diffusers 0.26.3__py3-none-any.whl → 0.27.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +20 -1
- diffusers/commands/__init__.py +1 -1
- diffusers/commands/diffusers_cli.py +1 -1
- diffusers/commands/env.py +1 -1
- diffusers/commands/fp16_safetensors.py +1 -1
- diffusers/configuration_utils.py +7 -3
- diffusers/dependency_versions_check.py +1 -1
- diffusers/dependency_versions_table.py +2 -2
- diffusers/experimental/rl/value_guided_sampling.py +1 -1
- diffusers/image_processor.py +110 -4
- diffusers/loaders/autoencoder.py +7 -8
- diffusers/loaders/controlnet.py +17 -8
- diffusers/loaders/ip_adapter.py +86 -23
- diffusers/loaders/lora.py +105 -310
- diffusers/loaders/lora_conversion_utils.py +1 -1
- diffusers/loaders/peft.py +1 -1
- diffusers/loaders/single_file.py +51 -12
- diffusers/loaders/single_file_utils.py +274 -49
- diffusers/loaders/textual_inversion.py +23 -4
- diffusers/loaders/unet.py +195 -41
- diffusers/loaders/utils.py +1 -1
- diffusers/models/__init__.py +3 -1
- diffusers/models/activations.py +9 -9
- diffusers/models/attention.py +26 -36
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +171 -114
- diffusers/models/autoencoders/autoencoder_asym_kl.py +1 -1
- diffusers/models/autoencoders/autoencoder_kl.py +3 -1
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
- diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
- diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
- diffusers/models/autoencoders/vae.py +1 -1
- diffusers/models/controlnet.py +1 -1
- diffusers/models/controlnet_flax.py +1 -1
- diffusers/models/downsampling.py +8 -12
- diffusers/models/dual_transformer_2d.py +1 -1
- diffusers/models/embeddings.py +3 -4
- diffusers/models/embeddings_flax.py +1 -1
- diffusers/models/lora.py +33 -10
- diffusers/models/modeling_flax_pytorch_utils.py +1 -1
- diffusers/models/modeling_flax_utils.py +1 -1
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +4 -6
- diffusers/models/normalization.py +1 -1
- diffusers/models/resnet.py +31 -58
- diffusers/models/resnet_flax.py +1 -1
- diffusers/models/t5_film_transformer.py +1 -1
- diffusers/models/transformer_2d.py +1 -1
- diffusers/models/transformer_temporal.py +1 -1
- diffusers/models/transformers/dual_transformer_2d.py +1 -1
- diffusers/models/transformers/t5_film_transformer.py +1 -1
- diffusers/models/transformers/transformer_2d.py +29 -31
- diffusers/models/transformers/transformer_temporal.py +1 -1
- diffusers/models/unet_1d.py +1 -1
- diffusers/models/unet_1d_blocks.py +1 -1
- diffusers/models/unet_2d.py +1 -1
- diffusers/models/unet_2d_blocks.py +1 -1
- diffusers/models/unet_2d_condition.py +1 -1
- diffusers/models/unets/__init__.py +1 -0
- diffusers/models/unets/unet_1d.py +1 -1
- diffusers/models/unets/unet_1d_blocks.py +1 -1
- diffusers/models/unets/unet_2d.py +4 -4
- diffusers/models/unets/unet_2d_blocks.py +238 -98
- diffusers/models/unets/unet_2d_blocks_flax.py +1 -1
- diffusers/models/unets/unet_2d_condition.py +420 -323
- diffusers/models/unets/unet_2d_condition_flax.py +21 -12
- diffusers/models/unets/unet_3d_blocks.py +50 -40
- diffusers/models/unets/unet_3d_condition.py +47 -8
- diffusers/models/unets/unet_i2vgen_xl.py +75 -30
- diffusers/models/unets/unet_kandinsky3.py +1 -1
- diffusers/models/unets/unet_motion_model.py +48 -8
- diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
- diffusers/models/unets/unet_stable_cascade.py +610 -0
- diffusers/models/unets/uvit_2d.py +1 -1
- diffusers/models/upsampling.py +10 -16
- diffusers/models/vae_flax.py +1 -1
- diffusers/models/vq_model.py +1 -1
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +26 -0
- diffusers/pipelines/amused/pipeline_amused.py +1 -1
- diffusers/pipelines/amused/pipeline_amused_img2img.py +1 -1
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +1 -1
- diffusers/pipelines/animatediff/pipeline_animatediff.py +162 -417
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +165 -137
- diffusers/pipelines/animatediff/pipeline_output.py +7 -6
- diffusers/pipelines/audioldm/pipeline_audioldm.py +3 -19
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +3 -3
- diffusers/pipelines/auto_pipeline.py +7 -16
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +2 -2
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
- diffusers/pipelines/controlnet/pipeline_controlnet.py +90 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +98 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +92 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +145 -70
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +126 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +108 -96
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -1
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -1
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +4 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +4 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +5 -5
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +4 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +5 -5
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +5 -5
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +10 -120
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +10 -91
- diffusers/pipelines/deprecated/audio_diffusion/mel.py +1 -1
- diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py +1 -1
