brainstate 0.1.8__py2.py3-none-any.whl → 0.1.10__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (133) hide show
  1. brainstate/__init__.py +58 -51
  2. brainstate/_compatible_import.py +148 -148
  3. brainstate/_state.py +1605 -1663
  4. brainstate/_state_test.py +52 -52
  5. brainstate/_utils.py +47 -47
  6. brainstate/augment/__init__.py +30 -30
  7. brainstate/augment/_autograd.py +778 -778
  8. brainstate/augment/_autograd_test.py +1289 -1289
  9. brainstate/augment/_eval_shape.py +99 -99
  10. brainstate/augment/_eval_shape_test.py +38 -38
  11. brainstate/augment/_mapping.py +1060 -1060
  12. brainstate/augment/_mapping_test.py +597 -597
  13. brainstate/augment/_random.py +151 -151
  14. brainstate/compile/__init__.py +38 -38
  15. brainstate/compile/_ad_checkpoint.py +204 -204
  16. brainstate/compile/_ad_checkpoint_test.py +49 -49
  17. brainstate/compile/_conditions.py +256 -256
  18. brainstate/compile/_conditions_test.py +220 -220
  19. brainstate/compile/_error_if.py +92 -92
  20. brainstate/compile/_error_if_test.py +52 -52
  21. brainstate/compile/_jit.py +346 -346
  22. brainstate/compile/_jit_test.py +143 -143
  23. brainstate/compile/_loop_collect_return.py +536 -536
  24. brainstate/compile/_loop_collect_return_test.py +58 -58
  25. brainstate/compile/_loop_no_collection.py +184 -184
  26. brainstate/compile/_loop_no_collection_test.py +50 -50
  27. brainstate/compile/_make_jaxpr.py +888 -888
  28. brainstate/compile/_make_jaxpr_test.py +156 -156
  29. brainstate/compile/_progress_bar.py +202 -202
  30. brainstate/compile/_unvmap.py +159 -159
  31. brainstate/compile/_util.py +147 -147
  32. brainstate/environ.py +563 -563
  33. brainstate/environ_test.py +62 -62
  34. brainstate/functional/__init__.py +27 -26
  35. brainstate/graph/__init__.py +29 -29
  36. brainstate/graph/_graph_node.py +244 -244
  37. brainstate/graph/_graph_node_test.py +73 -73
  38. brainstate/graph/_graph_operation.py +1738 -1738
  39. brainstate/graph/_graph_operation_test.py +563 -563
  40. brainstate/init/__init__.py +26 -26
  41. brainstate/init/_base.py +52 -52
  42. brainstate/init/_generic.py +244 -244
  43. brainstate/init/_random_inits.py +553 -553
  44. brainstate/init/_random_inits_test.py +149 -149
  45. brainstate/init/_regular_inits.py +105 -105
  46. brainstate/init/_regular_inits_test.py +50 -50
  47. brainstate/mixin.py +365 -363
  48. brainstate/mixin_test.py +77 -73
  49. brainstate/nn/__init__.py +135 -131
  50. brainstate/{functional → nn}/_activations.py +808 -813
  51. brainstate/{functional → nn}/_activations_test.py +331 -331
  52. brainstate/nn/_collective_ops.py +514 -514
  53. brainstate/nn/_collective_ops_test.py +43 -43
  54. brainstate/nn/_common.py +178 -178
  55. brainstate/nn/_conv.py +501 -501
  56. brainstate/nn/_conv_test.py +238 -238
  57. brainstate/nn/_delay.py +588 -502
  58. brainstate/nn/_delay_test.py +238 -184
  59. brainstate/nn/_dropout.py +426 -426
  60. brainstate/nn/_dropout_test.py +100 -100
  61. brainstate/nn/_dynamics.py +1343 -1343
  62. brainstate/nn/_dynamics_test.py +78 -78
  63. brainstate/nn/_elementwise.py +1119 -1119
  64. brainstate/nn/_elementwise_test.py +169 -169
