diffusers 0.26.3__py3-none-any.whl → 0.27.0__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (299) hide show
  1. diffusers/__init__.py +20 -1
  2. diffusers/commands/__init__.py +1 -1
  3. diffusers/commands/diffusers_cli.py +1 -1
  4. diffusers/commands/env.py +1 -1
  5. diffusers/commands/fp16_safetensors.py +1 -1
  6. diffusers/configuration_utils.py +7 -3
  7. diffusers/dependency_versions_check.py +1 -1
  8. diffusers/dependency_versions_table.py +2 -2
  9. diffusers/experimental/rl/value_guided_sampling.py +1 -1
  10. diffusers/image_processor.py +110 -4
  11. diffusers/loaders/autoencoder.py +7 -8
  12. diffusers/loaders/controlnet.py +17 -8
  13. diffusers/loaders/ip_adapter.py +86 -23
  14. diffusers/loaders/lora.py +105 -310
  15. diffusers/loaders/lora_conversion_utils.py +1 -1
  16. diffusers/loaders/peft.py +1 -1
  17. diffusers/loaders/single_file.py +51 -12
  18. diffusers/loaders/single_file_utils.py +274 -49
  19. diffusers/loaders/textual_inversion.py +23 -4
  20. diffusers/loaders/unet.py +195 -41
  21. diffusers/loaders/utils.py +1 -1
  22. diffusers/models/__init__.py +3 -1
  23. diffusers/models/activations.py +9 -9
  24. diffusers/models/attention.py +26 -36
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +171 -114
  27. diffusers/models/autoencoders/autoencoder_asym_kl.py +1 -1
  28. diffusers/models/autoencoders/autoencoder_kl.py +3 -1
  29. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
  30. diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
  31. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  32. diffusers/models/autoencoders/vae.py +1 -1
  33. diffusers/models/controlnet.py +1 -1
  34. diffusers/models/controlnet_flax.py +1 -1
  35. diffusers/models/downsampling.py +8 -12
  36. diffusers/models/dual_transformer_2d.py +1 -1
  37. diffusers/models/embeddings.py +3 -4
  38. diffusers/models/embeddings_flax.py +1 -1
  39. diffusers/models/lora.py +33 -10
  40. diffusers/models/modeling_flax_pytorch_utils.py +1 -1
  41. diffusers/models/modeling_flax_utils.py +1 -1
  42. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  43. diffusers/models/modeling_utils.py +4 -6
  44. diffusers/models/normalization.py +1 -1
  45. diffusers/models/resnet.py +31 -58
  46. diffusers/models/resnet_flax.py +1 -1
  47. diffusers/models/t5_film_transformer.py +1 -1
  48. diffusers/models/transformer_2d.py +1 -1
  49. diffusers/models/transformer_temporal.py +1 -1
  50. diffusers/models/transformers/dual_transformer_2d.py +1 -1
  51. diffusers/models/transformers/t5_film_transformer.py +1 -1
  52. diffusers/models/transformers/transformer_2d.py +29 -31
  53. diffusers/models/transformers/transformer_temporal.py +1 -1
  54. diffusers/models/unet_1d.py +1 -1
  55. diffusers/models/unet_1d_blocks.py +1 -1
  56. diffusers/models/unet_2d.py +1 -1
  57. diffusers/models/unet_2d_blocks.py +1 -1
  58. diffusers/models/unet_2d_condition.py +1 -1
  59. diffusers/models/unets/__init__.py +1 -0
  60. diffusers/models/unets/unet_1d.py +1 -1
  61. diffusers/models/unets/unet_1d_blocks.py +1 -1
  62. diffusers/models/unets/unet_2d.py +4 -4
  63. diffusers/models/unets/unet_2d_blocks.py +238 -98
  64. diffusers/models/unets/unet_2d_blocks_flax.py +1 -1
  65. diffusers/models/unets/unet_2d_condition.py +420 -323
  66. diffusers/models/unets/unet_2d_condition_flax.py +21 -12
  67. diffusers/models/unets/unet_3d_blocks.py +50 -40
  68. diffusers/models/unets/unet_3d_condition.py +47 -8
  69. diffusers/models/unets/unet_i2vgen_xl.py +75 -30
  70. diffusers/models/unets/unet_kandinsky3.py +1 -1
  71. diffusers/models/unets/unet_motion_model.py +48 -8
  72. diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
  73. diffusers/models/unets/unet_stable_cascade.py +610 -0
  74. diffusers/models/unets/uvit_2d.py +1 -1
  75. diffusers/models/upsampling.py +10 -16
  76. diffusers/models/vae_flax.py +1 -1
  77. diffusers/models/vq_model.py +1 -1
  78. diffusers/optimization.py +1 -1
  79. diffusers/pipelines/__init__.py +26 -0
  80. diffusers/pipelines/amused/pipeline_amused.py +1 -1
  81. diffusers/pipelines/amused/pipeline_amused_img2img.py +1 -1
  82. diffusers/pipelines/amused/pipeline_amused_inpaint.py +1 -1
  83. diffusers/pipelines/animatediff/pipeline_animatediff.py +162 -417
  84. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +165 -137
  85. diffusers/pipelines/animatediff/pipeline_output.py +7 -6
  86. diffusers/pipelines/audioldm/pipeline_audioldm.py +3 -19
  87. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  88. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +3 -3
  89. diffusers/pipelines/auto_pipeline.py +7 -16
  90. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  91. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  92. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +2 -2
