diffusers 0.26.3__py3-none-any.whl → 0.27.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +20 -1
- diffusers/commands/__init__.py +1 -1
- diffusers/commands/diffusers_cli.py +1 -1
- diffusers/commands/env.py +1 -1
- diffusers/commands/fp16_safetensors.py +1 -1
- diffusers/configuration_utils.py +7 -3
- diffusers/dependency_versions_check.py +1 -1
- diffusers/dependency_versions_table.py +2 -2
- diffusers/experimental/rl/value_guided_sampling.py +1 -1
- diffusers/image_processor.py +110 -4
- diffusers/loaders/autoencoder.py +7 -8
- diffusers/loaders/controlnet.py +17 -8
- diffusers/loaders/ip_adapter.py +86 -23
- diffusers/loaders/lora.py +105 -310
- diffusers/loaders/lora_conversion_utils.py +1 -1
- diffusers/loaders/peft.py +1 -1
- diffusers/loaders/single_file.py +51 -12
- diffusers/loaders/single_file_utils.py +274 -49
- diffusers/loaders/textual_inversion.py +23 -4
- diffusers/loaders/unet.py +195 -41
- diffusers/loaders/utils.py +1 -1
- diffusers/models/__init__.py +3 -1
- diffusers/models/activations.py +9 -9
- diffusers/models/attention.py +26 -36
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +171 -114
- diffusers/models/autoencoders/autoencoder_asym_kl.py +1 -1
- diffusers/models/autoencoders/autoencoder_kl.py +3 -1
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
- diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
- diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
- diffusers/models/autoencoders/vae.py +1 -1
- diffusers/models/controlnet.py +1 -1
- diffusers/models/controlnet_flax.py +1 -1
- diffusers/models/downsampling.py +8 -12
- diffusers/models/dual_transformer_2d.py +1 -1
- diffusers/models/embeddings.py +3 -4
- diffusers/models/embeddings_flax.py +1 -1
- diffusers/models/lora.py +33 -10
- diffusers/models/modeling_flax_pytorch_utils.py +1 -1
- diffusers/models/modeling_flax_utils.py +1 -1
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +4 -6
- diffusers/models/normalization.py +1 -1
- diffusers/models/resnet.py +31 -58
- diffusers/models/resnet_flax.py +1 -1
- diffusers/models/t5_film_transformer.py +1 -1
- diffusers/models/transformer_2d.py +1 -1
- diffusers/models/transformer_temporal.py +1 -1
- diffusers/models/transformers/dual_transformer_2d.py +1 -1
- diffusers/models/transformers/t5_film_transformer.py +1 -1
- diffusers/models/transformers/transformer_2d.py +29 -31
- diffusers/models/transformers/transformer_temporal.py +1 -1
- diffusers/models/unet_1d.py +1 -1
- diffusers/models/unet_1d_blocks.py +1 -1
- diffusers/models/unet_2d.py +1 -1
- diffusers/models/unet_2d_blocks.py +1 -1
- diffusers/models/unet_2d_condition.py +1 -1
- diffusers/models/unets/__init__.py +1 -0
- diffusers/models/unets/unet_1d.py +1 -1
- diffusers/models/unets/unet_1d_blocks.py +1 -1
- diffusers/models/unets/unet_2d.py +4 -4
- diffusers/models/unets/unet_2d_blocks.py +238 -98
- diffusers/models/unets/unet_2d_blocks_flax.py +1 -1
- diffusers/models/unets/unet_2d_condition.py +420 -323
- diffusers/models/unets/unet_2d_condition_flax.py +21 -12
- diffusers/models/unets/unet_3d_blocks.py +50 -40
- diffusers/models/unets/unet_3d_condition.py +47 -8
- diffusers/models/unets/unet_i2vgen_xl.py +75 -30
- diffusers/models/unets/unet_kandinsky3.py +1 -1
- diffusers/models/unets/unet_motion_model.py +48 -8
- diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
- diffusers/models/unets/unet_stable_cascade.py +610 -0
- diffusers/models/unets/uvit_2d.py +1 -1
- diffusers/models/upsampling.py +10 -16
- diffusers/models/vae_flax.py +1 -1
- diffusers/models/vq_model.py +1 -1
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +26 -0
- diffusers/pipelines/amused/pipeline_amused.py +1 -1
- diffusers/pipelines/amused/pipeline_amused_img2img.py +1 -1
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +1 -1
- diffusers/pipelines/animatediff/pipeline_animatediff.py +162 -417
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +165 -137
- diffusers/pipelines/animatediff/pipeline_output.py +7 -6
- diffusers/pipelines/audioldm/pipeline_audioldm.py +3 -19
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +3 -3
- diffusers/pipelines/auto_pipeline.py +7 -16
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +2 -2
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
- diffusers/pipelines/controlnet/pipeline_controlnet.py +90 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +98 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +92 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +145 -70
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +126 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +108 -96
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -1
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -1
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +4 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +4 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +5 -5
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +4 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +5 -5
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +5 -5
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +10 -120
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +10 -91
- diffusers/pipelines/deprecated/audio_diffusion/mel.py +1 -1
- diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py +1 -1
- diffusers/pipelines/deprecated/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py +1 -1
- diffusers/pipelines/deprecated/pndm/pipeline_pndm.py +1 -1
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +1 -1
- diffusers/pipelines/deprecated/score_sde_ve/pipeline_score_sde_ve.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/continuous_encoder.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/midi_utils.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/notes_encoder.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -1
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +5 -4
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +5 -4
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +7 -22
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +5 -39
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +5 -5
- diffusers/pipelines/deprecated/stochastic_karras_ve/pipeline_stochastic_karras_ve.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +31 -22
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -2
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +1 -1
- diffusers/pipelines/dit/pipeline_dit.py +1 -1
- diffusers/pipelines/free_init_utils.py +184 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +22 -104
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +2 -2
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +2 -2
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +104 -93
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +112 -74
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
- diffusers/pipelines/ledits_pp/__init__.py +55 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +1505 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +1797 -0
- diffusers/pipelines/ledits_pp/pipeline_output.py +43 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +3 -19
- diffusers/pipelines/onnx_utils.py +1 -1
- diffusers/pipelines/paint_by_example/image_encoder.py +1 -1
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +3 -3
- diffusers/pipelines/pia/pipeline_pia.py +168 -327
- diffusers/pipelines/pipeline_flax_utils.py +1 -1
- diffusers/pipelines/pipeline_loading_utils.py +508 -0
- diffusers/pipelines/pipeline_utils.py +188 -534
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +56 -10
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +3 -3
- diffusers/pipelines/shap_e/camera.py +1 -1
- diffusers/pipelines/shap_e/pipeline_shap_e.py +1 -1