  65. brainstate/nn/_embedding.py +58 -58
  66. brainstate/nn/_exp_euler.py +92 -92
  67. brainstate/nn/_exp_euler_test.py +35 -35
  68. brainstate/nn/_fixedprob.py +239 -239
  69. brainstate/nn/_fixedprob_test.py +114 -114
  70. brainstate/nn/_inputs.py +608 -608
  71. brainstate/nn/_linear.py +424 -424
  72. brainstate/nn/_linear_mv.py +83 -83
  73. brainstate/nn/_linear_mv_test.py +120 -120
  74. brainstate/nn/_linear_test.py +107 -107
  75. brainstate/nn/_ltp.py +28 -28
  76. brainstate/nn/_module.py +377 -377
  77. brainstate/nn/_module_test.py +40 -40
  78. brainstate/nn/_neuron.py +705 -705
  79. brainstate/nn/_neuron_test.py +161 -161
  80. brainstate/nn/_normalizations.py +975 -918
  81. brainstate/nn/_normalizations_test.py +73 -73
  82. brainstate/{functional → nn}/_others.py +46 -46
  83. brainstate/nn/_poolings.py +1177 -1177
  84. brainstate/nn/_poolings_test.py +217 -217
  85. brainstate/nn/_projection.py +486 -486
  86. brainstate/nn/_rate_rnns.py +554 -554
  87. brainstate/nn/_rate_rnns_test.py +63 -63
  88. brainstate/nn/_readout.py +209 -209
  89. brainstate/nn/_readout_test.py +53 -53
  90. brainstate/nn/_stp.py +236 -236
  91. brainstate/nn/_synapse.py +505 -505
  92. brainstate/nn/_synapse_test.py +131 -131
  93. brainstate/nn/_synaptic_projection.py +423 -423
  94. brainstate/nn/_synouts.py +162 -162
  95. brainstate/nn/_synouts_test.py +57 -57
  96. brainstate/nn/_utils.py +89 -89
  97. brainstate/nn/metrics.py +388 -388
  98. brainstate/optim/__init__.py +38 -38
  99. brainstate/optim/_base.py +64 -64
  100. brainstate/optim/_lr_scheduler.py +448 -448
  101. brainstate/optim/_lr_scheduler_test.py +50 -50
  102. brainstate/optim/_optax_optimizer.py +152 -152
  103. brainstate/optim/_optax_optimizer_test.py +53 -53
  104. brainstate/optim/_sgd_optimizer.py +1104 -1104
  105. brainstate/random/__init__.py +24 -24
  106. brainstate/random/_rand_funs.py +3616 -3616
  107. brainstate/random/_rand_funs_test.py +567 -567
  108. brainstate/random/_rand_seed.py +210 -210
  109. brainstate/random/_rand_seed_test.py +48 -48
  110. brainstate/random/_rand_state.py +1409 -1409
  111. brainstate/random/_random_for_unit.py +52 -52
  112. brainstate/surrogate.py +1957 -1957
  113. brainstate/transform.py +23 -23
  114. brainstate/typing.py +304 -304
  115. brainstate/util/__init__.py +50 -50
  116. brainstate/util/caller.py +98 -98
  117. brainstate/util/error.py +55 -55
  118. brainstate/util/filter.py +469 -469
  119. brainstate/util/others.py +540 -540
  120. brainstate/util/pretty_pytree.py +945 -945
  121. brainstate/util/pretty_pytree_test.py +159 -159
  122. brainstate/util/pretty_repr.py +328 -328
  123. brainstate/util/pretty_table.py +2954 -2954
  124. brainstate/util/scaling.py +258 -258
  125. brainstate/util/struct.py +523 -523
  126. {brainstate-0.1.8.dist-info → brainstate-0.1.10.dist-info}/METADATA +91 -99
  127. brainstate-0.1.10.dist-info/RECORD +130 -0
  128. {brainstate-0.1.8.dist-info → brainstate-0.1.10.dist-info}/WHEEL +1 -1
  129. {brainstate-0.1.8.dist-info → brainstate-0.1.10.dist-info/licenses}/LICENSE +202 -202
  130. brainstate/functional/_normalization.py +0 -81