  93. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  94. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  95. diffusers/pipelines/controlnet/pipeline_controlnet.py +90 -90
  96. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  97. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +98 -90
  98. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +92 -90
  99. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +145 -70
  100. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +126 -89
  101. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +108 -96
  102. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  103. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -1
  104. diffusers/pipelines/ddim/pipeline_ddim.py +1 -1
  105. diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -1
  106. diffusers/pipelines/deepfloyd_if/pipeline_if.py +4 -4
  107. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +4 -4
  108. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +5 -5
  109. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +4 -4
  110. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +5 -5
  111. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +5 -5
  112. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +10 -120
  113. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +10 -91
  114. diffusers/pipelines/deprecated/audio_diffusion/mel.py +1 -1
  115. diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py +1 -1
  116. diffusers/pipelines/deprecated/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py +1 -1
  117. diffusers/pipelines/deprecated/pndm/pipeline_pndm.py +1 -1
  118. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +1 -1
  119. diffusers/pipelines/deprecated/score_sde_ve/pipeline_score_sde_ve.py +1 -1
  120. diffusers/pipelines/deprecated/spectrogram_diffusion/continuous_encoder.py +1 -1
  121. diffusers/pipelines/deprecated/spectrogram_diffusion/midi_utils.py +1 -1
  122. diffusers/pipelines/deprecated/spectrogram_diffusion/notes_encoder.py +1 -1
  123. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -1
  124. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +5 -4
  125. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +5 -4
  126. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +7 -22
  127. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +5 -39
  128. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +5 -5
  129. diffusers/pipelines/deprecated/stochastic_karras_ve/pipeline_stochastic_karras_ve.py +1 -1
  130. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +31 -22
  131. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -1
  132. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -1
  133. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -2
  134. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +1 -1
  135. diffusers/pipelines/dit/pipeline_dit.py +1 -1
  136. diffusers/pipelines/free_init_utils.py +184 -0
  137. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +22 -104
  138. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +1 -1
  139. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +1 -1
  140. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +1 -1
  141. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +2 -2
  142. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +1 -1
  143. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
  144. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +1 -1
  145. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +1 -1
  146. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +1 -1
  147. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
  148. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +2 -2
  149. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +104 -93
  150. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +112 -74
  151. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  152. diffusers/pipelines/ledits_pp/__init__.py +55 -0
  153. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +1505 -0
  154. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +1797 -0
  155. diffusers/pipelines/ledits_pp/pipeline_output.py +43 -0
  156. diffusers/pipelines/musicldm/pipeline_musicldm.py +3 -19
  157. diffusers/pipelines/onnx_utils.py +1 -1
  158. diffusers/pipelines/paint_by_example/image_encoder.py +1 -1
  159. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +3 -3
  160. diffusers/pipelines/pia/pipeline_pia.py +168 -327
  161. diffusers/pipelines/pipeline_flax_utils.py +1 -1
  162. diffusers/pipelines/pipeline_loading_utils.py +508 -0
  163. diffusers/pipelines/pipeline_utils.py +188 -534
  164. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +56 -10
  165. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +3 -3
  166. diffusers/pipelines/shap_e/camera.py +1 -1
  167. diffusers/pipelines/shap_e/pipeline_shap_e.py +1 -1
  168. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +1 -1
  169. diffusers/pipelines/shap_e/renderer.py +1 -1
  170. diffusers/pipelines/stable_cascade/__init__.py +50 -0
  171. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +482 -0
  172. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +311 -0
  173. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +638 -0
  174. diffusers/pipelines/stable_diffusion/clip_image_project_model.py +1 -1
  175. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +4 -1
  176. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  177. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +2 -2
  178. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +1 -1
  179. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +1 -1
  180. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +1 -1
  181. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -1
  182. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +1 -1
  183. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +90 -146
  184. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +5 -4
  185. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +4 -32
  186. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -119
  187. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -119
  188. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +13 -59
  189. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +3 -31
  190. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +5 -33
  191. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -21
  192. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +7 -21
  193. diffusers/pipelines/stable_diffusion/safety_checker.py +1 -1
  194. diffusers/pipelines/stable_diffusion/safety_checker_flax.py +1 -1
  195. diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py +1 -1
  196. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +5 -21
  197. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +9 -38
  198. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -34
  199. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +6 -35
  200. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +7 -6
  201. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +4 -124
  202. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +282 -80
  203. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +94 -46
  204. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +3 -3
  205. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  206. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +6 -22
  207. diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
  208. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +96 -148
  209. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +98 -154
  210. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +98 -153
  211. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +25 -87
  212. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +89 -80
  213. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +5 -49
  214. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +80 -88
  215. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +8 -6
  216. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +15 -86
  217. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +20 -93
  218. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +5 -5
  219. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +3 -19
  220. diffusers/pipelines/unclip/pipeline_unclip.py +1 -1
  221. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -1
  222. diffusers/pipelines/unclip/text_proj.py +1 -1
  223. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +35 -35
  224. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
  225. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +4 -21
  226. diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py +2 -2
  227. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +4 -5
  228. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +8 -8
  229. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +1 -1
  230. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +2 -2
  231. diffusers/schedulers/__init__.py +7 -1
  232. diffusers/schedulers/deprecated/scheduling_karras_ve.py +1 -1
  233. diffusers/schedulers/deprecated/scheduling_sde_vp.py +1 -1
  234. diffusers/schedulers/scheduling_consistency_models.py +42 -19
  235. diffusers/schedulers/scheduling_ddim.py +2 -4
  236. diffusers/schedulers/scheduling_ddim_flax.py +13 -5
  237. diffusers/schedulers/scheduling_ddim_inverse.py +2 -4
  238. diffusers/schedulers/scheduling_ddim_parallel.py +2 -4
  239. diffusers/schedulers/scheduling_ddpm.py +2 -4
  240. diffusers/schedulers/scheduling_ddpm_flax.py +1 -1
  241. diffusers/schedulers/scheduling_ddpm_parallel.py +2 -4
  242. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +1 -1
  243. diffusers/schedulers/scheduling_deis_multistep.py +46 -19
