diffusers 0.26.3__py3-none-any.whl → 0.27.0__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (299) hide show
  1. diffusers/__init__.py +20 -1
  2. diffusers/commands/__init__.py +1 -1
  3. diffusers/commands/diffusers_cli.py +1 -1
  4. diffusers/commands/env.py +1 -1
  5. diffusers/commands/fp16_safetensors.py +1 -1
  6. diffusers/configuration_utils.py +7 -3
  7. diffusers/dependency_versions_check.py +1 -1
  8. diffusers/dependency_versions_table.py +2 -2
  9. diffusers/experimental/rl/value_guided_sampling.py +1 -1
  10. diffusers/image_processor.py +110 -4
  11. diffusers/loaders/autoencoder.py +7 -8
  12. diffusers/loaders/controlnet.py +17 -8
  13. diffusers/loaders/ip_adapter.py +86 -23
  14. diffusers/loaders/lora.py +105 -310
  15. diffusers/loaders/lora_conversion_utils.py +1 -1
  16. diffusers/loaders/peft.py +1 -1
  17. diffusers/loaders/single_file.py +51 -12
  18. diffusers/loaders/single_file_utils.py +274 -49
  19. diffusers/loaders/textual_inversion.py +23 -4
  20. diffusers/loaders/unet.py +195 -41
  21. diffusers/loaders/utils.py +1 -1
  22. diffusers/models/__init__.py +3 -1
  23. diffusers/models/activations.py +9 -9
  24. diffusers/models/attention.py +26 -36
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +171 -114
  27. diffusers/models/autoencoders/autoencoder_asym_kl.py +1 -1
  28. diffusers/models/autoencoders/autoencoder_kl.py +3 -1
  29. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
  30. diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
  31. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  32. diffusers/models/autoencoders/vae.py +1 -1
  33. diffusers/models/controlnet.py +1 -1
  34. diffusers/models/controlnet_flax.py +1 -1
  35. diffusers/models/downsampling.py +8 -12
  36. diffusers/models/dual_transformer_2d.py +1 -1
  37. diffusers/models/embeddings.py +3 -4
  38. diffusers/models/embeddings_flax.py +1 -1
  39. diffusers/models/lora.py +33 -10
  40. diffusers/models/modeling_flax_pytorch_utils.py +1 -1
  41. diffusers/models/modeling_flax_utils.py +1 -1
  42. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  43. diffusers/models/modeling_utils.py +4 -6
  44. diffusers/models/normalization.py +1 -1
  45. diffusers/models/resnet.py +31 -58
  46. diffusers/models/resnet_flax.py +1 -1
  47. diffusers/models/t5_film_transformer.py +1 -1
  48. diffusers/models/transformer_2d.py +1 -1
  49. diffusers/models/transformer_temporal.py +1 -1
  50. diffusers/models/transformers/dual_transformer_2d.py +1 -1
  51. diffusers/models/transformers/t5_film_transformer.py +1 -1
  52. diffusers/models/transformers/transformer_2d.py +29 -31
  53. diffusers/models/transformers/transformer_temporal.py +1 -1
  54. diffusers/models/unet_1d.py +1 -1
  55. diffusers/models/unet_1d_blocks.py +1 -1
  56. diffusers/models/unet_2d.py +1 -1
  57. diffusers/models/unet_2d_blocks.py +1 -1
  58. diffusers/models/unet_2d_condition.py +1 -1
  59. diffusers/models/unets/__init__.py +1 -0
  60. diffusers/models/unets/unet_1d.py +1 -1
  61. diffusers/models/unets/unet_1d_blocks.py +1 -1
  62. diffusers/models/unets/unet_2d.py +4 -4
  63. diffusers/models/unets/unet_2d_blocks.py +238 -98
  64. diffusers/models/unets/unet_2d_blocks_flax.py +1 -1
  65. diffusers/models/unets/unet_2d_condition.py +420 -323
  66. diffusers/models/unets/unet_2d_condition_flax.py +21 -12
  67. diffusers/models/unets/unet_3d_blocks.py +50 -40
  68. diffusers/models/unets/unet_3d_condition.py +47 -8
  69. diffusers/models/unets/unet_i2vgen_xl.py +75 -30
  70. diffusers/models/unets/unet_kandinsky3.py +1 -1
  71. diffusers/models/unets/unet_motion_model.py +48 -8
  72. diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
  73. diffusers/models/unets/unet_stable_cascade.py +610 -0
  74. diffusers/models/unets/uvit_2d.py +1 -1
  75. diffusers/models/upsampling.py +10 -16
  76. diffusers/models/vae_flax.py +1 -1
  77. diffusers/models/vq_model.py +1 -1
  78. diffusers/optimization.py +1 -1
  79. diffusers/pipelines/__init__.py +26 -0
  80. diffusers/pipelines/amused/pipeline_amused.py +1 -1
  81. diffusers/pipelines/amused/pipeline_amused_img2img.py +1 -1
  82. diffusers/pipelines/amused/pipeline_amused_inpaint.py +1 -1
  83. diffusers/pipelines/animatediff/pipeline_animatediff.py +162 -417
  84. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +165 -137
  85. diffusers/pipelines/animatediff/pipeline_output.py +7 -6
  86. diffusers/pipelines/audioldm/pipeline_audioldm.py +3 -19
  87. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  88. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +3 -3
  89. diffusers/pipelines/auto_pipeline.py +7 -16
  90. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  91. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  92. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +2 -2
  93. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  94. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  95. diffusers/pipelines/controlnet/pipeline_controlnet.py +90 -90
  96. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  97. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +98 -90
  98. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +92 -90
  99. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +145 -70
  100. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +126 -89
  101. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +108 -96
  102. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  103. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -1
  104. diffusers/pipelines/ddim/pipeline_ddim.py +1 -1
  105. diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -1
  106. diffusers/pipelines/deepfloyd_if/pipeline_if.py +4 -4
  107. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +4 -4
  108. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +5 -5
  109. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +4 -4
  110. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +5 -5
  111. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +5 -5
  112. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +10 -120
  113. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +10 -91
  114. diffusers/pipelines/deprecated/audio_diffusion/mel.py +1 -1
  115. diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py +1 -1