  131. brainstate/functional/_spikes.py +0 -204
  132. brainstate-0.1.8.dist-info/RECORD +0 -132
  133. {brainstate-0.1.8.dist-info → brainstate-0.1.10.dist-info}/top_level.txt +0 -0
brainstate/transform.py CHANGED
@@ -1,23 +1,23 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
- # alias for compilation and augmentation functions
17
-
18
- from .augment import *
19
- from .compile import *
20
-
21
- if __name__ == '__main__':
22
- ifelse
23
- grad
1
+ # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ # alias for compilation and augmentation functions
17
+
18
+ from .augment import *
19
+ from .compile import *
20
+
21
+ if __name__ == '__main__':
22
+ ifelse
23
+ grad
brainstate/typing.py CHANGED
@@ -1,304 +1,304 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
- import builtins
17
- import functools as ft
18
- import importlib
19
- import inspect
20
- from typing import (
21
- Any, Callable, Hashable, List, Protocol, Tuple, TypeVar, Union,
22
- runtime_checkable, TYPE_CHECKING, Generic, Sequence
23
- )
24
-
25
- import brainunit as u
26
- import jax
27
- import numpy as np
28
-
29
- tp = importlib.import_module("typing")
30
-
31
- __all__ = [
32
- 'PathParts',
33
- 'Predicate',
34
- 'Filter',
35
- 'PyTree',
36
- 'Size',
37
- 'Shape',
38
- 'Axes',
39
- 'SeedOrKey',
40
- 'ArrayLike',
41
- 'DType',
42
- 'DTypeLike',
43
- 'Missing',
44
- ]
45
-
46
- K = TypeVar('K')
47
-
48
-
49
- @runtime_checkable
50
- class Key(Hashable, Protocol):
51
- def __lt__(self: K, value: K, /) -> bool:
52
- ...
53
-
54
-
55
- Ellipsis = builtins.ellipsis if TYPE_CHECKING else Any
56
-
57
- PathParts = Tuple[Key, ...]
58
- Predicate = Callable[[PathParts, Any], bool]
59
- FilterLiteral = Union[type, str, Predicate, bool, Ellipsis, None]
60
- Filter = Union[FilterLiteral, Tuple['Filter', ...], List['Filter']]
61
-
62
- _T = TypeVar("_T")
63
-
64
- _Annotation = TypeVar("_Annotation")
65
-
66
-
67
- class _Array(Generic[_Annotation]):
68
- pass
69
-
70
-
71
- _Array.__module__ = "builtins"
72
-
73
-
74
- def _item_to_str(item: Union[str, type, slice]) -> str:
75
- if isinstance(item, slice):
76
- if item.step is not None:
77
- raise NotImplementedError
78
- return _item_to_str(item.start) + ": " + _item_to_str(item.stop)
79
- elif item is ...:
80
- return "..."
81
- elif inspect.isclass(item):
82
- return item.__name__
83
- else:
84
- return repr(item)
85
-
86
-
87
- def _maybe_tuple_to_str(
88
- item: Union[str, type, slice, Tuple[Union[str, type, slice], ...]]
89
- ) -> str:
90
- if isinstance(item, tuple):
91
- if len(item) == 0:
92
- # Explicit brackets
93
- return "()"
94
- else:
95
- # No brackets
96
- return ", ".join([_item_to_str(i) for i in item])
97
- else:
98
- return _item_to_str(item)
99
-
100
-
101
- class Array:
102
- def __class_getitem__(cls, item):
103
- class X:
104
- pass
105
-
106
- X.__module__ = "builtins"
107
- X.__qualname__ = _maybe_tuple_to_str(item)
108
- return _Array[X]
109
-
110
-
111
- # Same __module__ trick here again. (So that we get the correct display when
112
- # doing `def f(x: Array)` as well as `def f(x: Array["dim"])`.
113
- #
114
- # Don't need to set __qualname__ as that's already correct.
