 
1301
1227
  timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
1302
1228
  timesteps, num_inference_steps = self.get_timesteps(
1303
1229
  num_inference_steps,
1304
1230
  strength,
1305
1231
  device,
1306
- denoising_start=self.denoising_start if denoising_value_valid else None,
1232
+ denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None,
1307
1233
  )
1308
1234
  latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
1309
1235
 
@@ -1365,9 +1291,13 @@ class StableDiffusionXLImg2ImgPipeline(
1365
1291
  add_text_embeds = add_text_embeds.to(device)
1366
1292
  add_time_ids = add_time_ids.to(device)
1367
1293
 
1368
- if ip_adapter_image is not None:
1294
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1369
1295
  image_embeds = self.prepare_ip_adapter_image_embeds(
1370
- ip_adapter_image, device, batch_size * num_images_per_prompt
1296
+ ip_adapter_image,
1297
+ ip_adapter_image_embeds,
1298
+ device,
1299
+ batch_size * num_images_per_prompt,
1300
+ self.do_classifier_free_guidance,
1371
1301
  )
1372
1302
 
1373
1303
  # 9. Denoising loop
@@ -1416,7 +1346,7 @@ class StableDiffusionXLImg2ImgPipeline(
1416
1346
 
1417
1347
  # predict the noise residual
1418
1348
  added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
1419
- if ip_adapter_image is not None:
1349
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1420
1350
  added_cond_kwargs["image_embeds"] = image_embeds
1421
1351
  noise_pred = self.unet(
1422
1352
  latent_model_input,
@@ -1474,14 +1404,28 @@ class StableDiffusionXLImg2ImgPipeline(
1474
1404
  self.upcast_vae()
1475
1405
  latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
1476
1406
 
1477
- image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
1407
+ # unscale/denormalize the latents
1408
+ # denormalize with the mean and std if available and not None
1409
+ has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
1410
+ has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
1411
+ if has_latents_mean and has_latents_std:
1412
+ latents_mean = (
1413
+ torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
1414
+ )
1415
+ latents_std = (
1416
+ torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
1417
+ )
1418
+ latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
1419
+ else:
1420
+ latents = latents / self.vae.config.scaling_factor
1421
+
1422
+ image = self.vae.decode(latents, return_dict=False)[0]
1478
1423
 
1479
1424
  # cast back to fp16 if needed
1480
1425
  if needs_upcasting:
1481
1426
  self.vae.to(dtype=torch.float16)
1482
1427
  else:
1483
1428
  image = latents
1484
- return StableDiffusionXLPipelineOutput(images=image)
1485
1429
 
1486
1430
  # apply watermark if available
1487
1431
  if self.watermark is not None: