diffusers 0.26.3__py3-none-any.whl → 0.27.0__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (299) hide show
  1. diffusers/__init__.py +20 -1
  2. diffusers/commands/__init__.py +1 -1
  3. diffusers/commands/diffusers_cli.py +1 -1
  4. diffusers/commands/env.py +1 -1
  5. diffusers/commands/fp16_safetensors.py +1 -1
  6. diffusers/configuration_utils.py +7 -3
  7. diffusers/dependency_versions_check.py +1 -1
  8. diffusers/dependency_versions_table.py +2 -2
  9. diffusers/experimental/rl/value_guided_sampling.py +1 -1
  10. diffusers/image_processor.py +110 -4
  11. diffusers/loaders/autoencoder.py +7 -8
  12. diffusers/loaders/controlnet.py +17 -8
  13. diffusers/loaders/ip_adapter.py +86 -23
  14. diffusers/loaders/lora.py +105 -310
  15. diffusers/loaders/lora_conversion_utils.py +1 -1
  16. diffusers/loaders/peft.py +1 -1
  17. diffusers/loaders/single_file.py +51 -12
  18. diffusers/loaders/single_file_utils.py +274 -49
  19. diffusers/loaders/textual_inversion.py +23 -4
  20. diffusers/loaders/unet.py +195 -41
  21. diffusers/loaders/utils.py +1 -1
  22. diffusers/models/__init__.py +3 -1
  23. diffusers/models/activations.py +9 -9
  24. diffusers/models/attention.py +26 -36
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +171 -114
  27. diffusers/models/autoencoders/autoencoder_asym_kl.py +1 -1
  28. diffusers/models/autoencoders/autoencoder_kl.py +3 -1
  29. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
  30. diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
  31. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  32. diffusers/models/autoencoders/vae.py +1 -1
  33. diffusers/models/controlnet.py +1 -1
  34. diffusers/models/controlnet_flax.py +1 -1
  35. diffusers/models/downsampling.py +8 -12
  36. diffusers/models/dual_transformer_2d.py +1 -1
  37. diffusers/models/embeddings.py +3 -4
  38. diffusers/models/embeddings_flax.py +1 -1
  39. diffusers/models/lora.py +33 -10
  40. diffusers/models/modeling_flax_pytorch_utils.py +1 -1
  41. diffusers/models/modeling_flax_utils.py +1 -1
  42. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  43. diffusers/models/modeling_utils.py +4 -6
  44. diffusers/models/normalization.py +1 -1
  45. diffusers/models/resnet.py +31 -58
  46. diffusers/models/resnet_flax.py +1 -1
  47. diffusers/models/t5_film_transformer.py +1 -1
  48. diffusers/models/transformer_2d.py +1 -1
  49. diffusers/models/transformer_temporal.py +1 -1
  50. diffusers/models/transformers/dual_transformer_2d.py +1 -1
  51. diffusers/models/transformers/t5_film_transformer.py +1 -1
  52. diffusers/models/transformers/transformer_2d.py +29 -31
  53. diffusers/models/transformers/transformer_temporal.py +1 -1
  54. diffusers/models/unet_1d.py +1 -1
  55. diffusers/models/unet_1d_blocks.py +1 -1
  56. diffusers/models/unet_2d.py +1 -1
  57. diffusers/models/unet_2d_blocks.py +1 -1
  58. diffusers/models/unet_2d_condition.py +1 -1
  59. diffusers/models/unets/__init__.py +1 -0
  60. diffusers/models/unets/unet_1d.py +1 -1
  61. diffusers/models/unets/unet_1d_blocks.py +1 -1
  62. diffusers/models/unets/unet_2d.py +4 -4
  63. diffusers/models/unets/unet_2d_blocks.py +238 -98
  64. diffusers/models/unets/unet_2d_blocks_flax.py +1 -1
  65. diffusers/models/unets/unet_2d_condition.py +420 -323
  66. diffusers/models/unets/unet_2d_condition_flax.py +21 -12
  67. diffusers/models/unets/unet_3d_blocks.py +50 -40
  68. diffusers/models/unets/unet_3d_condition.py +47 -8
  69. diffusers/models/unets/unet_i2vgen_xl.py +75 -30
  70. diffusers/models/unets/unet_kandinsky3.py +1 -1
  71. diffusers/models/unets/unet_motion_model.py +48 -8
  72. diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
  73. diffusers/models/unets/unet_stable_cascade.py +610 -0
  74. diffusers/models/unets/uvit_2d.py +1 -1
  75. diffusers/models/upsampling.py +10 -16
  76. diffusers/models/vae_flax.py +1 -1
  77. diffusers/models/vq_model.py +1 -1
  78. diffusers/optimization.py +1 -1
  79. diffusers/pipelines/__init__.py +26 -0
  80. diffusers/pipelines/amused/pipeline_amused.py +1 -1
  81. diffusers/pipelines/amused/pipeline_amused_img2img.py +1 -1
  82. diffusers/pipelines/amused/pipeline_amused_inpaint.py +1 -1
  83. diffusers/pipelines/animatediff/pipeline_animatediff.py +162 -417
  84. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +165 -137
  85. diffusers/pipelines/animatediff/pipeline_output.py +7 -6
  86. diffusers/pipelines/audioldm/pipeline_audioldm.py +3 -19
  87. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  88. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +3 -3
  89. diffusers/pipelines/auto_pipeline.py +7 -16
  90. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  91. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  92. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +2 -2
  93. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  94. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  95. diffusers/pipelines/controlnet/pipeline_controlnet.py +90 -90
  96. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  97. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +98 -90
  98. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +92 -90
  99. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +145 -70
  100. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +126 -89
  101. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +108 -96
  102. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  103. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -1
  104. diffusers/pipelines/ddim/pipeline_ddim.py +1 -1
  105. diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -1
  106. diffusers/pipelines/deepfloyd_if/pipeline_if.py +4 -4
  107. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +4 -4
  108. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +5 -5
  109. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +4 -4
  110. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +5 -5
  111. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +5 -5
  112. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +10 -120
  113. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +10 -91
  114. diffusers/pipelines/deprecated/audio_diffusion/mel.py +1 -1
  115. diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py +1 -1
  116. diffusers/pipelines/deprecated/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py +1 -1
  117. diffusers/pipelines/deprecated/pndm/pipeline_pndm.py +1 -1
  118. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +1 -1
  119. diffusers/pipelines/deprecated/score_sde_ve/pipeline_score_sde_ve.py +1 -1
  120. diffusers/pipelines/deprecated/spectrogram_diffusion/continuous_encoder.py +1 -1
  121. diffusers/pipelines/deprecated/spectrogram_diffusion/midi_utils.py +1 -1
  122. diffusers/pipelines/deprecated/spectrogram_diffusion/notes_encoder.py +1 -1
  123. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -1
  124. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +5 -4
  125. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +5 -4
  126. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +7 -22
  127. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +5 -39
  128. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +5 -5
  129. diffusers/pipelines/deprecated/stochastic_karras_ve/pipeline_stochastic_karras_ve.py +1 -1
  130. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +31 -22
  131. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -1
  132. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -1
  133. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -2
  134. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +1 -1
  135. diffusers/pipelines/dit/pipeline_dit.py +1 -1
  136. diffusers/pipelines/free_init_utils.py +184 -0
  137. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +22 -104
  138. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +1 -1
  139. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +1 -1
  140. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +1 -1
  141. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +2 -2
  142. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +1 -1
  143. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
  144. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +1 -1
  145. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +1 -1
  146. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +1 -1
  147. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
  148. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +2 -2
  149. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +104 -93
  150. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +112 -74
  151. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  152. diffusers/pipelines/ledits_pp/__init__.py +55 -0
  153. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +1505 -0
  154. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +1797 -0
  155. diffusers/pipelines/ledits_pp/pipeline_output.py +43 -0
  156. diffusers/pipelines/musicldm/pipeline_musicldm.py +3 -19
  157. diffusers/pipelines/onnx_utils.py +1 -1
  158. diffusers/pipelines/paint_by_example/image_encoder.py +1 -1
  159. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +3 -3
  160. diffusers/pipelines/pia/pipeline_pia.py +168 -327
  161. diffusers/pipelines/pipeline_flax_utils.py +1 -1
  162. diffusers/pipelines/pipeline_loading_utils.py +508 -0
  163. diffusers/pipelines/pipeline_utils.py +188 -534
  164. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +56 -10
  165. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +3 -3
  166. diffusers/pipelines/shap_e/camera.py +1 -1
  167. diffusers/pipelines/shap_e/pipeline_shap_e.py +1 -1
  168. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +1 -1
  169. diffusers/pipelines/shap_e/renderer.py +1 -1
  170. diffusers/pipelines/stable_cascade/__init__.py +50 -0
  171. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +482 -0
  172. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +311 -0
  173. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +638 -0
  174. diffusers/pipelines/stable_diffusion/clip_image_project_model.py +1 -1
  175. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +4 -1
  176. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  177. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +2 -2
  178. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +1 -1
  179. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +1 -1
  180. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +1 -1
  181. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -1
  182. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +1 -1
  183. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +90 -146
  184. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +5 -4
  185. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +4 -32
  186. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -119
  187. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -119
  188. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +13 -59
  189. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +3 -31
  190. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +5 -33
  191. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -21
  192. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +7 -21
  193. diffusers/pipelines/stable_diffusion/safety_checker.py +1 -1
  194. diffusers/pipelines/stable_diffusion/safety_checker_flax.py +1 -1
  195. diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py +1 -1
  196. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +5 -21
  197. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +9 -38
  198. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -34
  199. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +6 -35
  200. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +7 -6
  201. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +4 -124
  202. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +282 -80
  203. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +94 -46
  204. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +3 -3
  205. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  206. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +6 -22
  207. diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
  208. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +96 -148
  209. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +98 -154
  210. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +98 -153
  211. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +25 -87
  212. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +89 -80
  213. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +5 -49
  214. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +80 -88
  215. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +8 -6
  216. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +15 -86
  217. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +20 -93
  218. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +5 -5
  219. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +3 -19
  220. diffusers/pipelines/unclip/pipeline_unclip.py +1 -1
  221. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -1
  222. diffusers/pipelines/unclip/text_proj.py +1 -1
  223. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +35 -35
  224. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
  225. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +4 -21
  226. diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py +2 -2
  227. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +4 -5
  228. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +8 -8
  229. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +1 -1
  230. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +2 -2
  231. diffusers/schedulers/__init__.py +7 -1
  232. diffusers/schedulers/deprecated/scheduling_karras_ve.py +1 -1
  233. diffusers/schedulers/deprecated/scheduling_sde_vp.py +1 -1
  234. diffusers/schedulers/scheduling_consistency_models.py +42 -19
  235. diffusers/schedulers/scheduling_ddim.py +2 -4
  236. diffusers/schedulers/scheduling_ddim_flax.py +13 -5
  237. diffusers/schedulers/scheduling_ddim_inverse.py +2 -4
  238. diffusers/schedulers/scheduling_ddim_parallel.py +2 -4
  239. diffusers/schedulers/scheduling_ddpm.py +2 -4
  240. diffusers/schedulers/scheduling_ddpm_flax.py +1 -1
  241. diffusers/schedulers/scheduling_ddpm_parallel.py +2 -4
  242. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +1 -1
  243. diffusers/schedulers/scheduling_deis_multistep.py +46 -19
  244. diffusers/schedulers/scheduling_dpmsolver_multistep.py +107 -21
  245. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +1 -1
  246. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +9 -7
  247. diffusers/schedulers/scheduling_dpmsolver_sde.py +35 -35
  248. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +49 -18
  249. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +683 -0
  250. diffusers/schedulers/scheduling_edm_euler.py +381 -0
  251. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +43 -15
  252. diffusers/schedulers/scheduling_euler_discrete.py +42 -17
  253. diffusers/schedulers/scheduling_euler_discrete_flax.py +1 -1
  254. diffusers/schedulers/scheduling_heun_discrete.py +35 -35
  255. diffusers/schedulers/scheduling_ipndm.py +37 -11
  256. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +44 -44
  257. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +44 -44
  258. diffusers/schedulers/scheduling_karras_ve_flax.py +1 -1
  259. diffusers/schedulers/scheduling_lcm.py +38 -14
  260. diffusers/schedulers/scheduling_lms_discrete.py +43 -15
  261. diffusers/schedulers/scheduling_lms_discrete_flax.py +1 -1
  262. diffusers/schedulers/scheduling_pndm.py +2 -4
  263. diffusers/schedulers/scheduling_pndm_flax.py +2 -4
  264. diffusers/schedulers/scheduling_repaint.py +1 -1
  265. diffusers/schedulers/scheduling_sasolver.py +41 -9
  266. diffusers/schedulers/scheduling_sde_ve.py +1 -1
  267. diffusers/schedulers/scheduling_sde_ve_flax.py +1 -1
  268. diffusers/schedulers/scheduling_tcd.py +686 -0
  269. diffusers/schedulers/scheduling_unclip.py +1 -1
  270. diffusers/schedulers/scheduling_unipc_multistep.py +46 -19
  271. diffusers/schedulers/scheduling_utils.py +2 -1
  272. diffusers/schedulers/scheduling_utils_flax.py +1 -1
  273. diffusers/schedulers/scheduling_vq_diffusion.py +1 -1
  274. diffusers/training_utils.py +9 -2
  275. diffusers/utils/__init__.py +2 -1
  276. diffusers/utils/accelerate_utils.py +1 -1
  277. diffusers/utils/constants.py +1 -1
  278. diffusers/utils/doc_utils.py +1 -1
  279. diffusers/utils/dummy_pt_objects.py +60 -0
  280. diffusers/utils/dummy_torch_and_transformers_objects.py +75 -0
  281. diffusers/utils/dynamic_modules_utils.py +1 -1
  282. diffusers/utils/export_utils.py +3 -3
  283. diffusers/utils/hub_utils.py +60 -16
  284. diffusers/utils/import_utils.py +15 -1
  285. diffusers/utils/loading_utils.py +2 -0
  286. diffusers/utils/logging.py +1 -1
  287. diffusers/utils/model_card_template.md +24 -0
  288. diffusers/utils/outputs.py +14 -7
  289. diffusers/utils/peft_utils.py +1 -1
  290. diffusers/utils/state_dict_utils.py +1 -1
  291. diffusers/utils/testing_utils.py +2 -0
  292. diffusers/utils/torch_utils.py +1 -1
  293. {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/METADATA +46 -46
  294. diffusers-0.27.0.dist-info/RECORD +399 -0
  295. {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/WHEEL +1 -1
  296. diffusers-0.26.3.dist-info/RECORD +0 -384
  297. {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/LICENSE +0 -0
  298. {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/entry_points.txt +0 -0
  299. {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,4 @@
1
- # Copyright 2023 The HuggingFace Team. All rights reserved.
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
2
  #
3
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
4
  # you may not use this file except in compliance with the License.
@@ -36,7 +36,7 @@ from ...utils import (
36
36
  unscale_lora_layers,
37
37
  )
38
38
  from ...utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
39
- from ..pipeline_utils import DiffusionPipeline
39
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
40
40
  from ..stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
41
41
  from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
42
42
  from .multicontrolnet import MultiControlNetModel
@@ -137,7 +137,12 @@ def retrieve_timesteps(
137
137
 