115
- Array.__module__ = "builtins"
116
-
117
-
118
- class _FakePyTree(Generic[_T]):
119
- pass
120
-
121
-
122
- _FakePyTree.__name__ = "PyTree"
123
- _FakePyTree.__qualname__ = "PyTree"
124
- _FakePyTree.__module__ = "builtins"
125
-
126
-
127
- class _MetaPyTree(type):
128
- def __call__(self, *args, **kwargs):
129
- raise RuntimeError("PyTree cannot be instantiated")
130
-
131
- # Can't return a generic (e.g. _FakePyTree[item]) because generic aliases don't do
132
- # the custom __instancecheck__ that we want.
133
- # We can't add that __instancecheck__ via subclassing, e.g.
134
- # type("PyTree", (Generic[_T],), {}), because dynamic subclassing of typeforms
135
- # isn't allowed.
136
- # Likewise we can't do types.new_class("PyTree", (Generic[_T],), {}) because that
137
- # has __module__ "types", e.g. we get types.PyTree[int].
138
- @ft.lru_cache(maxsize=None)
139
- def __getitem__(cls, item):
140
- if isinstance(item, tuple):
141
- if len(item) == 2:
142
-
143
- class X(PyTree):
144
- leaftype = item[0]
145
- structure = item[1].strip()
146
-
147
- if not isinstance(X.structure, str):
148
- raise ValueError(
149
- "The structure annotation `struct` in "
150
- "`brainstate.typing.PyTree[leaftype, struct]` must be be a string, "
151
- f"e.g. `brainstate.typing.PyTree[leaftype, 'T']`. Got '{X.structure}'."
152
- )
153
- pieces = X.structure.split()
154
- if len(pieces) == 0:
155
- raise ValueError(
156
- "The string `struct` in `brainstate.typing.PyTree[leaftype, struct]` "
157
- "cannot be the empty string."
158
- )
159
- for piece_index, piece in enumerate(pieces):
160
- if (piece_index == 0) or (piece_index == len(pieces) - 1):
161
- if piece == "...":
162
- continue
163
- if not piece.isidentifier():
164
- raise ValueError(
165
- "The string `struct` in "
166
- "`brainstate.typing.PyTree[leaftype, struct]` must be be a "
167
- "whitespace-separated sequence of identifiers, e.g. "
168
- "`brainstate.typing.PyTree[leaftype, 'T']` or "
169
- "`brainstate.typing.PyTree[leaftype, 'foo bar']`.\n"
170
- "(Here, 'identifier' is used in the same sense as in "
171
- "regular Python, i.e. a valid variable name.)\n"
172
- f"Got piece '{piece}' in overall structure '{X.structure}'."
173
- )
174
- name = str(_FakePyTree[item[0]])[:-1] + ', "' + item[1].strip() + '"]'
175
- else:
176
- raise ValueError(
177
- "The subscript `foo` in `brainstate.typing.PyTree[foo]` must either be a "
178
- "leaf type, e.g. `PyTree[int]`, or a 2-tuple of leaf and "
179
- "structure, e.g. `PyTree[int, 'T']`. Received a tuple of length "
180
- f"{len(item)}."
181
- )
182
- else:
183
- name = str(_FakePyTree[item])
184
-
185
- class X(PyTree):
186
- leaftype = item
187
- structure = None
188
-
189
- X.__name__ = name
190
- X.__qualname__ = name
191
- if getattr(tp, "GENERATING_DOCUMENTATION", False):
192
- X.__module__ = "builtins"
193
- else:
194
- X.__module__ = "brainstate.typing"
195
- return X
196
-
197
-
198
- # Can't do `class PyTree(Generic[_T]): ...` because we need to override the
199
- # instancecheck for PyTree[foo], but subclassing
200
- # `type(Generic[int])`, i.e. `typing._GenericAlias` is disallowed.
201
- PyTree = _MetaPyTree("PyTree", (), {})
202
- if getattr(tp, "GENERATING_DOCUMENTATION", False):
203
- PyTree.__module__ = "builtins"
204
- else:
205
- PyTree.__module__ = "brainstate.typing"
206
- PyTree.__doc__ = """Represents a PyTree.