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +1 -1
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_cascade/__init__.py +50 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +482 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +311 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +638 -0
- diffusers/pipelines/stable_diffusion/clip_image_project_model.py +1 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +4 -1
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +90 -146
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +5 -4
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +4 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -119
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -119
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +13 -59
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +3 -31
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +5 -33
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -21
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +7 -21
- diffusers/pipelines/stable_diffusion/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion/safety_checker_flax.py +1 -1
- diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py +1 -1
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +5 -21
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +9 -38
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -34
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +6 -35
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +7 -6
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +4 -124
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +282 -80
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +94 -46
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +3 -3
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +6 -22
- diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +96 -148
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +98 -154
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +98 -153
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +25 -87
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +89 -80
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +5 -49
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +80 -88
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +8 -6
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +15 -86
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +20 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +5 -5
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +3 -19
- diffusers/pipelines/unclip/pipeline_unclip.py +1 -1
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -1
- diffusers/pipelines/unclip/text_proj.py +1 -1
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +35 -35
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +4 -21
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py +2 -2
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +4 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +8 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +2 -2
- diffusers/schedulers/__init__.py +7 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +1 -1
- diffusers/schedulers/deprecated/scheduling_sde_vp.py +1 -1
- diffusers/schedulers/scheduling_consistency_models.py +42 -19
- diffusers/schedulers/scheduling_ddim.py +2 -4
- diffusers/schedulers/scheduling_ddim_flax.py +13 -5
- diffusers/schedulers/scheduling_ddim_inverse.py +2 -4
- diffusers/schedulers/scheduling_ddim_parallel.py +2 -4
- diffusers/schedulers/scheduling_ddpm.py +2 -4
- diffusers/schedulers/scheduling_ddpm_flax.py +1 -1
- diffusers/schedulers/scheduling_ddpm_parallel.py +2 -4
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +1 -1
- diffusers/schedulers/scheduling_deis_multistep.py +46 -19
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +107 -21
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +1 -1
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +9 -7
- diffusers/schedulers/scheduling_dpmsolver_sde.py +35 -35
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +49 -18
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +683 -0
- diffusers/schedulers/scheduling_edm_euler.py +381 -0
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +43 -15
- diffusers/schedulers/scheduling_euler_discrete.py +42 -17
- diffusers/schedulers/scheduling_euler_discrete_flax.py +1 -1
- diffusers/schedulers/scheduling_heun_discrete.py +35 -35
- diffusers/schedulers/scheduling_ipndm.py +37 -11
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +44 -44
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +44 -44
- diffusers/schedulers/scheduling_karras_ve_flax.py +1 -1
- diffusers/schedulers/scheduling_lcm.py +38 -14
- diffusers/schedulers/scheduling_lms_discrete.py +43 -15
- diffusers/schedulers/scheduling_lms_discrete_flax.py +1 -1
- diffusers/schedulers/scheduling_pndm.py +2 -4
- diffusers/schedulers/scheduling_pndm_flax.py +2 -4
- diffusers/schedulers/scheduling_repaint.py +1 -1
- diffusers/schedulers/scheduling_sasolver.py +41 -9
- diffusers/schedulers/scheduling_sde_ve.py +1 -1
- diffusers/schedulers/scheduling_sde_ve_flax.py +1 -1
- diffusers/schedulers/scheduling_tcd.py +686 -0
- diffusers/schedulers/scheduling_unclip.py +1 -1
- diffusers/schedulers/scheduling_unipc_multistep.py +46 -19
- diffusers/schedulers/scheduling_utils.py +2 -1
- diffusers/schedulers/scheduling_utils_flax.py +1 -1
- diffusers/schedulers/scheduling_vq_diffusion.py +1 -1
- diffusers/training_utils.py +9 -2
- diffusers/utils/__init__.py +2 -1
- diffusers/utils/accelerate_utils.py +1 -1
- diffusers/utils/constants.py +1 -1
- diffusers/utils/doc_utils.py +1 -1
- diffusers/utils/dummy_pt_objects.py +60 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +75 -0
- diffusers/utils/dynamic_modules_utils.py +1 -1
- diffusers/utils/export_utils.py +3 -3
- diffusers/utils/hub_utils.py +60 -16
- diffusers/utils/import_utils.py +15 -1
- diffusers/utils/loading_utils.py +2 -0
- diffusers/utils/logging.py +1 -1
- diffusers/utils/model_card_template.md +24 -0
- diffusers/utils/outputs.py +14 -7
- diffusers/utils/peft_utils.py +1 -1
- diffusers/utils/state_dict_utils.py +1 -1
- diffusers/utils/testing_utils.py +2 -0
- diffusers/utils/torch_utils.py +1 -1
- {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/METADATA +46 -46
- diffusers-0.27.0.dist-info/RECORD +399 -0
- {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/WHEEL +1 -1
- diffusers-0.26.3.dist-info/RECORD +0 -384
- {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/LICENSE +0 -0
- {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/entry_points.txt +0 -0
- {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,4 @@
|
|
1
|
-
# Copyright
|
1
|
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2
2
|
#
|
3
3
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
4
|
# you may not use this file except in compliance with the License.
|
@@ -44,10 +44,8 @@ from ..embeddings import (
|
|
44
44
|
)
|
45
45
|
from ..modeling_utils import ModelMixin
|
46
46
|
from .unet_2d_blocks import (
|
47
|
-
UNetMidBlock2D,
|
48
|
-
UNetMidBlock2DCrossAttn,
|
49
|
-
UNetMidBlock2DSimpleCrossAttn,
|
50
47
|
get_down_block,
|
48
|
+
get_mid_block,
|
51
49
|
get_up_block,
|
52
50
|
)
|
53
51
|
|
@@ -82,7 +80,7 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin,
|
|
82
80
|
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
83
81
|
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
84
82
|
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
85
|
-
flip_sin_to_cos (`bool`, *optional*, defaults to `
|
83
|
+
flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
|
86
84
|
Whether to flip the sin to cos in the time embedding.