138
138
 
139
139
  class StableDiffusionControlNetPipeline(
140
- DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin
140
+ DiffusionPipeline,
141
+ StableDiffusionMixin,
142
+ TextualInversionLoaderMixin,
143
+ LoraLoaderMixin,
144
+ IPAdapterMixin,
145
+ FromSingleFileMixin,
141
146
  ):
142
147
  r"""
143
148
  Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance.
@@ -233,39 +238,6 @@ class StableDiffusionControlNetPipeline(
233
238
  )
234
239
  self.register_to_config(requires_safety_checker=requires_safety_checker)
235
240
 
236
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
237
- def enable_vae_slicing(self):
238
- r"""
239
- Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
240
- compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
241
- """
242
- self.vae.enable_slicing()
243
-
244
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
245
- def disable_vae_slicing(self):
246
- r"""
247
- Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
248
- computing decoding in one step.
249
- """
250
- self.vae.disable_slicing()
251
-
252
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
253
- def enable_vae_tiling(self):
254
- r"""
255
- Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
256
- compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
257
- processing larger images.
258
- """
259
- self.vae.enable_tiling()
260
-
261
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
262
- def disable_vae_tiling(self):
263
- r"""
264
- Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
265
- computing decoding in one step.
266
- """
267
- self.vae.disable_tiling()
268
-
269
241
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
270
242
  def _encode_prompt(
271
243
  self,
@@ -360,7 +332,7 @@ class StableDiffusionControlNetPipeline(
360
332
  batch_size = prompt_embeds.shape[0]
361
333
 
362
334
  if prompt_embeds is None:
363
- # textual inversion: procecss multi-vector tokens if necessary
335
+ # textual inversion: process multi-vector tokens if necessary
364
336
  if isinstance(self, TextualInversionLoaderMixin):
365
337
  prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
366
338
 
@@ -442,7 +414,7 @@ class StableDiffusionControlNetPipeline(
442
414
  else:
443
415
  uncond_tokens = negative_prompt
444
416
 
445
- # textual inversion: procecss multi-vector tokens if necessary
417
+ # textual inversion: process multi-vector tokens if necessary
446
418
  if isinstance(self, TextualInversionLoaderMixin):
447
419
  uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
448
420
 
@@ -507,31 +479,54 @@ class StableDiffusionControlNetPipeline(
507
479
  return image_embeds, uncond_image_embeds
508
480
 
509
481
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
510
- def prepare_ip_adapter_image_embeds(self, ip_adapter_image, device, num_images_per_prompt):
511
- if not isinstance(ip_adapter_image, list):
512
- ip_adapter_image = [ip_adapter_image]
482
+ def prepare_ip_adapter_image_embeds(
483
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
484
+ ):
485
+ if ip_adapter_image_embeds is None:
486
+ if not isinstance(ip_adapter_image, list):
487
+ ip_adapter_image = [ip_adapter_image]
513
488
 
514
- if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
515
- raise ValueError(
516
- f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
517
- )
489
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
490
+ raise ValueError(
491
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
492
+ )
518
493
 