  244. diffusers/schedulers/scheduling_dpmsolver_multistep.py +107 -21
  245. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +1 -1
  246. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +9 -7
  247. diffusers/schedulers/scheduling_dpmsolver_sde.py +35 -35
  248. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +49 -18
  249. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +683 -0
  250. diffusers/schedulers/scheduling_edm_euler.py +381 -0
  251. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +43 -15
  252. diffusers/schedulers/scheduling_euler_discrete.py +42 -17
  253. diffusers/schedulers/scheduling_euler_discrete_flax.py +1 -1
  254. diffusers/schedulers/scheduling_heun_discrete.py +35 -35
  255. diffusers/schedulers/scheduling_ipndm.py +37 -11
  256. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +44 -44
  257. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +44 -44
  258. diffusers/schedulers/scheduling_karras_ve_flax.py +1 -1
  259. diffusers/schedulers/scheduling_lcm.py +38 -14
  260. diffusers/schedulers/scheduling_lms_discrete.py +43 -15
  261. diffusers/schedulers/scheduling_lms_discrete_flax.py +1 -1
  262. diffusers/schedulers/scheduling_pndm.py +2 -4
  263. diffusers/schedulers/scheduling_pndm_flax.py +2 -4
  264. diffusers/schedulers/scheduling_repaint.py +1 -1
  265. diffusers/schedulers/scheduling_sasolver.py +41 -9
  266. diffusers/schedulers/scheduling_sde_ve.py +1 -1
  267. diffusers/schedulers/scheduling_sde_ve_flax.py +1 -1
  268. diffusers/schedulers/scheduling_tcd.py +686 -0
  269. diffusers/schedulers/scheduling_unclip.py +1 -1
  270. diffusers/schedulers/scheduling_unipc_multistep.py +46 -19
  271. diffusers/schedulers/scheduling_utils.py +2 -1
  272. diffusers/schedulers/scheduling_utils_flax.py +1 -1
  273. diffusers/schedulers/scheduling_vq_diffusion.py +1 -1
  274. diffusers/training_utils.py +9 -2
  275. diffusers/utils/__init__.py +2 -1
  276. diffusers/utils/accelerate_utils.py +1 -1
  277. diffusers/utils/constants.py +1 -1
  278. diffusers/utils/doc_utils.py +1 -1
  279. diffusers/utils/dummy_pt_objects.py +60 -0
  280. diffusers/utils/dummy_torch_and_transformers_objects.py +75 -0
  281. diffusers/utils/dynamic_modules_utils.py +1 -1
  282. diffusers/utils/export_utils.py +3 -3
  283. diffusers/utils/hub_utils.py +60 -16
  284. diffusers/utils/import_utils.py +15 -1
  285. diffusers/utils/loading_utils.py +2 -0
  286. diffusers/utils/logging.py +1 -1
  287. diffusers/utils/model_card_template.md +24 -0
  288. diffusers/utils/outputs.py +14 -7
  289. diffusers/utils/peft_utils.py +1 -1
  290. diffusers/utils/state_dict_utils.py +1 -1
  291. diffusers/utils/testing_utils.py +2 -0
  292. diffusers/utils/torch_utils.py +1 -1
  293. {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/METADATA +46 -46
  294. diffusers-0.27.0.dist-info/RECORD +399 -0
  295. {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/WHEEL +1 -1
  296. diffusers-0.26.3.dist-info/RECORD +0 -384
  297. {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/LICENSE +0 -0
  298. {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/entry_points.txt +0 -0
  299. {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,482 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import Callable, Dict, List, Optional, Union
16
+
17
+ import torch
18
+ from transformers import CLIPTextModel, CLIPTokenizer
19
+
20
+ from ...models import StableCascadeUNet
21
+ from ...schedulers import DDPMWuerstchenScheduler
22
+ from ...utils import is_torch_version, logging, replace_example_docstring
23
+ from ...utils.torch_utils import randn_tensor
24
+ from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
25
+ from ..wuerstchen.modeling_paella_vq_model import PaellaVQModel
26
+
27
+
28
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
29
+
30
+ EXAMPLE_DOC_STRING = """
31
+ Examples:
32
+ ```py
33
+ >>> import torch
34
+ >>> from diffusers import StableCascadePriorPipeline, StableCascadeDecoderPipeline
35
+
36
+ >>> prior_pipe = StableCascadePriorPipeline.from_pretrained(
37
+ ... "stabilityai/stable-cascade-prior", torch_dtype=torch.bfloat16
38
+ ... ).to("cuda")
39
+ >>> gen_pipe = StableCascadeDecoderPipeline.from_pretrain(
40
+ ... "stabilityai/stable-cascade", torch_dtype=torch.float16
41
+ ... ).to("cuda")
42
+
43
+ >>> prompt = "an image of a shiba inu, donning a spacesuit and helmet"
44
+ >>> prior_output = pipe(prompt)
45
+ >>> images = gen_pipe(prior_output.image_embeddings, prompt=prompt)
46
+ ```
47
+ """
48
+
49
+
50
+ class StableCascadeDecoderPipeline(DiffusionPipeline):
51
+ """
52
+ Pipeline for generating images from the Stable Cascade model.
53
+
54
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
55
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
56
+
57
+ Args:
58
+ tokenizer (`CLIPTokenizer`):
59
+ The CLIP tokenizer.