|
87
85
|
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
88
86
|
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
@@ -111,7 +109,7 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin,
|
|
111
109
|
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
112
110
|
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
113
111
|
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
114
|
-
|
112
|
+
reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
|
115
113
|
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
|
116
114
|
blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
|
117
115
|
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
@@ -149,9 +147,9 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin,
|
|
149
147
|
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
150
148
|
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
151
149
|
The dimension of `cond_proj` layer in the timestep embedding.
|
152
|
-
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
153
|
-
*optional*, default to `3`): The kernel size of `conv_out` layer.
|
154
|
-
*optional*): The dimension of the `class_labels` input when
|
150
|
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
151
|
+
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
152
|
+
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
155
153
|
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
156
154
|
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
157
155
|
embeddings with the class embeddings.
|
@@ -206,7 +204,7 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin,
|
|
206
204
|
upcast_attention: bool = False,
|
207
205
|
resnet_time_scale_shift: str = "default",
|
208
206
|
resnet_skip_time_act: bool = False,
|
209
|
-
resnet_out_scale_factor:
|
207
|
+
resnet_out_scale_factor: float = 1.0,
|
210
208
|
time_embedding_type: str = "positional",
|
211
209
|
time_embedding_dim: Optional[int] = None,
|
212
210
|
time_embedding_act_fn: Optional[str] = None,
|
@@ -219,7 +217,7 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin,
|
|
219
217
|
class_embeddings_concat: bool = False,
|
220
218
|
mid_block_only_cross_attention: Optional[bool] = None,
|
221
219
|
cross_attention_norm: Optional[str] = None,
|
222
|
-
addition_embed_type_num_heads=64,
|
220
|
+
addition_embed_type_num_heads: int = 64,
|
223
221
|
):
|
224
222
|
super().__init__()
|
225
223
|
|
@@ -239,44 +237,18 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin,
|
|
239
237
|
num_attention_heads = num_attention_heads or attention_head_dim
|
240
238
|
|
241
239
|
# Check inputs
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
246
|
-
|
247
|
-
|
248
|
-
|
249
|
-
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
255
|
-
)
|
256
|
-
|
257
|
-
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
258
|
-
raise ValueError(
|
259
|
-
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
260
|
-
)
|
261
|
-
|
262
|
-
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
263
|
-
raise ValueError(
|
264
|
-
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
265
|
-
)
|
266
|
-
|
267
|
-
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
268
|
-
raise ValueError(
|
269
|
-
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
270
|
-
)
|
271
|
-
|
272
|
-
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
273
|
-
raise ValueError(
|
274
|
-
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
275
|
-
)
|
276
|
-
if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
|
277
|
-
for layer_number_per_block in transformer_layers_per_block:
|
278
|
-
if isinstance(layer_number_per_block, list):
|
279
|
-
raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
|
240
|
+
self._check_config(
|
241
|
+
down_block_types=down_block_types,
|
242
|
+
up_block_types=up_block_types,
|
243
|
+
only_cross_attention=only_cross_attention,
|
244
|
+
block_out_channels=block_out_channels,
|
245
|
+
layers_per_block=layers_per_block,
|
246
|
+
cross_attention_dim=cross_attention_dim,
|
247
|
+
transformer_layers_per_block=transformer_layers_per_block,
|
248
|
+
reverse_transformer_layers_per_block=reverse_transformer_layers_per_block,
|
249
|
+
attention_head_dim=attention_head_dim,
|
250
|
+
num_attention_heads=num_attention_heads,
|
251
|
+
)
|
280
252
|
|
281
253
|
# input
|
282
254
|
conv_in_padding = (conv_in_kernel - 1) // 2
|
@@ -285,23 +257,13 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin,
|
|
285
257
|
)
|
286
258
|
|
287
259
|
# time
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
|
295
|
-
timestep_input_dim = time_embed_dim
|
296
|
-
elif time_embedding_type == "positional":
|
297
|
-
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
298
|
-
|
299
|
-
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
300
|
-
timestep_input_dim = block_out_channels[0]
|
301
|
-
else:
|
302
|
-
raise ValueError(
|
303
|
-
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
304
|
-
)
|
260
|
+
time_embed_dim, timestep_input_dim = self._set_time_proj(
|
261
|
+
time_embedding_type,
|
262
|
+
block_out_channels=block_out_channels,
|
263
|
+
flip_sin_to_cos=flip_sin_to_cos,
|
264
|
+
freq_shift=freq_shift,
|
265
|
+
time_embedding_dim=time_embedding_dim,
|
266
|
+
)
|
305
267
|
|
306
268
|
self.time_embedding = TimestepEmbedding(
|
307
269
|
timestep_input_dim,
|
@@ -311,96 +273,33 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin,
|
|
311
273
|
cond_proj_dim=time_cond_proj_dim,
|
312
274
|
)
|
313
275
|
|
314
|
-
|
315
|
-
encoder_hid_dim_type
|
316
|
-
|
317
|
-
|
318
|
-
|
319
|
-
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
320
|
-
raise ValueError(
|
321
|
-
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
322
|
-
)
|
323
|
-
|
324
|
-
if encoder_hid_dim_type == "text_proj":
|
325
|
-
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
326
|
-
elif encoder_hid_dim_type == "text_image_proj":
|
327
|
-
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
328
|
-
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
329
|
-
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
330
|
-
self.encoder_hid_proj = TextImageProjection(
|
331
|
-
text_embed_dim=encoder_hid_dim,
|
332
|
-
image_embed_dim=cross_attention_dim,
|
333
|
-
cross_attention_dim=cross_attention_dim,
|
334
|
-
)
|
335
|
-
elif encoder_hid_dim_type == "image_proj":
|
336
|
-
# Kandinsky 2.2
|
337
|
-
self.encoder_hid_proj = ImageProjection(
|
338
|
-
image_embed_dim=encoder_hid_dim,
|
339
|
-
cross_attention_dim=cross_attention_dim,
|
340
|
-
)
|
341
|
-
elif encoder_hid_dim_type is not None:
|
342
|
-
raise ValueError(
|
343
|
-
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
344
|
-
)
|
345
|
-
else:
|
346
|
-
self.encoder_hid_proj = None
|
276
|
+
self._set_encoder_hid_proj(
|
277
|
+
encoder_hid_dim_type,
|
278
|
+
cross_attention_dim=cross_attention_dim,
|
279
|
+
encoder_hid_dim=encoder_hid_dim,
|
280
|
+
)
|
347
281
|
|
348
282
|
# class embedding
|
349
|
-
|
350
|
-
|
351
|
-
|
352
|
-
|
353
|
-
|
354
|
-
|
355
|
-
|
356
|
-
|
357
|
-
raise ValueError(
|
358
|
-
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
359
|
-
)