- diffusers/pipelines/deprecated/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py +1 -1
- diffusers/pipelines/deprecated/pndm/pipeline_pndm.py +1 -1
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +1 -1
- diffusers/pipelines/deprecated/score_sde_ve/pipeline_score_sde_ve.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/continuous_encoder.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/midi_utils.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/notes_encoder.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -1
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +5 -4
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +5 -4
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +7 -22
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +5 -39
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +5 -5
- diffusers/pipelines/deprecated/stochastic_karras_ve/pipeline_stochastic_karras_ve.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +31 -22
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -2
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +1 -1
- diffusers/pipelines/dit/pipeline_dit.py +1 -1
- diffusers/pipelines/free_init_utils.py +184 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +22 -104
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +2 -2
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +2 -2
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +104 -93
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +112 -74
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
- diffusers/pipelines/ledits_pp/__init__.py +55 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +1505 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +1797 -0
- diffusers/pipelines/ledits_pp/pipeline_output.py +43 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +3 -19
- diffusers/pipelines/onnx_utils.py +1 -1
- diffusers/pipelines/paint_by_example/image_encoder.py +1 -1
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +3 -3
- diffusers/pipelines/pia/pipeline_pia.py +168 -327
- diffusers/pipelines/pipeline_flax_utils.py +1 -1
- diffusers/pipelines/pipeline_loading_utils.py +508 -0
- diffusers/pipelines/pipeline_utils.py +188 -534
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +56 -10
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +3 -3
- diffusers/pipelines/shap_e/camera.py +1 -1
- diffusers/pipelines/shap_e/pipeline_shap_e.py +1 -1
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +1 -1
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_cascade/__init__.py +50 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +482 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +311 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +638 -0
- diffusers/pipelines/stable_diffusion/clip_image_project_model.py +1 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +4 -1
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +90 -146
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +5 -4
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +4 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -119
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -119
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +13 -59
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +3 -31
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +5 -33
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -21
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +7 -21
- diffusers/pipelines/stable_diffusion/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion/safety_checker_flax.py +1 -1
- diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py +1 -1
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +5 -21
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +9 -38
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -34
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +6 -35
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +7 -6
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +4 -124
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +282 -80
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +94 -46
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +3 -3
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +6 -22
- diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +96 -148
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +98 -154
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +98 -153
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +25 -87
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +89 -80
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +5 -49
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +80 -88
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +8 -6
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +15 -86
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +20 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +5 -5
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +3 -19
- diffusers/pipelines/unclip/pipeline_unclip.py +1 -1
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -1
- diffusers/pipelines/unclip/text_proj.py +1 -1
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +35 -35
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +4 -21
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py +2 -2
