brainstate 0.1.8__py2.py3-none-any.whl → 0.1.10__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- brainstate/__init__.py +58 -51
- brainstate/_compatible_import.py +148 -148
- brainstate/_state.py +1605 -1663
- brainstate/_state_test.py +52 -52
- brainstate/_utils.py +47 -47
- brainstate/augment/__init__.py +30 -30
- brainstate/augment/_autograd.py +778 -778
- brainstate/augment/_autograd_test.py +1289 -1289
- brainstate/augment/_eval_shape.py +99 -99
- brainstate/augment/_eval_shape_test.py +38 -38
- brainstate/augment/_mapping.py +1060 -1060
- brainstate/augment/_mapping_test.py +597 -597
- brainstate/augment/_random.py +151 -151
- brainstate/compile/__init__.py +38 -38
- brainstate/compile/_ad_checkpoint.py +204 -204
- brainstate/compile/_ad_checkpoint_test.py +49 -49
- brainstate/compile/_conditions.py +256 -256
- brainstate/compile/_conditions_test.py +220 -220
- brainstate/compile/_error_if.py +92 -92
- brainstate/compile/_error_if_test.py +52 -52
- brainstate/compile/_jit.py +346 -346
- brainstate/compile/_jit_test.py +143 -143
- brainstate/compile/_loop_collect_return.py +536 -536
- brainstate/compile/_loop_collect_return_test.py +58 -58
- brainstate/compile/_loop_no_collection.py +184 -184
- brainstate/compile/_loop_no_collection_test.py +50 -50
- brainstate/compile/_make_jaxpr.py +888 -888
- brainstate/compile/_make_jaxpr_test.py +156 -156
- brainstate/compile/_progress_bar.py +202 -202
- brainstate/compile/_unvmap.py +159 -159
- brainstate/compile/_util.py +147 -147
- brainstate/environ.py +563 -563
- brainstate/environ_test.py +62 -62
- brainstate/functional/__init__.py +27 -26
- brainstate/graph/__init__.py +29 -29
- brainstate/graph/_graph_node.py +244 -244
- brainstate/graph/_graph_node_test.py +73 -73
- brainstate/graph/_graph_operation.py +1738 -1738
- brainstate/graph/_graph_operation_test.py +563 -563
- brainstate/init/__init__.py +26 -26
- brainstate/init/_base.py +52 -52
- brainstate/init/_generic.py +244 -244
- brainstate/init/_random_inits.py +553 -553
- brainstate/init/_random_inits_test.py +149 -149
- brainstate/init/_regular_inits.py +105 -105
- brainstate/init/_regular_inits_test.py +50 -50
- brainstate/mixin.py +365 -363
- brainstate/mixin_test.py +77 -73
- brainstate/nn/__init__.py +135 -131
- brainstate/{functional → nn}/_activations.py +808 -813
- brainstate/{functional → nn}/_activations_test.py +331 -331
- brainstate/nn/_collective_ops.py +514 -514
- brainstate/nn/_collective_ops_test.py +43 -43
- brainstate/nn/_common.py +178 -178
- brainstate/nn/_conv.py +501 -501
- brainstate/nn/_conv_test.py +238 -238
- brainstate/nn/_delay.py +588 -502
- brainstate/nn/_delay_test.py +238 -184
- brainstate/nn/_dropout.py +426 -426
- brainstate/nn/_dropout_test.py +100 -100
- brainstate/nn/_dynamics.py +1343 -1343
- brainstate/nn/_dynamics_test.py +78 -78
- brainstate/nn/_elementwise.py +1119 -1119
- brainstate/nn/_elementwise_test.py +169 -169
- brainstate/nn/_embedding.py +58 -58
- brainstate/nn/_exp_euler.py +92 -92
- brainstate/nn/_exp_euler_test.py +35 -35
- brainstate/nn/_fixedprob.py +239 -239
- brainstate/nn/_fixedprob_test.py +114 -114
- brainstate/nn/_inputs.py +608 -608