  116. diffusers/pipelines/deprecated/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py +1 -1
  117. diffusers/pipelines/deprecated/pndm/pipeline_pndm.py +1 -1
  118. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +1 -1
  119. diffusers/pipelines/deprecated/score_sde_ve/pipeline_score_sde_ve.py +1 -1
  120. diffusers/pipelines/deprecated/spectrogram_diffusion/continuous_encoder.py +1 -1
  121. diffusers/pipelines/deprecated/spectrogram_diffusion/midi_utils.py +1 -1
  122. diffusers/pipelines/deprecated/spectrogram_diffusion/notes_encoder.py +1 -1
  123. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -1
  124. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +5 -4
  125. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +5 -4
  126. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +7 -22
  127. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +5 -39
  128. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +5 -5
  129. diffusers/pipelines/deprecated/stochastic_karras_ve/pipeline_stochastic_karras_ve.py +1 -1
  130. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +31 -22
  131. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -1
  132. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -1
  133. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -2
  134. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +1 -1
  135. diffusers/pipelines/dit/pipeline_dit.py +1 -1
  136. diffusers/pipelines/free_init_utils.py +184 -0
  137. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +22 -104
  138. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +1 -1
  139. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +1 -1
  140. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +1 -1
  141. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +2 -2
  142. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +1 -1
  143. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
  144. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +1 -1
  145. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +1 -1
  146. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +1 -1
  147. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
  148. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +2 -2
  149. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +104 -93
  150. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +112 -74
  151. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  152. diffusers/pipelines/ledits_pp/__init__.py +55 -0
  153. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +1505 -0
  154. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +1797 -0
  155. diffusers/pipelines/ledits_pp/pipeline_output.py +43 -0
  156. diffusers/pipelines/musicldm/pipeline_musicldm.py +3 -19
  157. diffusers/pipelines/onnx_utils.py +1 -1
  158. diffusers/pipelines/paint_by_example/image_encoder.py +1 -1
  159. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +3 -3
  160. diffusers/pipelines/pia/pipeline_pia.py +168 -327
  161. diffusers/pipelines/pipeline_flax_utils.py +1 -1
  162. diffusers/pipelines/pipeline_loading_utils.py +508 -0
  163. diffusers/pipelines/pipeline_utils.py +188 -534
  164. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +56 -10
  165. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +3 -3
  166. diffusers/pipelines/shap_e/camera.py +1 -1
  167. diffusers/pipelines/shap_e/pipeline_shap_e.py +1 -1
  168. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +1 -1
  169. diffusers/pipelines/shap_e/renderer.py +1 -1
  170. diffusers/pipelines/stable_cascade/__init__.py +50 -0
  171. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +482 -0
  172. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +311 -0
  173. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +638 -0
  174. diffusers/pipelines/stable_diffusion/clip_image_project_model.py +1 -1
  175. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +4 -1
  176. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  177. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +2 -2
  178. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +1 -1
  179. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +1 -1
  180. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +1 -1
  181. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -1
  182. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +1 -1
  183. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +90 -146
  184. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +5 -4
  185. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +4 -32
  186. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -119
  187. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -119
  188. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +13 -59
  189. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +3 -31
  190. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +5 -33
  191. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -21
  192. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +7 -21
  193. diffusers/pipelines/stable_diffusion/safety_checker.py +1 -1
  194. diffusers/pipelines/stable_diffusion/safety_checker_flax.py +1 -1
  195. diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py +1 -1
  196. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +5 -21
  197. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +9 -38
  198. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -34
  199. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +6 -35
  200. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +7 -6
  201. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +4 -124
  202. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +282 -80
  203. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +94 -46
  204. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +3 -3
  205. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  206. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +6 -22
  207. diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
  208. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +96 -148
  209. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +98 -154
  210. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +98 -153
  211. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +25 -87
  212. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +89 -80