|
360
|
-
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
361
|
-
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
362
|
-
# 2. it projects from an arbitrary input dimension.
|
363
|
-
#
|
364
|
-
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
365
|
-
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
366
|
-
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
367
|
-
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
368
|
-
elif class_embed_type == "simple_projection":
|
369
|
-
if projection_class_embeddings_input_dim is None:
|
370
|
-
raise ValueError(
|
371
|
-
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
372
|
-
)
|
373
|
-
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
374
|
-
else:
|
375
|
-
self.class_embedding = None
|
376
|
-
|
377
|
-
if addition_embed_type == "text":
|
378
|
-
if encoder_hid_dim is not None:
|
379
|
-
text_time_embedding_from_dim = encoder_hid_dim
|
380
|
-
else:
|
381
|
-
text_time_embedding_from_dim = cross_attention_dim
|
283
|
+
self._set_class_embedding(
|
284
|
+
class_embed_type,
|
285
|
+
act_fn=act_fn,
|
286
|
+
num_class_embeds=num_class_embeds,
|
287
|
+
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
|
288
|
+
time_embed_dim=time_embed_dim,
|
289
|
+
timestep_input_dim=timestep_input_dim,
|
290
|
+
)
|
382
291
|
|
383
|
-
|
384
|
-
|
385
|
-
|
386
|
-
|
387
|
-
|
388
|
-
|
389
|
-
|
390
|
-
|
391
|
-
|
392
|
-
|
393
|
-
|
394
|
-
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
395
|
-
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
396
|
-
elif addition_embed_type == "image":
|
397
|
-
# Kandinsky 2.2
|
398
|
-
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
399
|
-
elif addition_embed_type == "image_hint":
|
400
|
-
# Kandinsky 2.2 ControlNet
|
401
|
-
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
402
|
-
elif addition_embed_type is not None:
|
403
|
-
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
292
|
+
self._set_add_embedding(
|
293
|
+
addition_embed_type,
|
294
|
+
addition_embed_type_num_heads=addition_embed_type_num_heads,
|
295
|
+
addition_time_embed_dim=addition_time_embed_dim,
|
296
|
+
cross_attention_dim=cross_attention_dim,
|
297
|
+
encoder_hid_dim=encoder_hid_dim,
|
298
|
+
flip_sin_to_cos=flip_sin_to_cos,
|
299
|
+
freq_shift=freq_shift,
|
300
|
+
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
|
301
|
+
time_embed_dim=time_embed_dim,
|
302
|
+
)
|
404
303
|
|
405
304
|
if time_embedding_act_fn is None:
|
406
305
|
self.time_embed_act = None
|
@@ -478,57 +377,28 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin,
|
|
478
377
|
self.down_blocks.append(down_block)
|
479
378
|
|
480
379
|
# mid
|
481
|
-
|
482
|
-
|
483
|
-
|
484
|
-
|
485
|
-
|
486
|
-
|
487
|
-
|
488
|
-
|
489
|
-
|
490
|
-
|
491
|
-
|
492
|
-
|
493
|
-
|
494
|
-
|
495
|
-
|
496
|
-
|
497
|
-
|
498
|
-
|
499
|
-
|
500
|
-
|
501
|
-
|
502
|
-
|
503
|
-
dropout=dropout,
|
504
|
-
resnet_eps=norm_eps,
|
505
|
-
resnet_act_fn=act_fn,
|
506
|
-
output_scale_factor=mid_block_scale_factor,
|
507
|
-
cross_attention_dim=cross_attention_dim[-1],
|
508
|
-
attention_head_dim=attention_head_dim[-1],
|
509
|
-
resnet_groups=norm_num_groups,
|
510
|
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
511
|
-
skip_time_act=resnet_skip_time_act,
|
512
|
-
only_cross_attention=mid_block_only_cross_attention,
|
513
|
-
cross_attention_norm=cross_attention_norm,
|
514
|
-
)
|
515
|
-
elif mid_block_type == "UNetMidBlock2D":
|
516
|
-
self.mid_block = UNetMidBlock2D(
|
517
|
-
in_channels=block_out_channels[-1],
|
518
|
-
temb_channels=blocks_time_embed_dim,
|
519
|
-
dropout=dropout,
|
520
|
-
num_layers=0,
|
521
|
-
resnet_eps=norm_eps,
|
522
|
-
resnet_act_fn=act_fn,
|
523
|
-
output_scale_factor=mid_block_scale_factor,
|
524
|
-
resnet_groups=norm_num_groups,
|
525
|
-
resnet_time_scale_shift=resnet_time_scale_shift,
|
526
|
-
add_attention=False,
|
527
|
-
)
|
528
|
-
elif mid_block_type is None:
|
529
|
-
self.mid_block = None
|
530
|
-
else:
|
531
|
-
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
380
|
+
self.mid_block = get_mid_block(
|
381
|
+
mid_block_type,
|
382
|
+
temb_channels=blocks_time_embed_dim,
|
383
|
+
in_channels=block_out_channels[-1],
|
384
|
+
resnet_eps=norm_eps,
|
385
|
+
resnet_act_fn=act_fn,
|
386
|
+
resnet_groups=norm_num_groups,
|
387
|
+
output_scale_factor=mid_block_scale_factor,
|
388
|
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
389
|
+
num_attention_heads=num_attention_heads[-1],
|
390
|
+
cross_attention_dim=cross_attention_dim[-1],
|
391
|
+
dual_cross_attention=dual_cross_attention,
|
392
|
+
use_linear_projection=use_linear_projection,
|
393
|
+
mid_block_only_cross_attention=mid_block_only_cross_attention,
|
394
|
+
upcast_attention=upcast_attention,
|
395
|
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
396
|
+
attention_type=attention_type,
|
397
|
+
resnet_skip_time_act=resnet_skip_time_act,
|
398
|
+
cross_attention_norm=cross_attention_norm,
|
399
|
+
attention_head_dim=attention_head_dim[-1],
|
400
|
+
dropout=dropout,
|
401
|
+
)
|
532
402
|
|
533
403
|
# count how many layers upsample the images
|
534
404
|
self.num_upsamplers = 0
|
@@ -599,14 +469,214 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin,
|
|
599
469
|
self.conv_act = get_activation(act_fn)
|
600
470
|
|
601
471
|
else:
|
602
|
-
self.conv_norm_out = None
|
603
|
-
self.conv_act = None
|
472
|
+
self.conv_norm_out = None
|
473
|
+
self.conv_act = None
|
474
|
+
|
475
|
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
476
|
+
self.conv_out = nn.Conv2d(
|
477
|
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
478
|