519
- image_embeds = []
520
- for single_ip_adapter_image, image_proj_layer in zip(
521
- ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
522
- ):
523
- output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
524
- single_image_embeds, single_negative_image_embeds = self.encode_image(
525
- single_ip_adapter_image, device, 1, output_hidden_state
526
- )
527
- single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
528
- single_negative_image_embeds = torch.stack([single_negative_image_embeds] * num_images_per_prompt, dim=0)
494
+ image_embeds = []
495
+ for single_ip_adapter_image, image_proj_layer in zip(
496
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
497
+ ):
498
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
499
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
500
+ single_ip_adapter_image, device, 1, output_hidden_state
501
+ )
502
+ single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
503
+ single_negative_image_embeds = torch.stack(
504
+ [single_negative_image_embeds] * num_images_per_prompt, dim=0
505
+ )
529
506
 
530
- if self.do_classifier_free_guidance:
531
- single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
532
- single_image_embeds = single_image_embeds.to(device)
507
+ if do_classifier_free_guidance:
508
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
509
+ single_image_embeds = single_image_embeds.to(device)
533
510
 
534
- image_embeds.append(single_image_embeds)
511
+ image_embeds.append(single_image_embeds)
512
+ else:
513
+ repeat_dims = [1]
514
+ image_embeds = []
515
+ for single_image_embeds in ip_adapter_image_embeds:
516
+ if do_classifier_free_guidance:
517
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
518
+ single_image_embeds = single_image_embeds.repeat(
519
+ num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
520
+ )
521
+ single_negative_image_embeds = single_negative_image_embeds.repeat(
522
+ num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
523
+ )
524
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
525
+ else:
526
+ single_image_embeds = single_image_embeds.repeat(
527
+ num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
528
+ )
529
+ image_embeds.append(single_image_embeds)
535
530
 
536
531
  return image_embeds
537
532
 
@@ -588,6 +583,8 @@ class StableDiffusionControlNetPipeline(
588
583
  negative_prompt=None,
589
584
  prompt_embeds=None,
590
585
  negative_prompt_embeds=None,
586
+ ip_adapter_image=None,
587
+ ip_adapter_image_embeds=None,
591
588
  controlnet_conditioning_scale=1.0,
592
589
  control_guidance_start=0.0,
593
590
  control_guidance_end=1.0,
@@ -726,6 +723,21 @@ class StableDiffusionControlNetPipeline(
726
723
  if end > 1.0:
727
724
  raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
728
725
 
726
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
727
+ raise ValueError(
728
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
729
+ )
730
+
731
+ if ip_adapter_image_embeds is not None:
732
+ if not isinstance(ip_adapter_image_embeds, list):
733
+ raise ValueError(
734
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
735
+ )
736
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
737
+ raise ValueError(
738
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
739
+ )
740
+
729
741
  def check_image(self, image, prompt, prompt_embeds):
730
742
  image_is_pil = isinstance(image, PIL.Image.Image)
731
743
  image_is_tensor = isinstance(image, torch.Tensor)
@@ -811,34 +823,6 @@ class StableDiffusionControlNetPipeline(
811
823
  latents = latents * self.scheduler.init_noise_sigma
812
824
  return latents
813
825
 
814
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
815
- def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
816
- r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
817
-
818
- The suffixes after the scaling factors represent the stages where they are being applied.
819
-
820
- Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
821
- that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
822
-
823
- Args:
824
- s1 (`float`):
825
- Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
826
- mitigate "oversmoothing effect" in the enhanced denoising process.
827
- s2 (`float`):
828
- Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
829
- mitigate "oversmoothing effect" in the enhanced denoising process.
830
- b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
831
- b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
832
- """
833
- if not hasattr(self, "unet"):
834
- raise ValueError("The pipeline must have `unet` for using FreeU.")
835
- self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
836
-
837
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
838
- def disable_freeu(self):
839
- """Disables the FreeU mechanism if enabled."""
840
- self.unet.disable_freeu()
841
-
842
826
  # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
843
827
  def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
844
828
  """
@@ -910,6 +894,7 @@ class StableDiffusionControlNetPipeline(
910
894
  prompt_embeds: Optional[torch.FloatTensor] = None,
911
895
  negative_prompt_embeds: Optional[torch.FloatTensor] = None,
912
896
  ip_adapter_image: Optional[PipelineImageInput] = None,
897
+ ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
913
898
  output_type: Optional[str] = "pil",
914
899
  return_dict: bool = True,
915
900
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
@@ -974,6 +959,11 @@ class StableDiffusionControlNetPipeline(
974
959
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
975
960
  not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
976
961
  ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
962
+ ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
963
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters.
964
+ Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding
965
+ if `do_classifier_free_guidance` is set to `True`.
966
+ If not provided, embeddings are computed from the `ip_adapter_image` input argument.
977
967
  output_type (`str`, *optional*, defaults to `"pil"`):
978
968
  The output format of the generated image. Choose between `PIL.Image` or `np.array`.
979
969
  return_dict (`bool`, *optional*, defaults to `True`):
@@ -1060,6 +1050,8 @@ class StableDiffusionControlNetPipeline(
1060
1050
  negative_prompt,
1061
1051
  prompt_embeds,
1062
1052
  negative_prompt_embeds,
1053
+ ip_adapter_image,
1054
+ ip_adapter_image_embeds,
1063
1055
  controlnet_conditioning_scale,
1064
1056
  control_guidance_start,
1065
1057
  control_guidance_end,
@@ -1111,9 +1103,13 @@ class StableDiffusionControlNetPipeline(
1111
1103
  if self.do_classifier_free_guidance:
1112
1104
  prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
1113
1105
 