  213. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +5 -49
  214. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +80 -88
  215. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +8 -6
  216. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +15 -86
  217. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +20 -93
  218. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +5 -5
  219. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +3 -19
  220. diffusers/pipelines/unclip/pipeline_unclip.py +1 -1
  221. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -1
  222. diffusers/pipelines/unclip/text_proj.py +1 -1
  223. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +35 -35
  224. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
  225. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +4 -21
  226. diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py +2 -2
  227. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +4 -5
  228. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +8 -8
  229. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +1 -1
  230. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +2 -2
  231. diffusers/schedulers/__init__.py +7 -1
  232. diffusers/schedulers/deprecated/scheduling_karras_ve.py +1 -1
  233. diffusers/schedulers/deprecated/scheduling_sde_vp.py +1 -1
  234. diffusers/schedulers/scheduling_consistency_models.py +42 -19
  235. diffusers/schedulers/scheduling_ddim.py +2 -4
  236. diffusers/schedulers/scheduling_ddim_flax.py +13 -5
  237. diffusers/schedulers/scheduling_ddim_inverse.py +2 -4
  238. diffusers/schedulers/scheduling_ddim_parallel.py +2 -4
  239. diffusers/schedulers/scheduling_ddpm.py +2 -4
  240. diffusers/schedulers/scheduling_ddpm_flax.py +1 -1
  241. diffusers/schedulers/scheduling_ddpm_parallel.py +2 -4
  242. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +1 -1
  243. diffusers/schedulers/scheduling_deis_multistep.py +46 -19
  244. diffusers/schedulers/scheduling_dpmsolver_multistep.py +107 -21
  245. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +1 -1
  246. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +9 -7
  247. diffusers/schedulers/scheduling_dpmsolver_sde.py +35 -35
  248. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +49 -18
  249. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +683 -0
  250. diffusers/schedulers/scheduling_edm_euler.py +381 -0
  251. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +43 -15
  252. diffusers/schedulers/scheduling_euler_discrete.py +42 -17
  253. diffusers/schedulers/scheduling_euler_discrete_flax.py +1 -1
  254. diffusers/schedulers/scheduling_heun_discrete.py +35 -35
  255. diffusers/schedulers/scheduling_ipndm.py +37 -11
  256. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +44 -44
  257. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +44 -44
  258. diffusers/schedulers/scheduling_karras_ve_flax.py +1 -1
  259. diffusers/schedulers/scheduling_lcm.py +38 -14
  260. diffusers/schedulers/scheduling_lms_discrete.py +43 -15
  261. diffusers/schedulers/scheduling_lms_discrete_flax.py +1 -1
  262. diffusers/schedulers/scheduling_pndm.py +2 -4
  263. diffusers/schedulers/scheduling_pndm_flax.py +2 -4
  264. diffusers/schedulers/scheduling_repaint.py +1 -1
  265. diffusers/schedulers/scheduling_sasolver.py +41 -9
  266. diffusers/schedulers/scheduling_sde_ve.py +1 -1
  267. diffusers/schedulers/scheduling_sde_ve_flax.py +1 -1
  268. diffusers/schedulers/scheduling_tcd.py +686 -0
  269. diffusers/schedulers/scheduling_unclip.py +1 -1
  270. diffusers/schedulers/scheduling_unipc_multistep.py +46 -19
  271. diffusers/schedulers/scheduling_utils.py +2 -1
  272. diffusers/schedulers/scheduling_utils_flax.py +1 -1
  273. diffusers/schedulers/scheduling_vq_diffusion.py +1 -1
  274. diffusers/training_utils.py +9 -2
  275. diffusers/utils/__init__.py +2 -1
  276. diffusers/utils/accelerate_utils.py +1 -1
  277. diffusers/utils/constants.py +1 -1
  278. diffusers/utils/doc_utils.py +1 -1
  279. diffusers/utils/dummy_pt_objects.py +60 -0
  280. diffusers/utils/dummy_torch_and_transformers_objects.py +75 -0
  281. diffusers/utils/dynamic_modules_utils.py +1 -1
  282. diffusers/utils/export_utils.py +3 -3
  283. diffusers/utils/hub_utils.py +60 -16
  284. diffusers/utils/import_utils.py +15 -1
  285. diffusers/utils/loading_utils.py +2 -0
  286. diffusers/utils/logging.py +1 -1
  287. diffusers/utils/model_card_template.md +24 -0
  288. diffusers/utils/outputs.py +14 -7
  289. diffusers/utils/peft_utils.py +1 -1
  290. diffusers/utils/state_dict_utils.py +1 -1
  291. diffusers/utils/testing_utils.py +2 -0
  292. diffusers/utils/torch_utils.py +1 -1
  293. {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/METADATA +46 -46
  294. diffusers-0.27.0.dist-info/RECORD +399 -0
  295. {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/WHEEL +1 -1
  296. diffusers-0.26.3.dist-info/RECORD +0 -384
  297. {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/LICENSE +0 -0
  298. {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/entry_points.txt +0 -0
  299. {diffusers-0.26.3.dist-info → diffusers-0.27.0.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,4 @@
1
- # Copyright 2023 The HuggingFace Team. All rights reserved.
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
2
  #
3
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
4
  # you may not use this file except in compliance with the License.
@@ -25,7 +25,6 @@ from ...configuration_utils import FrozenDict
25
25
  from ...image_processor import PipelineImageInput, VaeImageProcessor
26
26
  from ...loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
27
27
  from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
28
- from ...models.attention_processor import FusedAttnProcessor2_0
29
28
  from ...models.lora import adjust_lora_scale_text_encoder
30
29
  from ...schedulers import KarrasDiffusionSchedulers
31
30
  from ...utils import (
@@ -38,7 +37,7 @@ from ...utils import (
38
37
  unscale_lora_layers,
39
38
  )
40
39
  from ...utils.torch_utils import randn_tensor
41
- from ..pipeline_utils import DiffusionPipeline
40
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
42
41
  from . import StableDiffusionPipelineOutput
43
42
  from .safety_checker import StableDiffusionSafetyChecker
44
43
 