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +4 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +8 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +2 -2
- diffusers/schedulers/__init__.py +7 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +1 -1
- diffusers/schedulers/deprecated/scheduling_sde_vp.py +1 -1
- diffusers/schedulers/scheduling_consistency_models.py +42 -19
- diffusers/schedulers/scheduling_ddim.py +2 -4
- diffusers/schedulers/scheduling_ddim_flax.py +13 -5
- diffusers/schedulers/scheduling_ddim_inverse.py +2 -4
- diffusers/schedulers/scheduling_ddim_parallel.py +2 -4
- diffusers/schedulers/scheduling_ddpm.py +2 -4
- diffusers/schedulers/scheduling_ddpm_flax.py +1 -1
- diffusers/schedulers/scheduling_ddpm_parallel.py +2 -4
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +1 -1
- diffusers/schedulers/scheduling_deis_multistep.py +46 -19
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +107 -21
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +1 -1
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +9 -7
- diffusers/schedulers/scheduling_dpmsolver_sde.py +35 -35
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +49 -18
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +683 -0
- diffusers/schedulers/scheduling_edm_euler.py +381 -0
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +43 -15
- diffusers/schedulers/scheduling_euler_discrete.py +42 -17
- diffusers/schedulers/scheduling_euler_discrete_flax.py +1 -1
- diffusers/schedulers/scheduling_heun_discrete.py +35 -35
- diffusers/schedulers/scheduling_ipndm.py +37 -11
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +44 -44
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +44 -44
- diffusers/schedulers/scheduling_karras_ve_flax.py +1 -1
- diffusers/schedulers/scheduling_lcm.py +38 -14
- diffusers/schedulers/scheduling_lms_discrete.py +43 -15
- diffusers/schedulers/scheduling_lms_discrete_flax.py +1 -1
- diffusers/schedulers/scheduling_pndm.py +2 -4
- diffusers/schedulers/scheduling_pndm_flax.py +2 -4
- diffusers/schedulers/scheduling_repaint.py +1 -1
- diffusers/schedulers/scheduling_sasolver.py +41 -9
- diffusers/schedulers/scheduling_sde_ve.py +1 -1
- diffusers/schedulers/scheduling_sde_ve_flax.py +1 -1
- diffusers/schedulers/scheduling_tcd.py +686 -0
- diffusers/schedulers/scheduling_unclip.py +1 -1
- diffusers/schedulers/scheduling_unipc_multistep.py +46 -19
- diffusers/schedulers/scheduling_utils.py +2 -1
- diffusers/schedulers/scheduling_utils_flax.py +1 -1
- diffusers/schedulers/scheduling_vq_diffusion.py +1 -1
- diffusers/training_utils.py +9 -2
- diffusers/utils/__init__.py +2 -1
- diffusers/utils/accelerate_utils.py +1 -1
- diffusers/utils/constants.py +1 -1
- diffusers/utils/doc_utils.py +1 -1
- diffusers/utils/dummy_pt_objects.py +60 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +75 -0
- diffusers/utils/dynamic_modules_utils.py +1 -1
- diffusers/utils/export_utils.py +3 -3
- diffusers/utils/hub_utils.py +60 -16
- diffusers/utils/import_utils.py +15 -1
- diffusers/utils/loading_utils.py +2 -0
- diffusers/utils/logging.py +1 -1
- diffusers/utils/model_card_template.md +24 -0
- diffusers/utils/outputs.py +14 -7
- diffusers/utils/peft_utils.py +1 -1
- diffusers/utils/state_dict_utils.py +1 -1
- diffusers/utils/testing_utils.py +2 -0
- diffusers/utils/torch_utils.py +1 -1
- {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/METADATA +46 -46
- diffusers-0.27.0.dist-info/RECORD +399 -0
- {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/WHEEL +1 -1
- diffusers-0.26.3.dist-info/RECORD +0 -384
- {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/LICENSE +0 -0
- {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/entry_points.txt +0 -0
- {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,4 @@
|
|
1
|
-
# Copyright
|
1
|
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2
2
|
#
|
3
3
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
4
|
# you may not use this file except in compliance with the License.
|
@@ -52,7 +52,7 @@ from ...utils import (
|
|
52
52
|
unscale_lora_layers,
|
53
53
|
)
|
54
54
|
from ...utils.torch_utils import randn_tensor
|
55
|
-
from ..pipeline_utils import DiffusionPipeline
|
55
|
+
from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
56
56
|
from .pipeline_output import StableDiffusionXLPipelineOutput
|
57
57
|
|
58
58
|
|
@@ -148,6 +148,7 @@ def retrieve_timesteps(
|
|
148
148
|
|
149
149
|
class StableDiffusionXLPipeline(
|
150
150
|
DiffusionPipeline,
|
151
|
+
StableDiffusionMixin,
|
151
152
|
FromSingleFileMixin,
|
152
153
|
StableDiffusionXLLoraLoaderMixin,
|
153
154
|
TextualInversionLoaderMixin,
|
@@ -257,39 +258,6 @@ class StableDiffusionXLPipeline(
|
|
257
258
|
else:
|
258
259
|
self.watermark = None
|
259
260
|
|
260
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
261
|
-
def enable_vae_slicing(self):
|
262
|
-
r"""
|
263
|
-
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
264
|
-
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
265
|
-
"""
|
266
|
-
self.vae.enable_slicing()
|
267
|
-
|
268
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
269
|
-
def disable_vae_slicing(self):
|
270
|
-
r"""
|
271
|
-
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
272
|
-
computing decoding in one step.