60
+ text_encoder (`CLIPTextModel`):
61
+ The CLIP text encoder.
62
+ decoder ([`StableCascadeUNet`]):
63
+ The Stable Cascade decoder unet.
64
+ vqgan ([`PaellaVQModel`]):
65
+ The VQGAN model.
66
+ scheduler ([`DDPMWuerstchenScheduler`]):
67
+ A scheduler to be used in combination with `prior` to generate image embedding.
68
+ latent_dim_scale (float, `optional`, defaults to 10.67):
69
+ Multiplier to determine the VQ latent space size from the image embeddings. If the image embeddings are
70
+ height=24 and width=24, the VQ latent shape needs to be height=int(24*10.67)=256 and
71
+ width=int(24*10.67)=256 in order to match the training conditions.
72
+ """
73
+
74
+ unet_name = "decoder"
75
+ text_encoder_name = "text_encoder"
76
+ model_cpu_offload_seq = "text_encoder->decoder->vqgan"
77
+ _callback_tensor_inputs = [
78
+ "latents",
79
+ "prompt_embeds_pooled",
80
+ "negative_prompt_embeds",
81
+ "image_embeddings",
82
+ ]
83
+
84
+ def __init__(
85
+ self,
86
+ decoder: StableCascadeUNet,
87
+ tokenizer: CLIPTokenizer,
88
+ text_encoder: CLIPTextModel,
89
+ scheduler: DDPMWuerstchenScheduler,
90
+ vqgan: PaellaVQModel,
91
+ latent_dim_scale: float = 10.67,
92
+ ) -> None:
93
+ super().__init__()
94
+ self.register_modules(
95
+ decoder=decoder,
96
+ tokenizer=tokenizer,
97
+ text_encoder=text_encoder,
98
+ scheduler=scheduler,
99
+ vqgan=vqgan,
100
+ )
101
+ self.register_to_config(latent_dim_scale=latent_dim_scale)
102
+
103
+ def prepare_latents(self, image_embeddings, num_images_per_prompt, dtype, device, generator, latents, scheduler):
104
+ batch_size, channels, height, width = image_embeddings.shape
105
+ latents_shape = (
106
+ batch_size * num_images_per_prompt,
107
+ 4,
108
+ int(height * self.config.latent_dim_scale),
109
+ int(width * self.config.latent_dim_scale),
110
+ )
111
+
112
+ if latents is None:
113
+ latents = randn_tensor(latents_shape, generator=generator, device=device, dtype=dtype)
114
+ else:
115
+ if latents.shape != latents_shape:
116
+ raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
117
+ latents = latents.to(device)
118
+
119
+ latents = latents * scheduler.init_noise_sigma
120
+ return latents
121
+
122
+ def encode_prompt(
123
+ self,
124
+ device,
125
+ batch_size,
126
+ num_images_per_prompt,
127
+ do_classifier_free_guidance,
128
+ prompt=None,
129
+ negative_prompt=None,
130
+ prompt_embeds: Optional[torch.FloatTensor] = None,
131
+ prompt_embeds_pooled: Optional[torch.FloatTensor] = None,
132
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
133
+ negative_prompt_embeds_pooled: Optional[torch.FloatTensor] = None,
134
+ ):
135
+ if prompt_embeds is None:
136
+ # get prompt text embeddings
137
+ text_inputs = self.tokenizer(
138
+ prompt,
139
+ padding="max_length",
140
+ max_length=self.tokenizer.model_max_length,
141
+ truncation=True,
142
+ return_tensors="pt",
143
+ )
144
+ text_input_ids = text_inputs.input_ids
145
+ attention_mask = text_inputs.attention_mask
146
+
147
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
148
+
149
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
150
+ text_input_ids, untruncated_ids
151
+ ):
152
+ removed_text = self.tokenizer.batch_decode(
153
+ untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
154
+ )
155
+ logger.warning(
156
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
157
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
158
+ )
159
+ text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
160
+ attention_mask = attention_mask[:, : self.tokenizer.model_max_length]
161
+
162
+ text_encoder_output = self.text_encoder(
163
+ text_input_ids.to(device), attention_mask=attention_mask.to(device), output_hidden_states=True
164
+ )
165
+ prompt_embeds = text_encoder_output.hidden_states[-1]
166
+ if prompt_embeds_pooled is None:
167
+ prompt_embeds_pooled = text_encoder_output.text_embeds.unsqueeze(1)
168
+
169
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
170
+ prompt_embeds_pooled = prompt_embeds_pooled.to(dtype=self.text_encoder.dtype, device=device)
171
+ prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0)
172
+ prompt_embeds_pooled = prompt_embeds_pooled.repeat_interleave(num_images_per_prompt, dim=0)
173
+
174
+ if negative_prompt_embeds is None and do_classifier_free_guidance:
175
+ uncond_tokens: List[str]
176
+ if negative_prompt is None:
177
+ uncond_tokens = [""] * batch_size
178
+ elif type(prompt) is not type(negative_prompt):
179
+ raise TypeError(
180
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
181
+ f" {type(prompt)}."