- brainstate/nn/_linear.py +424 -424
- brainstate/nn/_linear_mv.py +83 -83
- brainstate/nn/_linear_mv_test.py +120 -120
- brainstate/nn/_linear_test.py +107 -107
- brainstate/nn/_ltp.py +28 -28
- brainstate/nn/_module.py +377 -377
- brainstate/nn/_module_test.py +40 -40
- brainstate/nn/_neuron.py +705 -705
- brainstate/nn/_neuron_test.py +161 -161
- brainstate/nn/_normalizations.py +975 -918
- brainstate/nn/_normalizations_test.py +73 -73
- brainstate/{functional → nn}/_others.py +46 -46
- brainstate/nn/_poolings.py +1177 -1177
- brainstate/nn/_poolings_test.py +217 -217
- brainstate/nn/_projection.py +486 -486
- brainstate/nn/_rate_rnns.py +554 -554
- brainstate/nn/_rate_rnns_test.py +63 -63
- brainstate/nn/_readout.py +209 -209
- brainstate/nn/_readout_test.py +53 -53
- brainstate/nn/_stp.py +236 -236
- brainstate/nn/_synapse.py +505 -505
- brainstate/nn/_synapse_test.py +131 -131
- brainstate/nn/_synaptic_projection.py +423 -423
- brainstate/nn/_synouts.py +162 -162
- brainstate/nn/_synouts_test.py +57 -57
- brainstate/nn/_utils.py +89 -89
- brainstate/nn/metrics.py +388 -388
- brainstate/optim/__init__.py +38 -38
- brainstate/optim/_base.py +64 -64
- brainstate/optim/_lr_scheduler.py +448 -448
- brainstate/optim/_lr_scheduler_test.py +50 -50
- brainstate/optim/_optax_optimizer.py +152 -152
- brainstate/optim/_optax_optimizer_test.py +53 -53
- brainstate/optim/_sgd_optimizer.py +1104 -1104
- brainstate/random/__init__.py +24 -24
- brainstate/random/_rand_funs.py +3616 -3616
- brainstate/random/_rand_funs_test.py +567 -567
- brainstate/random/_rand_seed.py +210 -210
- brainstate/random/_rand_seed_test.py +48 -48
- brainstate/random/_rand_state.py +1409 -1409
- brainstate/random/_random_for_unit.py +52 -52
- brainstate/surrogate.py +1957 -1957
- brainstate/transform.py +23 -23
- brainstate/typing.py +304 -304
- brainstate/util/__init__.py +50 -50
- brainstate/util/caller.py +98 -98
- brainstate/util/error.py +55 -55
- brainstate/util/filter.py +469 -469
- brainstate/util/others.py +540 -540
- brainstate/util/pretty_pytree.py +945 -945
- brainstate/util/pretty_pytree_test.py +159 -159
- brainstate/util/pretty_repr.py +328 -328
- brainstate/util/pretty_table.py +2954 -2954
- brainstate/util/scaling.py +258 -258
- brainstate/util/struct.py +523 -523
- {brainstate-0.1.8.dist-info → brainstate-0.1.10.dist-info}/METADATA +91 -99
- brainstate-0.1.10.dist-info/RECORD +130 -0
- {brainstate-0.1.8.dist-info → brainstate-0.1.10.dist-info}/WHEEL +1 -1
- {brainstate-0.1.8.dist-info → brainstate-0.1.10.dist-info/licenses}/LICENSE +202 -202
- brainstate/functional/_normalization.py +0 -81
- brainstate/functional/_spikes.py +0 -204
- brainstate-0.1.8.dist-info/RECORD +0 -132
- {brainstate-0.1.8.dist-info → brainstate-0.1.10.dist-info}/top_level.txt +0 -0
@@ -1,73 +1,73 @@
|
|
1
|
-
# Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
# ==============================================================================
|
15
|
-
|
16
|
-
from absl.testing import absltest
|
17
|
-
from absl.testing import parameterized
|
18
|
-
|
19
|
-
import brainstate
|
20
|
-
|
21
|
-
|
22
|
-
class Test_Normalization(parameterized.TestCase):
|
23
|
-
@parameterized.product(