207
-
208
- Annotations of the following sorts are supported:
209
- ```python
210
- a: PyTree
211
- b: PyTree[LeafType]
212
- c: PyTree[LeafType, "T"]
213
- d: PyTree[LeafType, "S T"]
214
- e: PyTree[LeafType, "... T"]
215
- f: PyTree[LeafType, "T ..."]
216
- ```
217
-
218
- These correspond to:
219
-
220
- a. A plain `PyTree` can be used an annotation, in which case `PyTree` is simply a
221
- suggestively-named alternative to `Any`.
222
- ([By definition all types are PyTrees.](https://jax.readthedocs.io/en/latest/pytrees.html))
223
-
224
- b. `PyTree[LeafType]` denotes a PyTree all of whose leaves match `LeafType`. For
225
- example, `PyTree[int]` or `PyTree[Union[str, Float32[Array, "b c"]]]`.
226
-
227
- c. A structure name can also be passed. In this case
228
- `jax.tree_util.tree_structure(...)` will be called, and bound to the structure name.
229
- This can be used to mark that multiple PyTrees all have the same structure:
230
- ```python
231
- def f(x: PyTree[int, "T"], y: PyTree[int, "T"]):
232
- ...
233
- ```
234
-
235
- d. A composite structure can be declared. In this case the variable must have a PyTree
236
- structure each to the composition of multiple previously-bound PyTree structures.
237
- For example:
238
- ```python
239
- def f(x: PyTree[int, "T"], y: PyTree[int, "S"], z: PyTree[int, "S T"]):
240
- ...
241
-
242
- x = (1, 2)
243
- y = {"key": 3}
244
- z = {"key": (4, 5)} # structure is the composition of the structures of `y` and `z`
245
- f(x, y, z)
246
- ```
247
- When performing runtime type-checking, all the individual pieces must have already
248
- been bound to structures, otherwise the composite structure check will throw an error.
249
-
250
- e. A structure can begin with a `...`, to denote that the lower levels of the PyTree
251
- must match the declared structure, but the upper levels can be arbitrary. As in the
252
- previous case, all named pieces must already have been seen and their structures
253
- bound.
254
-
255
- f. A structure can end with a `...`, to denote that the PyTree must be a prefix of the
256
- declared structure, but the lower levels can be arbitrary. As in the previous two
257
- cases, all named pieces must already have been seen and their structures bound.
258
- """ # noqa: E501
259
-
260
- Size = Union[int, Sequence[int], np.integer, Sequence[np.integer]]
261
- Axes = Union[int, Sequence[int]]
262
- SeedOrKey = Union[int, jax.Array, np.ndarray]
263
- Shape = Sequence[int]
264
-
265
- # --- Array --- #
266
-
267
- # ArrayLike is a Union of all objects that can be implicitly converted to a
268
- # standard JAX array (i.e. not including future non-standard array types like
269
- # KeyArray and BInt). It's different than np.typing.ArrayLike in that it doesn't
270
- # accept arbitrary sequences, nor does it accept string data.
271
- ArrayLike = Union[
272
- jax.Array, # JAX array type
273
- np.ndarray, # NumPy array type
274
- np.bool_, np.number, # NumPy scalar types
275
- bool, int, float, complex, # Python scalar types
276
- u.Quantity, # Quantity
277
- ]
278
-
279
- # --- Dtype --- #
280
-
281
-
282
- DType = np.dtype
283
-
284
-
285
- class SupportsDType(Protocol):
286
- @property
287
- def dtype(self) -> DType: ...
288
-
289
-
290
- # DTypeLike is meant to annotate inputs to np.dtype that return
291
- # a valid JAX dtype. It's different than numpy.typing.DTypeLike
292
- # because JAX doesn't support objects or structured dtypes.
293
- # Unlike np.typing.DTypeLike, we exclude None, and instead require
294
- # explicit annotations when None is acceptable.