182
+ )
183
+ elif isinstance(negative_prompt, str):
184
+ uncond_tokens = [negative_prompt]
185
+ elif batch_size != len(negative_prompt):
186
+ raise ValueError(
187
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
188
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
189
+ " the batch size of `prompt`."
190
+ )
191
+ else:
192
+ uncond_tokens = negative_prompt
193
+
194
+ uncond_input = self.tokenizer(
195
+ uncond_tokens,
196
+ padding="max_length",
197
+ max_length=self.tokenizer.model_max_length,
198
+ truncation=True,
199
+ return_tensors="pt",
200
+ )
201
+ negative_prompt_embeds_text_encoder_output = self.text_encoder(
202
+ uncond_input.input_ids.to(device),
203
+ attention_mask=uncond_input.attention_mask.to(device),
204
+ output_hidden_states=True,
205
+ )
206
+
207
+ negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.hidden_states[-1]
208
+ negative_prompt_embeds_pooled = negative_prompt_embeds_text_encoder_output.text_embeds.unsqueeze(1)
209
+
210
+ if do_classifier_free_guidance:
211
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
212
+ seq_len = negative_prompt_embeds.shape[1]
213
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
214
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
215
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
216
+
217
+ seq_len = negative_prompt_embeds_pooled.shape[1]
218
+ negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.to(
219
+ dtype=self.text_encoder.dtype, device=device
220
+ )
221
+ negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.repeat(1, num_images_per_prompt, 1)
222
+ negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.view(
223
+ batch_size * num_images_per_prompt, seq_len, -1
224
+ )
225
+ # done duplicates
226
+
227
+ return prompt_embeds, prompt_embeds_pooled, negative_prompt_embeds, negative_prompt_embeds_pooled
228
+
229
+ def check_inputs(
230
+ self,
231
+ prompt,
232
+ negative_prompt=None,
233
+ prompt_embeds=None,
234
+ negative_prompt_embeds=None,
235
+ callback_on_step_end_tensor_inputs=None,
236
+ ):
237
+ if callback_on_step_end_tensor_inputs is not None and not all(
238
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
239
+ ):
240
+ raise ValueError(
241
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
242
+ )
243
+
244
+ if prompt is not None and prompt_embeds is not None:
245
+ raise ValueError(
246
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
247
+ " only forward one of the two."
248
+ )
249
+ elif prompt is None and prompt_embeds is None:
250
+ raise ValueError(
251
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
252
+ )
253
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
254
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
255
+
256
+ if negative_prompt is not None and negative_prompt_embeds is not None:
257
+ raise ValueError(
258
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
259
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
260
+ )
261
+
262
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
263
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
264
+ raise ValueError(
265
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
266
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
267
+ f" {negative_prompt_embeds.shape}."