+
)
|
479
|
+
|
480
|
+
self._set_pos_net_if_use_gligen(attention_type=attention_type, cross_attention_dim=cross_attention_dim)
|
481
|
+
|
482
|
+
def _check_config(
|
483
|
+
self,
|
484
|
+
down_block_types: Tuple[str],
|
485
|
+
up_block_types: Tuple[str],
|
486
|
+
only_cross_attention: Union[bool, Tuple[bool]],
|
487
|
+
block_out_channels: Tuple[int],
|
488
|
+
layers_per_block: Union[int, Tuple[int]],
|
489
|
+
cross_attention_dim: Union[int, Tuple[int]],
|
490
|
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]],
|
491
|
+
reverse_transformer_layers_per_block: bool,
|
492
|
+
attention_head_dim: int,
|
493
|
+
num_attention_heads: Optional[Union[int, Tuple[int]]],
|
494
|
+
):
|
495
|
+
if len(down_block_types) != len(up_block_types):
|
496
|
+
raise ValueError(
|
497
|
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
498
|
+
)
|
499
|
+
|
500
|
+
if len(block_out_channels) != len(down_block_types):
|
501
|
+
raise ValueError(
|
502
|
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
503
|
+
)
|
504
|
+
|
505
|
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
506
|
+
raise ValueError(
|
507
|
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
508
|
+
)
|
509
|
+
|
510
|
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
511
|
+
raise ValueError(
|
512
|
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
513
|
+
)
|
514
|
+
|
515
|
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
516
|
+
raise ValueError(
|
517
|
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
518
|
+
)
|
519
|
+
|
520
|
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
521
|
+
raise ValueError(
|
522
|
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
523
|
+
)
|
524
|
+
|
525
|
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
526
|
+
raise ValueError(
|
527
|
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
528
|
+
)
|
529
|
+
if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
|
530
|
+
for layer_number_per_block in transformer_layers_per_block:
|
531
|
+
if isinstance(layer_number_per_block, list):
|
532
|
+
raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
|
533
|
+
|
534
|
+
def _set_time_proj(
|
535
|
+
self,
|
536
|
+
time_embedding_type: str,
|
537
|
+
block_out_channels: int,
|
538
|
+
flip_sin_to_cos: bool,
|
539
|
+
freq_shift: float,
|
540
|
+
time_embedding_dim: int,
|
541
|
+
) -> Tuple[int, int]:
|
542
|
+
if time_embedding_type == "fourier":
|
543
|
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
544
|
+
if time_embed_dim % 2 != 0:
|
545
|
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
546
|
+
self.time_proj = GaussianFourierProjection(
|
547
|
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
548
|
+
)
|
549
|
+
timestep_input_dim = time_embed_dim
|
550
|
+
elif time_embedding_type == "positional":
|
551
|
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
552
|
+
|
553
|
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
554
|
+
timestep_input_dim = block_out_channels[0]
|
555
|
+
else:
|
556
|
+
raise ValueError(
|
557
|
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
558
|
+
)
|
559
|
+
|
560
|
+
return time_embed_dim, timestep_input_dim
|
561
|
+
|
562
|
+
def _set_encoder_hid_proj(
|
563
|
+
self,
|
564
|
+
encoder_hid_dim_type: Optional[str],
|
565
|
+
cross_attention_dim: Union[int, Tuple[int]],
|
566
|
+
encoder_hid_dim: Optional[int],
|
567
|
+
):
|
568
|
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
569
|
+
encoder_hid_dim_type = "text_proj"
|
570
|
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
571
|
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
572
|
+
|
573
|
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
574
|
+
raise ValueError(
|
575
|
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
576
|
+
)
|
577
|
+
|
578
|
+
if encoder_hid_dim_type == "text_proj":
|
579
|
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
580
|
+
elif encoder_hid_dim_type == "text_image_proj":
|
581
|
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
582
|
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
583
|
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
584
|
+
self.encoder_hid_proj = TextImageProjection(
|
585
|
+
text_embed_dim=encoder_hid_dim,
|
586
|
+
image_embed_dim=cross_attention_dim,
|
587
|
+
cross_attention_dim=cross_attention_dim,
|
588
|
+
)
|
589
|
+
elif encoder_hid_dim_type == "image_proj":
|
590
|
+
# Kandinsky 2.2
|
591
|
+
self.encoder_hid_proj = ImageProjection(
|
592
|
+
image_embed_dim=encoder_hid_dim,
|
593
|
+
cross_attention_dim=cross_attention_dim,
|
594
|
+
)
|
595
|
+
elif encoder_hid_dim_type is not None:
|
596
|
+
raise ValueError(
|
597
|
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
598
|
+
)
|
599
|
+
else:
|
600
|
+
self.encoder_hid_proj = None
|
601
|
+
|
602
|
+
def _set_class_embedding(
|
603
|
+
self,
|
604
|
+
class_embed_type: Optional[str],
|
605
|
+
act_fn: str,
|
606
|
+
num_class_embeds: Optional[int],
|
607
|
+
projection_class_embeddings_input_dim: Optional[int],
|
608
|
+
time_embed_dim: int,
|
609
|
+
timestep_input_dim: int,
|
610
|
+
):
|
611
|
+
if class_embed_type is None and num_class_embeds is not None:
|
612
|
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
613
|
+
elif class_embed_type == "timestep":
|
614
|
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
615
|
+
elif class_embed_type == "identity":
|
616
|
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
617
|
+
elif class_embed_type == "projection":
|
618
|
+
if projection_class_embeddings_input_dim is None:
|
619
|
+
raise ValueError(
|
620
|
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
621
|
+
)