|
273
|
-
"""
|
274
|
-
self.vae.disable_slicing()
|
275
|
-
|
276
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
277
|
-
def enable_vae_tiling(self):
|
278
|
-
r"""
|
279
|
-
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
280
|
-
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
281
|
-
processing larger images.
|
282
|
-
"""
|
283
|
-
self.vae.enable_tiling()
|
284
|
-
|
285
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
286
|
-
def disable_vae_tiling(self):
|
287
|
-
r"""
|
288
|
-
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
289
|
-
computing decoding in one step.
|
290
|
-
"""
|
291
|
-
self.vae.disable_tiling()
|
292
|
-
|
293
261
|
def encode_prompt(
|
294
262
|
self,
|
295
263
|
prompt: str,
|
@@ -385,7 +353,7 @@ class StableDiffusionXLPipeline(
|
|
385
353
|
prompt_2 = prompt_2 or prompt
|
386
354
|
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
387
355
|
|
388
|
-
# textual inversion:
|
356
|
+
# textual inversion: process multi-vector tokens if necessary
|
389
357
|
prompt_embeds_list = []
|
390
358
|
prompts = [prompt, prompt_2]
|
391
359
|
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
@@ -550,31 +518,54 @@ class StableDiffusionXLPipeline(
|
|
550
518
|
return image_embeds, uncond_image_embeds
|
551
519
|
|
552
520
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
553
|
-
def prepare_ip_adapter_image_embeds(
|
554
|
-
|
555
|
-
|
521
|
+
def prepare_ip_adapter_image_embeds(
|
522
|
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
523
|
+
):
|
524
|
+
if ip_adapter_image_embeds is None:
|
525
|
+
if not isinstance(ip_adapter_image, list):
|
526
|
+
ip_adapter_image = [ip_adapter_image]
|
556
527
|
|
557
|
-
|
558
|
-
|
559
|
-
|
560
|
-
|
528
|
+
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
529
|
+
raise ValueError(
|
530
|
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
531
|
+
)
|
561
532
|
|
562
|
-
|
563
|
-
|
564
|
-
|
565
|
-
|
566
|
-
|
567
|
-
|
568
|
-
|
569
|
-
|
570
|
-
|
571
|
-
|
533
|
+
image_embeds = []
|
534
|
+
for single_ip_adapter_image, image_proj_layer in zip(
|
535
|
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
536
|
+
):
|
537
|
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
538
|
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
539
|
+
single_ip_adapter_image, device, 1, output_hidden_state
|
540
|
+
)
|
541
|
+
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
542
|
+
single_negative_image_embeds = torch.stack(
|
543
|
+
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
544
|
+
)
|
572
545
|
|
573
|
-
|
574
|
-
|
575
|
-
|
546
|
+
if do_classifier_free_guidance:
|
547
|
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
548
|
+
single_image_embeds = single_image_embeds.to(device)
|
576
549
|
|
577
|
-
|
550
|
+
image_embeds.append(single_image_embeds)
|
551
|
+
else:
|
552
|
+
repeat_dims = [1]
|
553
|
+
image_embeds = []
|
554
|
+
for single_image_embeds in ip_adapter_image_embeds:
|
555
|
+
if do_classifier_free_guidance:
|
556
|
+
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
557
|
+
single_image_embeds = single_image_embeds.repeat(
|
558
|
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
559
|
+
)
|
560
|
+
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
561
|
+
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
562
|
+
)
|
563
|
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
564
|
+
else:
|
565
|
+
single_image_embeds = single_image_embeds.repeat(
|
566
|
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
567
|
+
)
|
568
|
+
image_embeds.append(single_image_embeds)
|
578
569
|
|
579
570
|
return image_embeds
|
580
571
|
|
@@ -609,6 +600,8 @@ class StableDiffusionXLPipeline(
|
|
609
600
|
negative_prompt_embeds=None,
|
610
601
|
pooled_prompt_embeds=None,
|
611
602
|
negative_pooled_prompt_embeds=None,
|
603
|
+
ip_adapter_image=None,
|
604
|
+
ip_adapter_image_embeds=None,
|
612
605
|