@@ -156,7 +155,12 @@ def retrieve_timesteps(
156
155
 
157
156
 
158
157
  class StableDiffusionImg2ImgPipeline(
159
- DiffusionPipeline, TextualInversionLoaderMixin, IPAdapterMixin, LoraLoaderMixin, FromSingleFileMixin
158
+ DiffusionPipeline,
159
+ StableDiffusionMixin,
160
+ TextualInversionLoaderMixin,
161
+ IPAdapterMixin,
162
+ LoraLoaderMixin,
163
+ FromSingleFileMixin,
160
164
  ):
161
165
  r"""
162
166
  Pipeline for text-guided image-to-image generation using Stable Diffusion.
@@ -382,7 +386,7 @@ class StableDiffusionImg2ImgPipeline(
382
386
  batch_size = prompt_embeds.shape[0]
383
387
 
384
388
  if prompt_embeds is None:
385
- # textual inversion: procecss multi-vector tokens if necessary
389
+ # textual inversion: process multi-vector tokens if necessary
386
390
  if isinstance(self, TextualInversionLoaderMixin):
387
391
  prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
388
392
 
@@ -464,7 +468,7 @@ class StableDiffusionImg2ImgPipeline(
464
468
  else:
465
469
  uncond_tokens = negative_prompt
466
470
 
467
- # textual inversion: procecss multi-vector tokens if necessary
471
+ # textual inversion: process multi-vector tokens if necessary
468
472
  if isinstance(self, TextualInversionLoaderMixin):
469
473
  uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
470
474
 
@@ -529,31 +533,54 @@ class StableDiffusionImg2ImgPipeline(
529
533
  return image_embeds, uncond_image_embeds
530
534
 
531
535
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
532
- def prepare_ip_adapter_image_embeds(self, ip_adapter_image, device, num_images_per_prompt):
533
- if not isinstance(ip_adapter_image, list):
534
- ip_adapter_image = [ip_adapter_image]
536
+ def prepare_ip_adapter_image_embeds(
537
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
538
+ ):
539
+ if ip_adapter_image_embeds is None:
540
+ if not isinstance(ip_adapter_image, list):
541
+ ip_adapter_image = [ip_adapter_image]
535
542
 
536
- if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
537
- raise ValueError(
538
- f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
539
- )
543
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
544
+ raise ValueError(
545
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
546
+ )
540
547
 
541
- image_embeds = []
542
- for single_ip_adapter_image, image_proj_layer in zip(
543
- ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
544
- ):
545
- output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
546
- single_image_embeds, single_negative_image_embeds = self.encode_image(
547
- single_ip_adapter_image, device, 1, output_hidden_state
548
- )
549
- single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
550
- single_negative_image_embeds = torch.stack([single_negative_image_embeds] * num_images_per_prompt, dim=0)
548
+ image_embeds = []
549
+ for single_ip_adapter_image, image_proj_layer in zip(
550
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
551
+ ):
552
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
553
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
554
+ single_ip_adapter_image, device, 1, output_hidden_state
555
+ )
556
+ single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
557
+ single_negative_image_embeds = torch.stack(
558
+ [single_negative_image_embeds] * num_images_per_prompt, dim=0
559
+ )
551
560
 
552
- if self.do_classifier_free_guidance:
553
- single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
554
- single_image_embeds = single_image_embeds.to(device)
561
+ if do_classifier_free_guidance:
562
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
563
+ single_image_embeds = single_image_embeds.to(device)
555
564
 