295
- DTypeLike = Union[
296
- str, # like 'float32', 'int32'
297
- type[Any], # like np.float32, np.int32, float, int
298
- np.dtype, # like np.dtype('float32'), np.dtype('int32')
299
- SupportsDType, # like jnp.float32, jnp.int32
300
- ]
301
-
302
-
303
- class Missing:
304
- pass
1
+ # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ import builtins
17
+ import functools as ft
18
+ import importlib
19
+ import inspect
20
+ from typing import (
21
+ Any, Callable, Hashable, List, Protocol, Tuple, TypeVar, Union,
22
+ runtime_checkable, TYPE_CHECKING, Generic, Sequence
23
+ )
24
+
25
+ import brainunit as u
26
+ import jax
27
+ import numpy as np
28
+
29
+ tp = importlib.import_module("typing")
30
+
31
+ __all__ = [
32
+ 'PathParts',
33
+ 'Predicate',
34
+ 'Filter',
35
+ 'PyTree',
36
+ 'Size',
37
+ 'Shape',
38
+ 'Axes',
39
+ 'SeedOrKey',
40
+ 'ArrayLike',
41
+ 'DType',
42
+ 'DTypeLike',
43
+ 'Missing',
44
+ ]
45
+
46
+ K = TypeVar('K')
47
+
48
+
49
+ @runtime_checkable
50
+ class Key(Hashable, Protocol):
51
+ def __lt__(self: K, value: K, /) -> bool:
52
+ ...
53
+
54
+
55
+ Ellipsis = builtins.ellipsis if TYPE_CHECKING else Any
56
+
57
+ PathParts = Tuple[Key, ...]
58
+ Predicate = Callable[[PathParts, Any], bool]
59
+ FilterLiteral = Union[type, str, Predicate, bool, Ellipsis, None]
60
+ Filter = Union[FilterLiteral, Tuple['Filter', ...], List['Filter']]
61
+
62
+ _T = TypeVar("_T")
63
+
64
+ _Annotation = TypeVar("_Annotation")
65
+
66
+
67
+ class _Array(Generic[_Annotation]):
68
+ pass
69
+
70
+
71
+ _Array.__module__ = "builtins"
72
+
73
+
74
+ def _item_to_str(item: Union[str, type, slice]) -> str:
75
+ if isinstance(item, slice):
76
+ if item.step is not None:
77
+ raise NotImplementedError
78
+ return _item_to_str(item.start) + ": " + _item_to_str(item.stop)
79
+ elif item is ...:
80
+ return "..."
81
+ elif inspect.isclass(item):
82
+ return item.__name__
83
+ else:
84
+ return repr(item)
85
+
86
+
87
+ def _maybe_tuple_to_str(
88
+ item: Union[str, type, slice, Tuple[Union[str, type, slice], ...]]
89
+ ) -> str:
90
+ if isinstance(item, tuple):
91
+ if len(item) == 0:
92
+ # Explicit brackets
93
+ return "()"
94
+ else:
95
+ # No brackets
96
+ return ", ".join([_item_to_str(i) for i in item])
97
+ else:
98
+ return _item_to_str(item)
99
+
100
+
101
+ class Array:
102
+ def __class_getitem__(cls, item):
103
+ class X:
104
+ pass
105
+
106
+ X.__module__ = "builtins"
107
+ X.__qualname__ = _maybe_tuple_to_str(item)
108
+ return _Array[X]
109
+
110
+
111
+ # Same __module__ trick here again. (So that we get the correct display when
112
+ # doing `def f(x: Array)` as well as `def f(x: Array["dim"])`.
113
+ #
114
+ # Don't need to set __qualname__ as that's already correct.
115
+ Array.__module__ = "builtins"
116
+
117
+
118
+ class _FakePyTree(Generic[_T]):
119
+ pass
120
+
121
+
122
+ _FakePyTree.__name__ = "PyTree"
123
+ _FakePyTree.__qualname__ = "PyTree"
124
+ _FakePyTree.__module__ = "builtins"
125
+
126
+
127
+ class _MetaPyTree(type):
128
+ def __call__(self, *args, **kwargs):
129
+ raise RuntimeError("PyTree cannot be instantiated")
130
+
131
+ # Can't return a generic (e.g. _FakePyTree[item]) because generic aliases don't do
132
+ # the custom __instancecheck__ that we want.