268
+ )
269
+
270
+ @property
271
+ def guidance_scale(self):
272
+ return self._guidance_scale
273
+
274
+ @property
275
+ def do_classifier_free_guidance(self):
276
+ return self._guidance_scale > 1
277
+
278
+ @property
279
+ def num_timesteps(self):
280
+ return self._num_timesteps
281
+
282
+ @torch.no_grad()
283
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
284
+ def __call__(
285
+ self,
286
+ image_embeddings: Union[torch.FloatTensor, List[torch.FloatTensor]],
287
+ prompt: Union[str, List[str]] = None,
288
+ num_inference_steps: int = 10,
289
+ guidance_scale: float = 0.0,
290
+ negative_prompt: Optional[Union[str, List[str]]] = None,
291
+ prompt_embeds: Optional[torch.FloatTensor] = None,
292
+ prompt_embeds_pooled: Optional[torch.FloatTensor] = None,
293
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
294
+ negative_prompt_embeds_pooled: Optional[torch.FloatTensor] = None,
295
+ num_images_per_prompt: int = 1,
296
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
297
+ latents: Optional[torch.FloatTensor] = None,
298
+ output_type: Optional[str] = "pil",
299
+ return_dict: bool = True,
300
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
301
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
302
+ ):
303
+ """
304
+ Function invoked when calling the pipeline for generation.
305
+
306
+ Args:
307
+ image_embedding (`torch.FloatTensor` or `List[torch.FloatTensor]`):
308
+ Image Embeddings either extracted from an image or generated by a Prior Model.
309
+ prompt (`str` or `List[str]`):
310
+ The prompt or prompts to guide the image generation.
311
+ num_inference_steps (`int`, *optional*, defaults to 12):
312
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
313
+ expense of slower inference.
314
+ guidance_scale (`float`, *optional*, defaults to 0.0):
315
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
316
+ `decoder_guidance_scale` is defined as `w` of equation 2. of [Imagen
317
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting
318
+ `decoder_guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely
319
+ linked to the text `prompt`, usually at the expense of lower image quality.
320
+ negative_prompt (`str` or `List[str]`, *optional*):
321
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
322
+ if `decoder_guidance_scale` is less than `1`).
323
+ prompt_embeds (`torch.FloatTensor`, *optional*):
324
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
325
+ provided, text embeddings will be generated from `prompt` input argument.
326
+ prompt_embeds_pooled (`torch.FloatTensor`, *optional*):
327
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
328
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
329
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
330
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
331
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
332
+ argument.
333
+ negative_prompt_embeds_pooled (`torch.FloatTensor`, *optional*):
334
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
335
+ weighting. If not provided, negative_prompt_embeds_pooled will be generated from `negative_prompt` input
336
+ argument.
337
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
338
+ The number of images to generate per prompt.
339
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
340
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
341
+ to make generation deterministic.
342
+ latents (`torch.FloatTensor`, *optional*):
343
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
344
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
345
+ tensor will ge generated by sampling using the supplied random `generator`.
346
+ output_type (`str`, *optional*, defaults to `"pil"`):
347
+ The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
348
+ (`np.array`) or `"pt"` (`torch.Tensor`).
349
+ return_dict (`bool`, *optional*, defaults to `True`):
350
+ Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
351
+ callback_on_step_end (`Callable`, *optional*):
352
+ A function that calls at the end of each denoising steps during the inference. The function is called
353
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
354
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
355
+ `callback_on_step_end_tensor_inputs`.
356
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
357
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
358
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
359
+ `._callback_tensor_inputs` attribute of your pipeline class.
360
+
361
+ Examples:
362
+
363
+ Returns:
364
+ [`~pipelines.ImagePipelineOutput`] or `tuple` [`~pipelines.ImagePipelineOutput`] if `return_dict` is True,
365
+ otherwise a `tuple`. When returning a tuple, the first element is a list with the generated image
366
+ embeddings.
367
+ """
368
+
369
+ # 0. Define commonly used variables
370
+ device = self._execution_device
371
+ dtype = self.decoder.dtype
372
+ self._guidance_scale = guidance_scale
373
+ if is_torch_version("<", "2.2.0") and dtype == torch.bfloat16:
374
+ raise ValueError("`StableCascadeDecoderPipeline` requires torch>=2.2.0 when using `torch.bfloat16` dtype.")