556
- image_embeds.append(single_image_embeds)
565
+ image_embeds.append(single_image_embeds)
566
+ else:
567
+ repeat_dims = [1]
568
+ image_embeds = []
569
+ for single_image_embeds in ip_adapter_image_embeds:
570
+ if do_classifier_free_guidance:
571
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
572
+ single_image_embeds = single_image_embeds.repeat(
573
+ num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
574
+ )
575
+ single_negative_image_embeds = single_negative_image_embeds.repeat(
576
+ num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
577
+ )
578
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
579
+ else:
580
+ single_image_embeds = single_image_embeds.repeat(
581
+ num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
582
+ )
583
+ image_embeds.append(single_image_embeds)
557
584
 
558
585
  return image_embeds
559
586
 
@@ -610,6 +637,8 @@ class StableDiffusionImg2ImgPipeline(
610
637
  negative_prompt=None,
611
638
  prompt_embeds=None,
612
639
  negative_prompt_embeds=None,
640
+ ip_adapter_image=None,
641
+ ip_adapter_image_embeds=None,
613
642
  callback_on_step_end_tensor_inputs=None,
614
643
  ):
615
644
  if strength < 0 or strength > 1:
@@ -653,12 +682,29 @@ class StableDiffusionImg2ImgPipeline(
653
682
  f" {negative_prompt_embeds.shape}."
654
683
  )
655
684
 
685
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
686
+ raise ValueError(
687
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
688
+ )
689
+
690
+ if ip_adapter_image_embeds is not None:
691
+ if not isinstance(ip_adapter_image_embeds, list):
692
+ raise ValueError(
693
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
694
+ )
695
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
696
+ raise ValueError(
697
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
698
+ )
699
+
656
700
  def get_timesteps(self, num_inference_steps, strength, device):
657
701
  # get the original timestep using init_timestep
658
702
  init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
659
703
 
660
704
  t_start = max(num_inference_steps - init_timestep, 0)
661
705
  timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
706
+ if hasattr(self.scheduler, "set_begin_index"):
707
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
662
708
 
663
709
  return timesteps, num_inference_steps - t_start
664
710
 
@@ -720,95 +766,6 @@ class StableDiffusionImg2ImgPipeline(
720
766
 
721
767
  return latents
722
768
 
723
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
724
- def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
725
- r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
726
-
727
- The suffixes after the scaling factors represent the stages where they are being applied.
728
-
729
- Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
730
- that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
731
-
732
- Args:
733
- s1 (`float`):
734
- Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
735
- mitigate "oversmoothing effect" in the enhanced denoising process.
736
- s2 (`float`):
737
- Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
738
- mitigate "oversmoothing effect" in the enhanced denoising process.
739
- b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
740
- b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
741
- """
742
- if not hasattr(self, "unet"):
743
- raise ValueError("The pipeline must have `unet` for using FreeU.")
744
- self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
745
-
746
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
747
- def disable_freeu(self):
748
- """Disables the FreeU mechanism if enabled."""
749
- self.unet.disable_freeu()
750
-
751
- # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.fuse_qkv_projections
752
- def fuse_qkv_projections(self, unet: bool = True, vae: bool = True):
753
- """
754
- Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
755
- key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
756
-
757
- <Tip warning={true}>
758
-
759
- This API is 🧪 experimental.
760
-
761
- </Tip>
762
-
763
- Args:
764
- unet (`bool`, defaults to `True`): To apply fusion on the UNet.
765
- vae (`bool`, defaults to `True`): To apply fusion on the VAE.
766
- """
767
- self.fusing_unet = False
768
- self.fusing_vae = False
769
-
770
- if unet:
771
- self.fusing_unet = True
772
- self.unet.fuse_qkv_projections()
773
- self.unet.set_attn_processor(FusedAttnProcessor2_0())
774
-
775
- if vae:
776
- if not isinstance(self.vae, AutoencoderKL):
777
- raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.")
778
-
779
- self.fusing_vae = True
780
- self.vae.fuse_qkv_projections()
781
- self.vae.set_attn_processor(FusedAttnProcessor2_0())
782
-
783
- # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.unfuse_qkv_projections
784
- def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True):
785
- """Disable QKV projection fusion if enabled.
786
-
787
- <Tip warning={true}>
788
-
789
- This API is 🧪 experimental.
790
-
791
- </Tip>
792
-
793
- Args:
794
- unet (`bool`, defaults to `True`): To apply fusion on the UNet.
795
- vae (`bool`, defaults to `True`): To apply fusion on the VAE.
796
-
797
- """
798
- if unet:
799
- if not self.fusing_unet:
800
- logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.")
801
- else:
802
- self.unet.unfuse_qkv_projections()
803
- self.fusing_unet = False
804
-
805
- if vae:
806
- if not self.fusing_vae:
807
- logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.")
808
- else:
809
- self.vae.unfuse_qkv_projections()
810
- self.fusing_vae = False
811
-
812
769
  # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
813
770
  def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
814
771
  """
@@ -882,6 +839,7 @@ class StableDiffusionImg2ImgPipeline(
882
839
  prompt_embeds: Optional[torch.FloatTensor] = None,
883
840
  negative_prompt_embeds: Optional[torch.FloatTensor] = None,
884
841
  ip_adapter_image: Optional[PipelineImageInput] = None,
842
+ ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
885
843
  output_type: Optional[str] = "pil",
886
844
  return_dict: bool = True,
887
845
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
@@ -936,6 +894,11 @@ class StableDiffusionImg2ImgPipeline(
936
894
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
937
895
  not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
938
896
  ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
897
+ ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
898
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters.
899
+ Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding
900
+ if `do_classifier_free_guidance` is set to `True`.
901
+ If not provided, embeddings are computed from the `ip_adapter_image` input argument.
939
902
  output_type (`str`, *optional*, defaults to `"pil"`):
940
903
  The output format of the generated image. Choose between `PIL.Image` or `np.array`.
941
904
  return_dict (`bool`, *optional*, defaults to `True`):
@@ -990,6 +953,8 @@ class StableDiffusionImg2ImgPipeline(
990
953
  negative_prompt,
991
954
  prompt_embeds,
992
955
  negative_prompt_embeds,
956
+ ip_adapter_image,
957
+ ip_adapter_image_embeds,
993
958
  callback_on_step_end_tensor_inputs,
994
959
  )
995
960
 