|
622
|
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
623
|
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
624
|
+
# 2. it projects from an arbitrary input dimension.
|
625
|
+
#
|
626
|
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
627
|
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
628
|
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
629
|
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
630
|
+
elif class_embed_type == "simple_projection":
|
631
|
+
if projection_class_embeddings_input_dim is None:
|
632
|
+
raise ValueError(
|
633
|
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
634
|
+
)
|
635
|
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
636
|
+
else:
|
637
|
+
self.class_embedding = None
|
604
638
|
|
605
|
-
|
606
|
-
self
|
607
|
-
|
608
|
-
|
639
|
+
def _set_add_embedding(
|
640
|
+
self,
|
641
|
+
addition_embed_type: str,
|
642
|
+
addition_embed_type_num_heads: int,
|
643
|
+
addition_time_embed_dim: Optional[int],
|
644
|
+
flip_sin_to_cos: bool,
|
645
|
+
freq_shift: float,
|
646
|
+
cross_attention_dim: Optional[int],
|
647
|
+
encoder_hid_dim: Optional[int],
|
648
|
+
projection_class_embeddings_input_dim: Optional[int],
|
649
|
+
time_embed_dim: int,
|
650
|
+
):
|
651
|
+
if addition_embed_type == "text":
|
652
|
+
if encoder_hid_dim is not None:
|
653
|
+
text_time_embedding_from_dim = encoder_hid_dim
|
654
|
+
else:
|
655
|
+
text_time_embedding_from_dim = cross_attention_dim
|
656
|
+
|
657
|
+
self.add_embedding = TextTimeEmbedding(
|
658
|
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
659
|
+
)
|
660
|
+
elif addition_embed_type == "text_image":
|
661
|
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
662
|
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
663
|
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
664
|
+
self.add_embedding = TextImageTimeEmbedding(
|
665
|
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
666
|
+
)
|
667
|
+
elif addition_embed_type == "text_time":
|
668
|
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
669
|
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
670
|
+
elif addition_embed_type == "image":
|
671
|
+
# Kandinsky 2.2
|
672
|
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
673
|
+
elif addition_embed_type == "image_hint":
|
674
|
+
# Kandinsky 2.2 ControlNet
|
675
|
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
676
|
+
elif addition_embed_type is not None:
|
677
|
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
609
678
|
|
679
|
+
def _set_pos_net_if_use_gligen(self, attention_type: str, cross_attention_dim: int):
|
610
680
|
if attention_type in ["gated", "gated-text-image"]:
|
611
681
|
positive_len = 768
|
612
682
|
if isinstance(cross_attention_dim, int):
|
@@ -692,7 +762,7 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin,
|
|
692
762
|
|
693
763
|
self.set_attn_processor(processor)
|
694
764
|
|
695
|
-
def set_attention_slice(self, slice_size):
|
765
|
+
def set_attention_slice(self, slice_size: Union[str, int, List[int]] = "auto"):
|
696
766
|
r"""
|
697
767
|
Enable sliced attention computation.
|
698
768
|
|
@@ -761,7 +831,7 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin,
|
|
761
831
|
if hasattr(module, "gradient_checkpointing"):
|
762
832
|
module.gradient_checkpointing = value
|
763
833
|
|
764
|
-
def enable_freeu(self, s1, s2, b1, b2):
|
834
|
+
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
765
835
|
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
|
766
836
|
|
767
837
|
The suffixes after the scaling factors represent the stage blocks where they are being applied.
|
@@ -840,6 +910,132 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin,
|
|
840
910
|
if hasattr(module, "set_lora_layer"):
|
841
911
|
module.set_lora_layer(None)
|
842
912
|
|
913
|
+
def get_time_embed(
|
914
|
+
self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int]
|
915
|
+
) -> Optional[torch.Tensor]:
|
916
|
+
timesteps = timestep
|
917
|
+
if not torch.is_tensor(timesteps):
|
918
|
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
919
|
+
# This would be a good case for the `match` statement (Python 3.10+)
|
920
|
+
is_mps = sample.device.type == "mps"
|
921
|
+
if isinstance(timestep, float):
|
922
|
+
dtype = torch.float32 if is_mps else torch.float64
|
923
|
+
else:
|
924
|
+
dtype = torch.int32 if is_mps else torch.int64
|
925
|
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
926
|
+
elif len(timesteps.shape) == 0:
|
927
|
+
timesteps = timesteps[None].to(sample.device)
|
928
|
+
|
929
|
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
930
|
+
timesteps = timesteps.expand(sample.shape[0])
|
931
|
+
|
932
|
+
t_emb = self.time_proj(timesteps)