375
+
376
+ # 1. Check inputs. Raise error if not correct
377
+ self.check_inputs(
378
+ prompt,
379
+ negative_prompt=negative_prompt,
380
+ prompt_embeds=prompt_embeds,
381
+ negative_prompt_embeds=negative_prompt_embeds,
382
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
383
+ )
384
+ if isinstance(image_embeddings, list):
385
+ image_embeddings = torch.cat(image_embeddings, dim=0)
386
+ batch_size = image_embeddings.shape[0]
387
+
388
+ # 2. Encode caption
389
+ if prompt_embeds is None and negative_prompt_embeds is None:
390
+ _, prompt_embeds_pooled, _, negative_prompt_embeds_pooled = self.encode_prompt(
391
+ prompt=prompt,
392
+ device=device,
393
+ batch_size=batch_size,
394
+ num_images_per_prompt=num_images_per_prompt,
395
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
396
+ negative_prompt=negative_prompt,
397
+ prompt_embeds=prompt_embeds,
398
+ prompt_embeds_pooled=prompt_embeds_pooled,
399
+ negative_prompt_embeds=negative_prompt_embeds,
400
+ negative_prompt_embeds_pooled=negative_prompt_embeds_pooled,
401
+ )
402
+
403
+ # The pooled embeds from the prior are pooled again before being passed to the decoder
404
+ prompt_embeds_pooled = (
405
+ torch.cat([prompt_embeds_pooled, negative_prompt_embeds_pooled])
406
+ if self.do_classifier_free_guidance
407
+ else prompt_embeds_pooled
408
+ )
409
+ effnet = (
410
+ torch.cat([image_embeddings, torch.zeros_like(image_embeddings)])
411
+ if self.do_classifier_free_guidance
412
+ else image_embeddings
413
+ )
414
+
415
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
416
+ timesteps = self.scheduler.timesteps
417
+
418
+ # 5. Prepare latents
419
+ latents = self.prepare_latents(
420
+ image_embeddings, num_images_per_prompt, dtype, device, generator, latents, self.scheduler
421
+ )
422
+
423
+ # 6. Run denoising loop
424
+ self._num_timesteps = len(timesteps[:-1])
425
+ for i, t in enumerate(self.progress_bar(timesteps[:-1])):
426
+ timestep_ratio = t.expand(latents.size(0)).to(dtype)
427
+
428
+ # 7. Denoise latents
429
+ predicted_latents = self.decoder(
430
+ sample=torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents,
431
+ timestep_ratio=torch.cat([timestep_ratio] * 2) if self.do_classifier_free_guidance else timestep_ratio,
432
+ clip_text_pooled=prompt_embeds_pooled,
433
+ effnet=effnet,
434
+ return_dict=False,
435
+ )[0]
436
+
437
+ # 8. Check for classifier free guidance and apply it
438
+ if self.do_classifier_free_guidance:
439
+ predicted_latents_text, predicted_latents_uncond = predicted_latents.chunk(2)
440
+ predicted_latents = torch.lerp(predicted_latents_uncond, predicted_latents_text, self.guidance_scale)
441
+
442
+ # 9. Renoise latents to next timestep
443
+ latents = self.scheduler.step(
444
+ model_output=predicted_latents,
445
+ timestep=timestep_ratio,
446
+ sample=latents,
447
+ generator=generator,
448
+ ).prev_sample
449
+
450
+ if callback_on_step_end is not None:
451
+ callback_kwargs = {}
452
+ for k in callback_on_step_end_tensor_inputs:
453
+ callback_kwargs[k] = locals()[k]
454
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
455
+
456
+ latents = callback_outputs.pop("latents", latents)
457
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
458
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
459
+
460
+ if output_type not in ["pt", "np", "pil", "latent"]:
461
+ raise ValueError(
462
+ f"Only the output types `pt`, `np`, `pil` and `latent` are supported not output_type={output_type}"
463
+ )
464
+
465
+ if not output_type == "latent":
466
+ # 10. Scale and decode the image latents with vq-vae
467
+ latents = self.vqgan.config.scale_factor * latents
468
+ images = self.vqgan.decode(latents).sample.clamp(0, 1)
469
+ if output_type == "np":
470
+ images = images.permute(0, 2, 3, 1).cpu().float().numpy() # float() as bfloat16-> numpy doesnt work
471
+ elif output_type == "pil":
472
+ images = images.permute(0, 2, 3, 1).cpu().float().numpy() # float() as bfloat16-> numpy doesnt work
473
+ images = self.numpy_to_pil(images)
474
+ else:
475
+ images = latents
476
+
477
+ # Offload all models
478
+ self.maybe_free_model_hooks()
479
+
480
+ if not return_dict:
481
+ return images
482
+ return ImagePipelineOutput(images)