@@ -1029,9 +994,13 @@ class StableDiffusionImg2ImgPipeline(
1029
994
  if self.do_classifier_free_guidance:
1030
995
  prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
1031
996
 
1032
- if ip_adapter_image is not None:
997
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1033
998
  image_embeds = self.prepare_ip_adapter_image_embeds(
1034
- ip_adapter_image, device, batch_size * num_images_per_prompt
999
+ ip_adapter_image,
1000
+ ip_adapter_image_embeds,
1001
+ device,
1002
+ batch_size * num_images_per_prompt,
1003
+ self.do_classifier_free_guidance,
1035
1004
  )
1036
1005
 
1037
1006
  # 4. Preprocess image
@@ -1057,7 +1026,11 @@ class StableDiffusionImg2ImgPipeline(
1057
1026
  extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1058
1027
 
1059
1028
  # 7.1 Add image embeds for IP-Adapter
1060
- added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
1029
+ added_cond_kwargs = (
1030
+ {"image_embeds": image_embeds}
1031
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None
1032
+ else None
1033
+ )
1061
1034
 
1062
1035
  # 7.2 Optionally get Guidance Scale Embedding
1063
1036
  timestep_cond = None
@@ -1,4 +1,4 @@
1
- # Copyright 2023 The HuggingFace Team. All rights reserved.
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
2
  #
3
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
4
  # you may not use this file except in compliance with the License.
@@ -25,12 +25,11 @@ from ...configuration_utils import FrozenDict
25
25
  from ...image_processor import PipelineImageInput, VaeImageProcessor
26
26
  from ...loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
27
27
  from ...models import AsymmetricAutoencoderKL, AutoencoderKL, ImageProjection, UNet2DConditionModel
28
- from ...models.attention_processor import FusedAttnProcessor2_0
29
28
  from ...models.lora import adjust_lora_scale_text_encoder
30
29
  from ...schedulers import KarrasDiffusionSchedulers
31
30
  from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers
32
31
  from ...utils.torch_utils import randn_tensor
33
- from ..pipeline_utils import DiffusionPipeline
32
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
34
33
  from . import StableDiffusionPipelineOutput
35
34
  from .safety_checker import StableDiffusionSafetyChecker
36
35
 
@@ -220,7 +219,12 @@ def retrieve_timesteps(
220
219
 
221
220
 
222
221
  class StableDiffusionInpaintPipeline(
223
- DiffusionPipeline, TextualInversionLoaderMixin, IPAdapterMixin, LoraLoaderMixin, FromSingleFileMixin
222
+ DiffusionPipeline,
223
+ StableDiffusionMixin,
224
+ TextualInversionLoaderMixin,
225
+ IPAdapterMixin,
226
+ LoraLoaderMixin,
227
+ FromSingleFileMixin,
224
228
  ):
225
229
  r"""
226
230
  Pipeline for text-guided image inpainting using Stable Diffusion.
@@ -454,7 +458,7 @@ class StableDiffusionInpaintPipeline(
454
458
  batch_size = prompt_embeds.shape[0]
455
459
 
456
460
  if prompt_embeds is None:
457
- # textual inversion: procecss multi-vector tokens if necessary
461
+ # textual inversion: process multi-vector tokens if necessary
458
462
  if isinstance(self, TextualInversionLoaderMixin):
459
463
  prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
460
464
 
@@ -536,7 +540,7 @@ class StableDiffusionInpaintPipeline(
536
540
  else:
537
541
  uncond_tokens = negative_prompt
538
542
 