1114
- if ip_adapter_image is not None:
1106
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1115
1107
  image_embeds = self.prepare_ip_adapter_image_embeds(
1116
- ip_adapter_image, device, batch_size * num_images_per_prompt
1108
+ ip_adapter_image,
1109
+ ip_adapter_image_embeds,
1110
+ device,
1111
+ batch_size * num_images_per_prompt,
1112
+ self.do_classifier_free_guidance,
1117
1113
  )
1118
1114
 
1119
1115
  # 4. Prepare image
@@ -1187,7 +1183,11 @@ class StableDiffusionControlNetPipeline(
1187
1183
  extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1188
1184
 
1189
1185
  # 7.1 Add image embeds for IP-Adapter
1190
- added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
1186
+ added_cond_kwargs = (
1187
+ {"image_embeds": image_embeds}
1188
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None
1189
+ else None
1190
+ )
1191
1191
 
1192
1192
  # 7.2 Create tensor stating which controlnets to keep
1193
1193
  controlnet_keep = []
@@ -1,5 +1,5 @@
1
- # Copyright 2023 Salesforce.com, inc.
2
- # Copyright 2023 The HuggingFace Team. All rights reserved.
1
+ # Copyright 2024 Salesforce.com, inc.
2
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
3
3
  #
4
4
  # Licensed under the Apache License, Version 2.0 (the "License");
5
5
  # you may not use this file except in compliance with the License.
@@ -1,4 +1,4 @@
1
- # Copyright 2023 The HuggingFace Team. All rights reserved.
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
2
  #
3
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
4
  # you may not use this file except in compliance with the License.
@@ -35,7 +35,7 @@ from ...utils import (
35
35
  unscale_lora_layers,
36
36
  )
37
37
  from ...utils.torch_utils import is_compiled_module, randn_tensor
38
- from ..pipeline_utils import DiffusionPipeline
38
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
39
39
  from ..stable_diffusion import StableDiffusionPipelineOutput
40
40
  from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
41
41
  from .multicontrolnet import MultiControlNetModel
@@ -130,7 +130,12 @@ def prepare_image(image):
130
130
 
131
131
 
132
132
  class StableDiffusionControlNetImg2ImgPipeline(
133
- DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin
133
+ DiffusionPipeline,
134
+ StableDiffusionMixin,
135
+ TextualInversionLoaderMixin,
136
+ LoraLoaderMixin,
137
+ IPAdapterMixin,
138
+ FromSingleFileMixin,
134
139
  ):
135
140
  r"""
136
141
  Pipeline for image-to-image generation using Stable Diffusion with ControlNet guidance.
@@ -226,39 +231,6 @@ class StableDiffusionControlNetImg2ImgPipeline(
226
231
  )
227
232
  self.register_to_config(requires_safety_checker=requires_safety_checker)
228
233
 
229
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
230
- def enable_vae_slicing(self):
231
- r"""
232
- Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
233
- compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
234
- """
235
- self.vae.enable_slicing()
236
-
237
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
238
- def disable_vae_slicing(self):
239
- r"""
240
- Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
241
- computing decoding in one step.
242
- """
243
- self.vae.disable_slicing()
244
-
245
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
246
- def enable_vae_tiling(self):
247
- r"""
248
- Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
249
- compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
250
- processing larger images.
251
- """
252
- self.vae.enable_tiling()
253
-
254
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
255
- def disable_vae_tiling(self):
256
- r"""
257
- Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
258
- computing decoding in one step.
259
- """
260
- self.vae.disable_tiling()
261
-
262
234
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
263
235
  def _encode_prompt(
264
236
  self,
@@ -353,7 +325,7 @@ class StableDiffusionControlNetImg2ImgPipeline(
353
325
  batch_size = prompt_embeds.shape[0]
354
326
 