133
+ # We can't add that __instancecheck__ via subclassing, e.g.
134
+ # type("PyTree", (Generic[_T],), {}), because dynamic subclassing of typeforms
135
+ # isn't allowed.
136
+ # Likewise we can't do types.new_class("PyTree", (Generic[_T],), {}) because that
137
+ # has __module__ "types", e.g. we get types.PyTree[int].
138
+ @ft.lru_cache(maxsize=None)
139
+ def __getitem__(cls, item):
140
+ if isinstance(item, tuple):
141
+ if len(item) == 2:
142
+
143
+ class X(PyTree):
144
+ leaftype = item[0]
145
+ structure = item[1].strip()
146
+
147
+ if not isinstance(X.structure, str):
148
+ raise ValueError(
149
+ "The structure annotation `struct` in "
150
+ "`brainstate.typing.PyTree[leaftype, struct]` must be be a string, "
151
+ f"e.g. `brainstate.typing.PyTree[leaftype, 'T']`. Got '{X.structure}'."
152
+ )
153
+ pieces = X.structure.split()
154
+ if len(pieces) == 0:
155
+ raise ValueError(
156
+ "The string `struct` in `brainstate.typing.PyTree[leaftype, struct]` "
157
+ "cannot be the empty string."
158
+ )
159
+ for piece_index, piece in enumerate(pieces):
160
+ if (piece_index == 0) or (piece_index == len(pieces) - 1):
161
+ if piece == "...":
162
+ continue
163
+ if not piece.isidentifier():
164
+ raise ValueError(
165
+ "The string `struct` in "
166
+ "`brainstate.typing.PyTree[leaftype, struct]` must be be a "
167
+ "whitespace-separated sequence of identifiers, e.g. "
168
+ "`brainstate.typing.PyTree[leaftype, 'T']` or "
169
+ "`brainstate.typing.PyTree[leaftype, 'foo bar']`.\n"
170
+ "(Here, 'identifier' is used in the same sense as in "
171
+ "regular Python, i.e. a valid variable name.)\n"
172
+ f"Got piece '{piece}' in overall structure '{X.structure}'."
173
+ )
174
+ name = str(_FakePyTree[item[0]])[:-1] + ', "' + item[1].strip() + '"]'
175
+ else:
176
+ raise ValueError(
177
+ "The subscript `foo` in `brainstate.typing.PyTree[foo]` must either be a "
178
+ "leaf type, e.g. `PyTree[int]`, or a 2-tuple of leaf and "
179
+ "structure, e.g. `PyTree[int, 'T']`. Received a tuple of length "
180
+ f"{len(item)}."
181
+ )
182
+ else:
183
+ name = str(_FakePyTree[item])
184
+
185
+ class X(PyTree):
186
+ leaftype = item
187
+ structure = None
188
+
189
+ X.__name__ = name
190
+ X.__qualname__ = name
191
+ if getattr(tp, "GENERATING_DOCUMENTATION", False):
192
+ X.__module__ = "builtins"
193
+ else:
194
+ X.__module__ = "brainstate.typing"
195
+ return X
196
+
197
+
198
+ # Can't do `class PyTree(Generic[_T]): ...` because we need to override the
199
+ # instancecheck for PyTree[foo], but subclassing
200
+ # `type(Generic[int])`, i.e. `typing._GenericAlias` is disallowed.
201
+ PyTree = _MetaPyTree("PyTree", (), {})
202
+ if getattr(tp, "GENERATING_DOCUMENTATION", False):
203
+ PyTree.__module__ = "builtins"
204
+ else:
205
+ PyTree.__module__ = "brainstate.typing"
206
+ PyTree.__doc__ = """Represents a PyTree.
207
+
208
+ Annotations of the following sorts are supported:
209
+ ```python
210
+ a: PyTree
211
+ b: PyTree[LeafType]
212
+ c: PyTree[LeafType, "T"]
213
+ d: PyTree[LeafType, "S T"]
214
+ e: PyTree[LeafType, "... T"]
215
+ f: PyTree[LeafType, "T ..."]