callback_on_step_end_tensor_inputs=None,
|
613
606
|
):
|
614
607
|
if height % 8 != 0 or width % 8 != 0:
|
@@ -675,6 +668,21 @@ class StableDiffusionXLPipeline(
|
|
675
668
|
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
676
669
|
)
|
677
670
|
|
671
|
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
672
|
+
raise ValueError(
|
673
|
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
674
|
+
)
|
675
|
+
|
676
|
+
if ip_adapter_image_embeds is not None:
|
677
|
+
if not isinstance(ip_adapter_image_embeds, list):
|
678
|
+
raise ValueError(
|
679
|
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
680
|
+
)
|
681
|
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
682
|
+
raise ValueError(
|
683
|
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
684
|
+
)
|
685
|
+
|
678
686
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
679
687
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
680
688
|
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
@@ -731,93 +739,6 @@ class StableDiffusionXLPipeline(
|
|
731
739
|
self.vae.decoder.conv_in.to(dtype)
|
732
740
|
self.vae.decoder.mid_block.to(dtype)
|
733
741
|
|
734
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
|
735
|
-
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
736
|
-
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
|
737
|
-
|
738
|
-
The suffixes after the scaling factors represent the stages where they are being applied.
|
739
|
-
|
740
|
-
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
|
741
|
-
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
742
|
-
|
743
|
-
Args:
|
744
|
-
s1 (`float`):
|
745
|
-
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
746
|
-
mitigate "oversmoothing effect" in the enhanced denoising process.
|
747
|
-
s2 (`float`):
|
748
|
-
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
749
|
-
mitigate "oversmoothing effect" in the enhanced denoising process.
|
750
|
-
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
751
|
-
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
752
|
-
"""
|
753
|
-
if not hasattr(self, "unet"):
|
754
|
-
raise ValueError("The pipeline must have `unet` for using FreeU.")
|
755
|
-
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
|
756
|
-
|
757
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
|
758
|
-
def disable_freeu(self):
|
759
|
-
"""Disables the FreeU mechanism if enabled."""
|
760
|
-
self.unet.disable_freeu()
|
761
|
-
|
762
|
-
def fuse_qkv_projections(self, unet: bool = True, vae: bool = True):
|
763
|
-
"""
|
764
|
-
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
|
765
|
-
key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
|
766
|
-
|
767
|
-
<Tip warning={true}>
|
768
|
-
|
769
|
-
This API is 🧪 experimental.
|
770
|
-
|
771
|
-
</Tip>
|
772
|
-
|
773
|
-
Args:
|
774
|
-
unet (`bool`, defaults to `True`): To apply fusion on the UNet.
|
775
|
-
vae (`bool`, defaults to `True`): To apply fusion on the VAE.
|
776
|
-
"""
|
777
|
-
self.fusing_unet = False
|
778
|
-
self.fusing_vae = False
|
779
|
-
|
780
|
-
if unet:
|
781
|
-
self.fusing_unet = True
|
782
|
-
self.unet.fuse_qkv_projections()
|
783
|
-
self.unet.set_attn_processor(FusedAttnProcessor2_0())
|
784
|
-
|
785
|
-
if vae:
|
786
|
-
if not isinstance(self.vae, AutoencoderKL):
|
787
|
-
raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.")
|
788
|
-
|
789
|
-
self.fusing_vae = True
|
790
|
-
self.vae.fuse_qkv_projections()
|
791
|
-
self.vae.set_attn_processor(FusedAttnProcessor2_0())
|
792
|
-
|
793
|
-
def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True):
|
794
|
-
"""Disable QKV projection fusion if enabled.
|
795
|
-
|
796
|
-
<Tip warning={true}>
|
797
|
-
|
798
|
-
This API is 🧪 experimental.
|
799
|
-
|
800
|
-
</Tip>
|
801
|
-
|
802
|
-
Args:
|
803
|
-
unet (`bool`, defaults to `True`): To apply fusion on the UNet.
|
804
|
-
vae (`bool`, defaults to `True`): To apply fusion on the VAE.