355
327
  if prompt_embeds is None:
356
- # textual inversion: procecss multi-vector tokens if necessary
328
+ # textual inversion: process multi-vector tokens if necessary
357
329
  if isinstance(self, TextualInversionLoaderMixin):
358
330
  prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
359
331
 
@@ -435,7 +407,7 @@ class StableDiffusionControlNetImg2ImgPipeline(
435
407
  else:
436
408
  uncond_tokens = negative_prompt
437
409
 
438
- # textual inversion: procecss multi-vector tokens if necessary
410
+ # textual inversion: process multi-vector tokens if necessary
439
411
  if isinstance(self, TextualInversionLoaderMixin):
440
412
  uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
441
413
 
@@ -500,31 +472,54 @@ class StableDiffusionControlNetImg2ImgPipeline(
500
472
  return image_embeds, uncond_image_embeds
501
473
 
502
474
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
503
- def prepare_ip_adapter_image_embeds(self, ip_adapter_image, device, num_images_per_prompt):
504
- if not isinstance(ip_adapter_image, list):
505
- ip_adapter_image = [ip_adapter_image]
475
+ def prepare_ip_adapter_image_embeds(
476
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
477
+ ):
478
+ if ip_adapter_image_embeds is None:
479
+ if not isinstance(ip_adapter_image, list):
480
+ ip_adapter_image = [ip_adapter_image]
506
481
 
507
- if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
508
- raise ValueError(
509
- f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
510
- )
482
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
483
+ raise ValueError(
484
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
485
+ )
511
486
 
512
- image_embeds = []
513
- for single_ip_adapter_image, image_proj_layer in zip(
514
- ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
515
- ):
516
- output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
517
- single_image_embeds, single_negative_image_embeds = self.encode_image(
518
- single_ip_adapter_image, device, 1, output_hidden_state
519
- )
520
- single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
521
- single_negative_image_embeds = torch.stack([single_negative_image_embeds] * num_images_per_prompt, dim=0)
487
+ image_embeds = []
488
+ for single_ip_adapter_image, image_proj_layer in zip(
489
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
490
+ ):
491
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
492
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
493
+ single_ip_adapter_image, device, 1, output_hidden_state
494
+ )
495
+ single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
496
+ single_negative_image_embeds = torch.stack(
497
+ [single_negative_image_embeds] * num_images_per_prompt, dim=0
498
+ )
522
499
 
523
- if self.do_classifier_free_guidance:
524
- single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
525
- single_image_embeds = single_image_embeds.to(device)
500
+ if do_classifier_free_guidance:
501
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
502
+ single_image_embeds = single_image_embeds.to(device)
526
503
 
527
- image_embeds.append(single_image_embeds)
504
+ image_embeds.append(single_image_embeds)
505
+ else:
506
+ repeat_dims = [1]
507
+ image_embeds = []
508
+ for single_image_embeds in ip_adapter_image_embeds:
509
+ if do_classifier_free_guidance:
510
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
511
+ single_image_embeds = single_image_embeds.repeat(
512
+ num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
513
+ )
514
+ single_negative_image_embeds = single_negative_image_embeds.repeat(
515
+ num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
516
+ )
517
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
518
+ else:
519
+ single_image_embeds = single_image_embeds.repeat(
520
+ num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
521
+ )
522
+ image_embeds.append(single_image_embeds)
528
523
 
529
524
  return image_embeds
530
525
 
@@ -581,6 +576,8 @@ class StableDiffusionControlNetImg2ImgPipeline(
581
576
  negative_prompt=None,
582
577
  prompt_embeds=None,
583
578
  negative_prompt_embeds=None,
579
+ ip_adapter_image=None,
580
+ ip_adapter_image_embeds=None,
584
581
  controlnet_conditioning_scale=1.0,
585
582
  control_guidance_start=0.0,
586
583
  control_guidance_end=1.0,
@@ -713,6 +710,21 @@ class StableDiffusionControlNetImg2ImgPipeline(
713
710
  if end > 1.0:
714
711
  raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
715
712
 
713
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
714
+ raise ValueError(
715
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
716
+ )
717
+
718
+ if ip_adapter_image_embeds is not None:
719
+ if not isinstance(ip_adapter_image_embeds, list):
720
+ raise ValueError(
721
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
722
+ )
723
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
724
+ raise ValueError(
725
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
726
+ )
727
+
716
728
  # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
717
729
  def check_image(self, image, prompt, prompt_embeds):
718
730
  image_is_pil = isinstance(image, PIL.Image.Image)
@@ -789,6 +801,8 @@ class StableDiffusionControlNetImg2ImgPipeline(
789
801
 