216
+ ```
217
+
218
+ These correspond to:
219
+
220
+ a. A plain `PyTree` can be used an annotation, in which case `PyTree` is simply a
221
+ suggestively-named alternative to `Any`.
222
+ ([By definition all types are PyTrees.](https://jax.readthedocs.io/en/latest/pytrees.html))
223
+
224
+ b. `PyTree[LeafType]` denotes a PyTree all of whose leaves match `LeafType`. For
225
+ example, `PyTree[int]` or `PyTree[Union[str, Float32[Array, "b c"]]]`.
226
+
227
+ c. A structure name can also be passed. In this case
228
+ `jax.tree_util.tree_structure(...)` will be called, and bound to the structure name.
229
+ This can be used to mark that multiple PyTrees all have the same structure:
230
+ ```python
231
+ def f(x: PyTree[int, "T"], y: PyTree[int, "T"]):
232
+ ...
233
+ ```
234
+
235
+ d. A composite structure can be declared. In this case the variable must have a PyTree
236
+ structure each to the composition of multiple previously-bound PyTree structures.
237
+ For example:
238
+ ```python
239
+ def f(x: PyTree[int, "T"], y: PyTree[int, "S"], z: PyTree[int, "S T"]):
240
+ ...
241
+
242
+ x = (1, 2)
243
+ y = {"key": 3}
244
+ z = {"key": (4, 5)} # structure is the composition of the structures of `y` and `z`
245
+ f(x, y, z)
246
+ ```
247
+ When performing runtime type-checking, all the individual pieces must have already
248
+ been bound to structures, otherwise the composite structure check will throw an error.
249
+
250
+ e. A structure can begin with a `...`, to denote that the lower levels of the PyTree
251
+ must match the declared structure, but the upper levels can be arbitrary. As in the
252
+ previous case, all named pieces must already have been seen and their structures
253
+ bound.
254
+
255
+ f. A structure can end with a `...`, to denote that the PyTree must be a prefix of the
256
+ declared structure, but the lower levels can be arbitrary. As in the previous two
257
+ cases, all named pieces must already have been seen and their structures bound.
258
+ """ # noqa: E501
259
+
260
+ Size = Union[int, Sequence[int], np.integer, Sequence[np.integer]]
261
+ Axes = Union[int, Sequence[int]]
262
+ SeedOrKey = Union[int, jax.Array, np.ndarray]
263
+ Shape = Sequence[int]
264
+
265
+ # --- Array --- #
266
+
267
+ # ArrayLike is a Union of all objects that can be implicitly converted to a
268
+ # standard JAX array (i.e. not including future non-standard array types like
269
+ # KeyArray and BInt). It's different than np.typing.ArrayLike in that it doesn't
270
+ # accept arbitrary sequences, nor does it accept string data.
271
+ ArrayLike = Union[
272
+ jax.Array, # JAX array type
273
+ np.ndarray, # NumPy array type
274
+ np.bool_, np.number, # NumPy scalar types
275
+ bool, int, float, complex, # Python scalar types
276
+ u.Quantity, # Quantity
277
+ ]
278
+
279
+ # --- Dtype --- #
280
+
281
+
282
+ DType = np.dtype
283
+
284
+
285
+ class SupportsDType(Protocol):
286
+ @property
287
+ def dtype(self) -> DType: ...
288
+
289
+
290
+ # DTypeLike is meant to annotate inputs to np.dtype that return
291
+ # a valid JAX dtype. It's different than numpy.typing.DTypeLike
292
+ # because JAX doesn't support objects or structured dtypes.
293
+ # Unlike np.typing.DTypeLike, we exclude None, and instead require
294
+ # explicit annotations when None is acceptable.
295
+ DTypeLike = Union[
296
+ str, # like 'float32', 'int32'
297
+ type[Any], # like np.float32, np.int32, float, int
298
+ np.dtype, # like np.dtype('float32'), np.dtype('int32')
299
+ SupportsDType, # like jnp.float32, jnp.int32
300
+ ]
301
+
302
+
303
+ class Missing:
304
+ pass