|
805
|
-
|
806
|
-
"""
|
807
|
-
if unet:
|
808
|
-
if not self.fusing_unet:
|
809
|
-
logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.")
|
810
|
-
else:
|
811
|
-
self.unet.unfuse_qkv_projections()
|
812
|
-
self.fusing_unet = False
|
813
|
-
|
814
|
-
if vae:
|
815
|
-
if not self.fusing_vae:
|
816
|
-
logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.")
|
817
|
-
else:
|
818
|
-
self.vae.unfuse_qkv_projections()
|
819
|
-
self.fusing_vae = False
|
820
|
-
|
821
742
|
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
822
743
|
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
823
744
|
"""
|
@@ -905,6 +826,7 @@ class StableDiffusionXLPipeline(
|
|
905
826
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
906
827
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
907
828
|
ip_adapter_image: Optional[PipelineImageInput] = None,
|
829
|
+
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
|
908
830
|
output_type: Optional[str] = "pil",
|
909
831
|
return_dict: bool = True,
|
910
832
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
@@ -994,6 +916,11 @@ class StableDiffusionXLPipeline(
|
|
994
916
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
995
917
|
input argument.
|
996
918
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
919
|
+
ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
|
920
|
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters.
|
921
|
+
Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding
|
922
|
+
if `do_classifier_free_guidance` is set to `True`.
|
923
|
+
If not provided, embeddings are computed from the `ip_adapter_image` input argument.
|
997
924
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
998
925
|
The output format of the generate image. Choose between
|
999
926
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
@@ -1092,6 +1019,8 @@ class StableDiffusionXLPipeline(
|
|
1092
1019
|
negative_prompt_embeds,
|
1093
1020
|
pooled_prompt_embeds,
|
1094
1021
|
negative_pooled_prompt_embeds,
|
1022
|
+
ip_adapter_image,
|
1023
|
+
ip_adapter_image_embeds,
|
1095
1024
|
callback_on_step_end_tensor_inputs,
|
1096
1025
|
)
|
1097
1026
|
|
@@ -1191,9 +1120,13 @@ class StableDiffusionXLPipeline(
|
|
1191
1120
|
add_text_embeds = add_text_embeds.to(device)
|
1192
1121
|
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
1193
1122
|
|
1194
|
-
if ip_adapter_image is not None:
|
1123
|
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1195
1124
|
image_embeds = self.prepare_ip_adapter_image_embeds(
|
1196
|
-
ip_adapter_image,
|
1125
|
+
ip_adapter_image,
|
1126
|
+
ip_adapter_image_embeds,
|
1127
|
+
device,
|
1128
|
+
batch_size * num_images_per_prompt,
|
1129
|
+
self.do_classifier_free_guidance,
|
1197
1130
|
)
|
1198
1131
|
|
1199
1132
|
# 8. Denoising loop
|
@@ -1236,7 +1169,7 @@ class StableDiffusionXLPipeline(
|
|
1236
1169
|
|
1237
1170
|
# predict the noise residual
|
1238
1171
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1239
|
-
if ip_adapter_image is not None:
|
1172
|
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1240
1173
|
added_cond_kwargs["image_embeds"] = image_embeds
|
1241
1174
|
noise_pred = self.unet(
|
1242
1175
|
latent_model_input,
|
@@ -1294,7 +1227,22 @@ class StableDiffusionXLPipeline(
|
|
1294
1227
|
self.upcast_vae()
|
1295
1228
|
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1296
1229
|
|
1297
|
-
|
1230
|
+
# unscale/denormalize the latents
|
1231
|
+
# denormalize with the mean and std if available and not None
|
1232
|
+
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
|
1233
|
+
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
|
1234
|
+
if has_latents_mean and has_latents_std:
|
1235
|
+
latents_mean = (
|
1236
|
+
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1237
|
+
)
|
1238
|
+
latents_std = (
|
1239
|
+
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1240
|
+
)
|
1241
|
+
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
|
1242
|
+
else:
|
1243
|
+
latents = latents / self.vae.config.scaling_factor
|
1244
|
+
|
1245
|
+
image = self.vae.decode(latents, return_dict=False)[0]
|
1298
1246
|
|
1299
1247
|
# cast back to fp16 if needed
|
1300
1248
|
if needs_upcasting:
|