790
802
  t_start = max(num_inference_steps - init_timestep, 0)
791
803
  timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
804
+ if hasattr(self.scheduler, "set_begin_index"):
805
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
792
806
 
793
807
  return timesteps, num_inference_steps - t_start
794
808
 
@@ -851,34 +865,6 @@ class StableDiffusionControlNetImg2ImgPipeline(
851
865
 
852
866
  return latents
853
867
 
854
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
855
- def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
856
- r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
857
-
858
- The suffixes after the scaling factors represent the stages where they are being applied.
859
-
860
- Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
861
- that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
862
-
863
- Args:
864
- s1 (`float`):
865
- Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
866
- mitigate "oversmoothing effect" in the enhanced denoising process.
867
- s2 (`float`):
868
- Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
869
- mitigate "oversmoothing effect" in the enhanced denoising process.
870
- b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
871
- b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
872
- """
873
- if not hasattr(self, "unet"):
874
- raise ValueError("The pipeline must have `unet` for using FreeU.")
875
- self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
876
-
877
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
878
- def disable_freeu(self):
879
- """Disables the FreeU mechanism if enabled."""
880
- self.unet.disable_freeu()
881
-
882
868
  @property
883
869
  def guidance_scale(self):
884
870
  return self._guidance_scale
@@ -922,6 +908,7 @@ class StableDiffusionControlNetImg2ImgPipeline(
922
908
  prompt_embeds: Optional[torch.FloatTensor] = None,
923
909
  negative_prompt_embeds: Optional[torch.FloatTensor] = None,
924
910
  ip_adapter_image: Optional[PipelineImageInput] = None,
911
+ ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
925
912
  output_type: Optional[str] = "pil",
926
913
  return_dict: bool = True,
927
914
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
@@ -956,6 +943,12 @@ class StableDiffusionControlNetImg2ImgPipeline(
956
943
  The height in pixels of the generated image.
957
944
  width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
958
945
  The width in pixels of the generated image.
946
+ strength (`float`, *optional*, defaults to 0.8):
947
+ Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
948
+ starting point and more noise is added the higher the `strength`. The number of denoising steps depends
949
+ on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
950
+ process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
951
+ essentially ignores `image`.
959
952
  num_inference_steps (`int`, *optional*, defaults to 50):
960
953
  The number of denoising steps. More denoising steps usually lead to a higher quality image at the
961
954
  expense of slower inference.
@@ -984,6 +977,11 @@ class StableDiffusionControlNetImg2ImgPipeline(
984
977
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
985
978
  not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
986
979
  ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
980
+ ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
981
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters.
982
+ Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding
983
+ if `do_classifier_free_guidance` is set to `True`.
984
+ If not provided, embeddings are computed from the `ip_adapter_image` input argument.
987
985
  output_type (`str`, *optional*, defaults to `"pil"`):
988
986
  The output format of the generated image. Choose between `PIL.Image` or `np.array`.
989
987
  return_dict (`bool`, *optional*, defaults to `True`):
@@ -1064,6 +1062,8 @@ class StableDiffusionControlNetImg2ImgPipeline(
1064
1062
  negative_prompt,
1065
1063
  prompt_embeds,
1066
1064
  negative_prompt_embeds,
1065
+ ip_adapter_image,
1066
+ ip_adapter_image_embeds,
1067
1067
  controlnet_conditioning_scale,
1068
1068
  control_guidance_start,
1069
1069
  control_guidance_end,
@@ -1115,9 +1115,13 @@ class StableDiffusionControlNetImg2ImgPipeline(
1115
1115
  if self.do_classifier_free_guidance:
1116
1116
  prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
1117
1117
 
1118
- if ip_adapter_image is not None:
1118
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1119
1119
  image_embeds = self.prepare_ip_adapter_image_embeds(
1120
- ip_adapter_image, device, batch_size * num_images_per_prompt
1120
+ ip_adapter_image,
1121
+ ip_adapter_image_embeds,
1122
+ device,
1123
+ batch_size * num_images_per_prompt,
1124
+ self.do_classifier_free_guidance,
1121
1125
  )
1122
1126
 
1123
1127
  # 4. Prepare image
@@ -1179,7 +1183,11 @@ class StableDiffusionControlNetImg2ImgPipeline(
1179
1183
  extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1180
1184
 
1181
1185
  # 7.1 Add image embeds for IP-Adapter
1182
- added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
1186
+ added_cond_kwargs = (
1187
+ {"image_embeds": image_embeds}
1188
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None
1189
+ else None
1190
+ )
1183
1191
 
1184
1192
  # 7.2 Create tensor stating which controlnets to keep
1185
1193
  controlnet_keep = []