539
- # textual inversion: procecss multi-vector tokens if necessary
543
+ # textual inversion: process multi-vector tokens if necessary
540
544
  if isinstance(self, TextualInversionLoaderMixin):
541
545
  uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
542
546
 
@@ -601,31 +605,54 @@ class StableDiffusionInpaintPipeline(
601
605
  return image_embeds, uncond_image_embeds
602
606
 
603
607
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
604
- def prepare_ip_adapter_image_embeds(self, ip_adapter_image, device, num_images_per_prompt):
605
- if not isinstance(ip_adapter_image, list):
606
- ip_adapter_image = [ip_adapter_image]
608
+ def prepare_ip_adapter_image_embeds(
609
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
610
+ ):
611
+ if ip_adapter_image_embeds is None:
612
+ if not isinstance(ip_adapter_image, list):
613
+ ip_adapter_image = [ip_adapter_image]
607
614
 
608
- if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
609
- raise ValueError(
610
- f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
611
- )
615
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
616
+ raise ValueError(
617
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
618
+ )
612
619
 
613
- image_embeds = []
614
- for single_ip_adapter_image, image_proj_layer in zip(
615
- ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
616
- ):
617
- output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
618
- single_image_embeds, single_negative_image_embeds = self.encode_image(
619
- single_ip_adapter_image, device, 1, output_hidden_state
620
- )
621
- single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
622
- single_negative_image_embeds = torch.stack([single_negative_image_embeds] * num_images_per_prompt, dim=0)
620
+ image_embeds = []
621
+ for single_ip_adapter_image, image_proj_layer in zip(
622
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
623
+ ):
624
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
625
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
626
+ single_ip_adapter_image, device, 1, output_hidden_state
627
+ )
628
+ single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
629
+ single_negative_image_embeds = torch.stack(
630
+ [single_negative_image_embeds] * num_images_per_prompt, dim=0
631
+ )
623
632
 
624
- if self.do_classifier_free_guidance:
625
- single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
626
- single_image_embeds = single_image_embeds.to(device)
633
+ if do_classifier_free_guidance:
634
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
635
+ single_image_embeds = single_image_embeds.to(device)
627
636
 
628
- image_embeds.append(single_image_embeds)
637
+ image_embeds.append(single_image_embeds)
638
+ else:
639
+ repeat_dims = [1]
640
+ image_embeds = []
641
+ for single_image_embeds in ip_adapter_image_embeds:
642
+ if do_classifier_free_guidance:
643
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
644
+ single_image_embeds = single_image_embeds.repeat(
645
+ num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
646
+ )
647
+ single_negative_image_embeds = single_negative_image_embeds.repeat(
648
+ num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
649
+ )
650
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
651
+ else:
652
+ single_image_embeds = single_image_embeds.repeat(
653
+ num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
654
+ )
655
+ image_embeds.append(single_image_embeds)
629
656
 
630
657
  return image_embeds
631
658
 
@@ -675,6 +702,8 @@ class StableDiffusionInpaintPipeline(
675
702
  negative_prompt=None,
676
703
  prompt_embeds=None,
677
704
  negative_prompt_embeds=None,
705
+ ip_adapter_image=None,
706
+ ip_adapter_image_embeds=None,
678
707
  callback_on_step_end_tensor_inputs=None,
679
708
  padding_mask_crop=None,
680
709
  ):
@@ -735,6 +764,21 @@ class StableDiffusionInpaintPipeline(
735
764
  if output_type != "pil":
736
765
  raise ValueError(f"The output type should be PIL when inpainting mask crop, but is" f" {output_type}.")
737
766
 
767
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
768
+ raise ValueError(
769
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
770
+ )
771
+
772
+ if ip_adapter_image_embeds is not None:
773
+ if not isinstance(ip_adapter_image_embeds, list):
774
+ raise ValueError(
775
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
776
+ )
777
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
778
+ raise ValueError(
779
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
780
+ )
781
+
738
782
  def prepare_latents(
739
783
  self,
740
784
  batch_size,
@@ -859,98 +903,11 @@ class StableDiffusionInpaintPipeline(
859
903
 
860
904
  t_start = max(num_inference_steps - init_timestep, 0)
861
905
  timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
906
+ if hasattr(self.scheduler, "set_begin_index"):
907
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
862
908
 