|
933
|
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
934
|
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
935
|
+
# there might be better ways to encapsulate this.
|
936
|
+
t_emb = t_emb.to(dtype=sample.dtype)
|
937
|
+
return t_emb
|
938
|
+
|
939
|
+
def get_class_embed(self, sample: torch.Tensor, class_labels: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
|
940
|
+
class_emb = None
|
941
|
+
if self.class_embedding is not None:
|
942
|
+
if class_labels is None:
|
943
|
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
944
|
+
|
945
|
+
if self.config.class_embed_type == "timestep":
|
946
|
+
class_labels = self.time_proj(class_labels)
|
947
|
+
|
948
|
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
949
|
+
# there might be better ways to encapsulate this.
|
950
|
+
class_labels = class_labels.to(dtype=sample.dtype)
|
951
|
+
|
952
|
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
953
|
+
return class_emb
|
954
|
+
|
955
|
+
def get_aug_embed(
|
956
|
+
self, emb: torch.Tensor, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
|
957
|
+
) -> Optional[torch.Tensor]:
|
958
|
+
aug_emb = None
|
959
|
+
if self.config.addition_embed_type == "text":
|
960
|
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
961
|
+
elif self.config.addition_embed_type == "text_image":
|
962
|
+
# Kandinsky 2.1 - style
|
963
|
+
if "image_embeds" not in added_cond_kwargs:
|
964
|
+
raise ValueError(
|
965
|
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
966
|
+
)
|
967
|
+
|
968
|
+
image_embs = added_cond_kwargs.get("image_embeds")
|
969
|
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
970
|
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
971
|
+
elif self.config.addition_embed_type == "text_time":
|
972
|
+
# SDXL - style
|
973
|
+
if "text_embeds" not in added_cond_kwargs:
|
974
|
+
raise ValueError(
|
975
|
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
976
|
+
)
|
977
|
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
978
|
+
if "time_ids" not in added_cond_kwargs:
|
979
|
+
raise ValueError(
|
980
|
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
981
|
+
)
|
982
|
+
time_ids = added_cond_kwargs.get("time_ids")
|
983
|
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
984
|
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
985
|
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
986
|
+
add_embeds = add_embeds.to(emb.dtype)
|
987
|
+
aug_emb = self.add_embedding(add_embeds)
|
988
|
+
elif self.config.addition_embed_type == "image":
|
989
|
+
# Kandinsky 2.2 - style
|
990
|
+
if "image_embeds" not in added_cond_kwargs:
|
991
|
+
raise ValueError(
|
992
|
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
993
|
+
)
|
994
|
+
image_embs = added_cond_kwargs.get("image_embeds")
|
995
|
+
aug_emb = self.add_embedding(image_embs)
|
996
|
+
elif self.config.addition_embed_type == "image_hint":
|
997
|
+
# Kandinsky 2.2 - style
|
998
|
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
999
|
+
raise ValueError(
|
1000
|
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
1001
|
+
)
|
1002
|
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1003
|
+
hint = added_cond_kwargs.get("hint")
|
1004
|
+
aug_emb = self.add_embedding(image_embs, hint)
|
1005
|
+
return aug_emb
|
1006
|
+
|
1007
|
+
def process_encoder_hidden_states(
|
1008
|
+
self, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
|
1009
|
+
) -> torch.Tensor:
|
1010
|
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
1011
|
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
1012
|
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
1013
|
+
# Kadinsky 2.1 - style
|
1014
|
+
if "image_embeds" not in added_cond_kwargs:
|
1015
|
+
raise ValueError(
|
1016
|
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1017
|
+
)
|
1018
|
+
|
1019
|
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1020
|
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
1021
|
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
1022
|
+
# Kandinsky 2.2 - style
|
1023
|
+
if "image_embeds" not in added_cond_kwargs:
|
1024
|
+
raise ValueError(
|
1025
|
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1026
|
+
)
|
1027
|
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1028
|
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
1029
|
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
|
1030
|
+
if "image_embeds" not in added_cond_kwargs:
|
1031
|
+
raise ValueError(
|
1032
|
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1033
|
+
)
|
1034
|
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1035
|
+
image_embeds = self.encoder_hid_proj(image_embeds)
|
1036
|
+
encoder_hidden_states = (encoder_hidden_states, image_embeds)
|
1037
|
+
return encoder_hidden_states
|
1038
|
+
|
843
1039
|
def forward(
|
844
1040
|
self,
|
845
1041
|
sample: torch.FloatTensor,
|
@@ -952,96 +1148,22 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin,
|
|
952
1148
|
sample = 2 * sample - 1.0
|
953
1149
|
|
954
1150
|
# 1. time
|
955
|
-
|
956
|
-
if not torch.is_tensor(timesteps):
|
957
|
-
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
958
|
-
# This would be a good case for the `match` statement (Python 3.10+)
|
959
|
-
is_mps = sample.device.type == "mps"
|
960
|
-
if isinstance(timestep, float):
|
961
|
-
dtype = torch.float32 if is_mps else torch.float64
|
962
|
-
else:
|
963
|
-
dtype = torch.int32 if is_mps else torch.int64
|
964
|
-
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
965
|
-
elif len(timesteps.shape) == 0:
|
966
|
-
timesteps = timesteps[None].to(sample.device)
|
967
|
-
|
968
|
-
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
969
|
-
timesteps = timesteps.expand(sample.shape[0])
|
970
|
-
|
971
|
-
t_emb = self.time_proj(timesteps)