|
24
|
-
fit=[True, False],
|
25
|
-
)
|
26
|
-
def test_BatchNorm1d(self, fit):
|
27
|
-
net = brainstate.nn.BatchNorm1d((3, 10))
|
28
|
-
brainstate.environ.set(fit=fit)
|
29
|
-
input = brainstate.random.randn(1, 3, 10)
|
30
|
-
output = net(input)
|
31
|
-
|
32
|
-
@parameterized.product(
|
33
|
-
fit=[True, False]
|
34
|
-
)
|
35
|
-
def test_BatchNorm2d(self, fit):
|
36
|
-
net = brainstate.nn.BatchNorm2d([3, 4, 10])
|
37
|
-
brainstate.environ.set(fit=fit)
|
38
|
-
input = brainstate.random.randn(1, 3, 4, 10)
|
39
|
-
output = net(input)
|
40
|
-
|
41
|
-
@parameterized.product(
|
42
|
-
fit=[True, False]
|
43
|
-
)
|
44
|
-
def test_BatchNorm3d(self, fit):
|
45
|
-
net = brainstate.nn.BatchNorm3d([3, 4, 5, 10])
|
46
|
-
brainstate.environ.set(fit=fit)
|
47
|
-
input = brainstate.random.randn(1, 3, 4, 5, 10)
|
48
|
-
output = net(input)
|
49
|
-
|
50
|
-
# @parameterized.product(
|
51
|
-
# normalized_shape=(10, [5, 10])
|
52
|
-
# )
|
53
|
-
# def test_LayerNorm(self, normalized_shape):
|
54
|
-
# net = brainstate.nn.LayerNorm(normalized_shape, )
|
55
|
-
# input = brainstate.random.randn(20, 5, 10)
|
56
|
-
# output = net(input)
|
57
|
-
#
|
58
|
-
# @parameterized.product(
|
59
|
-
# num_groups=[1, 2, 3, 6]
|
60
|
-
# )
|
61
|
-
# def test_GroupNorm(self, num_groups):
|
62
|
-
# input = brainstate.random.randn(20, 10, 10, 6)
|
63
|
-
# net = brainstate.nn.GroupNorm(num_groups=num_groups, num_channels=6, )
|
64
|
-
# output = net(input)
|
65
|
-
#
|
66
|
-
# def test_InstanceNorm(self):
|
67
|
-
# input = brainstate.random.randn(20, 10, 10, 6)
|
68
|
-
# net = brainstate.nn.InstanceNorm(num_channels=6, )
|
69
|
-
# output = net(input)
|
70
|
-
|
71
|
-
|
72
|
-
if __name__ == '__main__':
|
73
|
-
absltest.main()
|
1
|
+
# Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
from absl.testing import absltest
|
17
|
+
from absl.testing import parameterized
|
18
|
+
|
19
|
+
import brainstate
|
20
|
+
|
21
|
+
|
22
|
+
class Test_Normalization(parameterized.TestCase):
|
23
|
+
@parameterized.product(
|
24
|
+
fit=[True, False],
|
25
|
+
)
|
26
|
+
def test_BatchNorm1d(self, fit):
|
27
|
+
net = brainstate.nn.BatchNorm1d((3, 10))
|
28
|
+
brainstate.environ.set(fit=fit)
|
29
|
+
input = brainstate.random.randn(1, 3, 10)
|
30
|
+
output = net(input)
|
31
|
+
|
32
|
+
@parameterized.product(
|
33
|
+
fit=[True, False]
|
34
|
+
)
|
35
|
+
def test_BatchNorm2d(self, fit):
|
36
|
+
net = brainstate.nn.BatchNorm2d([3, 4, 10])
|
37
|
+
brainstate.environ.set(fit=fit)
|
38
|
+
input = brainstate.random.randn(1, 3, 4, 10)
|
39
|
+
output = net(input)
|
40
|
+
|
41
|
+
@parameterized.product(
|
42
|
+
fit=[True, False]
|
43
|
+
)
|
44
|
+
def test_BatchNorm3d(self, fit):
|
45
|
+
net = brainstate.nn.BatchNorm3d([3, 4, 5, 10])
|
46
|
+
brainstate.environ.set(fit=fit)
|
47
|
+
input = brainstate.random.randn(1, 3, 4, 5, 10)
|
48
|
+
output = net(input)
|
49
|
+
|
50
|
+
# @parameterized.product(
|
51
|
+
# normalized_shape=(10, [5, 10])
|
52
|
+
# )
|
53
|
+
# def test_LayerNorm(self, normalized_shape):
|
54
|
+
# net = brainstate.nn.LayerNorm(normalized_shape, )
|
55
|
+
# input = brainstate.random.randn(20, 5, 10)
|