863
909
  return timesteps, num_inference_steps - t_start
864
910
 
865
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
866
- def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
867
- r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
868
-
869
- The suffixes after the scaling factors represent the stages where they are being applied.
870
-
871
- Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
872
- that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
873
-
874
- Args:
875
- s1 (`float`):
876
- Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
877
- mitigate "oversmoothing effect" in the enhanced denoising process.
878
- s2 (`float`):
879
- Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
880
- mitigate "oversmoothing effect" in the enhanced denoising process.
881
- b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
882
- b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
883
- """
884
- if not hasattr(self, "unet"):
885
- raise ValueError("The pipeline must have `unet` for using FreeU.")
886
- self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
887
-
888
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
889
- def disable_freeu(self):
890
- """Disables the FreeU mechanism if enabled."""
891
- self.unet.disable_freeu()
892
-
893
- # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.fuse_qkv_projections
894
- def fuse_qkv_projections(self, unet: bool = True, vae: bool = True):
895
- """
896
- Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
897
- key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
898
-
899
- <Tip warning={true}>
900
-
901
- This API is 🧪 experimental.
902
-
903
- </Tip>
904
-
905
- Args:
906
- unet (`bool`, defaults to `True`): To apply fusion on the UNet.
907
- vae (`bool`, defaults to `True`): To apply fusion on the VAE.
908
- """
909
- self.fusing_unet = False
910
- self.fusing_vae = False
911
-
912
- if unet:
913
- self.fusing_unet = True
914
- self.unet.fuse_qkv_projections()
915
- self.unet.set_attn_processor(FusedAttnProcessor2_0())
916
-
917
- if vae:
918
- if not isinstance(self.vae, AutoencoderKL):
919
- raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.")
920
-
921
- self.fusing_vae = True
922
- self.vae.fuse_qkv_projections()
923
- self.vae.set_attn_processor(FusedAttnProcessor2_0())
924
-
925
- # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.unfuse_qkv_projections
926
- def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True):
927
- """Disable QKV projection fusion if enabled.
928
-
929
- <Tip warning={true}>
930
-
931
- This API is 🧪 experimental.
932
-
933
- </Tip>
934
-
935
- Args:
936
- unet (`bool`, defaults to `True`): To apply fusion on the UNet.
937
- vae (`bool`, defaults to `True`): To apply fusion on the VAE.
938
-
939
- """
940
- if unet:
941
- if not self.fusing_unet:
942
- logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.")
943
- else:
944
- self.unet.unfuse_qkv_projections()
945
- self.fusing_unet = False
946
-
947
- if vae:
948
- if not self.fusing_vae:
949
- logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.")
950
- else:
951
- self.vae.unfuse_qkv_projections()
952
- self.fusing_vae = False
953
-
954
911
  # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
955
912
  def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
956
913
  """
@@ -1029,6 +986,7 @@ class StableDiffusionInpaintPipeline(
1029
986
  prompt_embeds: Optional[torch.FloatTensor] = None,
1030
987
  negative_prompt_embeds: Optional[torch.FloatTensor] = None,
1031
988
  ip_adapter_image: Optional[PipelineImageInput] = None,
989
+ ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
1032
990
  output_type: Optional[str] = "pil",
1033
991
  return_dict: bool = True,
1034
992
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
@@ -1105,6 +1063,11 @@ class StableDiffusionInpaintPipeline(
1105
1063
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
1106
1064
  not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
1107
1065
  ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
1066
+ ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
1067
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters.
1068
+ Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding
1069
+ if `do_classifier_free_guidance` is set to `True`.
1070
+ If not provided, embeddings are computed from the `ip_adapter_image` input argument.
1108
1071
  output_type (`str`, *optional*, defaults to `"pil"`):
1109
1072
  The output format of the generated image. Choose between `PIL.Image` or `np.array`.
1110
1073
  return_dict (`bool`, *optional*, defaults to `True`):
@@ -1197,6 +1160,8 @@ class StableDiffusionInpaintPipeline(
1197
1160
  negative_prompt,
1198
1161
  prompt_embeds,
1199
1162
  negative_prompt_embeds,
1163
+ ip_adapter_image,
1164
+ ip_adapter_image_embeds,
1200
1165
  callback_on_step_end_tensor_inputs,
1201
1166
  padding_mask_crop,
1202
1167
  )
@@ -1237,9 +1202,13 @@ class StableDiffusionInpaintPipeline(
1237
1202
  if self.do_classifier_free_guidance:
1238
1203
  prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
1239
1204
 
1240
- if ip_adapter_image is not None:
1205
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1241
1206
  image_embeds = self.prepare_ip_adapter_image_embeds(
1242
- ip_adapter_image, device, batch_size * num_images_per_prompt
1207
+ ip_adapter_image,
1208
+ ip_adapter_image_embeds,
1209
+ device,
1210
+ batch_size * num_images_per_prompt,
1211
+ self.do_classifier_free_guidance,
1243
1212
  )
1244
1213
 
1245
1214
  # 4. set timesteps
@@ -1343,7 +1312,11 @@ class StableDiffusionInpaintPipeline(
1343
1312
  extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1344
1313
 
1345
1314
  # 9.1 Add image embeds for IP-Adapter
1346
- added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
1315
+ added_cond_kwargs = (
1316
+ {"image_embeds": image_embeds}
1317
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None
1318
+ else None
1319
+ )
1347
1320
 
1348
1321
  # 9.2 Optionally get Guidance Scale Embedding
1349
1322
  timestep_cond = None