|
972
|
-
|
973
|
-
# `Timesteps` does not contain any weights and will always return f32 tensors
|
974
|
-
# but time_embedding might actually be running in fp16. so we need to cast here.
|
975
|
-
# there might be better ways to encapsulate this.
|
976
|
-
t_emb = t_emb.to(dtype=sample.dtype)
|
977
|
-
|
1151
|
+
t_emb = self.get_time_embed(sample=sample, timestep=timestep)
|
978
1152
|
emb = self.time_embedding(t_emb, timestep_cond)
|
979
1153
|
aug_emb = None
|
980
1154
|
|
981
|
-
|
982
|
-
|
983
|
-
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
984
|
-
|
985
|
-
if self.config.class_embed_type == "timestep":
|
986
|
-
class_labels = self.time_proj(class_labels)
|
987
|
-
|
988
|
-
# `Timesteps` does not contain any weights and will always return f32 tensors
|
989
|
-
# there might be better ways to encapsulate this.
|
990
|
-
class_labels = class_labels.to(dtype=sample.dtype)
|
991
|
-
|
992
|
-
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
993
|
-
|
1155
|
+
class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
|
1156
|
+
if class_emb is not None:
|
994
1157
|
if self.config.class_embeddings_concat:
|
995
1158
|
emb = torch.cat([emb, class_emb], dim=-1)
|
996
1159
|
else:
|
997
1160
|
emb = emb + class_emb
|
998
1161
|
|
999
|
-
|
1000
|
-
|
1001
|
-
|
1002
|
-
|
1003
|
-
|
1004
|
-
raise ValueError(
|
1005
|
-
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
1006
|
-
)
|
1007
|
-
|
1008
|
-
image_embs = added_cond_kwargs.get("image_embeds")
|
1009
|
-
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
1010
|
-
aug_emb = self.add_embedding(text_embs, image_embs)
|
1011
|
-
elif self.config.addition_embed_type == "text_time":
|
1012
|
-
# SDXL - style
|
1013
|
-
if "text_embeds" not in added_cond_kwargs:
|
1014
|
-
raise ValueError(
|
1015
|
-
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
1016
|
-
)
|
1017
|
-
text_embeds = added_cond_kwargs.get("text_embeds")
|
1018
|
-
if "time_ids" not in added_cond_kwargs:
|
1019
|
-
raise ValueError(
|
1020
|
-
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
1021
|
-
)
|
1022
|
-
time_ids = added_cond_kwargs.get("time_ids")
|
1023
|
-
time_embeds = self.add_time_proj(time_ids.flatten())
|
1024
|
-
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
1025
|
-
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
1026
|
-
add_embeds = add_embeds.to(emb.dtype)
|
1027
|
-
aug_emb = self.add_embedding(add_embeds)
|
1028
|
-
elif self.config.addition_embed_type == "image":
|
1029
|
-
# Kandinsky 2.2 - style
|
1030
|
-
if "image_embeds" not in added_cond_kwargs:
|
1031
|
-
raise ValueError(
|
1032
|
-
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
1033
|
-
)
|
1034
|
-
image_embs = added_cond_kwargs.get("image_embeds")
|
1035
|
-
aug_emb = self.add_embedding(image_embs)
|
1036
|
-
elif self.config.addition_embed_type == "image_hint":
|
1037
|
-
# Kandinsky 2.2 - style
|
1038
|
-
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
1039
|
-
raise ValueError(
|
1040
|
-
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
1041
|
-
)
|
1042
|
-
image_embs = added_cond_kwargs.get("image_embeds")
|
1043
|
-
hint = added_cond_kwargs.get("hint")
|
1044
|
-
aug_emb, hint = self.add_embedding(image_embs, hint)
|
1162
|
+
aug_emb = self.get_aug_embed(
|
1163
|
+
emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
1164
|
+
)
|
1165
|
+
if self.config.addition_embed_type == "image_hint":
|
1166
|
+
aug_emb, hint = aug_emb
|
1045
1167
|
sample = torch.cat([sample, hint], dim=1)
|
1046
1168
|
|
1047
1169
|
emb = emb + aug_emb if aug_emb is not None else emb
|
@@ -1049,33 +1171,9 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin,
|
|
1049
1171
|
if self.time_embed_act is not None:
|
1050
1172
|
emb = self.time_embed_act(emb)
|
1051
1173
|
|
1052
|
-
|
1053
|
-
encoder_hidden_states =
|
1054
|
-
|
1055
|
-
# Kadinsky 2.1 - style
|
1056
|
-
if "image_embeds" not in added_cond_kwargs:
|
1057
|
-
raise ValueError(
|
1058
|
-
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1059
|
-
)
|
1060
|
-
|
1061
|
-
image_embeds = added_cond_kwargs.get("image_embeds")
|
1062
|
-
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
1063
|
-
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
1064
|
-
# Kandinsky 2.2 - style
|
1065
|
-
if "image_embeds" not in added_cond_kwargs:
|
1066
|
-
raise ValueError(
|
1067
|
-
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1068
|
-
)
|
1069
|
-
image_embeds = added_cond_kwargs.get("image_embeds")
|
1070
|
-
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
1071
|
-
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
|
1072
|
-
if "image_embeds" not in added_cond_kwargs:
|
1073
|
-
raise ValueError(
|
1074
|
-
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1075
|
-
)
|
1076
|
-
image_embeds = added_cond_kwargs.get("image_embeds")
|
1077
|
-
image_embeds = self.encoder_hid_proj(image_embeds)
|
1078
|
-
encoder_hidden_states = (encoder_hidden_states, image_embeds)
|
1174
|
+
encoder_hidden_states = self.process_encoder_hidden_states(
|
1175
|
+
encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
1176
|
+
)
|
1079
1177
|
|
1080
1178
|
# 2. pre-process
|
1081
1179
|
sample = self.conv_in(sample)
|
@@ -1128,7 +1226,7 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin,
|
|
1128
1226
|
**additional_residuals,
|
1129
1227
|
)
|
1130
1228
|
else:
|
1131
|
-
sample, res_samples = downsample_block(hidden_states=sample, temb=emb
|
1229
|
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
1132
1230
|
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1133
1231
|
sample += down_intrablock_additional_residuals.pop(0)
|
1134
1232
|
|
@@ -1199,7 +1297,6 @@ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin,
|
|
1199
1297
|
temb=emb,
|
1200
1298
|
res_hidden_states_tuple=res_samples,
|
1201
1299
|
upsample_size=upsample_size,
|
1202
|
-
scale=lora_scale,
|
1203
1300
|
)
|
1204
1301
|
|
1205
1302
|
# 6. post-process
|