56
|
+
# output = net(input)
|
57
|
+
#
|
58
|
+
# @parameterized.product(
|
59
|
+
# num_groups=[1, 2, 3, 6]
|
60
|
+
# )
|
61
|
+
# def test_GroupNorm(self, num_groups):
|
62
|
+
# input = brainstate.random.randn(20, 10, 10, 6)
|
63
|
+
# net = brainstate.nn.GroupNorm(num_groups=num_groups, num_channels=6, )
|
64
|
+
# output = net(input)
|
65
|
+
#
|
66
|
+
# def test_InstanceNorm(self):
|
67
|
+
# input = brainstate.random.randn(20, 10, 10, 6)
|
68
|
+
# net = brainstate.nn.InstanceNorm(num_channels=6, )
|
69
|
+
# output = net(input)
|
70
|
+
|
71
|
+
|
72
|
+
if __name__ == '__main__':
|
73
|
+
absltest.main()
|
@@ -1,46 +1,46 @@
|
|
1
|
-
# Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
# ==============================================================================
|
15
|
-
|
16
|
-
from functools import partial
|
17
|
-
|
18
|
-
import jax
|
19
|
-
import jax.numpy as jnp
|
20
|
-
|
21
|
-
from brainstate.typing import PyTree
|
22
|
-
|
23
|
-
__all__ = [
|
24
|
-
'clip_grad_norm',
|
25
|
-
]
|
26
|
-
|
27
|
-
|
28
|
-
def clip_grad_norm(
|
29
|
-
grad: PyTree,
|
30
|
-
max_norm: float | jax.Array,
|
31
|
-
norm_type: int | str | None = None
|
32
|
-
):
|
33
|
-
"""
|
34
|
-
Clips gradient norm of an iterable of parameters.
|
35
|
-
|
36
|
-
The norm is computed over all gradients together, as if they were
|
37
|
-
concatenated into a single vector. Gradients are modified in-place.
|
38
|
-
|
39
|
-
Args:
|
40
|
-
grad (PyTree): an iterable of Tensors or a single Tensor that will have gradients normalized
|
41
|
-
max_norm (float): max norm of the gradients.
|
42
|
-
norm_type (int, str, None): type of the used p-norm. Can be ``'inf'`` for infinity norm.
|
43
|
-
"""
|
44
|
-
norm_fn = partial(jnp.linalg.norm, ord=norm_type)
|
45
|
-
norm = norm_fn(jnp.asarray(jax.tree.leaves(jax.tree.map(norm_fn, grad))))
|
46
|
-
return jax.tree.map(lambda x: jnp.where(norm < max_norm, x, x * max_norm / (norm + 1e-6)), grad)
|
1
|
+
# Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
from functools import partial
|
17
|
+
|
18
|
+
import jax
|
19
|
+
import jax.numpy as jnp
|
20
|
+
|
21
|
+
from brainstate.typing import PyTree
|
22
|
+
|
23
|
+
__all__ = [
|
24
|
+
'clip_grad_norm',
|
25
|
+
]
|
26
|
+
|
27
|
+
|
28
|
+
def clip_grad_norm(
|
29
|
+
grad: PyTree,
|
30
|
+
max_norm: float | jax.Array,
|
31
|
+
norm_type: int | str | None = None
|
32
|
+
):
|
33
|
+
"""
|
34
|
+
Clips gradient norm of an iterable of parameters.
|
35
|
+
|
36
|
+
The norm is computed over all gradients together, as if they were
|
37
|
+
concatenated into a single vector. Gradients are modified in-place.
|
38
|
+
|
39
|
+
Args:
|
40
|
+
grad (PyTree): an iterable of Tensors or a single Tensor that will have gradients normalized
|
41
|
+
max_norm (float): max norm of the gradients.
|
42
|
+
norm_type (int, str, None): type of the used p-norm. Can be ``'inf'`` for infinity norm.
|
43
|
+
"""
|
44
|
+
norm_fn = partial(jnp.linalg.norm, ord=norm_type)
|
45
|
+
norm = norm_fn(jnp.asarray(jax.tree.leaves(jax.tree.map(norm_fn, grad))))
|
46
|
+
return jax.tree.map(lambda x: jnp.where(norm < max_norm, x, x * max_norm / (norm + 1e-6)), grad)
|